1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2018-2019 NXP.
4 *
5 * Limitations:
6 * - The TPM counter and period counter are shared between
7 * multiple channels, so all channels should use same period
8 * settings.
9 * - Changes to polarity cannot be latched at the time of the
10 * next period start.
11 * - Changing period and duty cycle together isn't atomic,
12 * with the wrong timing it might happen that a period is
13 * produced with old duty cycle but new period settings.
14 */
15
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/clk.h>
19 #include <linux/err.h>
20 #include <linux/io.h>
21 #include <linux/log2.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_address.h>
25 #include <linux/platform_device.h>
26 #include <linux/pwm.h>
27 #include <linux/slab.h>
28
29 #define PWM_IMX_TPM_PARAM 0x4
30 #define PWM_IMX_TPM_GLOBAL 0x8
31 #define PWM_IMX_TPM_SC 0x10
32 #define PWM_IMX_TPM_CNT 0x14
33 #define PWM_IMX_TPM_MOD 0x18
34 #define PWM_IMX_TPM_CnSC(n) (0x20 + (n) * 0x8)
35 #define PWM_IMX_TPM_CnV(n) (0x24 + (n) * 0x8)
36
37 #define PWM_IMX_TPM_PARAM_CHAN GENMASK(7, 0)
38
39 #define PWM_IMX_TPM_SC_PS GENMASK(2, 0)
40 #define PWM_IMX_TPM_SC_CMOD GENMASK(4, 3)
41 #define PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK FIELD_PREP(PWM_IMX_TPM_SC_CMOD, 1)
42 #define PWM_IMX_TPM_SC_CPWMS BIT(5)
43
44 #define PWM_IMX_TPM_CnSC_CHF BIT(7)
45 #define PWM_IMX_TPM_CnSC_MSB BIT(5)
46 #define PWM_IMX_TPM_CnSC_MSA BIT(4)
47
48 /*
49 * The reference manual describes this field as two separate bits. The
50 * semantic of the two bits isn't orthogonal though, so they are treated
51 * together as a 2-bit field here.
52 */
53 #define PWM_IMX_TPM_CnSC_ELS GENMASK(3, 2)
54 #define PWM_IMX_TPM_CnSC_ELS_INVERSED FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 1)
55 #define PWM_IMX_TPM_CnSC_ELS_NORMAL FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 2)
56
57
58 #define PWM_IMX_TPM_MOD_WIDTH 16
59 #define PWM_IMX_TPM_MOD_MOD GENMASK(PWM_IMX_TPM_MOD_WIDTH - 1, 0)
60
61 struct imx_tpm_pwm_chip {
62 struct pwm_chip chip;
63 struct clk *clk;
64 void __iomem *base;
65 struct mutex lock;
66 u32 user_count;
67 u32 enable_count;
68 u32 real_period;
69 };
70
71 struct imx_tpm_pwm_param {
72 u8 prescale;
73 u32 mod;
74 u32 val;
75 };
76
77 static inline struct imx_tpm_pwm_chip *
to_imx_tpm_pwm_chip(struct pwm_chip * chip)78 to_imx_tpm_pwm_chip(struct pwm_chip *chip)
79 {
80 return container_of(chip, struct imx_tpm_pwm_chip, chip);
81 }
82
83 /*
84 * This function determines for a given pwm_state *state that a consumer
85 * might request the pwm_state *real_state that eventually is implemented
86 * by the hardware and the necessary register values (in *p) to achieve
87 * this.
88 */
pwm_imx_tpm_round_state(struct pwm_chip * chip,struct imx_tpm_pwm_param * p,struct pwm_state * real_state,const struct pwm_state * state)89 static int pwm_imx_tpm_round_state(struct pwm_chip *chip,
90 struct imx_tpm_pwm_param *p,
91 struct pwm_state *real_state,
92 const struct pwm_state *state)
93 {
94 struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
95 u32 rate, prescale, period_count, clock_unit;
96 u64 tmp;
97
98 rate = clk_get_rate(tpm->clk);
99 tmp = (u64)state->period * rate;
100 clock_unit = DIV_ROUND_CLOSEST_ULL(tmp, NSEC_PER_SEC);
101 if (clock_unit <= PWM_IMX_TPM_MOD_MOD)
102 prescale = 0;
103 else
104 prescale = ilog2(clock_unit) + 1 - PWM_IMX_TPM_MOD_WIDTH;
105
106 if ((!FIELD_FIT(PWM_IMX_TPM_SC_PS, prescale)))
107 return -ERANGE;
108 p->prescale = prescale;
109
110 period_count = (clock_unit + ((1 << prescale) >> 1)) >> prescale;
111 p->mod = period_count;
112
113 /* calculate real period HW can support */
114 tmp = (u64)period_count << prescale;
115 tmp *= NSEC_PER_SEC;
116 real_state->period = DIV_ROUND_CLOSEST_ULL(tmp, rate);
117
118 /*
119 * if eventually the PWM output is inactive, either
120 * duty cycle is 0 or status is disabled, need to
121 * make sure the output pin is inactive.
122 */
123 if (!state->enabled)
124 real_state->duty_cycle = 0;
125 else
126 real_state->duty_cycle = state->duty_cycle;
127
128 tmp = (u64)p->mod * real_state->duty_cycle;
129 p->val = DIV_ROUND_CLOSEST_ULL(tmp, real_state->period);
130
131 real_state->polarity = state->polarity;
132 real_state->enabled = state->enabled;
133
134 return 0;
135 }
136
pwm_imx_tpm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)137 static void pwm_imx_tpm_get_state(struct pwm_chip *chip,
138 struct pwm_device *pwm,
139 struct pwm_state *state)
140 {
141 struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
142 u32 rate, val, prescale;
143 u64 tmp;
144
145 /* get period */
146 state->period = tpm->real_period;
147
148 /* get duty cycle */
149 rate = clk_get_rate(tpm->clk);
150 val = readl(tpm->base + PWM_IMX_TPM_SC);
151 prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
152 tmp = readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
153 tmp = (tmp << prescale) * NSEC_PER_SEC;
154 state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, rate);
155
156 /* get polarity */
157 val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
158 if ((val & PWM_IMX_TPM_CnSC_ELS) == PWM_IMX_TPM_CnSC_ELS_INVERSED)
159 state->polarity = PWM_POLARITY_INVERSED;
160 else
161 /*
162 * Assume reserved values (2b00 and 2b11) to yield
163 * normal polarity.
164 */
165 state->polarity = PWM_POLARITY_NORMAL;
166
167 /* get channel status */
168 state->enabled = FIELD_GET(PWM_IMX_TPM_CnSC_ELS, val) ? true : false;
169 }
170
171 /* this function is supposed to be called with mutex hold */
pwm_imx_tpm_apply_hw(struct pwm_chip * chip,struct imx_tpm_pwm_param * p,struct pwm_state * state,struct pwm_device * pwm)172 static int pwm_imx_tpm_apply_hw(struct pwm_chip *chip,
173 struct imx_tpm_pwm_param *p,
174 struct pwm_state *state,
175 struct pwm_device *pwm)
176 {
177 struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
178 bool period_update = false;
179 bool duty_update = false;
180 u32 val, cmod, cur_prescale;
181 unsigned long timeout;
182 struct pwm_state c;
183
184 if (state->period != tpm->real_period) {
185 /*
186 * TPM counter is shared by multiple channels, so
187 * prescale and period can NOT be modified when
188 * there are multiple channels in use with different
189 * period settings.
190 */
191 if (tpm->user_count > 1)
192 return -EBUSY;
193
194 val = readl(tpm->base + PWM_IMX_TPM_SC);
195 cmod = FIELD_GET(PWM_IMX_TPM_SC_CMOD, val);
196 cur_prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
197 if (cmod && cur_prescale != p->prescale)
198 return -EBUSY;
199
200 /* set TPM counter prescale */
201 val &= ~PWM_IMX_TPM_SC_PS;
202 val |= FIELD_PREP(PWM_IMX_TPM_SC_PS, p->prescale);
203 writel(val, tpm->base + PWM_IMX_TPM_SC);
204
205 /*
206 * set period count:
207 * if the PWM is disabled (CMOD[1:0] = 2b00), then MOD register
208 * is updated when MOD register is written.
209 *
210 * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the period length
211 * is latched into hardware when the next period starts.
212 */
213 writel(p->mod, tpm->base + PWM_IMX_TPM_MOD);
214 tpm->real_period = state->period;
215 period_update = true;
216 }
217
218 pwm_imx_tpm_get_state(chip, pwm, &c);
219
220 /* polarity is NOT allowed to be changed if PWM is active */
221 if (c.enabled && c.polarity != state->polarity)
222 return -EBUSY;
223
224 if (state->duty_cycle != c.duty_cycle) {
225 /*
226 * set channel value:
227 * if the PWM is disabled (CMOD[1:0] = 2b00), then CnV register
228 * is updated when CnV register is written.
229 *
230 * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the duty length
231 * is latched into hardware when the next period starts.
232 */
233 writel(p->val, tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
234 duty_update = true;
235 }
236
237 /* make sure MOD & CnV registers are updated */
238 if (period_update || duty_update) {
239 timeout = jiffies + msecs_to_jiffies(tpm->real_period /
240 NSEC_PER_MSEC + 1);
241 while (readl(tpm->base + PWM_IMX_TPM_MOD) != p->mod
242 || readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm))
243 != p->val) {
244 if (time_after(jiffies, timeout))
245 return -ETIME;
246 cpu_relax();
247 }
248 }
249
250 /*
251 * polarity settings will enabled/disable output status
252 * immediately, so if the channel is disabled, need to
253 * make sure MSA/MSB/ELS are set to 0 which means channel
254 * disabled.
255 */
256 val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
257 val &= ~(PWM_IMX_TPM_CnSC_ELS | PWM_IMX_TPM_CnSC_MSA |
258 PWM_IMX_TPM_CnSC_MSB);
259 if (state->enabled) {
260 /*
261 * set polarity (for edge-aligned PWM modes)
262 *
263 * ELS[1:0] = 2b10 yields normal polarity behaviour,
264 * ELS[1:0] = 2b01 yields inversed polarity.
265 * The other values are reserved.
266 */
267 val |= PWM_IMX_TPM_CnSC_MSB;
268 val |= (state->polarity == PWM_POLARITY_NORMAL) ?
269 PWM_IMX_TPM_CnSC_ELS_NORMAL :
270 PWM_IMX_TPM_CnSC_ELS_INVERSED;
271 }
272 writel(val, tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
273
274 /* control the counter status */
275 if (state->enabled != c.enabled) {
276 val = readl(tpm->base + PWM_IMX_TPM_SC);
277 if (state->enabled) {
278 if (++tpm->enable_count == 1)
279 val |= PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK;
280 } else {
281 if (--tpm->enable_count == 0)
282 val &= ~PWM_IMX_TPM_SC_CMOD;
283 }
284 writel(val, tpm->base + PWM_IMX_TPM_SC);
285 }
286
287 return 0;
288 }
289
pwm_imx_tpm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)290 static int pwm_imx_tpm_apply(struct pwm_chip *chip,
291 struct pwm_device *pwm,
292 const struct pwm_state *state)
293 {
294 struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
295 struct imx_tpm_pwm_param param;
296 struct pwm_state real_state;
297 int ret;
298
299 ret = pwm_imx_tpm_round_state(chip, ¶m, &real_state, state);
300 if (ret)
301 return ret;
302
303 mutex_lock(&tpm->lock);
304 ret = pwm_imx_tpm_apply_hw(chip, ¶m, &real_state, pwm);
305 mutex_unlock(&tpm->lock);
306
307 return ret;
308 }
309
pwm_imx_tpm_request(struct pwm_chip * chip,struct pwm_device * pwm)310 static int pwm_imx_tpm_request(struct pwm_chip *chip, struct pwm_device *pwm)
311 {
312 struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
313
314 mutex_lock(&tpm->lock);
315 tpm->user_count++;
316 mutex_unlock(&tpm->lock);
317
318 return 0;
319 }
320
pwm_imx_tpm_free(struct pwm_chip * chip,struct pwm_device * pwm)321 static void pwm_imx_tpm_free(struct pwm_chip *chip, struct pwm_device *pwm)
322 {
323 struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
324
325 mutex_lock(&tpm->lock);
326 tpm->user_count--;
327 mutex_unlock(&tpm->lock);
328 }
329
330 static const struct pwm_ops imx_tpm_pwm_ops = {
331 .request = pwm_imx_tpm_request,
332 .free = pwm_imx_tpm_free,
333 .get_state = pwm_imx_tpm_get_state,
334 .apply = pwm_imx_tpm_apply,
335 .owner = THIS_MODULE,
336 };
337
pwm_imx_tpm_probe(struct platform_device * pdev)338 static int pwm_imx_tpm_probe(struct platform_device *pdev)
339 {
340 struct imx_tpm_pwm_chip *tpm;
341 int ret;
342 u32 val;
343
344 tpm = devm_kzalloc(&pdev->dev, sizeof(*tpm), GFP_KERNEL);
345 if (!tpm)
346 return -ENOMEM;
347
348 platform_set_drvdata(pdev, tpm);
349
350 tpm->base = devm_platform_ioremap_resource(pdev, 0);
351 if (IS_ERR(tpm->base))
352 return PTR_ERR(tpm->base);
353
354 tpm->clk = devm_clk_get(&pdev->dev, NULL);
355 if (IS_ERR(tpm->clk)) {
356 ret = PTR_ERR(tpm->clk);
357 if (ret != -EPROBE_DEFER)
358 dev_err(&pdev->dev,
359 "failed to get PWM clock: %d\n", ret);
360 return ret;
361 }
362
363 ret = clk_prepare_enable(tpm->clk);
364 if (ret) {
365 dev_err(&pdev->dev,
366 "failed to prepare or enable clock: %d\n", ret);
367 return ret;
368 }
369
370 tpm->chip.dev = &pdev->dev;
371 tpm->chip.ops = &imx_tpm_pwm_ops;
372 tpm->chip.base = -1;
373 tpm->chip.of_xlate = of_pwm_xlate_with_flags;
374 tpm->chip.of_pwm_n_cells = 3;
375
376 /* get number of channels */
377 val = readl(tpm->base + PWM_IMX_TPM_PARAM);
378 tpm->chip.npwm = FIELD_GET(PWM_IMX_TPM_PARAM_CHAN, val);
379
380 mutex_init(&tpm->lock);
381
382 ret = pwmchip_add(&tpm->chip);
383 if (ret) {
384 dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
385 clk_disable_unprepare(tpm->clk);
386 }
387
388 return ret;
389 }
390
pwm_imx_tpm_remove(struct platform_device * pdev)391 static int pwm_imx_tpm_remove(struct platform_device *pdev)
392 {
393 struct imx_tpm_pwm_chip *tpm = platform_get_drvdata(pdev);
394 int ret = pwmchip_remove(&tpm->chip);
395
396 clk_disable_unprepare(tpm->clk);
397
398 return ret;
399 }
400
pwm_imx_tpm_suspend(struct device * dev)401 static int __maybe_unused pwm_imx_tpm_suspend(struct device *dev)
402 {
403 struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
404
405 if (tpm->enable_count > 0)
406 return -EBUSY;
407
408 clk_disable_unprepare(tpm->clk);
409
410 return 0;
411 }
412
pwm_imx_tpm_resume(struct device * dev)413 static int __maybe_unused pwm_imx_tpm_resume(struct device *dev)
414 {
415 struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
416 int ret = 0;
417
418 ret = clk_prepare_enable(tpm->clk);
419 if (ret)
420 dev_err(dev,
421 "failed to prepare or enable clock: %d\n",
422 ret);
423
424 return ret;
425 }
426
427 static SIMPLE_DEV_PM_OPS(imx_tpm_pwm_pm,
428 pwm_imx_tpm_suspend, pwm_imx_tpm_resume);
429
430 static const struct of_device_id imx_tpm_pwm_dt_ids[] = {
431 { .compatible = "fsl,imx7ulp-pwm", },
432 { /* sentinel */ }
433 };
434 MODULE_DEVICE_TABLE(of, imx_tpm_pwm_dt_ids);
435
436 static struct platform_driver imx_tpm_pwm_driver = {
437 .driver = {
438 .name = "imx7ulp-tpm-pwm",
439 .of_match_table = imx_tpm_pwm_dt_ids,
440 .pm = &imx_tpm_pwm_pm,
441 },
442 .probe = pwm_imx_tpm_probe,
443 .remove = pwm_imx_tpm_remove,
444 };
445 module_platform_driver(imx_tpm_pwm_driver);
446
447 MODULE_AUTHOR("Anson Huang <Anson.Huang@nxp.com>");
448 MODULE_DESCRIPTION("i.MX TPM PWM Driver");
449 MODULE_LICENSE("GPL v2");
450