1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ACPI probing code for ARM performance counters.
4 *
5 * Copyright (C) 2017 ARM Ltd.
6 */
7
8 #include <linux/acpi.h>
9 #include <linux/cpumask.h>
10 #include <linux/init.h>
11 #include <linux/irq.h>
12 #include <linux/irqdesc.h>
13 #include <linux/percpu.h>
14 #include <linux/perf/arm_pmu.h>
15
16 #include <asm/cputype.h>
17
18 static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus);
19 static DEFINE_PER_CPU(int, pmu_irqs);
20
arm_pmu_acpi_register_irq(int cpu)21 static int arm_pmu_acpi_register_irq(int cpu)
22 {
23 struct acpi_madt_generic_interrupt *gicc;
24 int gsi, trigger;
25
26 gicc = acpi_cpu_get_madt_gicc(cpu);
27 if (WARN_ON(!gicc))
28 return -EINVAL;
29
30 gsi = gicc->performance_interrupt;
31
32 /*
33 * Per the ACPI spec, the MADT cannot describe a PMU that doesn't
34 * have an interrupt. QEMU advertises this by using a GSI of zero,
35 * which is not known to be valid on any hardware despite being
36 * valid per the spec. Take the pragmatic approach and reject a
37 * GSI of zero for now.
38 */
39 if (!gsi)
40 return 0;
41
42 if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
43 trigger = ACPI_EDGE_SENSITIVE;
44 else
45 trigger = ACPI_LEVEL_SENSITIVE;
46
47 /*
48 * Helpfully, the MADT GICC doesn't have a polarity flag for the
49 * "performance interrupt". Luckily, on compliant GICs the polarity is
50 * a fixed value in HW (for both SPIs and PPIs) that we cannot change
51 * from SW.
52 *
53 * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This
54 * may not match the real polarity, but that should not matter.
55 *
56 * Other interrupt controllers are not supported with ACPI.
57 */
58 return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH);
59 }
60
arm_pmu_acpi_unregister_irq(int cpu)61 static void arm_pmu_acpi_unregister_irq(int cpu)
62 {
63 struct acpi_madt_generic_interrupt *gicc;
64 int gsi;
65
66 gicc = acpi_cpu_get_madt_gicc(cpu);
67 if (!gicc)
68 return;
69
70 gsi = gicc->performance_interrupt;
71 acpi_unregister_gsi(gsi);
72 }
73
74 #if IS_ENABLED(CONFIG_ARM_SPE_PMU)
75 static struct resource spe_resources[] = {
76 {
77 /* irq */
78 .flags = IORESOURCE_IRQ,
79 }
80 };
81
82 static struct platform_device spe_dev = {
83 .name = ARMV8_SPE_PDEV_NAME,
84 .id = -1,
85 .resource = spe_resources,
86 .num_resources = ARRAY_SIZE(spe_resources)
87 };
88
89 /*
90 * For lack of a better place, hook the normal PMU MADT walk
91 * and create a SPE device if we detect a recent MADT with
92 * a homogeneous PPI mapping.
93 */
arm_spe_acpi_register_device(void)94 static void arm_spe_acpi_register_device(void)
95 {
96 int cpu, hetid, irq, ret;
97 bool first = true;
98 u16 gsi = 0;
99
100 /*
101 * Sanity check all the GICC tables for the same interrupt number.
102 * For now, we only support homogeneous ACPI/SPE machines.
103 */
104 for_each_possible_cpu(cpu) {
105 struct acpi_madt_generic_interrupt *gicc;
106
107 gicc = acpi_cpu_get_madt_gicc(cpu);
108 if (gicc->header.length < ACPI_MADT_GICC_SPE)
109 return;
110
111 if (first) {
112 gsi = gicc->spe_interrupt;
113 if (!gsi)
114 return;
115 hetid = find_acpi_cpu_topology_hetero_id(cpu);
116 first = false;
117 } else if ((gsi != gicc->spe_interrupt) ||
118 (hetid != find_acpi_cpu_topology_hetero_id(cpu))) {
119 pr_warn("ACPI: SPE must be homogeneous\n");
120 return;
121 }
122 }
123
124 irq = acpi_register_gsi(NULL, gsi, ACPI_LEVEL_SENSITIVE,
125 ACPI_ACTIVE_HIGH);
126 if (irq < 0) {
127 pr_warn("ACPI: SPE Unable to register interrupt: %d\n", gsi);
128 return;
129 }
130
131 spe_resources[0].start = irq;
132 ret = platform_device_register(&spe_dev);
133 if (ret < 0) {
134 pr_warn("ACPI: SPE: Unable to register device\n");
135 acpi_unregister_gsi(gsi);
136 }
137 }
138 #else
arm_spe_acpi_register_device(void)139 static inline void arm_spe_acpi_register_device(void)
140 {
141 }
142 #endif /* CONFIG_ARM_SPE_PMU */
143
arm_pmu_acpi_parse_irqs(void)144 static int arm_pmu_acpi_parse_irqs(void)
145 {
146 int irq, cpu, irq_cpu, err;
147
148 for_each_possible_cpu(cpu) {
149 irq = arm_pmu_acpi_register_irq(cpu);
150 if (irq < 0) {
151 err = irq;
152 pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n",
153 cpu, err);
154 goto out_err;
155 } else if (irq == 0) {
156 pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu);
157 }
158
159 /*
160 * Log and request the IRQ so the core arm_pmu code can manage
161 * it. We'll have to sanity-check IRQs later when we associate
162 * them with their PMUs.
163 */
164 per_cpu(pmu_irqs, cpu) = irq;
165 armpmu_request_irq(irq, cpu);
166 }
167
168 return 0;
169
170 out_err:
171 for_each_possible_cpu(cpu) {
172 irq = per_cpu(pmu_irqs, cpu);
173 if (!irq)
174 continue;
175
176 arm_pmu_acpi_unregister_irq(cpu);
177
178 /*
179 * Blat all copies of the IRQ so that we only unregister the
180 * corresponding GSI once (e.g. when we have PPIs).
181 */
182 for_each_possible_cpu(irq_cpu) {
183 if (per_cpu(pmu_irqs, irq_cpu) == irq)
184 per_cpu(pmu_irqs, irq_cpu) = 0;
185 }
186 }
187
188 return err;
189 }
190
arm_pmu_acpi_find_alloc_pmu(void)191 static struct arm_pmu *arm_pmu_acpi_find_alloc_pmu(void)
192 {
193 unsigned long cpuid = read_cpuid_id();
194 struct arm_pmu *pmu;
195 int cpu;
196
197 for_each_possible_cpu(cpu) {
198 pmu = per_cpu(probed_pmus, cpu);
199 if (!pmu || pmu->acpi_cpuid != cpuid)
200 continue;
201
202 return pmu;
203 }
204
205 pmu = armpmu_alloc_atomic();
206 if (!pmu) {
207 pr_warn("Unable to allocate PMU for CPU%d\n",
208 smp_processor_id());
209 return NULL;
210 }
211
212 pmu->acpi_cpuid = cpuid;
213
214 return pmu;
215 }
216
217 /*
218 * Check whether the new IRQ is compatible with those already associated with
219 * the PMU (e.g. we don't have mismatched PPIs).
220 */
pmu_irq_matches(struct arm_pmu * pmu,int irq)221 static bool pmu_irq_matches(struct arm_pmu *pmu, int irq)
222 {
223 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
224 int cpu;
225
226 if (!irq)
227 return true;
228
229 for_each_cpu(cpu, &pmu->supported_cpus) {
230 int other_irq = per_cpu(hw_events->irq, cpu);
231 if (!other_irq)
232 continue;
233
234 if (irq == other_irq)
235 continue;
236 if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq))
237 continue;
238
239 pr_warn("mismatched PPIs detected\n");
240 return false;
241 }
242
243 return true;
244 }
245
246 /*
247 * This must run before the common arm_pmu hotplug logic, so that we can
248 * associate a CPU and its interrupt before the common code tries to manage the
249 * affinity and so on.
250 *
251 * Note that hotplug events are serialized, so we cannot race with another CPU
252 * coming up. The perf core won't open events while a hotplug event is in
253 * progress.
254 */
arm_pmu_acpi_cpu_starting(unsigned int cpu)255 static int arm_pmu_acpi_cpu_starting(unsigned int cpu)
256 {
257 struct arm_pmu *pmu;
258 struct pmu_hw_events __percpu *hw_events;
259 int irq;
260
261 /* If we've already probed this CPU, we have nothing to do */
262 if (per_cpu(probed_pmus, cpu))
263 return 0;
264
265 irq = per_cpu(pmu_irqs, cpu);
266
267 pmu = arm_pmu_acpi_find_alloc_pmu();
268 if (!pmu)
269 return -ENOMEM;
270
271 per_cpu(probed_pmus, cpu) = pmu;
272
273 if (pmu_irq_matches(pmu, irq)) {
274 hw_events = pmu->hw_events;
275 per_cpu(hw_events->irq, cpu) = irq;
276 }
277
278 cpumask_set_cpu(cpu, &pmu->supported_cpus);
279
280 /*
281 * Ideally, we'd probe the PMU here when we find the first matching
282 * CPU. We can't do that for several reasons; see the comment in
283 * arm_pmu_acpi_init().
284 *
285 * So for the time being, we're done.
286 */
287 return 0;
288 }
289
arm_pmu_acpi_probe(armpmu_init_fn init_fn)290 int arm_pmu_acpi_probe(armpmu_init_fn init_fn)
291 {
292 int pmu_idx = 0;
293 int cpu, ret;
294
295 /*
296 * Initialise and register the set of PMUs which we know about right
297 * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we
298 * could handle late hotplug, but this may lead to deadlock since we
299 * might try to register a hotplug notifier instance from within a
300 * hotplug notifier.
301 *
302 * There's also the problem of having access to the right init_fn,
303 * without tying this too deeply into the "real" PMU driver.
304 *
305 * For the moment, as with the platform/DT case, we need at least one
306 * of a PMU's CPUs to be online at probe time.
307 */
308 for_each_possible_cpu(cpu) {
309 struct arm_pmu *pmu = per_cpu(probed_pmus, cpu);
310 char *base_name;
311
312 if (!pmu || pmu->name)
313 continue;
314
315 ret = init_fn(pmu);
316 if (ret == -ENODEV) {
317 /* PMU not handled by this driver, or not present */
318 continue;
319 } else if (ret) {
320 pr_warn("Unable to initialise PMU for CPU%d\n", cpu);
321 return ret;
322 }
323
324 base_name = pmu->name;
325 pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++);
326 if (!pmu->name) {
327 pr_warn("Unable to allocate PMU name for CPU%d\n", cpu);
328 return -ENOMEM;
329 }
330
331 ret = armpmu_register(pmu);
332 if (ret) {
333 pr_warn("Failed to register PMU for CPU%d\n", cpu);
334 kfree(pmu->name);
335 return ret;
336 }
337 }
338
339 return 0;
340 }
341
arm_pmu_acpi_init(void)342 static int arm_pmu_acpi_init(void)
343 {
344 int ret;
345
346 if (acpi_disabled)
347 return 0;
348
349 arm_spe_acpi_register_device();
350
351 ret = arm_pmu_acpi_parse_irqs();
352 if (ret)
353 return ret;
354
355 ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_ACPI_STARTING,
356 "perf/arm/pmu_acpi:starting",
357 arm_pmu_acpi_cpu_starting, NULL);
358
359 return ret;
360 }
361 subsys_initcall(arm_pmu_acpi_init)
362