1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // helpers.c  --  Voltage/Current Regulator framework helper functions.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 
8 #include <linux/kernel.h>
9 #include <linux/err.h>
10 #include <linux/delay.h>
11 #include <linux/regmap.h>
12 #include <linux/regulator/consumer.h>
13 #include <linux/regulator/driver.h>
14 #include <linux/module.h>
15 
16 /**
17  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
18  *
19  * @rdev: regulator to operate on
20  *
21  * Regulators that use regmap for their register I/O can set the
22  * enable_reg and enable_mask fields in their descriptor and then use
23  * this as their is_enabled operation, saving some code.
24  */
regulator_is_enabled_regmap(struct regulator_dev * rdev)25 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
26 {
27 	unsigned int val;
28 	int ret;
29 
30 	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
31 	if (ret != 0)
32 		return ret;
33 
34 	val &= rdev->desc->enable_mask;
35 
36 	if (rdev->desc->enable_is_inverted) {
37 		if (rdev->desc->enable_val)
38 			return val != rdev->desc->enable_val;
39 		return val == 0;
40 	} else {
41 		if (rdev->desc->enable_val)
42 			return val == rdev->desc->enable_val;
43 		return val != 0;
44 	}
45 }
46 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
47 
48 /**
49  * regulator_enable_regmap - standard enable() for regmap users
50  *
51  * @rdev: regulator to operate on
52  *
53  * Regulators that use regmap for their register I/O can set the
54  * enable_reg and enable_mask fields in their descriptor and then use
55  * this as their enable() operation, saving some code.
56  */
regulator_enable_regmap(struct regulator_dev * rdev)57 int regulator_enable_regmap(struct regulator_dev *rdev)
58 {
59 	unsigned int val;
60 
61 	if (rdev->desc->enable_is_inverted) {
62 		val = rdev->desc->disable_val;
63 	} else {
64 		val = rdev->desc->enable_val;
65 		if (!val)
66 			val = rdev->desc->enable_mask;
67 	}
68 
69 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
70 				  rdev->desc->enable_mask, val);
71 }
72 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
73 
74 /**
75  * regulator_disable_regmap - standard disable() for regmap users
76  *
77  * @rdev: regulator to operate on
78  *
79  * Regulators that use regmap for their register I/O can set the
80  * enable_reg and enable_mask fields in their descriptor and then use
81  * this as their disable() operation, saving some code.
82  */
regulator_disable_regmap(struct regulator_dev * rdev)83 int regulator_disable_regmap(struct regulator_dev *rdev)
84 {
85 	unsigned int val;
86 
87 	if (rdev->desc->enable_is_inverted) {
88 		val = rdev->desc->enable_val;
89 		if (!val)
90 			val = rdev->desc->enable_mask;
91 	} else {
92 		val = rdev->desc->disable_val;
93 	}
94 
95 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
96 				  rdev->desc->enable_mask, val);
97 }
98 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
99 
regulator_range_selector_to_index(struct regulator_dev * rdev,unsigned int rval)100 static int regulator_range_selector_to_index(struct regulator_dev *rdev,
101 					     unsigned int rval)
102 {
103 	int i;
104 
105 	if (!rdev->desc->linear_range_selectors)
106 		return -EINVAL;
107 
108 	rval &= rdev->desc->vsel_range_mask;
109 
110 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
111 		if (rdev->desc->linear_range_selectors[i] == rval)
112 			return i;
113 	}
114 	return -EINVAL;
115 }
116 
117 /**
118  * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
119  *
120  * @rdev: regulator to operate on
121  *
122  * Regulators that use regmap for their register I/O and use pickable
123  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
124  * fields in their descriptor and then use this as their get_voltage_vsel
125  * operation, saving some code.
126  */
regulator_get_voltage_sel_pickable_regmap(struct regulator_dev * rdev)127 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
128 {
129 	unsigned int r_val;
130 	int range;
131 	unsigned int val;
132 	int ret, i;
133 	unsigned int voltages_in_range = 0;
134 
135 	if (!rdev->desc->linear_ranges)
136 		return -EINVAL;
137 
138 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
139 	if (ret != 0)
140 		return ret;
141 
142 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
143 	if (ret != 0)
144 		return ret;
145 
146 	val &= rdev->desc->vsel_mask;
147 	val >>= ffs(rdev->desc->vsel_mask) - 1;
148 
149 	range = regulator_range_selector_to_index(rdev, r_val);
150 	if (range < 0)
151 		return -EINVAL;
152 
153 	for (i = 0; i < range; i++)
154 		voltages_in_range += (rdev->desc->linear_ranges[i].max_sel -
155 				     rdev->desc->linear_ranges[i].min_sel) + 1;
156 
157 	return val + voltages_in_range;
158 }
159 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
160 
161 /**
162  * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
163  *
164  * @rdev: regulator to operate on
165  * @sel: Selector to set
166  *
167  * Regulators that use regmap for their register I/O and use pickable
168  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
169  * fields in their descriptor and then use this as their set_voltage_vsel
170  * operation, saving some code.
171  */
regulator_set_voltage_sel_pickable_regmap(struct regulator_dev * rdev,unsigned int sel)172 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
173 					      unsigned int sel)
174 {
175 	unsigned int range;
176 	int ret, i;
177 	unsigned int voltages_in_range = 0;
178 
179 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
180 		voltages_in_range = (rdev->desc->linear_ranges[i].max_sel -
181 				     rdev->desc->linear_ranges[i].min_sel) + 1;
182 		if (sel < voltages_in_range)
183 			break;
184 		sel -= voltages_in_range;
185 	}
186 
187 	if (i == rdev->desc->n_linear_ranges)
188 		return -EINVAL;
189 
190 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
191 	sel += rdev->desc->linear_ranges[i].min_sel;
192 
193 	range = rdev->desc->linear_range_selectors[i];
194 
195 	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
196 		ret = regmap_update_bits(rdev->regmap,
197 					 rdev->desc->vsel_reg,
198 					 rdev->desc->vsel_range_mask |
199 					 rdev->desc->vsel_mask, sel | range);
200 	} else {
201 		ret = regmap_update_bits(rdev->regmap,
202 					 rdev->desc->vsel_range_reg,
203 					 rdev->desc->vsel_range_mask, range);
204 		if (ret)
205 			return ret;
206 
207 		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
208 				  rdev->desc->vsel_mask, sel);
209 	}
210 
211 	if (ret)
212 		return ret;
213 
214 	if (rdev->desc->apply_bit)
215 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
216 					 rdev->desc->apply_bit,
217 					 rdev->desc->apply_bit);
218 	return ret;
219 }
220 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
221 
222 /**
223  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
224  *
225  * @rdev: regulator to operate on
226  *
227  * Regulators that use regmap for their register I/O can set the
228  * vsel_reg and vsel_mask fields in their descriptor and then use this
229  * as their get_voltage_vsel operation, saving some code.
230  */
regulator_get_voltage_sel_regmap(struct regulator_dev * rdev)231 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
232 {
233 	unsigned int val;
234 	int ret;
235 
236 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
237 	if (ret != 0)
238 		return ret;
239 
240 	val &= rdev->desc->vsel_mask;
241 	val >>= ffs(rdev->desc->vsel_mask) - 1;
242 
243 	return val;
244 }
245 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
246 
247 /**
248  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
249  *
250  * @rdev: regulator to operate on
251  * @sel: Selector to set
252  *
253  * Regulators that use regmap for their register I/O can set the
254  * vsel_reg and vsel_mask fields in their descriptor and then use this
255  * as their set_voltage_vsel operation, saving some code.
256  */
regulator_set_voltage_sel_regmap(struct regulator_dev * rdev,unsigned sel)257 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
258 {
259 	int ret;
260 
261 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
262 
263 	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
264 				  rdev->desc->vsel_mask, sel);
265 	if (ret)
266 		return ret;
267 
268 	if (rdev->desc->apply_bit)
269 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
270 					 rdev->desc->apply_bit,
271 					 rdev->desc->apply_bit);
272 	return ret;
273 }
274 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
275 
276 /**
277  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
278  *
279  * @rdev: Regulator to operate on
280  * @min_uV: Lower bound for voltage
281  * @max_uV: Upper bound for voltage
282  *
283  * Drivers implementing set_voltage_sel() and list_voltage() can use
284  * this as their map_voltage() operation.  It will find a suitable
285  * voltage by calling list_voltage() until it gets something in bounds
286  * for the requested voltages.
287  */
regulator_map_voltage_iterate(struct regulator_dev * rdev,int min_uV,int max_uV)288 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
289 				  int min_uV, int max_uV)
290 {
291 	int best_val = INT_MAX;
292 	int selector = 0;
293 	int i, ret;
294 
295 	/* Find the smallest voltage that falls within the specified
296 	 * range.
297 	 */
298 	for (i = 0; i < rdev->desc->n_voltages; i++) {
299 		ret = rdev->desc->ops->list_voltage(rdev, i);
300 		if (ret < 0)
301 			continue;
302 
303 		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
304 			best_val = ret;
305 			selector = i;
306 		}
307 	}
308 
309 	if (best_val != INT_MAX)
310 		return selector;
311 	else
312 		return -EINVAL;
313 }
314 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
315 
316 /**
317  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
318  *
319  * @rdev: Regulator to operate on
320  * @min_uV: Lower bound for voltage
321  * @max_uV: Upper bound for voltage
322  *
323  * Drivers that have ascendant voltage list can use this as their
324  * map_voltage() operation.
325  */
regulator_map_voltage_ascend(struct regulator_dev * rdev,int min_uV,int max_uV)326 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
327 				 int min_uV, int max_uV)
328 {
329 	int i, ret;
330 
331 	for (i = 0; i < rdev->desc->n_voltages; i++) {
332 		ret = rdev->desc->ops->list_voltage(rdev, i);
333 		if (ret < 0)
334 			continue;
335 
336 		if (ret > max_uV)
337 			break;
338 
339 		if (ret >= min_uV && ret <= max_uV)
340 			return i;
341 	}
342 
343 	return -EINVAL;
344 }
345 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
346 
347 /**
348  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
349  *
350  * @rdev: Regulator to operate on
351  * @min_uV: Lower bound for voltage
352  * @max_uV: Upper bound for voltage
353  *
354  * Drivers providing min_uV and uV_step in their regulator_desc can
355  * use this as their map_voltage() operation.
356  */
regulator_map_voltage_linear(struct regulator_dev * rdev,int min_uV,int max_uV)357 int regulator_map_voltage_linear(struct regulator_dev *rdev,
358 				 int min_uV, int max_uV)
359 {
360 	int ret, voltage;
361 
362 	/* Allow uV_step to be 0 for fixed voltage */
363 	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
364 		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
365 			return 0;
366 		else
367 			return -EINVAL;
368 	}
369 
370 	if (!rdev->desc->uV_step) {
371 		BUG_ON(!rdev->desc->uV_step);
372 		return -EINVAL;
373 	}
374 
375 	if (min_uV < rdev->desc->min_uV)
376 		min_uV = rdev->desc->min_uV;
377 
378 	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
379 	if (ret < 0)
380 		return ret;
381 
382 	ret += rdev->desc->linear_min_sel;
383 
384 	/* Map back into a voltage to verify we're still in bounds */
385 	voltage = rdev->desc->ops->list_voltage(rdev, ret);
386 	if (voltage < min_uV || voltage > max_uV)
387 		return -EINVAL;
388 
389 	return ret;
390 }
391 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
392 
393 /**
394  * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
395  *
396  * @rdev: Regulator to operate on
397  * @min_uV: Lower bound for voltage
398  * @max_uV: Upper bound for voltage
399  *
400  * Drivers providing linear_ranges in their descriptor can use this as
401  * their map_voltage() callback.
402  */
regulator_map_voltage_linear_range(struct regulator_dev * rdev,int min_uV,int max_uV)403 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
404 				       int min_uV, int max_uV)
405 {
406 	const struct regulator_linear_range *range;
407 	int ret = -EINVAL;
408 	int voltage, i;
409 
410 	if (!rdev->desc->n_linear_ranges) {
411 		BUG_ON(!rdev->desc->n_linear_ranges);
412 		return -EINVAL;
413 	}
414 
415 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
416 		int linear_max_uV;
417 
418 		range = &rdev->desc->linear_ranges[i];
419 		linear_max_uV = range->min_uV +
420 			(range->max_sel - range->min_sel) * range->uV_step;
421 
422 		if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV))
423 			continue;
424 
425 		if (min_uV <= range->min_uV)
426 			min_uV = range->min_uV;
427 
428 		/* range->uV_step == 0 means fixed voltage range */
429 		if (range->uV_step == 0) {
430 			ret = 0;
431 		} else {
432 			ret = DIV_ROUND_UP(min_uV - range->min_uV,
433 					   range->uV_step);
434 			if (ret < 0)
435 				return ret;
436 		}
437 
438 		ret += range->min_sel;
439 
440 		/*
441 		 * Map back into a voltage to verify we're still in bounds.
442 		 * If we are not, then continue checking rest of the ranges.
443 		 */
444 		voltage = rdev->desc->ops->list_voltage(rdev, ret);
445 		if (voltage >= min_uV && voltage <= max_uV)
446 			break;
447 	}
448 
449 	if (i == rdev->desc->n_linear_ranges)
450 		return -EINVAL;
451 
452 	return ret;
453 }
454 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
455 
456 /**
457  * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
458  *
459  * @rdev: Regulator to operate on
460  * @min_uV: Lower bound for voltage
461  * @max_uV: Upper bound for voltage
462  *
463  * Drivers providing pickable linear_ranges in their descriptor can use
464  * this as their map_voltage() callback.
465  */
regulator_map_voltage_pickable_linear_range(struct regulator_dev * rdev,int min_uV,int max_uV)466 int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
467 						int min_uV, int max_uV)
468 {
469 	const struct regulator_linear_range *range;
470 	int ret = -EINVAL;
471 	int voltage, i;
472 	unsigned int selector = 0;
473 
474 	if (!rdev->desc->n_linear_ranges) {
475 		BUG_ON(!rdev->desc->n_linear_ranges);
476 		return -EINVAL;
477 	}
478 
479 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
480 		int linear_max_uV;
481 
482 		range = &rdev->desc->linear_ranges[i];
483 		linear_max_uV = range->min_uV +
484 			(range->max_sel - range->min_sel) * range->uV_step;
485 
486 		if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV)) {
487 			selector += (range->max_sel - range->min_sel + 1);
488 			continue;
489 		}
490 
491 		if (min_uV <= range->min_uV)
492 			min_uV = range->min_uV;
493 
494 		/* range->uV_step == 0 means fixed voltage range */
495 		if (range->uV_step == 0) {
496 			ret = 0;
497 		} else {
498 			ret = DIV_ROUND_UP(min_uV - range->min_uV,
499 					   range->uV_step);
500 			if (ret < 0)
501 				return ret;
502 		}
503 
504 		ret += selector;
505 
506 		voltage = rdev->desc->ops->list_voltage(rdev, ret);
507 
508 		/*
509 		 * Map back into a voltage to verify we're still in bounds.
510 		 * We may have overlapping voltage ranges. Hence we don't
511 		 * exit but retry until we have checked all ranges.
512 		 */
513 		if (voltage < min_uV || voltage > max_uV)
514 			selector += (range->max_sel - range->min_sel + 1);
515 		else
516 			break;
517 	}
518 
519 	if (i == rdev->desc->n_linear_ranges)
520 		return -EINVAL;
521 
522 	return ret;
523 }
524 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
525 
526 /**
527  * regulator_list_voltage_linear - List voltages with simple calculation
528  *
529  * @rdev: Regulator device
530  * @selector: Selector to convert into a voltage
531  *
532  * Regulators with a simple linear mapping between voltages and
533  * selectors can set min_uV and uV_step in the regulator descriptor
534  * and then use this function as their list_voltage() operation,
535  */
regulator_list_voltage_linear(struct regulator_dev * rdev,unsigned int selector)536 int regulator_list_voltage_linear(struct regulator_dev *rdev,
537 				  unsigned int selector)
538 {
539 	if (selector >= rdev->desc->n_voltages)
540 		return -EINVAL;
541 	if (selector < rdev->desc->linear_min_sel)
542 		return 0;
543 
544 	selector -= rdev->desc->linear_min_sel;
545 
546 	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
547 }
548 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
549 
550 /**
551  * regulator_list_voltage_pickable_linear_range - pickable range list voltages
552  *
553  * @rdev: Regulator device
554  * @selector: Selector to convert into a voltage
555  *
556  * list_voltage() operation, intended to be used by drivers utilizing pickable
557  * ranges helpers.
558  */
regulator_list_voltage_pickable_linear_range(struct regulator_dev * rdev,unsigned int selector)559 int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
560 						 unsigned int selector)
561 {
562 	const struct regulator_linear_range *range;
563 	int i;
564 	unsigned int all_sels = 0;
565 
566 	if (!rdev->desc->n_linear_ranges) {
567 		BUG_ON(!rdev->desc->n_linear_ranges);
568 		return -EINVAL;
569 	}
570 
571 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
572 		unsigned int sels_in_range;
573 
574 		range = &rdev->desc->linear_ranges[i];
575 
576 		sels_in_range = range->max_sel - range->min_sel;
577 
578 		if (all_sels + sels_in_range >= selector) {
579 			selector -= all_sels;
580 			return range->min_uV + (range->uV_step * selector);
581 		}
582 
583 		all_sels += (sels_in_range + 1);
584 	}
585 
586 	return -EINVAL;
587 }
588 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
589 
590 /**
591  * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
592  *
593  * @desc: Regulator desc for regulator which volatges are to be listed
594  * @selector: Selector to convert into a voltage
595  *
596  * Regulators with a series of simple linear mappings between voltages
597  * and selectors who have set linear_ranges in the regulator descriptor
598  * can use this function prior regulator registration to list voltages.
599  * This is useful when voltages need to be listed during device-tree
600  * parsing.
601  */
regulator_desc_list_voltage_linear_range(const struct regulator_desc * desc,unsigned int selector)602 int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
603 					     unsigned int selector)
604 {
605 	const struct regulator_linear_range *range;
606 	int i;
607 
608 	if (!desc->n_linear_ranges) {
609 		BUG_ON(!desc->n_linear_ranges);
610 		return -EINVAL;
611 	}
612 
613 	for (i = 0; i < desc->n_linear_ranges; i++) {
614 		range = &desc->linear_ranges[i];
615 
616 		if (!(selector >= range->min_sel &&
617 		      selector <= range->max_sel))
618 			continue;
619 
620 		selector -= range->min_sel;
621 
622 		return range->min_uV + (range->uV_step * selector);
623 	}
624 
625 	return -EINVAL;
626 }
627 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
628 
629 /**
630  * regulator_list_voltage_linear_range - List voltages for linear ranges
631  *
632  * @rdev: Regulator device
633  * @selector: Selector to convert into a voltage
634  *
635  * Regulators with a series of simple linear mappings between voltages
636  * and selectors can set linear_ranges in the regulator descriptor and
637  * then use this function as their list_voltage() operation,
638  */
regulator_list_voltage_linear_range(struct regulator_dev * rdev,unsigned int selector)639 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
640 					unsigned int selector)
641 {
642 	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
643 }
644 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
645 
646 /**
647  * regulator_list_voltage_table - List voltages with table based mapping
648  *
649  * @rdev: Regulator device
650  * @selector: Selector to convert into a voltage
651  *
652  * Regulators with table based mapping between voltages and
653  * selectors can set volt_table in the regulator descriptor
654  * and then use this function as their list_voltage() operation.
655  */
regulator_list_voltage_table(struct regulator_dev * rdev,unsigned int selector)656 int regulator_list_voltage_table(struct regulator_dev *rdev,
657 				 unsigned int selector)
658 {
659 	if (!rdev->desc->volt_table) {
660 		BUG_ON(!rdev->desc->volt_table);
661 		return -EINVAL;
662 	}
663 
664 	if (selector >= rdev->desc->n_voltages)
665 		return -EINVAL;
666 
667 	return rdev->desc->volt_table[selector];
668 }
669 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
670 
671 /**
672  * regulator_set_bypass_regmap - Default set_bypass() using regmap
673  *
674  * @rdev: device to operate on.
675  * @enable: state to set.
676  */
regulator_set_bypass_regmap(struct regulator_dev * rdev,bool enable)677 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
678 {
679 	unsigned int val;
680 
681 	if (enable) {
682 		val = rdev->desc->bypass_val_on;
683 		if (!val)
684 			val = rdev->desc->bypass_mask;
685 	} else {
686 		val = rdev->desc->bypass_val_off;
687 	}
688 
689 	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
690 				  rdev->desc->bypass_mask, val);
691 }
692 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
693 
694 /**
695  * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
696  *
697  * @rdev: device to operate on.
698  */
regulator_set_soft_start_regmap(struct regulator_dev * rdev)699 int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
700 {
701 	unsigned int val;
702 
703 	val = rdev->desc->soft_start_val_on;
704 	if (!val)
705 		val = rdev->desc->soft_start_mask;
706 
707 	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
708 				  rdev->desc->soft_start_mask, val);
709 }
710 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
711 
712 /**
713  * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
714  *
715  * @rdev: device to operate on.
716  */
regulator_set_pull_down_regmap(struct regulator_dev * rdev)717 int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
718 {
719 	unsigned int val;
720 
721 	val = rdev->desc->pull_down_val_on;
722 	if (!val)
723 		val = rdev->desc->pull_down_mask;
724 
725 	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
726 				  rdev->desc->pull_down_mask, val);
727 }
728 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
729 
730 /**
731  * regulator_get_bypass_regmap - Default get_bypass() using regmap
732  *
733  * @rdev: device to operate on.
734  * @enable: current state.
735  */
regulator_get_bypass_regmap(struct regulator_dev * rdev,bool * enable)736 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
737 {
738 	unsigned int val;
739 	unsigned int val_on = rdev->desc->bypass_val_on;
740 	int ret;
741 
742 	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
743 	if (ret != 0)
744 		return ret;
745 
746 	if (!val_on)
747 		val_on = rdev->desc->bypass_mask;
748 
749 	*enable = (val & rdev->desc->bypass_mask) == val_on;
750 
751 	return 0;
752 }
753 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
754 
755 /**
756  * regulator_set_active_discharge_regmap - Default set_active_discharge()
757  *					   using regmap
758  *
759  * @rdev: device to operate on.
760  * @enable: state to set, 0 to disable and 1 to enable.
761  */
regulator_set_active_discharge_regmap(struct regulator_dev * rdev,bool enable)762 int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
763 					  bool enable)
764 {
765 	unsigned int val;
766 
767 	if (enable)
768 		val = rdev->desc->active_discharge_on;
769 	else
770 		val = rdev->desc->active_discharge_off;
771 
772 	return regmap_update_bits(rdev->regmap,
773 				  rdev->desc->active_discharge_reg,
774 				  rdev->desc->active_discharge_mask, val);
775 }
776 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
777 
778 /**
779  * regulator_set_current_limit_regmap - set_current_limit for regmap users
780  *
781  * @rdev: regulator to operate on
782  * @min_uA: Lower bound for current limit
783  * @max_uA: Upper bound for current limit
784  *
785  * Regulators that use regmap for their register I/O can set curr_table,
786  * csel_reg and csel_mask fields in their descriptor and then use this
787  * as their set_current_limit operation, saving some code.
788  */
regulator_set_current_limit_regmap(struct regulator_dev * rdev,int min_uA,int max_uA)789 int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
790 				       int min_uA, int max_uA)
791 {
792 	unsigned int n_currents = rdev->desc->n_current_limits;
793 	int i, sel = -1;
794 
795 	if (n_currents == 0)
796 		return -EINVAL;
797 
798 	if (rdev->desc->curr_table) {
799 		const unsigned int *curr_table = rdev->desc->curr_table;
800 		bool ascend = curr_table[n_currents - 1] > curr_table[0];
801 
802 		/* search for closest to maximum */
803 		if (ascend) {
804 			for (i = n_currents - 1; i >= 0; i--) {
805 				if (min_uA <= curr_table[i] &&
806 				    curr_table[i] <= max_uA) {
807 					sel = i;
808 					break;
809 				}
810 			}
811 		} else {
812 			for (i = 0; i < n_currents; i++) {
813 				if (min_uA <= curr_table[i] &&
814 				    curr_table[i] <= max_uA) {
815 					sel = i;
816 					break;
817 				}
818 			}
819 		}
820 	}
821 
822 	if (sel < 0)
823 		return -EINVAL;
824 
825 	sel <<= ffs(rdev->desc->csel_mask) - 1;
826 
827 	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
828 				  rdev->desc->csel_mask, sel);
829 }
830 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
831 
832 /**
833  * regulator_get_current_limit_regmap - get_current_limit for regmap users
834  *
835  * @rdev: regulator to operate on
836  *
837  * Regulators that use regmap for their register I/O can set the
838  * csel_reg and csel_mask fields in their descriptor and then use this
839  * as their get_current_limit operation, saving some code.
840  */
regulator_get_current_limit_regmap(struct regulator_dev * rdev)841 int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
842 {
843 	unsigned int val;
844 	int ret;
845 
846 	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
847 	if (ret != 0)
848 		return ret;
849 
850 	val &= rdev->desc->csel_mask;
851 	val >>= ffs(rdev->desc->csel_mask) - 1;
852 
853 	if (rdev->desc->curr_table) {
854 		if (val >= rdev->desc->n_current_limits)
855 			return -EINVAL;
856 
857 		return rdev->desc->curr_table[val];
858 	}
859 
860 	return -EINVAL;
861 }
862 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
863 
864 /**
865  * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
866  *                                   of regulator_bulk_data structs
867  *
868  * @consumers: array of regulator_bulk_data entries to initialize
869  * @supply_names: array of supply name strings
870  * @num_supplies: number of supply names to initialize
871  *
872  * Note: the 'consumers' array must be the size of 'num_supplies'.
873  */
regulator_bulk_set_supply_names(struct regulator_bulk_data * consumers,const char * const * supply_names,unsigned int num_supplies)874 void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
875 				     const char *const *supply_names,
876 				     unsigned int num_supplies)
877 {
878 	unsigned int i;
879 
880 	for (i = 0; i < num_supplies; i++)
881 		consumers[i].supply = supply_names[i];
882 }
883 EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
884