1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/suspend.h>
22 #include <linux/t10-pi.h>
23 #include <linux/types.h>
24 #include <linux/io-64-nonatomic-lo-hi.h>
25 #include <linux/sed-opal.h>
26 #include <linux/pci-p2pdma.h>
27
28 #include "trace.h"
29 #include "nvme.h"
30
31 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
32 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
33
34 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
35
36 /*
37 * These can be higher, but we need to ensure that any command doesn't
38 * require an sg allocation that needs more than a page of data.
39 */
40 #define NVME_MAX_KB_SZ 4096
41 #define NVME_MAX_SEGS 127
42
43 static int use_threaded_interrupts;
44 module_param(use_threaded_interrupts, int, 0);
45
46 static bool use_cmb_sqes = true;
47 module_param(use_cmb_sqes, bool, 0444);
48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49
50 static unsigned int max_host_mem_size_mb = 128;
51 module_param(max_host_mem_size_mb, uint, 0444);
52 MODULE_PARM_DESC(max_host_mem_size_mb,
53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
54
55 static unsigned int sgl_threshold = SZ_32K;
56 module_param(sgl_threshold, uint, 0644);
57 MODULE_PARM_DESC(sgl_threshold,
58 "Use SGLs when average request segment size is larger or equal to "
59 "this size. Use 0 to disable SGLs.");
60
61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62 static const struct kernel_param_ops io_queue_depth_ops = {
63 .set = io_queue_depth_set,
64 .get = param_get_int,
65 };
66
67 static int io_queue_depth = 1024;
68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70
71 static int write_queues;
72 module_param(write_queues, int, 0644);
73 MODULE_PARM_DESC(write_queues,
74 "Number of queues to use for writes. If not set, reads and writes "
75 "will share a queue set.");
76
77 static int poll_queues;
78 module_param(poll_queues, int, 0644);
79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
80
81 struct nvme_dev;
82 struct nvme_queue;
83
84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
86
87 /*
88 * Represents an NVM Express device. Each nvme_dev is a PCI function.
89 */
90 struct nvme_dev {
91 struct nvme_queue *queues;
92 struct blk_mq_tag_set tagset;
93 struct blk_mq_tag_set admin_tagset;
94 u32 __iomem *dbs;
95 struct device *dev;
96 struct dma_pool *prp_page_pool;
97 struct dma_pool *prp_small_pool;
98 unsigned online_queues;
99 unsigned max_qid;
100 unsigned io_queues[HCTX_MAX_TYPES];
101 unsigned int num_vecs;
102 int q_depth;
103 int io_sqes;
104 u32 db_stride;
105 void __iomem *bar;
106 unsigned long bar_mapped_size;
107 struct work_struct remove_work;
108 struct mutex shutdown_lock;
109 bool subsystem;
110 u64 cmb_size;
111 bool cmb_use_sqes;
112 u32 cmbsz;
113 u32 cmbloc;
114 struct nvme_ctrl ctrl;
115 u32 last_ps;
116
117 mempool_t *iod_mempool;
118
119 /* shadow doorbell buffer support: */
120 u32 *dbbuf_dbs;
121 dma_addr_t dbbuf_dbs_dma_addr;
122 u32 *dbbuf_eis;
123 dma_addr_t dbbuf_eis_dma_addr;
124
125 /* host memory buffer support: */
126 u64 host_mem_size;
127 u32 nr_host_mem_descs;
128 dma_addr_t host_mem_descs_dma;
129 struct nvme_host_mem_buf_desc *host_mem_descs;
130 void **host_mem_desc_bufs;
131 };
132
io_queue_depth_set(const char * val,const struct kernel_param * kp)133 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
134 {
135 int n = 0, ret;
136
137 ret = kstrtoint(val, 10, &n);
138 if (ret != 0 || n < 2)
139 return -EINVAL;
140
141 return param_set_int(val, kp);
142 }
143
sq_idx(unsigned int qid,u32 stride)144 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
145 {
146 return qid * 2 * stride;
147 }
148
cq_idx(unsigned int qid,u32 stride)149 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
150 {
151 return (qid * 2 + 1) * stride;
152 }
153
to_nvme_dev(struct nvme_ctrl * ctrl)154 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
155 {
156 return container_of(ctrl, struct nvme_dev, ctrl);
157 }
158
159 /*
160 * An NVM Express queue. Each device has at least two (one for admin
161 * commands and one for I/O commands).
162 */
163 struct nvme_queue {
164 struct nvme_dev *dev;
165 spinlock_t sq_lock;
166 void *sq_cmds;
167 /* only used for poll queues: */
168 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
169 volatile struct nvme_completion *cqes;
170 struct blk_mq_tags **tags;
171 dma_addr_t sq_dma_addr;
172 dma_addr_t cq_dma_addr;
173 u32 __iomem *q_db;
174 u16 q_depth;
175 u16 cq_vector;
176 u16 sq_tail;
177 u16 last_sq_tail;
178 u16 cq_head;
179 u16 last_cq_head;
180 u16 qid;
181 u8 cq_phase;
182 u8 sqes;
183 unsigned long flags;
184 #define NVMEQ_ENABLED 0
185 #define NVMEQ_SQ_CMB 1
186 #define NVMEQ_DELETE_ERROR 2
187 #define NVMEQ_POLLED 3
188 u32 *dbbuf_sq_db;
189 u32 *dbbuf_cq_db;
190 u32 *dbbuf_sq_ei;
191 u32 *dbbuf_cq_ei;
192 struct completion delete_done;
193 };
194
195 /*
196 * The nvme_iod describes the data in an I/O.
197 *
198 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
199 * to the actual struct scatterlist.
200 */
201 struct nvme_iod {
202 struct nvme_request req;
203 struct nvme_queue *nvmeq;
204 bool use_sgl;
205 int aborted;
206 int npages; /* In the PRP list. 0 means small pool in use */
207 int nents; /* Used in scatterlist */
208 dma_addr_t first_dma;
209 unsigned int dma_len; /* length of single DMA segment mapping */
210 dma_addr_t meta_dma;
211 struct scatterlist *sg;
212 };
213
max_io_queues(void)214 static unsigned int max_io_queues(void)
215 {
216 return num_possible_cpus() + write_queues + poll_queues;
217 }
218
max_queue_count(void)219 static unsigned int max_queue_count(void)
220 {
221 /* IO queues + admin queue */
222 return 1 + max_io_queues();
223 }
224
nvme_dbbuf_size(u32 stride)225 static inline unsigned int nvme_dbbuf_size(u32 stride)
226 {
227 return (max_queue_count() * 8 * stride);
228 }
229
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)230 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
231 {
232 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
233
234 if (dev->dbbuf_dbs)
235 return 0;
236
237 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
238 &dev->dbbuf_dbs_dma_addr,
239 GFP_KERNEL);
240 if (!dev->dbbuf_dbs)
241 return -ENOMEM;
242 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
243 &dev->dbbuf_eis_dma_addr,
244 GFP_KERNEL);
245 if (!dev->dbbuf_eis) {
246 dma_free_coherent(dev->dev, mem_size,
247 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
248 dev->dbbuf_dbs = NULL;
249 return -ENOMEM;
250 }
251
252 return 0;
253 }
254
nvme_dbbuf_dma_free(struct nvme_dev * dev)255 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
256 {
257 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
258
259 if (dev->dbbuf_dbs) {
260 dma_free_coherent(dev->dev, mem_size,
261 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262 dev->dbbuf_dbs = NULL;
263 }
264 if (dev->dbbuf_eis) {
265 dma_free_coherent(dev->dev, mem_size,
266 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
267 dev->dbbuf_eis = NULL;
268 }
269 }
270
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)271 static void nvme_dbbuf_init(struct nvme_dev *dev,
272 struct nvme_queue *nvmeq, int qid)
273 {
274 if (!dev->dbbuf_dbs || !qid)
275 return;
276
277 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
278 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
279 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
280 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
281 }
282
nvme_dbbuf_set(struct nvme_dev * dev)283 static void nvme_dbbuf_set(struct nvme_dev *dev)
284 {
285 struct nvme_command c;
286
287 if (!dev->dbbuf_dbs)
288 return;
289
290 memset(&c, 0, sizeof(c));
291 c.dbbuf.opcode = nvme_admin_dbbuf;
292 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
293 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
294
295 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
296 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
297 /* Free memory and continue on */
298 nvme_dbbuf_dma_free(dev);
299 }
300 }
301
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)302 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
303 {
304 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
305 }
306
307 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,u32 * dbbuf_db,volatile u32 * dbbuf_ei)308 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
309 volatile u32 *dbbuf_ei)
310 {
311 if (dbbuf_db) {
312 u16 old_value;
313
314 /*
315 * Ensure that the queue is written before updating
316 * the doorbell in memory
317 */
318 wmb();
319
320 old_value = *dbbuf_db;
321 *dbbuf_db = value;
322
323 /*
324 * Ensure that the doorbell is updated before reading the event
325 * index from memory. The controller needs to provide similar
326 * ordering to ensure the envent index is updated before reading
327 * the doorbell.
328 */
329 mb();
330
331 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
332 return false;
333 }
334
335 return true;
336 }
337
338 /*
339 * Will slightly overestimate the number of pages needed. This is OK
340 * as it only leads to a small amount of wasted memory for the lifetime of
341 * the I/O.
342 */
nvme_npages(unsigned size,struct nvme_dev * dev)343 static int nvme_npages(unsigned size, struct nvme_dev *dev)
344 {
345 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
346 dev->ctrl.page_size);
347 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
348 }
349
350 /*
351 * Calculates the number of pages needed for the SGL segments. For example a 4k
352 * page can accommodate 256 SGL descriptors.
353 */
nvme_pci_npages_sgl(unsigned int num_seg)354 static int nvme_pci_npages_sgl(unsigned int num_seg)
355 {
356 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
357 }
358
nvme_pci_iod_alloc_size(struct nvme_dev * dev,unsigned int size,unsigned int nseg,bool use_sgl)359 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
360 unsigned int size, unsigned int nseg, bool use_sgl)
361 {
362 size_t alloc_size;
363
364 if (use_sgl)
365 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
366 else
367 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
368
369 return alloc_size + sizeof(struct scatterlist) * nseg;
370 }
371
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)372 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
373 unsigned int hctx_idx)
374 {
375 struct nvme_dev *dev = data;
376 struct nvme_queue *nvmeq = &dev->queues[0];
377
378 WARN_ON(hctx_idx != 0);
379 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
380 WARN_ON(nvmeq->tags);
381
382 hctx->driver_data = nvmeq;
383 nvmeq->tags = &dev->admin_tagset.tags[0];
384 return 0;
385 }
386
nvme_admin_exit_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)387 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
388 {
389 struct nvme_queue *nvmeq = hctx->driver_data;
390
391 nvmeq->tags = NULL;
392 }
393
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)394 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
395 unsigned int hctx_idx)
396 {
397 struct nvme_dev *dev = data;
398 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
399
400 if (!nvmeq->tags)
401 nvmeq->tags = &dev->tagset.tags[hctx_idx];
402
403 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
404 hctx->driver_data = nvmeq;
405 return 0;
406 }
407
nvme_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)408 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
409 unsigned int hctx_idx, unsigned int numa_node)
410 {
411 struct nvme_dev *dev = set->driver_data;
412 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
413 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
414 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
415
416 BUG_ON(!nvmeq);
417 iod->nvmeq = nvmeq;
418
419 nvme_req(req)->ctrl = &dev->ctrl;
420 return 0;
421 }
422
queue_irq_offset(struct nvme_dev * dev)423 static int queue_irq_offset(struct nvme_dev *dev)
424 {
425 /* if we have more than 1 vec, admin queue offsets us by 1 */
426 if (dev->num_vecs > 1)
427 return 1;
428
429 return 0;
430 }
431
nvme_pci_map_queues(struct blk_mq_tag_set * set)432 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
433 {
434 struct nvme_dev *dev = set->driver_data;
435 int i, qoff, offset;
436
437 offset = queue_irq_offset(dev);
438 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
439 struct blk_mq_queue_map *map = &set->map[i];
440
441 map->nr_queues = dev->io_queues[i];
442 if (!map->nr_queues) {
443 BUG_ON(i == HCTX_TYPE_DEFAULT);
444 continue;
445 }
446
447 /*
448 * The poll queue(s) doesn't have an IRQ (and hence IRQ
449 * affinity), so use the regular blk-mq cpu mapping
450 */
451 map->queue_offset = qoff;
452 if (i != HCTX_TYPE_POLL && offset)
453 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
454 else
455 blk_mq_map_queues(map);
456 qoff += map->nr_queues;
457 offset += map->nr_queues;
458 }
459
460 return 0;
461 }
462
463 /*
464 * Write sq tail if we are asked to, or if the next command would wrap.
465 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)466 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
467 {
468 if (!write_sq) {
469 u16 next_tail = nvmeq->sq_tail + 1;
470
471 if (next_tail == nvmeq->q_depth)
472 next_tail = 0;
473 if (next_tail != nvmeq->last_sq_tail)
474 return;
475 }
476
477 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
478 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
479 writel(nvmeq->sq_tail, nvmeq->q_db);
480 nvmeq->last_sq_tail = nvmeq->sq_tail;
481 }
482
483 /**
484 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
485 * @nvmeq: The queue to use
486 * @cmd: The command to send
487 * @write_sq: whether to write to the SQ doorbell
488 */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,bool write_sq)489 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
490 bool write_sq)
491 {
492 spin_lock(&nvmeq->sq_lock);
493 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
494 cmd, sizeof(*cmd));
495 if (++nvmeq->sq_tail == nvmeq->q_depth)
496 nvmeq->sq_tail = 0;
497 nvme_write_sq_db(nvmeq, write_sq);
498 spin_unlock(&nvmeq->sq_lock);
499 }
500
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)501 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
502 {
503 struct nvme_queue *nvmeq = hctx->driver_data;
504
505 spin_lock(&nvmeq->sq_lock);
506 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
507 nvme_write_sq_db(nvmeq, true);
508 spin_unlock(&nvmeq->sq_lock);
509 }
510
nvme_pci_iod_list(struct request * req)511 static void **nvme_pci_iod_list(struct request *req)
512 {
513 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
514 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
515 }
516
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)517 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
518 {
519 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
520 int nseg = blk_rq_nr_phys_segments(req);
521 unsigned int avg_seg_size;
522
523 if (nseg == 0)
524 return false;
525
526 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
527
528 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
529 return false;
530 if (!iod->nvmeq->qid)
531 return false;
532 if (!sgl_threshold || avg_seg_size < sgl_threshold)
533 return false;
534 return true;
535 }
536
nvme_unmap_data(struct nvme_dev * dev,struct request * req)537 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
538 {
539 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
540 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
541 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
542 int i;
543
544 if (iod->dma_len) {
545 dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
546 rq_dma_dir(req));
547 return;
548 }
549
550 WARN_ON_ONCE(!iod->nents);
551
552 if (is_pci_p2pdma_page(sg_page(iod->sg)))
553 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
554 rq_dma_dir(req));
555 else
556 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
557
558
559 if (iod->npages == 0)
560 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
561 dma_addr);
562
563 for (i = 0; i < iod->npages; i++) {
564 void *addr = nvme_pci_iod_list(req)[i];
565
566 if (iod->use_sgl) {
567 struct nvme_sgl_desc *sg_list = addr;
568
569 next_dma_addr =
570 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
571 } else {
572 __le64 *prp_list = addr;
573
574 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
575 }
576
577 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
578 dma_addr = next_dma_addr;
579 }
580
581 mempool_free(iod->sg, dev->iod_mempool);
582 }
583
nvme_print_sgl(struct scatterlist * sgl,int nents)584 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
585 {
586 int i;
587 struct scatterlist *sg;
588
589 for_each_sg(sgl, sg, nents, i) {
590 dma_addr_t phys = sg_phys(sg);
591 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
592 "dma_address:%pad dma_length:%d\n",
593 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
594 sg_dma_len(sg));
595 }
596 }
597
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)598 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
599 struct request *req, struct nvme_rw_command *cmnd)
600 {
601 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
602 struct dma_pool *pool;
603 int length = blk_rq_payload_bytes(req);
604 struct scatterlist *sg = iod->sg;
605 int dma_len = sg_dma_len(sg);
606 u64 dma_addr = sg_dma_address(sg);
607 u32 page_size = dev->ctrl.page_size;
608 int offset = dma_addr & (page_size - 1);
609 __le64 *prp_list;
610 void **list = nvme_pci_iod_list(req);
611 dma_addr_t prp_dma;
612 int nprps, i;
613
614 length -= (page_size - offset);
615 if (length <= 0) {
616 iod->first_dma = 0;
617 goto done;
618 }
619
620 dma_len -= (page_size - offset);
621 if (dma_len) {
622 dma_addr += (page_size - offset);
623 } else {
624 sg = sg_next(sg);
625 dma_addr = sg_dma_address(sg);
626 dma_len = sg_dma_len(sg);
627 }
628
629 if (length <= page_size) {
630 iod->first_dma = dma_addr;
631 goto done;
632 }
633
634 nprps = DIV_ROUND_UP(length, page_size);
635 if (nprps <= (256 / 8)) {
636 pool = dev->prp_small_pool;
637 iod->npages = 0;
638 } else {
639 pool = dev->prp_page_pool;
640 iod->npages = 1;
641 }
642
643 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
644 if (!prp_list) {
645 iod->first_dma = dma_addr;
646 iod->npages = -1;
647 return BLK_STS_RESOURCE;
648 }
649 list[0] = prp_list;
650 iod->first_dma = prp_dma;
651 i = 0;
652 for (;;) {
653 if (i == page_size >> 3) {
654 __le64 *old_prp_list = prp_list;
655 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
656 if (!prp_list)
657 return BLK_STS_RESOURCE;
658 list[iod->npages++] = prp_list;
659 prp_list[0] = old_prp_list[i - 1];
660 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
661 i = 1;
662 }
663 prp_list[i++] = cpu_to_le64(dma_addr);
664 dma_len -= page_size;
665 dma_addr += page_size;
666 length -= page_size;
667 if (length <= 0)
668 break;
669 if (dma_len > 0)
670 continue;
671 if (unlikely(dma_len < 0))
672 goto bad_sgl;
673 sg = sg_next(sg);
674 dma_addr = sg_dma_address(sg);
675 dma_len = sg_dma_len(sg);
676 }
677
678 done:
679 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
680 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
681
682 return BLK_STS_OK;
683
684 bad_sgl:
685 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
686 "Invalid SGL for payload:%d nents:%d\n",
687 blk_rq_payload_bytes(req), iod->nents);
688 return BLK_STS_IOERR;
689 }
690
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)691 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
692 struct scatterlist *sg)
693 {
694 sge->addr = cpu_to_le64(sg_dma_address(sg));
695 sge->length = cpu_to_le32(sg_dma_len(sg));
696 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
697 }
698
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)699 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
700 dma_addr_t dma_addr, int entries)
701 {
702 sge->addr = cpu_to_le64(dma_addr);
703 if (entries < SGES_PER_PAGE) {
704 sge->length = cpu_to_le32(entries * sizeof(*sge));
705 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
706 } else {
707 sge->length = cpu_to_le32(PAGE_SIZE);
708 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
709 }
710 }
711
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd,int entries)712 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
713 struct request *req, struct nvme_rw_command *cmd, int entries)
714 {
715 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
716 struct dma_pool *pool;
717 struct nvme_sgl_desc *sg_list;
718 struct scatterlist *sg = iod->sg;
719 dma_addr_t sgl_dma;
720 int i = 0;
721
722 /* setting the transfer type as SGL */
723 cmd->flags = NVME_CMD_SGL_METABUF;
724
725 if (entries == 1) {
726 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
727 return BLK_STS_OK;
728 }
729
730 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
731 pool = dev->prp_small_pool;
732 iod->npages = 0;
733 } else {
734 pool = dev->prp_page_pool;
735 iod->npages = 1;
736 }
737
738 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
739 if (!sg_list) {
740 iod->npages = -1;
741 return BLK_STS_RESOURCE;
742 }
743
744 nvme_pci_iod_list(req)[0] = sg_list;
745 iod->first_dma = sgl_dma;
746
747 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
748
749 do {
750 if (i == SGES_PER_PAGE) {
751 struct nvme_sgl_desc *old_sg_desc = sg_list;
752 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
753
754 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
755 if (!sg_list)
756 return BLK_STS_RESOURCE;
757
758 i = 0;
759 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
760 sg_list[i++] = *link;
761 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
762 }
763
764 nvme_pci_sgl_set_data(&sg_list[i++], sg);
765 sg = sg_next(sg);
766 } while (--entries > 0);
767
768 return BLK_STS_OK;
769 }
770
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)771 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
772 struct request *req, struct nvme_rw_command *cmnd,
773 struct bio_vec *bv)
774 {
775 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
776 unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1);
777 unsigned int first_prp_len = dev->ctrl.page_size - offset;
778
779 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
780 if (dma_mapping_error(dev->dev, iod->first_dma))
781 return BLK_STS_RESOURCE;
782 iod->dma_len = bv->bv_len;
783
784 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
785 if (bv->bv_len > first_prp_len)
786 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
787 return 0;
788 }
789
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)790 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
791 struct request *req, struct nvme_rw_command *cmnd,
792 struct bio_vec *bv)
793 {
794 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
795
796 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
797 if (dma_mapping_error(dev->dev, iod->first_dma))
798 return BLK_STS_RESOURCE;
799 iod->dma_len = bv->bv_len;
800
801 cmnd->flags = NVME_CMD_SGL_METABUF;
802 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
803 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
804 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
805 return 0;
806 }
807
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)808 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
809 struct nvme_command *cmnd)
810 {
811 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
812 blk_status_t ret = BLK_STS_RESOURCE;
813 int nr_mapped;
814
815 if (blk_rq_nr_phys_segments(req) == 1) {
816 struct bio_vec bv = req_bvec(req);
817
818 if (!is_pci_p2pdma_page(bv.bv_page)) {
819 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
820 return nvme_setup_prp_simple(dev, req,
821 &cmnd->rw, &bv);
822
823 if (iod->nvmeq->qid &&
824 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
825 return nvme_setup_sgl_simple(dev, req,
826 &cmnd->rw, &bv);
827 }
828 }
829
830 iod->dma_len = 0;
831 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
832 if (!iod->sg)
833 return BLK_STS_RESOURCE;
834 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
835 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
836 if (!iod->nents)
837 goto out;
838
839 if (is_pci_p2pdma_page(sg_page(iod->sg)))
840 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
841 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
842 else
843 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
844 rq_dma_dir(req), DMA_ATTR_NO_WARN);
845 if (!nr_mapped)
846 goto out;
847
848 iod->use_sgl = nvme_pci_use_sgls(dev, req);
849 if (iod->use_sgl)
850 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
851 else
852 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
853 out:
854 if (ret != BLK_STS_OK)
855 nvme_unmap_data(dev, req);
856 return ret;
857 }
858
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)859 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
860 struct nvme_command *cmnd)
861 {
862 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
863
864 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
865 rq_dma_dir(req), 0);
866 if (dma_mapping_error(dev->dev, iod->meta_dma))
867 return BLK_STS_IOERR;
868 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
869 return 0;
870 }
871
872 /*
873 * NOTE: ns is NULL when called on the admin queue.
874 */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)875 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
876 const struct blk_mq_queue_data *bd)
877 {
878 struct nvme_ns *ns = hctx->queue->queuedata;
879 struct nvme_queue *nvmeq = hctx->driver_data;
880 struct nvme_dev *dev = nvmeq->dev;
881 struct request *req = bd->rq;
882 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
883 struct nvme_command cmnd;
884 blk_status_t ret;
885
886 iod->aborted = 0;
887 iod->npages = -1;
888 iod->nents = 0;
889
890 /*
891 * We should not need to do this, but we're still using this to
892 * ensure we can drain requests on a dying queue.
893 */
894 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
895 return BLK_STS_IOERR;
896
897 ret = nvme_setup_cmd(ns, req, &cmnd);
898 if (ret)
899 return ret;
900
901 if (blk_rq_nr_phys_segments(req)) {
902 ret = nvme_map_data(dev, req, &cmnd);
903 if (ret)
904 goto out_free_cmd;
905 }
906
907 if (blk_integrity_rq(req)) {
908 ret = nvme_map_metadata(dev, req, &cmnd);
909 if (ret)
910 goto out_unmap_data;
911 }
912
913 blk_mq_start_request(req);
914 nvme_submit_cmd(nvmeq, &cmnd, bd->last);
915 return BLK_STS_OK;
916 out_unmap_data:
917 nvme_unmap_data(dev, req);
918 out_free_cmd:
919 nvme_cleanup_cmd(req);
920 return ret;
921 }
922
nvme_pci_complete_rq(struct request * req)923 static void nvme_pci_complete_rq(struct request *req)
924 {
925 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
926 struct nvme_dev *dev = iod->nvmeq->dev;
927
928 nvme_cleanup_cmd(req);
929 if (blk_integrity_rq(req))
930 dma_unmap_page(dev->dev, iod->meta_dma,
931 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
932 if (blk_rq_nr_phys_segments(req))
933 nvme_unmap_data(dev, req);
934 nvme_complete_rq(req);
935 }
936
937 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)938 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
939 {
940 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
941 nvmeq->cq_phase;
942 }
943
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)944 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
945 {
946 u16 head = nvmeq->cq_head;
947
948 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
949 nvmeq->dbbuf_cq_ei))
950 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
951 }
952
nvme_handle_cqe(struct nvme_queue * nvmeq,u16 idx)953 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
954 {
955 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
956 struct request *req;
957
958 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
959 dev_warn(nvmeq->dev->ctrl.device,
960 "invalid id %d completed on queue %d\n",
961 cqe->command_id, le16_to_cpu(cqe->sq_id));
962 return;
963 }
964
965 /*
966 * AEN requests are special as they don't time out and can
967 * survive any kind of queue freeze and often don't respond to
968 * aborts. We don't even bother to allocate a struct request
969 * for them but rather special case them here.
970 */
971 if (unlikely(nvmeq->qid == 0 &&
972 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
973 nvme_complete_async_event(&nvmeq->dev->ctrl,
974 cqe->status, &cqe->result);
975 return;
976 }
977
978 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
979 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
980 nvme_end_request(req, cqe->status, cqe->result);
981 }
982
nvme_complete_cqes(struct nvme_queue * nvmeq,u16 start,u16 end)983 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
984 {
985 while (start != end) {
986 nvme_handle_cqe(nvmeq, start);
987 if (++start == nvmeq->q_depth)
988 start = 0;
989 }
990 }
991
nvme_update_cq_head(struct nvme_queue * nvmeq)992 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
993 {
994 if (nvmeq->cq_head == nvmeq->q_depth - 1) {
995 nvmeq->cq_head = 0;
996 nvmeq->cq_phase = !nvmeq->cq_phase;
997 } else {
998 nvmeq->cq_head++;
999 }
1000 }
1001
nvme_process_cq(struct nvme_queue * nvmeq,u16 * start,u16 * end,unsigned int tag)1002 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1003 u16 *end, unsigned int tag)
1004 {
1005 int found = 0;
1006
1007 *start = nvmeq->cq_head;
1008 while (nvme_cqe_pending(nvmeq)) {
1009 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1010 found++;
1011 nvme_update_cq_head(nvmeq);
1012 }
1013 *end = nvmeq->cq_head;
1014
1015 if (*start != *end)
1016 nvme_ring_cq_doorbell(nvmeq);
1017 return found;
1018 }
1019
nvme_irq(int irq,void * data)1020 static irqreturn_t nvme_irq(int irq, void *data)
1021 {
1022 struct nvme_queue *nvmeq = data;
1023 irqreturn_t ret = IRQ_NONE;
1024 u16 start, end;
1025
1026 /*
1027 * The rmb/wmb pair ensures we see all updates from a previous run of
1028 * the irq handler, even if that was on another CPU.
1029 */
1030 rmb();
1031 if (nvmeq->cq_head != nvmeq->last_cq_head)
1032 ret = IRQ_HANDLED;
1033 nvme_process_cq(nvmeq, &start, &end, -1);
1034 nvmeq->last_cq_head = nvmeq->cq_head;
1035 wmb();
1036
1037 if (start != end) {
1038 nvme_complete_cqes(nvmeq, start, end);
1039 return IRQ_HANDLED;
1040 }
1041
1042 return ret;
1043 }
1044
nvme_irq_check(int irq,void * data)1045 static irqreturn_t nvme_irq_check(int irq, void *data)
1046 {
1047 struct nvme_queue *nvmeq = data;
1048 if (nvme_cqe_pending(nvmeq))
1049 return IRQ_WAKE_THREAD;
1050 return IRQ_NONE;
1051 }
1052
1053 /*
1054 * Poll for completions any queue, including those not dedicated to polling.
1055 * Can be called from any context.
1056 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq,unsigned int tag)1057 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1058 {
1059 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1060 u16 start, end;
1061 int found;
1062
1063 /*
1064 * For a poll queue we need to protect against the polling thread
1065 * using the CQ lock. For normal interrupt driven threads we have
1066 * to disable the interrupt to avoid racing with it.
1067 */
1068 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1069 spin_lock(&nvmeq->cq_poll_lock);
1070 found = nvme_process_cq(nvmeq, &start, &end, tag);
1071 spin_unlock(&nvmeq->cq_poll_lock);
1072 } else {
1073 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1074 found = nvme_process_cq(nvmeq, &start, &end, tag);
1075 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1076 }
1077
1078 nvme_complete_cqes(nvmeq, start, end);
1079 return found;
1080 }
1081
nvme_poll(struct blk_mq_hw_ctx * hctx)1082 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1083 {
1084 struct nvme_queue *nvmeq = hctx->driver_data;
1085 u16 start, end;
1086 bool found;
1087
1088 if (!nvme_cqe_pending(nvmeq))
1089 return 0;
1090
1091 spin_lock(&nvmeq->cq_poll_lock);
1092 found = nvme_process_cq(nvmeq, &start, &end, -1);
1093 spin_unlock(&nvmeq->cq_poll_lock);
1094
1095 nvme_complete_cqes(nvmeq, start, end);
1096 return found;
1097 }
1098
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1099 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1100 {
1101 struct nvme_dev *dev = to_nvme_dev(ctrl);
1102 struct nvme_queue *nvmeq = &dev->queues[0];
1103 struct nvme_command c;
1104
1105 memset(&c, 0, sizeof(c));
1106 c.common.opcode = nvme_admin_async_event;
1107 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1108 nvme_submit_cmd(nvmeq, &c, true);
1109 }
1110
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1111 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1112 {
1113 struct nvme_command c;
1114
1115 memset(&c, 0, sizeof(c));
1116 c.delete_queue.opcode = opcode;
1117 c.delete_queue.qid = cpu_to_le16(id);
1118
1119 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1120 }
1121
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1122 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1123 struct nvme_queue *nvmeq, s16 vector)
1124 {
1125 struct nvme_command c;
1126 int flags = NVME_QUEUE_PHYS_CONTIG;
1127
1128 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1129 flags |= NVME_CQ_IRQ_ENABLED;
1130
1131 /*
1132 * Note: we (ab)use the fact that the prp fields survive if no data
1133 * is attached to the request.
1134 */
1135 memset(&c, 0, sizeof(c));
1136 c.create_cq.opcode = nvme_admin_create_cq;
1137 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1138 c.create_cq.cqid = cpu_to_le16(qid);
1139 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1140 c.create_cq.cq_flags = cpu_to_le16(flags);
1141 c.create_cq.irq_vector = cpu_to_le16(vector);
1142
1143 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1144 }
1145
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1146 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1147 struct nvme_queue *nvmeq)
1148 {
1149 struct nvme_ctrl *ctrl = &dev->ctrl;
1150 struct nvme_command c;
1151 int flags = NVME_QUEUE_PHYS_CONTIG;
1152
1153 /*
1154 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1155 * set. Since URGENT priority is zeroes, it makes all queues
1156 * URGENT.
1157 */
1158 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1159 flags |= NVME_SQ_PRIO_MEDIUM;
1160
1161 /*
1162 * Note: we (ab)use the fact that the prp fields survive if no data
1163 * is attached to the request.
1164 */
1165 memset(&c, 0, sizeof(c));
1166 c.create_sq.opcode = nvme_admin_create_sq;
1167 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1168 c.create_sq.sqid = cpu_to_le16(qid);
1169 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1170 c.create_sq.sq_flags = cpu_to_le16(flags);
1171 c.create_sq.cqid = cpu_to_le16(qid);
1172
1173 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1174 }
1175
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1176 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1177 {
1178 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1179 }
1180
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1181 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1182 {
1183 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1184 }
1185
abort_endio(struct request * req,blk_status_t error)1186 static void abort_endio(struct request *req, blk_status_t error)
1187 {
1188 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1189 struct nvme_queue *nvmeq = iod->nvmeq;
1190
1191 dev_warn(nvmeq->dev->ctrl.device,
1192 "Abort status: 0x%x", nvme_req(req)->status);
1193 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1194 blk_mq_free_request(req);
1195 }
1196
nvme_should_reset(struct nvme_dev * dev,u32 csts)1197 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1198 {
1199
1200 /* If true, indicates loss of adapter communication, possibly by a
1201 * NVMe Subsystem reset.
1202 */
1203 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1204
1205 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1206 switch (dev->ctrl.state) {
1207 case NVME_CTRL_RESETTING:
1208 case NVME_CTRL_CONNECTING:
1209 return false;
1210 default:
1211 break;
1212 }
1213
1214 /* We shouldn't reset unless the controller is on fatal error state
1215 * _or_ if we lost the communication with it.
1216 */
1217 if (!(csts & NVME_CSTS_CFS) && !nssro)
1218 return false;
1219
1220 return true;
1221 }
1222
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1223 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1224 {
1225 /* Read a config register to help see what died. */
1226 u16 pci_status;
1227 int result;
1228
1229 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1230 &pci_status);
1231 if (result == PCIBIOS_SUCCESSFUL)
1232 dev_warn(dev->ctrl.device,
1233 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1234 csts, pci_status);
1235 else
1236 dev_warn(dev->ctrl.device,
1237 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1238 csts, result);
1239 }
1240
nvme_timeout(struct request * req,bool reserved)1241 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1242 {
1243 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1244 struct nvme_queue *nvmeq = iod->nvmeq;
1245 struct nvme_dev *dev = nvmeq->dev;
1246 struct request *abort_req;
1247 struct nvme_command cmd;
1248 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1249
1250 /* If PCI error recovery process is happening, we cannot reset or
1251 * the recovery mechanism will surely fail.
1252 */
1253 mb();
1254 if (pci_channel_offline(to_pci_dev(dev->dev)))
1255 return BLK_EH_RESET_TIMER;
1256
1257 /*
1258 * Reset immediately if the controller is failed
1259 */
1260 if (nvme_should_reset(dev, csts)) {
1261 nvme_warn_reset(dev, csts);
1262 nvme_dev_disable(dev, false);
1263 nvme_reset_ctrl(&dev->ctrl);
1264 return BLK_EH_DONE;
1265 }
1266
1267 /*
1268 * Did we miss an interrupt?
1269 */
1270 if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1271 dev_warn(dev->ctrl.device,
1272 "I/O %d QID %d timeout, completion polled\n",
1273 req->tag, nvmeq->qid);
1274 return BLK_EH_DONE;
1275 }
1276
1277 /*
1278 * Shutdown immediately if controller times out while starting. The
1279 * reset work will see the pci device disabled when it gets the forced
1280 * cancellation error. All outstanding requests are completed on
1281 * shutdown, so we return BLK_EH_DONE.
1282 */
1283 switch (dev->ctrl.state) {
1284 case NVME_CTRL_CONNECTING:
1285 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1286 /* fall through */
1287 case NVME_CTRL_DELETING:
1288 dev_warn_ratelimited(dev->ctrl.device,
1289 "I/O %d QID %d timeout, disable controller\n",
1290 req->tag, nvmeq->qid);
1291 nvme_dev_disable(dev, true);
1292 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1293 return BLK_EH_DONE;
1294 case NVME_CTRL_RESETTING:
1295 return BLK_EH_RESET_TIMER;
1296 default:
1297 break;
1298 }
1299
1300 /*
1301 * Shutdown the controller immediately and schedule a reset if the
1302 * command was already aborted once before and still hasn't been
1303 * returned to the driver, or if this is the admin queue.
1304 */
1305 if (!nvmeq->qid || iod->aborted) {
1306 dev_warn(dev->ctrl.device,
1307 "I/O %d QID %d timeout, reset controller\n",
1308 req->tag, nvmeq->qid);
1309 nvme_dev_disable(dev, false);
1310 nvme_reset_ctrl(&dev->ctrl);
1311
1312 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1313 return BLK_EH_DONE;
1314 }
1315
1316 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1317 atomic_inc(&dev->ctrl.abort_limit);
1318 return BLK_EH_RESET_TIMER;
1319 }
1320 iod->aborted = 1;
1321
1322 memset(&cmd, 0, sizeof(cmd));
1323 cmd.abort.opcode = nvme_admin_abort_cmd;
1324 cmd.abort.cid = req->tag;
1325 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1326
1327 dev_warn(nvmeq->dev->ctrl.device,
1328 "I/O %d QID %d timeout, aborting\n",
1329 req->tag, nvmeq->qid);
1330
1331 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1332 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1333 if (IS_ERR(abort_req)) {
1334 atomic_inc(&dev->ctrl.abort_limit);
1335 return BLK_EH_RESET_TIMER;
1336 }
1337
1338 abort_req->timeout = ADMIN_TIMEOUT;
1339 abort_req->end_io_data = NULL;
1340 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1341
1342 /*
1343 * The aborted req will be completed on receiving the abort req.
1344 * We enable the timer again. If hit twice, it'll cause a device reset,
1345 * as the device then is in a faulty state.
1346 */
1347 return BLK_EH_RESET_TIMER;
1348 }
1349
nvme_free_queue(struct nvme_queue * nvmeq)1350 static void nvme_free_queue(struct nvme_queue *nvmeq)
1351 {
1352 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1353 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1354 if (!nvmeq->sq_cmds)
1355 return;
1356
1357 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1358 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1359 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1360 } else {
1361 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1362 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1363 }
1364 }
1365
nvme_free_queues(struct nvme_dev * dev,int lowest)1366 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1367 {
1368 int i;
1369
1370 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1371 dev->ctrl.queue_count--;
1372 nvme_free_queue(&dev->queues[i]);
1373 }
1374 }
1375
1376 /**
1377 * nvme_suspend_queue - put queue into suspended state
1378 * @nvmeq: queue to suspend
1379 */
nvme_suspend_queue(struct nvme_queue * nvmeq)1380 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1381 {
1382 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1383 return 1;
1384
1385 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1386 mb();
1387
1388 nvmeq->dev->online_queues--;
1389 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1390 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1391 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1392 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1393 return 0;
1394 }
1395
nvme_suspend_io_queues(struct nvme_dev * dev)1396 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1397 {
1398 int i;
1399
1400 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1401 nvme_suspend_queue(&dev->queues[i]);
1402 }
1403
nvme_disable_admin_queue(struct nvme_dev * dev,bool shutdown)1404 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1405 {
1406 struct nvme_queue *nvmeq = &dev->queues[0];
1407
1408 if (shutdown)
1409 nvme_shutdown_ctrl(&dev->ctrl);
1410 else
1411 nvme_disable_ctrl(&dev->ctrl);
1412
1413 nvme_poll_irqdisable(nvmeq, -1);
1414 }
1415
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1416 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1417 int entry_size)
1418 {
1419 int q_depth = dev->q_depth;
1420 unsigned q_size_aligned = roundup(q_depth * entry_size,
1421 dev->ctrl.page_size);
1422
1423 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1424 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1425 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1426 q_depth = div_u64(mem_per_q, entry_size);
1427
1428 /*
1429 * Ensure the reduced q_depth is above some threshold where it
1430 * would be better to map queues in system memory with the
1431 * original depth
1432 */
1433 if (q_depth < 64)
1434 return -ENOMEM;
1435 }
1436
1437 return q_depth;
1438 }
1439
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1440 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1441 int qid)
1442 {
1443 struct pci_dev *pdev = to_pci_dev(dev->dev);
1444
1445 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1446 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1447 if (nvmeq->sq_cmds) {
1448 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1449 nvmeq->sq_cmds);
1450 if (nvmeq->sq_dma_addr) {
1451 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1452 return 0;
1453 }
1454
1455 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1456 }
1457 }
1458
1459 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1460 &nvmeq->sq_dma_addr, GFP_KERNEL);
1461 if (!nvmeq->sq_cmds)
1462 return -ENOMEM;
1463 return 0;
1464 }
1465
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1466 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1467 {
1468 struct nvme_queue *nvmeq = &dev->queues[qid];
1469
1470 if (dev->ctrl.queue_count > qid)
1471 return 0;
1472
1473 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1474 nvmeq->q_depth = depth;
1475 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1476 &nvmeq->cq_dma_addr, GFP_KERNEL);
1477 if (!nvmeq->cqes)
1478 goto free_nvmeq;
1479
1480 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1481 goto free_cqdma;
1482
1483 nvmeq->dev = dev;
1484 spin_lock_init(&nvmeq->sq_lock);
1485 spin_lock_init(&nvmeq->cq_poll_lock);
1486 nvmeq->cq_head = 0;
1487 nvmeq->cq_phase = 1;
1488 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1489 nvmeq->qid = qid;
1490 dev->ctrl.queue_count++;
1491
1492 return 0;
1493
1494 free_cqdma:
1495 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1496 nvmeq->cq_dma_addr);
1497 free_nvmeq:
1498 return -ENOMEM;
1499 }
1500
queue_request_irq(struct nvme_queue * nvmeq)1501 static int queue_request_irq(struct nvme_queue *nvmeq)
1502 {
1503 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1504 int nr = nvmeq->dev->ctrl.instance;
1505
1506 if (use_threaded_interrupts) {
1507 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1508 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1509 } else {
1510 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1511 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1512 }
1513 }
1514
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1515 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1516 {
1517 struct nvme_dev *dev = nvmeq->dev;
1518
1519 nvmeq->sq_tail = 0;
1520 nvmeq->last_sq_tail = 0;
1521 nvmeq->cq_head = 0;
1522 nvmeq->cq_phase = 1;
1523 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1524 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1525 nvme_dbbuf_init(dev, nvmeq, qid);
1526 dev->online_queues++;
1527 wmb(); /* ensure the first interrupt sees the initialization */
1528 }
1529
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1530 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1531 {
1532 struct nvme_dev *dev = nvmeq->dev;
1533 int result;
1534 u16 vector = 0;
1535
1536 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1537
1538 /*
1539 * A queue's vector matches the queue identifier unless the controller
1540 * has only one vector available.
1541 */
1542 if (!polled)
1543 vector = dev->num_vecs == 1 ? 0 : qid;
1544 else
1545 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1546
1547 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1548 if (result)
1549 return result;
1550
1551 result = adapter_alloc_sq(dev, qid, nvmeq);
1552 if (result < 0)
1553 return result;
1554 else if (result)
1555 goto release_cq;
1556
1557 nvmeq->cq_vector = vector;
1558 nvme_init_queue(nvmeq, qid);
1559
1560 if (!polled) {
1561 result = queue_request_irq(nvmeq);
1562 if (result < 0)
1563 goto release_sq;
1564 }
1565
1566 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1567 return result;
1568
1569 release_sq:
1570 dev->online_queues--;
1571 adapter_delete_sq(dev, qid);
1572 release_cq:
1573 adapter_delete_cq(dev, qid);
1574 return result;
1575 }
1576
1577 static const struct blk_mq_ops nvme_mq_admin_ops = {
1578 .queue_rq = nvme_queue_rq,
1579 .complete = nvme_pci_complete_rq,
1580 .init_hctx = nvme_admin_init_hctx,
1581 .exit_hctx = nvme_admin_exit_hctx,
1582 .init_request = nvme_init_request,
1583 .timeout = nvme_timeout,
1584 };
1585
1586 static const struct blk_mq_ops nvme_mq_ops = {
1587 .queue_rq = nvme_queue_rq,
1588 .complete = nvme_pci_complete_rq,
1589 .commit_rqs = nvme_commit_rqs,
1590 .init_hctx = nvme_init_hctx,
1591 .init_request = nvme_init_request,
1592 .map_queues = nvme_pci_map_queues,
1593 .timeout = nvme_timeout,
1594 .poll = nvme_poll,
1595 };
1596
nvme_dev_remove_admin(struct nvme_dev * dev)1597 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1598 {
1599 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1600 /*
1601 * If the controller was reset during removal, it's possible
1602 * user requests may be waiting on a stopped queue. Start the
1603 * queue to flush these to completion.
1604 */
1605 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1606 blk_cleanup_queue(dev->ctrl.admin_q);
1607 blk_mq_free_tag_set(&dev->admin_tagset);
1608 }
1609 }
1610
nvme_alloc_admin_tags(struct nvme_dev * dev)1611 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1612 {
1613 if (!dev->ctrl.admin_q) {
1614 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1615 dev->admin_tagset.nr_hw_queues = 1;
1616
1617 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1618 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1619 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1620 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1621 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1622 dev->admin_tagset.driver_data = dev;
1623
1624 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1625 return -ENOMEM;
1626 dev->ctrl.admin_tagset = &dev->admin_tagset;
1627
1628 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1629 if (IS_ERR(dev->ctrl.admin_q)) {
1630 blk_mq_free_tag_set(&dev->admin_tagset);
1631 return -ENOMEM;
1632 }
1633 if (!blk_get_queue(dev->ctrl.admin_q)) {
1634 nvme_dev_remove_admin(dev);
1635 dev->ctrl.admin_q = NULL;
1636 return -ENODEV;
1637 }
1638 } else
1639 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1640
1641 return 0;
1642 }
1643
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1644 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1645 {
1646 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1647 }
1648
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1649 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1650 {
1651 struct pci_dev *pdev = to_pci_dev(dev->dev);
1652
1653 if (size <= dev->bar_mapped_size)
1654 return 0;
1655 if (size > pci_resource_len(pdev, 0))
1656 return -ENOMEM;
1657 if (dev->bar)
1658 iounmap(dev->bar);
1659 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1660 if (!dev->bar) {
1661 dev->bar_mapped_size = 0;
1662 return -ENOMEM;
1663 }
1664 dev->bar_mapped_size = size;
1665 dev->dbs = dev->bar + NVME_REG_DBS;
1666
1667 return 0;
1668 }
1669
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1670 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1671 {
1672 int result;
1673 u32 aqa;
1674 struct nvme_queue *nvmeq;
1675
1676 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1677 if (result < 0)
1678 return result;
1679
1680 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1681 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1682
1683 if (dev->subsystem &&
1684 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1685 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1686
1687 result = nvme_disable_ctrl(&dev->ctrl);
1688 if (result < 0)
1689 return result;
1690
1691 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1692 if (result)
1693 return result;
1694
1695 nvmeq = &dev->queues[0];
1696 aqa = nvmeq->q_depth - 1;
1697 aqa |= aqa << 16;
1698
1699 writel(aqa, dev->bar + NVME_REG_AQA);
1700 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1701 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1702
1703 result = nvme_enable_ctrl(&dev->ctrl);
1704 if (result)
1705 return result;
1706
1707 nvmeq->cq_vector = 0;
1708 nvme_init_queue(nvmeq, 0);
1709 result = queue_request_irq(nvmeq);
1710 if (result) {
1711 dev->online_queues--;
1712 return result;
1713 }
1714
1715 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1716 return result;
1717 }
1718
nvme_create_io_queues(struct nvme_dev * dev)1719 static int nvme_create_io_queues(struct nvme_dev *dev)
1720 {
1721 unsigned i, max, rw_queues;
1722 int ret = 0;
1723
1724 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1725 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1726 ret = -ENOMEM;
1727 break;
1728 }
1729 }
1730
1731 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1732 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1733 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1734 dev->io_queues[HCTX_TYPE_READ];
1735 } else {
1736 rw_queues = max;
1737 }
1738
1739 for (i = dev->online_queues; i <= max; i++) {
1740 bool polled = i > rw_queues;
1741
1742 ret = nvme_create_queue(&dev->queues[i], i, polled);
1743 if (ret)
1744 break;
1745 }
1746
1747 /*
1748 * Ignore failing Create SQ/CQ commands, we can continue with less
1749 * than the desired amount of queues, and even a controller without
1750 * I/O queues can still be used to issue admin commands. This might
1751 * be useful to upgrade a buggy firmware for example.
1752 */
1753 return ret >= 0 ? 0 : ret;
1754 }
1755
nvme_cmb_show(struct device * dev,struct device_attribute * attr,char * buf)1756 static ssize_t nvme_cmb_show(struct device *dev,
1757 struct device_attribute *attr,
1758 char *buf)
1759 {
1760 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1761
1762 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1763 ndev->cmbloc, ndev->cmbsz);
1764 }
1765 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1766
nvme_cmb_size_unit(struct nvme_dev * dev)1767 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1768 {
1769 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1770
1771 return 1ULL << (12 + 4 * szu);
1772 }
1773
nvme_cmb_size(struct nvme_dev * dev)1774 static u32 nvme_cmb_size(struct nvme_dev *dev)
1775 {
1776 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1777 }
1778
nvme_map_cmb(struct nvme_dev * dev)1779 static void nvme_map_cmb(struct nvme_dev *dev)
1780 {
1781 u64 size, offset;
1782 resource_size_t bar_size;
1783 struct pci_dev *pdev = to_pci_dev(dev->dev);
1784 int bar;
1785
1786 if (dev->cmb_size)
1787 return;
1788
1789 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1790 if (!dev->cmbsz)
1791 return;
1792 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1793
1794 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1795 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1796 bar = NVME_CMB_BIR(dev->cmbloc);
1797 bar_size = pci_resource_len(pdev, bar);
1798
1799 if (offset > bar_size)
1800 return;
1801
1802 /*
1803 * Controllers may support a CMB size larger than their BAR,
1804 * for example, due to being behind a bridge. Reduce the CMB to
1805 * the reported size of the BAR
1806 */
1807 if (size > bar_size - offset)
1808 size = bar_size - offset;
1809
1810 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1811 dev_warn(dev->ctrl.device,
1812 "failed to register the CMB\n");
1813 return;
1814 }
1815
1816 dev->cmb_size = size;
1817 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1818
1819 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1820 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1821 pci_p2pmem_publish(pdev, true);
1822
1823 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1824 &dev_attr_cmb.attr, NULL))
1825 dev_warn(dev->ctrl.device,
1826 "failed to add sysfs attribute for CMB\n");
1827 }
1828
nvme_release_cmb(struct nvme_dev * dev)1829 static inline void nvme_release_cmb(struct nvme_dev *dev)
1830 {
1831 if (dev->cmb_size) {
1832 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1833 &dev_attr_cmb.attr, NULL);
1834 dev->cmb_size = 0;
1835 }
1836 }
1837
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1838 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1839 {
1840 u64 dma_addr = dev->host_mem_descs_dma;
1841 struct nvme_command c;
1842 int ret;
1843
1844 memset(&c, 0, sizeof(c));
1845 c.features.opcode = nvme_admin_set_features;
1846 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1847 c.features.dword11 = cpu_to_le32(bits);
1848 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1849 ilog2(dev->ctrl.page_size));
1850 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1851 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1852 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1853
1854 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1855 if (ret) {
1856 dev_warn(dev->ctrl.device,
1857 "failed to set host mem (err %d, flags %#x).\n",
1858 ret, bits);
1859 }
1860 return ret;
1861 }
1862
nvme_free_host_mem(struct nvme_dev * dev)1863 static void nvme_free_host_mem(struct nvme_dev *dev)
1864 {
1865 int i;
1866
1867 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1868 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1869 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1870
1871 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1872 le64_to_cpu(desc->addr),
1873 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1874 }
1875
1876 kfree(dev->host_mem_desc_bufs);
1877 dev->host_mem_desc_bufs = NULL;
1878 dma_free_coherent(dev->dev,
1879 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1880 dev->host_mem_descs, dev->host_mem_descs_dma);
1881 dev->host_mem_descs = NULL;
1882 dev->nr_host_mem_descs = 0;
1883 }
1884
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1885 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1886 u32 chunk_size)
1887 {
1888 struct nvme_host_mem_buf_desc *descs;
1889 u32 max_entries, len;
1890 dma_addr_t descs_dma;
1891 int i = 0;
1892 void **bufs;
1893 u64 size, tmp;
1894
1895 tmp = (preferred + chunk_size - 1);
1896 do_div(tmp, chunk_size);
1897 max_entries = tmp;
1898
1899 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1900 max_entries = dev->ctrl.hmmaxd;
1901
1902 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1903 &descs_dma, GFP_KERNEL);
1904 if (!descs)
1905 goto out;
1906
1907 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1908 if (!bufs)
1909 goto out_free_descs;
1910
1911 for (size = 0; size < preferred && i < max_entries; size += len) {
1912 dma_addr_t dma_addr;
1913
1914 len = min_t(u64, chunk_size, preferred - size);
1915 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1916 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1917 if (!bufs[i])
1918 break;
1919
1920 descs[i].addr = cpu_to_le64(dma_addr);
1921 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1922 i++;
1923 }
1924
1925 if (!size)
1926 goto out_free_bufs;
1927
1928 dev->nr_host_mem_descs = i;
1929 dev->host_mem_size = size;
1930 dev->host_mem_descs = descs;
1931 dev->host_mem_descs_dma = descs_dma;
1932 dev->host_mem_desc_bufs = bufs;
1933 return 0;
1934
1935 out_free_bufs:
1936 while (--i >= 0) {
1937 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1938
1939 dma_free_attrs(dev->dev, size, bufs[i],
1940 le64_to_cpu(descs[i].addr),
1941 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1942 }
1943
1944 kfree(bufs);
1945 out_free_descs:
1946 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1947 descs_dma);
1948 out:
1949 dev->host_mem_descs = NULL;
1950 return -ENOMEM;
1951 }
1952
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)1953 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1954 {
1955 u32 chunk_size;
1956
1957 /* start big and work our way down */
1958 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1959 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1960 chunk_size /= 2) {
1961 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1962 if (!min || dev->host_mem_size >= min)
1963 return 0;
1964 nvme_free_host_mem(dev);
1965 }
1966 }
1967
1968 return -ENOMEM;
1969 }
1970
nvme_setup_host_mem(struct nvme_dev * dev)1971 static int nvme_setup_host_mem(struct nvme_dev *dev)
1972 {
1973 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1974 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1975 u64 min = (u64)dev->ctrl.hmmin * 4096;
1976 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1977 int ret;
1978
1979 preferred = min(preferred, max);
1980 if (min > max) {
1981 dev_warn(dev->ctrl.device,
1982 "min host memory (%lld MiB) above limit (%d MiB).\n",
1983 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1984 nvme_free_host_mem(dev);
1985 return 0;
1986 }
1987
1988 /*
1989 * If we already have a buffer allocated check if we can reuse it.
1990 */
1991 if (dev->host_mem_descs) {
1992 if (dev->host_mem_size >= min)
1993 enable_bits |= NVME_HOST_MEM_RETURN;
1994 else
1995 nvme_free_host_mem(dev);
1996 }
1997
1998 if (!dev->host_mem_descs) {
1999 if (nvme_alloc_host_mem(dev, min, preferred)) {
2000 dev_warn(dev->ctrl.device,
2001 "failed to allocate host memory buffer.\n");
2002 return 0; /* controller must work without HMB */
2003 }
2004
2005 dev_info(dev->ctrl.device,
2006 "allocated %lld MiB host memory buffer.\n",
2007 dev->host_mem_size >> ilog2(SZ_1M));
2008 }
2009
2010 ret = nvme_set_host_mem(dev, enable_bits);
2011 if (ret)
2012 nvme_free_host_mem(dev);
2013 return ret;
2014 }
2015
2016 /*
2017 * nirqs is the number of interrupts available for write and read
2018 * queues. The core already reserved an interrupt for the admin queue.
2019 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2020 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2021 {
2022 struct nvme_dev *dev = affd->priv;
2023 unsigned int nr_read_queues;
2024
2025 /*
2026 * If there is no interupt available for queues, ensure that
2027 * the default queue is set to 1. The affinity set size is
2028 * also set to one, but the irq core ignores it for this case.
2029 *
2030 * If only one interrupt is available or 'write_queue' == 0, combine
2031 * write and read queues.
2032 *
2033 * If 'write_queues' > 0, ensure it leaves room for at least one read
2034 * queue.
2035 */
2036 if (!nrirqs) {
2037 nrirqs = 1;
2038 nr_read_queues = 0;
2039 } else if (nrirqs == 1 || !write_queues) {
2040 nr_read_queues = 0;
2041 } else if (write_queues >= nrirqs) {
2042 nr_read_queues = 1;
2043 } else {
2044 nr_read_queues = nrirqs - write_queues;
2045 }
2046
2047 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2048 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2049 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2050 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2051 affd->nr_sets = nr_read_queues ? 2 : 1;
2052 }
2053
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2054 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2055 {
2056 struct pci_dev *pdev = to_pci_dev(dev->dev);
2057 struct irq_affinity affd = {
2058 .pre_vectors = 1,
2059 .calc_sets = nvme_calc_irq_sets,
2060 .priv = dev,
2061 };
2062 unsigned int irq_queues, this_p_queues;
2063 unsigned int nr_cpus = num_possible_cpus();
2064
2065 /*
2066 * Poll queues don't need interrupts, but we need at least one IO
2067 * queue left over for non-polled IO.
2068 */
2069 this_p_queues = poll_queues;
2070 if (this_p_queues >= nr_io_queues) {
2071 this_p_queues = nr_io_queues - 1;
2072 irq_queues = 1;
2073 } else {
2074 if (nr_cpus < nr_io_queues - this_p_queues)
2075 irq_queues = nr_cpus + 1;
2076 else
2077 irq_queues = nr_io_queues - this_p_queues + 1;
2078 }
2079 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2080
2081 /* Initialize for the single interrupt case */
2082 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2083 dev->io_queues[HCTX_TYPE_READ] = 0;
2084
2085 /*
2086 * Some Apple controllers require all queues to use the
2087 * first vector.
2088 */
2089 if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2090 irq_queues = 1;
2091
2092 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2093 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2094 }
2095
nvme_disable_io_queues(struct nvme_dev * dev)2096 static void nvme_disable_io_queues(struct nvme_dev *dev)
2097 {
2098 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2099 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2100 }
2101
nvme_setup_io_queues(struct nvme_dev * dev)2102 static int nvme_setup_io_queues(struct nvme_dev *dev)
2103 {
2104 struct nvme_queue *adminq = &dev->queues[0];
2105 struct pci_dev *pdev = to_pci_dev(dev->dev);
2106 int result, nr_io_queues;
2107 unsigned long size;
2108
2109 nr_io_queues = max_io_queues();
2110
2111 /*
2112 * If tags are shared with admin queue (Apple bug), then
2113 * make sure we only use one IO queue.
2114 */
2115 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2116 nr_io_queues = 1;
2117
2118 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2119 if (result < 0)
2120 return result;
2121
2122 if (nr_io_queues == 0)
2123 return 0;
2124
2125 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2126
2127 if (dev->cmb_use_sqes) {
2128 result = nvme_cmb_qdepth(dev, nr_io_queues,
2129 sizeof(struct nvme_command));
2130 if (result > 0)
2131 dev->q_depth = result;
2132 else
2133 dev->cmb_use_sqes = false;
2134 }
2135
2136 do {
2137 size = db_bar_size(dev, nr_io_queues);
2138 result = nvme_remap_bar(dev, size);
2139 if (!result)
2140 break;
2141 if (!--nr_io_queues)
2142 return -ENOMEM;
2143 } while (1);
2144 adminq->q_db = dev->dbs;
2145
2146 retry:
2147 /* Deregister the admin queue's interrupt */
2148 pci_free_irq(pdev, 0, adminq);
2149
2150 /*
2151 * If we enable msix early due to not intx, disable it again before
2152 * setting up the full range we need.
2153 */
2154 pci_free_irq_vectors(pdev);
2155
2156 result = nvme_setup_irqs(dev, nr_io_queues);
2157 if (result <= 0)
2158 return -EIO;
2159
2160 dev->num_vecs = result;
2161 result = max(result - 1, 1);
2162 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2163
2164 /*
2165 * Should investigate if there's a performance win from allocating
2166 * more queues than interrupt vectors; it might allow the submission
2167 * path to scale better, even if the receive path is limited by the
2168 * number of interrupts.
2169 */
2170 result = queue_request_irq(adminq);
2171 if (result)
2172 return result;
2173 set_bit(NVMEQ_ENABLED, &adminq->flags);
2174
2175 result = nvme_create_io_queues(dev);
2176 if (result || dev->online_queues < 2)
2177 return result;
2178
2179 if (dev->online_queues - 1 < dev->max_qid) {
2180 nr_io_queues = dev->online_queues - 1;
2181 nvme_disable_io_queues(dev);
2182 nvme_suspend_io_queues(dev);
2183 goto retry;
2184 }
2185 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2186 dev->io_queues[HCTX_TYPE_DEFAULT],
2187 dev->io_queues[HCTX_TYPE_READ],
2188 dev->io_queues[HCTX_TYPE_POLL]);
2189 return 0;
2190 }
2191
nvme_del_queue_end(struct request * req,blk_status_t error)2192 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2193 {
2194 struct nvme_queue *nvmeq = req->end_io_data;
2195
2196 blk_mq_free_request(req);
2197 complete(&nvmeq->delete_done);
2198 }
2199
nvme_del_cq_end(struct request * req,blk_status_t error)2200 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2201 {
2202 struct nvme_queue *nvmeq = req->end_io_data;
2203
2204 if (error)
2205 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2206
2207 nvme_del_queue_end(req, error);
2208 }
2209
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2210 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2211 {
2212 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2213 struct request *req;
2214 struct nvme_command cmd;
2215
2216 memset(&cmd, 0, sizeof(cmd));
2217 cmd.delete_queue.opcode = opcode;
2218 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2219
2220 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2221 if (IS_ERR(req))
2222 return PTR_ERR(req);
2223
2224 req->timeout = ADMIN_TIMEOUT;
2225 req->end_io_data = nvmeq;
2226
2227 init_completion(&nvmeq->delete_done);
2228 blk_execute_rq_nowait(q, NULL, req, false,
2229 opcode == nvme_admin_delete_cq ?
2230 nvme_del_cq_end : nvme_del_queue_end);
2231 return 0;
2232 }
2233
__nvme_disable_io_queues(struct nvme_dev * dev,u8 opcode)2234 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2235 {
2236 int nr_queues = dev->online_queues - 1, sent = 0;
2237 unsigned long timeout;
2238
2239 retry:
2240 timeout = ADMIN_TIMEOUT;
2241 while (nr_queues > 0) {
2242 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2243 break;
2244 nr_queues--;
2245 sent++;
2246 }
2247 while (sent) {
2248 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2249
2250 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2251 timeout);
2252 if (timeout == 0)
2253 return false;
2254
2255 /* handle any remaining CQEs */
2256 if (opcode == nvme_admin_delete_cq &&
2257 !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2258 nvme_poll_irqdisable(nvmeq, -1);
2259
2260 sent--;
2261 if (nr_queues)
2262 goto retry;
2263 }
2264 return true;
2265 }
2266
nvme_dev_add(struct nvme_dev * dev)2267 static void nvme_dev_add(struct nvme_dev *dev)
2268 {
2269 int ret;
2270
2271 if (!dev->ctrl.tagset) {
2272 dev->tagset.ops = &nvme_mq_ops;
2273 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2274 dev->tagset.nr_maps = 2; /* default + read */
2275 if (dev->io_queues[HCTX_TYPE_POLL])
2276 dev->tagset.nr_maps++;
2277 dev->tagset.timeout = NVME_IO_TIMEOUT;
2278 dev->tagset.numa_node = dev_to_node(dev->dev);
2279 dev->tagset.queue_depth =
2280 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2281 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2282 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2283 dev->tagset.driver_data = dev;
2284
2285 /*
2286 * Some Apple controllers requires tags to be unique
2287 * across admin and IO queue, so reserve the first 32
2288 * tags of the IO queue.
2289 */
2290 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2291 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2292
2293 ret = blk_mq_alloc_tag_set(&dev->tagset);
2294 if (ret) {
2295 dev_warn(dev->ctrl.device,
2296 "IO queues tagset allocation failed %d\n", ret);
2297 return;
2298 }
2299 dev->ctrl.tagset = &dev->tagset;
2300 } else {
2301 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2302
2303 /* Free previously allocated queues that are no longer usable */
2304 nvme_free_queues(dev, dev->online_queues);
2305 }
2306
2307 nvme_dbbuf_set(dev);
2308 }
2309
nvme_pci_enable(struct nvme_dev * dev)2310 static int nvme_pci_enable(struct nvme_dev *dev)
2311 {
2312 int result = -ENOMEM;
2313 struct pci_dev *pdev = to_pci_dev(dev->dev);
2314
2315 if (pci_enable_device_mem(pdev))
2316 return result;
2317
2318 pci_set_master(pdev);
2319
2320 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2321 goto disable;
2322
2323 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2324 result = -ENODEV;
2325 goto disable;
2326 }
2327
2328 /*
2329 * Some devices and/or platforms don't advertise or work with INTx
2330 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2331 * adjust this later.
2332 */
2333 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2334 if (result < 0)
2335 return result;
2336
2337 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2338
2339 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2340 io_queue_depth);
2341 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2342 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2343 dev->dbs = dev->bar + 4096;
2344
2345 /*
2346 * Some Apple controllers require a non-standard SQE size.
2347 * Interestingly they also seem to ignore the CC:IOSQES register
2348 * so we don't bother updating it here.
2349 */
2350 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2351 dev->io_sqes = 7;
2352 else
2353 dev->io_sqes = NVME_NVM_IOSQES;
2354
2355 /*
2356 * Temporary fix for the Apple controller found in the MacBook8,1 and
2357 * some MacBook7,1 to avoid controller resets and data loss.
2358 */
2359 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2360 dev->q_depth = 2;
2361 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2362 "set queue depth=%u to work around controller resets\n",
2363 dev->q_depth);
2364 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2365 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2366 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2367 dev->q_depth = 64;
2368 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2369 "set queue depth=%u\n", dev->q_depth);
2370 }
2371
2372 /*
2373 * Controllers with the shared tags quirk need the IO queue to be
2374 * big enough so that we get 32 tags for the admin queue
2375 */
2376 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2377 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2378 dev->q_depth = NVME_AQ_DEPTH + 2;
2379 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2380 dev->q_depth);
2381 }
2382
2383
2384 nvme_map_cmb(dev);
2385
2386 pci_enable_pcie_error_reporting(pdev);
2387 pci_save_state(pdev);
2388 return 0;
2389
2390 disable:
2391 pci_disable_device(pdev);
2392 return result;
2393 }
2394
nvme_dev_unmap(struct nvme_dev * dev)2395 static void nvme_dev_unmap(struct nvme_dev *dev)
2396 {
2397 if (dev->bar)
2398 iounmap(dev->bar);
2399 pci_release_mem_regions(to_pci_dev(dev->dev));
2400 }
2401
nvme_pci_disable(struct nvme_dev * dev)2402 static void nvme_pci_disable(struct nvme_dev *dev)
2403 {
2404 struct pci_dev *pdev = to_pci_dev(dev->dev);
2405
2406 pci_free_irq_vectors(pdev);
2407
2408 if (pci_is_enabled(pdev)) {
2409 pci_disable_pcie_error_reporting(pdev);
2410 pci_disable_device(pdev);
2411 }
2412 }
2413
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2414 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2415 {
2416 bool dead = true, freeze = false;
2417 struct pci_dev *pdev = to_pci_dev(dev->dev);
2418
2419 mutex_lock(&dev->shutdown_lock);
2420 if (pci_is_enabled(pdev)) {
2421 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2422
2423 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2424 dev->ctrl.state == NVME_CTRL_RESETTING) {
2425 freeze = true;
2426 nvme_start_freeze(&dev->ctrl);
2427 }
2428 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2429 pdev->error_state != pci_channel_io_normal);
2430 }
2431
2432 /*
2433 * Give the controller a chance to complete all entered requests if
2434 * doing a safe shutdown.
2435 */
2436 if (!dead && shutdown && freeze)
2437 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2438
2439 nvme_stop_queues(&dev->ctrl);
2440
2441 if (!dead && dev->ctrl.queue_count > 0) {
2442 nvme_disable_io_queues(dev);
2443 nvme_disable_admin_queue(dev, shutdown);
2444 }
2445 nvme_suspend_io_queues(dev);
2446 nvme_suspend_queue(&dev->queues[0]);
2447 nvme_pci_disable(dev);
2448
2449 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2450 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2451 blk_mq_tagset_wait_completed_request(&dev->tagset);
2452 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2453
2454 /*
2455 * The driver will not be starting up queues again if shutting down so
2456 * must flush all entered requests to their failed completion to avoid
2457 * deadlocking blk-mq hot-cpu notifier.
2458 */
2459 if (shutdown) {
2460 nvme_start_queues(&dev->ctrl);
2461 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2462 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2463 }
2464 mutex_unlock(&dev->shutdown_lock);
2465 }
2466
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2467 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2468 {
2469 if (!nvme_wait_reset(&dev->ctrl))
2470 return -EBUSY;
2471 nvme_dev_disable(dev, shutdown);
2472 return 0;
2473 }
2474
nvme_setup_prp_pools(struct nvme_dev * dev)2475 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2476 {
2477 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2478 PAGE_SIZE, PAGE_SIZE, 0);
2479 if (!dev->prp_page_pool)
2480 return -ENOMEM;
2481
2482 /* Optimisation for I/Os between 4k and 128k */
2483 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2484 256, 256, 0);
2485 if (!dev->prp_small_pool) {
2486 dma_pool_destroy(dev->prp_page_pool);
2487 return -ENOMEM;
2488 }
2489 return 0;
2490 }
2491
nvme_release_prp_pools(struct nvme_dev * dev)2492 static void nvme_release_prp_pools(struct nvme_dev *dev)
2493 {
2494 dma_pool_destroy(dev->prp_page_pool);
2495 dma_pool_destroy(dev->prp_small_pool);
2496 }
2497
nvme_free_tagset(struct nvme_dev * dev)2498 static void nvme_free_tagset(struct nvme_dev *dev)
2499 {
2500 if (dev->tagset.tags)
2501 blk_mq_free_tag_set(&dev->tagset);
2502 dev->ctrl.tagset = NULL;
2503 }
2504
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2505 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2506 {
2507 struct nvme_dev *dev = to_nvme_dev(ctrl);
2508
2509 nvme_dbbuf_dma_free(dev);
2510 put_device(dev->dev);
2511 nvme_free_tagset(dev);
2512 if (dev->ctrl.admin_q)
2513 blk_put_queue(dev->ctrl.admin_q);
2514 kfree(dev->queues);
2515 free_opal_dev(dev->ctrl.opal_dev);
2516 mempool_destroy(dev->iod_mempool);
2517 kfree(dev);
2518 }
2519
nvme_remove_dead_ctrl(struct nvme_dev * dev)2520 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2521 {
2522 /*
2523 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2524 * may be holding this pci_dev's device lock.
2525 */
2526 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2527 nvme_get_ctrl(&dev->ctrl);
2528 nvme_dev_disable(dev, false);
2529 nvme_kill_queues(&dev->ctrl);
2530 if (!queue_work(nvme_wq, &dev->remove_work))
2531 nvme_put_ctrl(&dev->ctrl);
2532 }
2533
nvme_reset_work(struct work_struct * work)2534 static void nvme_reset_work(struct work_struct *work)
2535 {
2536 struct nvme_dev *dev =
2537 container_of(work, struct nvme_dev, ctrl.reset_work);
2538 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2539 int result;
2540
2541 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2542 result = -ENODEV;
2543 goto out;
2544 }
2545
2546 /*
2547 * If we're called to reset a live controller first shut it down before
2548 * moving on.
2549 */
2550 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2551 nvme_dev_disable(dev, false);
2552 nvme_sync_queues(&dev->ctrl);
2553
2554 mutex_lock(&dev->shutdown_lock);
2555 result = nvme_pci_enable(dev);
2556 if (result)
2557 goto out_unlock;
2558
2559 result = nvme_pci_configure_admin_queue(dev);
2560 if (result)
2561 goto out_unlock;
2562
2563 result = nvme_alloc_admin_tags(dev);
2564 if (result)
2565 goto out_unlock;
2566
2567 /*
2568 * Limit the max command size to prevent iod->sg allocations going
2569 * over a single page.
2570 */
2571 dev->ctrl.max_hw_sectors = min_t(u32,
2572 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2573 dev->ctrl.max_segments = NVME_MAX_SEGS;
2574
2575 /*
2576 * Don't limit the IOMMU merged segment size.
2577 */
2578 dma_set_max_seg_size(dev->dev, 0xffffffff);
2579
2580 mutex_unlock(&dev->shutdown_lock);
2581
2582 /*
2583 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2584 * initializing procedure here.
2585 */
2586 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2587 dev_warn(dev->ctrl.device,
2588 "failed to mark controller CONNECTING\n");
2589 result = -EBUSY;
2590 goto out;
2591 }
2592
2593 result = nvme_init_identify(&dev->ctrl);
2594 if (result)
2595 goto out;
2596
2597 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2598 if (!dev->ctrl.opal_dev)
2599 dev->ctrl.opal_dev =
2600 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2601 else if (was_suspend)
2602 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2603 } else {
2604 free_opal_dev(dev->ctrl.opal_dev);
2605 dev->ctrl.opal_dev = NULL;
2606 }
2607
2608 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2609 result = nvme_dbbuf_dma_alloc(dev);
2610 if (result)
2611 dev_warn(dev->dev,
2612 "unable to allocate dma for dbbuf\n");
2613 }
2614
2615 if (dev->ctrl.hmpre) {
2616 result = nvme_setup_host_mem(dev);
2617 if (result < 0)
2618 goto out;
2619 }
2620
2621 result = nvme_setup_io_queues(dev);
2622 if (result)
2623 goto out;
2624
2625 /*
2626 * Keep the controller around but remove all namespaces if we don't have
2627 * any working I/O queue.
2628 */
2629 if (dev->online_queues < 2) {
2630 dev_warn(dev->ctrl.device, "IO queues not created\n");
2631 nvme_kill_queues(&dev->ctrl);
2632 nvme_remove_namespaces(&dev->ctrl);
2633 nvme_free_tagset(dev);
2634 } else {
2635 nvme_start_queues(&dev->ctrl);
2636 nvme_wait_freeze(&dev->ctrl);
2637 nvme_dev_add(dev);
2638 nvme_unfreeze(&dev->ctrl);
2639 }
2640
2641 /*
2642 * If only admin queue live, keep it to do further investigation or
2643 * recovery.
2644 */
2645 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2646 dev_warn(dev->ctrl.device,
2647 "failed to mark controller live state\n");
2648 result = -ENODEV;
2649 goto out;
2650 }
2651
2652 nvme_start_ctrl(&dev->ctrl);
2653 return;
2654
2655 out_unlock:
2656 mutex_unlock(&dev->shutdown_lock);
2657 out:
2658 if (result)
2659 dev_warn(dev->ctrl.device,
2660 "Removing after probe failure status: %d\n", result);
2661 nvme_remove_dead_ctrl(dev);
2662 }
2663
nvme_remove_dead_ctrl_work(struct work_struct * work)2664 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2665 {
2666 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2667 struct pci_dev *pdev = to_pci_dev(dev->dev);
2668
2669 if (pci_get_drvdata(pdev))
2670 device_release_driver(&pdev->dev);
2671 nvme_put_ctrl(&dev->ctrl);
2672 }
2673
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2674 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2675 {
2676 *val = readl(to_nvme_dev(ctrl)->bar + off);
2677 return 0;
2678 }
2679
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2680 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2681 {
2682 writel(val, to_nvme_dev(ctrl)->bar + off);
2683 return 0;
2684 }
2685
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2686 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2687 {
2688 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2689 return 0;
2690 }
2691
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2692 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2693 {
2694 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2695
2696 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2697 }
2698
2699 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2700 .name = "pcie",
2701 .module = THIS_MODULE,
2702 .flags = NVME_F_METADATA_SUPPORTED |
2703 NVME_F_PCI_P2PDMA,
2704 .reg_read32 = nvme_pci_reg_read32,
2705 .reg_write32 = nvme_pci_reg_write32,
2706 .reg_read64 = nvme_pci_reg_read64,
2707 .free_ctrl = nvme_pci_free_ctrl,
2708 .submit_async_event = nvme_pci_submit_async_event,
2709 .get_address = nvme_pci_get_address,
2710 };
2711
nvme_dev_map(struct nvme_dev * dev)2712 static int nvme_dev_map(struct nvme_dev *dev)
2713 {
2714 struct pci_dev *pdev = to_pci_dev(dev->dev);
2715
2716 if (pci_request_mem_regions(pdev, "nvme"))
2717 return -ENODEV;
2718
2719 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2720 goto release;
2721
2722 return 0;
2723 release:
2724 pci_release_mem_regions(pdev);
2725 return -ENODEV;
2726 }
2727
check_vendor_combination_bug(struct pci_dev * pdev)2728 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2729 {
2730 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2731 /*
2732 * Several Samsung devices seem to drop off the PCIe bus
2733 * randomly when APST is on and uses the deepest sleep state.
2734 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2735 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2736 * 950 PRO 256GB", but it seems to be restricted to two Dell
2737 * laptops.
2738 */
2739 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2740 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2741 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2742 return NVME_QUIRK_NO_DEEPEST_PS;
2743 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2744 /*
2745 * Samsung SSD 960 EVO drops off the PCIe bus after system
2746 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2747 * within few minutes after bootup on a Coffee Lake board -
2748 * ASUS PRIME Z370-A
2749 */
2750 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2751 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2752 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2753 return NVME_QUIRK_NO_APST;
2754 }
2755
2756 return 0;
2757 }
2758
nvme_async_probe(void * data,async_cookie_t cookie)2759 static void nvme_async_probe(void *data, async_cookie_t cookie)
2760 {
2761 struct nvme_dev *dev = data;
2762
2763 flush_work(&dev->ctrl.reset_work);
2764 flush_work(&dev->ctrl.scan_work);
2765 nvme_put_ctrl(&dev->ctrl);
2766 }
2767
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)2768 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2769 {
2770 int node, result = -ENOMEM;
2771 struct nvme_dev *dev;
2772 unsigned long quirks = id->driver_data;
2773 size_t alloc_size;
2774
2775 node = dev_to_node(&pdev->dev);
2776 if (node == NUMA_NO_NODE)
2777 set_dev_node(&pdev->dev, first_memory_node);
2778
2779 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2780 if (!dev)
2781 return -ENOMEM;
2782
2783 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2784 GFP_KERNEL, node);
2785 if (!dev->queues)
2786 goto free;
2787
2788 dev->dev = get_device(&pdev->dev);
2789 pci_set_drvdata(pdev, dev);
2790
2791 result = nvme_dev_map(dev);
2792 if (result)
2793 goto put_pci;
2794
2795 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2796 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2797 mutex_init(&dev->shutdown_lock);
2798
2799 result = nvme_setup_prp_pools(dev);
2800 if (result)
2801 goto unmap;
2802
2803 quirks |= check_vendor_combination_bug(pdev);
2804
2805 /*
2806 * Double check that our mempool alloc size will cover the biggest
2807 * command we support.
2808 */
2809 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2810 NVME_MAX_SEGS, true);
2811 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2812
2813 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2814 mempool_kfree,
2815 (void *) alloc_size,
2816 GFP_KERNEL, node);
2817 if (!dev->iod_mempool) {
2818 result = -ENOMEM;
2819 goto release_pools;
2820 }
2821
2822 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2823 quirks);
2824 if (result)
2825 goto release_mempool;
2826
2827 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2828
2829 nvme_reset_ctrl(&dev->ctrl);
2830 nvme_get_ctrl(&dev->ctrl);
2831 async_schedule(nvme_async_probe, dev);
2832
2833 return 0;
2834
2835 release_mempool:
2836 mempool_destroy(dev->iod_mempool);
2837 release_pools:
2838 nvme_release_prp_pools(dev);
2839 unmap:
2840 nvme_dev_unmap(dev);
2841 put_pci:
2842 put_device(dev->dev);
2843 free:
2844 kfree(dev->queues);
2845 kfree(dev);
2846 return result;
2847 }
2848
nvme_reset_prepare(struct pci_dev * pdev)2849 static void nvme_reset_prepare(struct pci_dev *pdev)
2850 {
2851 struct nvme_dev *dev = pci_get_drvdata(pdev);
2852
2853 /*
2854 * We don't need to check the return value from waiting for the reset
2855 * state as pci_dev device lock is held, making it impossible to race
2856 * with ->remove().
2857 */
2858 nvme_disable_prepare_reset(dev, false);
2859 nvme_sync_queues(&dev->ctrl);
2860 }
2861
nvme_reset_done(struct pci_dev * pdev)2862 static void nvme_reset_done(struct pci_dev *pdev)
2863 {
2864 struct nvme_dev *dev = pci_get_drvdata(pdev);
2865
2866 if (!nvme_try_sched_reset(&dev->ctrl))
2867 flush_work(&dev->ctrl.reset_work);
2868 }
2869
nvme_shutdown(struct pci_dev * pdev)2870 static void nvme_shutdown(struct pci_dev *pdev)
2871 {
2872 struct nvme_dev *dev = pci_get_drvdata(pdev);
2873 nvme_disable_prepare_reset(dev, true);
2874 }
2875
2876 /*
2877 * The driver's remove may be called on a device in a partially initialized
2878 * state. This function must not have any dependencies on the device state in
2879 * order to proceed.
2880 */
nvme_remove(struct pci_dev * pdev)2881 static void nvme_remove(struct pci_dev *pdev)
2882 {
2883 struct nvme_dev *dev = pci_get_drvdata(pdev);
2884
2885 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2886 pci_set_drvdata(pdev, NULL);
2887
2888 if (!pci_device_is_present(pdev)) {
2889 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2890 nvme_dev_disable(dev, true);
2891 nvme_dev_remove_admin(dev);
2892 }
2893
2894 flush_work(&dev->ctrl.reset_work);
2895 nvme_stop_ctrl(&dev->ctrl);
2896 nvme_remove_namespaces(&dev->ctrl);
2897 nvme_dev_disable(dev, true);
2898 nvme_release_cmb(dev);
2899 nvme_free_host_mem(dev);
2900 nvme_dev_remove_admin(dev);
2901 nvme_free_queues(dev, 0);
2902 nvme_uninit_ctrl(&dev->ctrl);
2903 nvme_release_prp_pools(dev);
2904 nvme_dev_unmap(dev);
2905 nvme_put_ctrl(&dev->ctrl);
2906 }
2907
2908 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)2909 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2910 {
2911 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2912 }
2913
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)2914 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2915 {
2916 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2917 }
2918
nvme_resume(struct device * dev)2919 static int nvme_resume(struct device *dev)
2920 {
2921 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2922 struct nvme_ctrl *ctrl = &ndev->ctrl;
2923
2924 if (ndev->last_ps == U32_MAX ||
2925 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2926 return nvme_try_sched_reset(&ndev->ctrl);
2927 return 0;
2928 }
2929
nvme_suspend(struct device * dev)2930 static int nvme_suspend(struct device *dev)
2931 {
2932 struct pci_dev *pdev = to_pci_dev(dev);
2933 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2934 struct nvme_ctrl *ctrl = &ndev->ctrl;
2935 int ret = -EBUSY;
2936
2937 ndev->last_ps = U32_MAX;
2938
2939 /*
2940 * The platform does not remove power for a kernel managed suspend so
2941 * use host managed nvme power settings for lowest idle power if
2942 * possible. This should have quicker resume latency than a full device
2943 * shutdown. But if the firmware is involved after the suspend or the
2944 * device does not support any non-default power states, shut down the
2945 * device fully.
2946 *
2947 * If ASPM is not enabled for the device, shut down the device and allow
2948 * the PCI bus layer to put it into D3 in order to take the PCIe link
2949 * down, so as to allow the platform to achieve its minimum low-power
2950 * state (which may not be possible if the link is up).
2951 */
2952 if (pm_suspend_via_firmware() || !ctrl->npss ||
2953 !pcie_aspm_enabled(pdev) ||
2954 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
2955 return nvme_disable_prepare_reset(ndev, true);
2956
2957 nvme_start_freeze(ctrl);
2958 nvme_wait_freeze(ctrl);
2959 nvme_sync_queues(ctrl);
2960
2961 if (ctrl->state != NVME_CTRL_LIVE)
2962 goto unfreeze;
2963
2964 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2965 if (ret < 0)
2966 goto unfreeze;
2967
2968 /*
2969 * A saved state prevents pci pm from generically controlling the
2970 * device's power. If we're using protocol specific settings, we don't
2971 * want pci interfering.
2972 */
2973 pci_save_state(pdev);
2974
2975 ret = nvme_set_power_state(ctrl, ctrl->npss);
2976 if (ret < 0)
2977 goto unfreeze;
2978
2979 if (ret) {
2980 /* discard the saved state */
2981 pci_load_saved_state(pdev, NULL);
2982
2983 /*
2984 * Clearing npss forces a controller reset on resume. The
2985 * correct value will be resdicovered then.
2986 */
2987 ret = nvme_disable_prepare_reset(ndev, true);
2988 ctrl->npss = 0;
2989 }
2990 unfreeze:
2991 nvme_unfreeze(ctrl);
2992 return ret;
2993 }
2994
nvme_simple_suspend(struct device * dev)2995 static int nvme_simple_suspend(struct device *dev)
2996 {
2997 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2998 return nvme_disable_prepare_reset(ndev, true);
2999 }
3000
nvme_simple_resume(struct device * dev)3001 static int nvme_simple_resume(struct device *dev)
3002 {
3003 struct pci_dev *pdev = to_pci_dev(dev);
3004 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3005
3006 return nvme_try_sched_reset(&ndev->ctrl);
3007 }
3008
3009 static const struct dev_pm_ops nvme_dev_pm_ops = {
3010 .suspend = nvme_suspend,
3011 .resume = nvme_resume,
3012 .freeze = nvme_simple_suspend,
3013 .thaw = nvme_simple_resume,
3014 .poweroff = nvme_simple_suspend,
3015 .restore = nvme_simple_resume,
3016 };
3017 #endif /* CONFIG_PM_SLEEP */
3018
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3019 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3020 pci_channel_state_t state)
3021 {
3022 struct nvme_dev *dev = pci_get_drvdata(pdev);
3023
3024 /*
3025 * A frozen channel requires a reset. When detected, this method will
3026 * shutdown the controller to quiesce. The controller will be restarted
3027 * after the slot reset through driver's slot_reset callback.
3028 */
3029 switch (state) {
3030 case pci_channel_io_normal:
3031 return PCI_ERS_RESULT_CAN_RECOVER;
3032 case pci_channel_io_frozen:
3033 dev_warn(dev->ctrl.device,
3034 "frozen state error detected, reset controller\n");
3035 nvme_dev_disable(dev, false);
3036 return PCI_ERS_RESULT_NEED_RESET;
3037 case pci_channel_io_perm_failure:
3038 dev_warn(dev->ctrl.device,
3039 "failure state error detected, request disconnect\n");
3040 return PCI_ERS_RESULT_DISCONNECT;
3041 }
3042 return PCI_ERS_RESULT_NEED_RESET;
3043 }
3044
nvme_slot_reset(struct pci_dev * pdev)3045 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3046 {
3047 struct nvme_dev *dev = pci_get_drvdata(pdev);
3048
3049 dev_info(dev->ctrl.device, "restart after slot reset\n");
3050 pci_restore_state(pdev);
3051 nvme_reset_ctrl(&dev->ctrl);
3052 return PCI_ERS_RESULT_RECOVERED;
3053 }
3054
nvme_error_resume(struct pci_dev * pdev)3055 static void nvme_error_resume(struct pci_dev *pdev)
3056 {
3057 struct nvme_dev *dev = pci_get_drvdata(pdev);
3058
3059 flush_work(&dev->ctrl.reset_work);
3060 }
3061
3062 static const struct pci_error_handlers nvme_err_handler = {
3063 .error_detected = nvme_error_detected,
3064 .slot_reset = nvme_slot_reset,
3065 .resume = nvme_error_resume,
3066 .reset_prepare = nvme_reset_prepare,
3067 .reset_done = nvme_reset_done,
3068 };
3069
3070 static const struct pci_device_id nvme_id_table[] = {
3071 { PCI_VDEVICE(INTEL, 0x0953),
3072 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3073 NVME_QUIRK_DEALLOCATE_ZEROES, },
3074 { PCI_VDEVICE(INTEL, 0x0a53),
3075 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3076 NVME_QUIRK_DEALLOCATE_ZEROES, },
3077 { PCI_VDEVICE(INTEL, 0x0a54),
3078 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3079 NVME_QUIRK_DEALLOCATE_ZEROES, },
3080 { PCI_VDEVICE(INTEL, 0x0a55),
3081 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3082 NVME_QUIRK_DEALLOCATE_ZEROES, },
3083 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3084 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3085 NVME_QUIRK_MEDIUM_PRIO_SQ },
3086 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3087 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3088 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3089 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3090 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3091 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3092 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3093 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3094 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3095 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3096 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3097 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3098 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3099 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3100 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3101 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3102 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3103 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3104 .driver_data = NVME_QUIRK_LIGHTNVM, },
3105 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3106 .driver_data = NVME_QUIRK_LIGHTNVM, },
3107 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3108 .driver_data = NVME_QUIRK_LIGHTNVM, },
3109 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3110 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3111 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3112 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3113 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3114 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3115 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3116 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3117 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3118 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3119 NVME_QUIRK_128_BYTES_SQES |
3120 NVME_QUIRK_SHARED_TAGS },
3121 { 0, }
3122 };
3123 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3124
3125 static struct pci_driver nvme_driver = {
3126 .name = "nvme",
3127 .id_table = nvme_id_table,
3128 .probe = nvme_probe,
3129 .remove = nvme_remove,
3130 .shutdown = nvme_shutdown,
3131 #ifdef CONFIG_PM_SLEEP
3132 .driver = {
3133 .pm = &nvme_dev_pm_ops,
3134 },
3135 #endif
3136 .sriov_configure = pci_sriov_configure_simple,
3137 .err_handler = &nvme_err_handler,
3138 };
3139
nvme_init(void)3140 static int __init nvme_init(void)
3141 {
3142 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3143 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3144 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3145 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3146 return pci_register_driver(&nvme_driver);
3147 }
3148
nvme_exit(void)3149 static void __exit nvme_exit(void)
3150 {
3151 pci_unregister_driver(&nvme_driver);
3152 flush_workqueue(nvme_wq);
3153 }
3154
3155 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3156 MODULE_LICENSE("GPL");
3157 MODULE_VERSION("1.0");
3158 module_init(nvme_init);
3159 module_exit(nvme_exit);
3160