1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* ZD1211 USB-WLAN driver for Linux
3 *
4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
7 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8 */
9
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/slab.h>
13 #include <linux/usb.h>
14 #include <linux/jiffies.h>
15 #include <net/ieee80211_radiotap.h>
16
17 #include "zd_def.h"
18 #include "zd_chip.h"
19 #include "zd_mac.h"
20 #include "zd_rf.h"
21
22 struct zd_reg_alpha2_map {
23 u32 reg;
24 char alpha2[2];
25 };
26
27 static struct zd_reg_alpha2_map reg_alpha2_map[] = {
28 { ZD_REGDOMAIN_FCC, "US" },
29 { ZD_REGDOMAIN_IC, "CA" },
30 { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
31 { ZD_REGDOMAIN_JAPAN, "JP" },
32 { ZD_REGDOMAIN_JAPAN_2, "JP" },
33 { ZD_REGDOMAIN_JAPAN_3, "JP" },
34 { ZD_REGDOMAIN_SPAIN, "ES" },
35 { ZD_REGDOMAIN_FRANCE, "FR" },
36 };
37
38 /* This table contains the hardware specific values for the modulation rates. */
39 static const struct ieee80211_rate zd_rates[] = {
40 { .bitrate = 10,
41 .hw_value = ZD_CCK_RATE_1M, },
42 { .bitrate = 20,
43 .hw_value = ZD_CCK_RATE_2M,
44 .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
45 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
46 { .bitrate = 55,
47 .hw_value = ZD_CCK_RATE_5_5M,
48 .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
49 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
50 { .bitrate = 110,
51 .hw_value = ZD_CCK_RATE_11M,
52 .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
53 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
54 { .bitrate = 60,
55 .hw_value = ZD_OFDM_RATE_6M,
56 .flags = 0 },
57 { .bitrate = 90,
58 .hw_value = ZD_OFDM_RATE_9M,
59 .flags = 0 },
60 { .bitrate = 120,
61 .hw_value = ZD_OFDM_RATE_12M,
62 .flags = 0 },
63 { .bitrate = 180,
64 .hw_value = ZD_OFDM_RATE_18M,
65 .flags = 0 },
66 { .bitrate = 240,
67 .hw_value = ZD_OFDM_RATE_24M,
68 .flags = 0 },
69 { .bitrate = 360,
70 .hw_value = ZD_OFDM_RATE_36M,
71 .flags = 0 },
72 { .bitrate = 480,
73 .hw_value = ZD_OFDM_RATE_48M,
74 .flags = 0 },
75 { .bitrate = 540,
76 .hw_value = ZD_OFDM_RATE_54M,
77 .flags = 0 },
78 };
79
80 /*
81 * Zydas retry rates table. Each line is listed in the same order as
82 * in zd_rates[] and contains all the rate used when a packet is sent
83 * starting with a given rates. Let's consider an example :
84 *
85 * "11 Mbits : 4, 3, 2, 1, 0" means :
86 * - packet is sent using 4 different rates
87 * - 1st rate is index 3 (ie 11 Mbits)
88 * - 2nd rate is index 2 (ie 5.5 Mbits)
89 * - 3rd rate is index 1 (ie 2 Mbits)
90 * - 4th rate is index 0 (ie 1 Mbits)
91 */
92
93 static const struct tx_retry_rate zd_retry_rates[] = {
94 { /* 1 Mbits */ 1, { 0 }},
95 { /* 2 Mbits */ 2, { 1, 0 }},
96 { /* 5.5 Mbits */ 3, { 2, 1, 0 }},
97 { /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
98 { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
99 { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
100 { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
101 { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
102 { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
103 { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
104 { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
105 { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
106 };
107
108 static const struct ieee80211_channel zd_channels[] = {
109 { .center_freq = 2412, .hw_value = 1 },
110 { .center_freq = 2417, .hw_value = 2 },
111 { .center_freq = 2422, .hw_value = 3 },
112 { .center_freq = 2427, .hw_value = 4 },
113 { .center_freq = 2432, .hw_value = 5 },
114 { .center_freq = 2437, .hw_value = 6 },
115 { .center_freq = 2442, .hw_value = 7 },
116 { .center_freq = 2447, .hw_value = 8 },
117 { .center_freq = 2452, .hw_value = 9 },
118 { .center_freq = 2457, .hw_value = 10 },
119 { .center_freq = 2462, .hw_value = 11 },
120 { .center_freq = 2467, .hw_value = 12 },
121 { .center_freq = 2472, .hw_value = 13 },
122 { .center_freq = 2484, .hw_value = 14 },
123 };
124
125 static void housekeeping_init(struct zd_mac *mac);
126 static void housekeeping_enable(struct zd_mac *mac);
127 static void housekeeping_disable(struct zd_mac *mac);
128 static void beacon_init(struct zd_mac *mac);
129 static void beacon_enable(struct zd_mac *mac);
130 static void beacon_disable(struct zd_mac *mac);
131 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
132 static int zd_mac_config_beacon(struct ieee80211_hw *hw,
133 struct sk_buff *beacon, bool in_intr);
134
zd_reg2alpha2(u8 regdomain,char * alpha2)135 static int zd_reg2alpha2(u8 regdomain, char *alpha2)
136 {
137 unsigned int i;
138 struct zd_reg_alpha2_map *reg_map;
139 for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
140 reg_map = ®_alpha2_map[i];
141 if (regdomain == reg_map->reg) {
142 alpha2[0] = reg_map->alpha2[0];
143 alpha2[1] = reg_map->alpha2[1];
144 return 0;
145 }
146 }
147 return 1;
148 }
149
zd_check_signal(struct ieee80211_hw * hw,int signal)150 static int zd_check_signal(struct ieee80211_hw *hw, int signal)
151 {
152 struct zd_mac *mac = zd_hw_mac(hw);
153
154 dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
155 "%s: signal value from device not in range 0..100, "
156 "but %d.\n", __func__, signal);
157
158 if (signal < 0)
159 signal = 0;
160 else if (signal > 100)
161 signal = 100;
162
163 return signal;
164 }
165
zd_mac_preinit_hw(struct ieee80211_hw * hw)166 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
167 {
168 int r;
169 u8 addr[ETH_ALEN];
170 struct zd_mac *mac = zd_hw_mac(hw);
171
172 r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
173 if (r)
174 return r;
175
176 SET_IEEE80211_PERM_ADDR(hw, addr);
177
178 return 0;
179 }
180
zd_mac_init_hw(struct ieee80211_hw * hw)181 int zd_mac_init_hw(struct ieee80211_hw *hw)
182 {
183 int r;
184 struct zd_mac *mac = zd_hw_mac(hw);
185 struct zd_chip *chip = &mac->chip;
186 char alpha2[2];
187 u8 default_regdomain;
188
189 r = zd_chip_enable_int(chip);
190 if (r)
191 goto out;
192 r = zd_chip_init_hw(chip);
193 if (r)
194 goto disable_int;
195
196 ZD_ASSERT(!irqs_disabled());
197
198 r = zd_read_regdomain(chip, &default_regdomain);
199 if (r)
200 goto disable_int;
201 spin_lock_irq(&mac->lock);
202 mac->regdomain = mac->default_regdomain = default_regdomain;
203 spin_unlock_irq(&mac->lock);
204
205 /* We must inform the device that we are doing encryption/decryption in
206 * software at the moment. */
207 r = zd_set_encryption_type(chip, ENC_SNIFFER);
208 if (r)
209 goto disable_int;
210
211 r = zd_reg2alpha2(mac->regdomain, alpha2);
212 if (r)
213 goto disable_int;
214
215 r = regulatory_hint(hw->wiphy, alpha2);
216 disable_int:
217 zd_chip_disable_int(chip);
218 out:
219 return r;
220 }
221
zd_mac_clear(struct zd_mac * mac)222 void zd_mac_clear(struct zd_mac *mac)
223 {
224 flush_workqueue(zd_workqueue);
225 zd_chip_clear(&mac->chip);
226 ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
227 }
228
set_rx_filter(struct zd_mac * mac)229 static int set_rx_filter(struct zd_mac *mac)
230 {
231 unsigned long flags;
232 u32 filter = STA_RX_FILTER;
233
234 spin_lock_irqsave(&mac->lock, flags);
235 if (mac->pass_ctrl)
236 filter |= RX_FILTER_CTRL;
237 spin_unlock_irqrestore(&mac->lock, flags);
238
239 return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
240 }
241
set_mac_and_bssid(struct zd_mac * mac)242 static int set_mac_and_bssid(struct zd_mac *mac)
243 {
244 int r;
245
246 if (!mac->vif)
247 return -1;
248
249 r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
250 if (r)
251 return r;
252
253 /* Vendor driver after setting MAC either sets BSSID for AP or
254 * filter for other modes.
255 */
256 if (mac->type != NL80211_IFTYPE_AP)
257 return set_rx_filter(mac);
258 else
259 return zd_write_bssid(&mac->chip, mac->vif->addr);
260 }
261
set_mc_hash(struct zd_mac * mac)262 static int set_mc_hash(struct zd_mac *mac)
263 {
264 struct zd_mc_hash hash;
265 zd_mc_clear(&hash);
266 return zd_chip_set_multicast_hash(&mac->chip, &hash);
267 }
268
zd_op_start(struct ieee80211_hw * hw)269 int zd_op_start(struct ieee80211_hw *hw)
270 {
271 struct zd_mac *mac = zd_hw_mac(hw);
272 struct zd_chip *chip = &mac->chip;
273 struct zd_usb *usb = &chip->usb;
274 int r;
275
276 if (!usb->initialized) {
277 r = zd_usb_init_hw(usb);
278 if (r)
279 goto out;
280 }
281
282 r = zd_chip_enable_int(chip);
283 if (r < 0)
284 goto out;
285
286 r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
287 if (r < 0)
288 goto disable_int;
289 r = set_rx_filter(mac);
290 if (r)
291 goto disable_int;
292 r = set_mc_hash(mac);
293 if (r)
294 goto disable_int;
295
296 /* Wait after setting the multicast hash table and powering on
297 * the radio otherwise interface bring up will fail. This matches
298 * what the vendor driver did.
299 */
300 msleep(10);
301
302 r = zd_chip_switch_radio_on(chip);
303 if (r < 0) {
304 dev_err(zd_chip_dev(chip),
305 "%s: failed to set radio on\n", __func__);
306 goto disable_int;
307 }
308 r = zd_chip_enable_rxtx(chip);
309 if (r < 0)
310 goto disable_radio;
311 r = zd_chip_enable_hwint(chip);
312 if (r < 0)
313 goto disable_rxtx;
314
315 housekeeping_enable(mac);
316 beacon_enable(mac);
317 set_bit(ZD_DEVICE_RUNNING, &mac->flags);
318 return 0;
319 disable_rxtx:
320 zd_chip_disable_rxtx(chip);
321 disable_radio:
322 zd_chip_switch_radio_off(chip);
323 disable_int:
324 zd_chip_disable_int(chip);
325 out:
326 return r;
327 }
328
zd_op_stop(struct ieee80211_hw * hw)329 void zd_op_stop(struct ieee80211_hw *hw)
330 {
331 struct zd_mac *mac = zd_hw_mac(hw);
332 struct zd_chip *chip = &mac->chip;
333 struct sk_buff *skb;
334 struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
335
336 clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
337
338 /* The order here deliberately is a little different from the open()
339 * method, since we need to make sure there is no opportunity for RX
340 * frames to be processed by mac80211 after we have stopped it.
341 */
342
343 zd_chip_disable_rxtx(chip);
344 beacon_disable(mac);
345 housekeeping_disable(mac);
346 flush_workqueue(zd_workqueue);
347
348 zd_chip_disable_hwint(chip);
349 zd_chip_switch_radio_off(chip);
350 zd_chip_disable_int(chip);
351
352
353 while ((skb = skb_dequeue(ack_wait_queue)))
354 dev_kfree_skb_any(skb);
355 }
356
zd_restore_settings(struct zd_mac * mac)357 int zd_restore_settings(struct zd_mac *mac)
358 {
359 struct sk_buff *beacon;
360 struct zd_mc_hash multicast_hash;
361 unsigned int short_preamble;
362 int r, beacon_interval, beacon_period;
363 u8 channel;
364
365 dev_dbg_f(zd_mac_dev(mac), "\n");
366
367 spin_lock_irq(&mac->lock);
368 multicast_hash = mac->multicast_hash;
369 short_preamble = mac->short_preamble;
370 beacon_interval = mac->beacon.interval;
371 beacon_period = mac->beacon.period;
372 channel = mac->channel;
373 spin_unlock_irq(&mac->lock);
374
375 r = set_mac_and_bssid(mac);
376 if (r < 0) {
377 dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
378 return r;
379 }
380
381 r = zd_chip_set_channel(&mac->chip, channel);
382 if (r < 0) {
383 dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
384 r);
385 return r;
386 }
387
388 set_rts_cts(mac, short_preamble);
389
390 r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
391 if (r < 0) {
392 dev_dbg_f(zd_mac_dev(mac),
393 "zd_chip_set_multicast_hash failed, %d\n", r);
394 return r;
395 }
396
397 if (mac->type == NL80211_IFTYPE_MESH_POINT ||
398 mac->type == NL80211_IFTYPE_ADHOC ||
399 mac->type == NL80211_IFTYPE_AP) {
400 if (mac->vif != NULL) {
401 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
402 if (beacon)
403 zd_mac_config_beacon(mac->hw, beacon, false);
404 }
405
406 zd_set_beacon_interval(&mac->chip, beacon_interval,
407 beacon_period, mac->type);
408
409 spin_lock_irq(&mac->lock);
410 mac->beacon.last_update = jiffies;
411 spin_unlock_irq(&mac->lock);
412 }
413
414 return 0;
415 }
416
417 /**
418 * zd_mac_tx_status - reports tx status of a packet if required
419 * @hw - a &struct ieee80211_hw pointer
420 * @skb - a sk-buffer
421 * @flags: extra flags to set in the TX status info
422 * @ackssi: ACK signal strength
423 * @success - True for successful transmission of the frame
424 *
425 * This information calls ieee80211_tx_status_irqsafe() if required by the
426 * control information. It copies the control information into the status
427 * information.
428 *
429 * If no status information has been requested, the skb is freed.
430 */
zd_mac_tx_status(struct ieee80211_hw * hw,struct sk_buff * skb,int ackssi,struct tx_status * tx_status)431 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
432 int ackssi, struct tx_status *tx_status)
433 {
434 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
435 int i;
436 int success = 1, retry = 1;
437 int first_idx;
438 const struct tx_retry_rate *retries;
439
440 ieee80211_tx_info_clear_status(info);
441
442 if (tx_status) {
443 success = !tx_status->failure;
444 retry = tx_status->retry + success;
445 }
446
447 if (success) {
448 /* success */
449 info->flags |= IEEE80211_TX_STAT_ACK;
450 } else {
451 /* failure */
452 info->flags &= ~IEEE80211_TX_STAT_ACK;
453 }
454
455 first_idx = info->status.rates[0].idx;
456 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
457 retries = &zd_retry_rates[first_idx];
458 ZD_ASSERT(1 <= retry && retry <= retries->count);
459
460 info->status.rates[0].idx = retries->rate[0];
461 info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
462
463 for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
464 info->status.rates[i].idx = retries->rate[i];
465 info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
466 }
467 for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
468 info->status.rates[i].idx = retries->rate[retry - 1];
469 info->status.rates[i].count = 1; // (success ? 1:2);
470 }
471 if (i<IEEE80211_TX_MAX_RATES)
472 info->status.rates[i].idx = -1; /* terminate */
473
474 info->status.ack_signal = zd_check_signal(hw, ackssi);
475 ieee80211_tx_status_irqsafe(hw, skb);
476 }
477
478 /**
479 * zd_mac_tx_failed - callback for failed frames
480 * @dev: the mac80211 wireless device
481 *
482 * This function is called if a frame couldn't be successfully
483 * transferred. The first frame from the tx queue, will be selected and
484 * reported as error to the upper layers.
485 */
zd_mac_tx_failed(struct urb * urb)486 void zd_mac_tx_failed(struct urb *urb)
487 {
488 struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
489 struct zd_mac *mac = zd_hw_mac(hw);
490 struct sk_buff_head *q = &mac->ack_wait_queue;
491 struct sk_buff *skb;
492 struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
493 unsigned long flags;
494 int success = !tx_status->failure;
495 int retry = tx_status->retry + success;
496 int found = 0;
497 int i, position = 0;
498
499 spin_lock_irqsave(&q->lock, flags);
500
501 skb_queue_walk(q, skb) {
502 struct ieee80211_hdr *tx_hdr;
503 struct ieee80211_tx_info *info;
504 int first_idx, final_idx;
505 const struct tx_retry_rate *retries;
506 u8 final_rate;
507
508 position ++;
509
510 /* if the hardware reports a failure and we had a 802.11 ACK
511 * pending, then we skip the first skb when searching for a
512 * matching frame */
513 if (tx_status->failure && mac->ack_pending &&
514 skb_queue_is_first(q, skb)) {
515 continue;
516 }
517
518 tx_hdr = (struct ieee80211_hdr *)skb->data;
519
520 /* we skip all frames not matching the reported destination */
521 if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac)))
522 continue;
523
524 /* we skip all frames not matching the reported final rate */
525
526 info = IEEE80211_SKB_CB(skb);
527 first_idx = info->status.rates[0].idx;
528 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
529 retries = &zd_retry_rates[first_idx];
530 if (retry <= 0 || retry > retries->count)
531 continue;
532
533 final_idx = retries->rate[retry - 1];
534 final_rate = zd_rates[final_idx].hw_value;
535
536 if (final_rate != tx_status->rate) {
537 continue;
538 }
539
540 found = 1;
541 break;
542 }
543
544 if (found) {
545 for (i=1; i<=position; i++) {
546 skb = __skb_dequeue(q);
547 zd_mac_tx_status(hw, skb,
548 mac->ack_pending ? mac->ack_signal : 0,
549 i == position ? tx_status : NULL);
550 mac->ack_pending = 0;
551 }
552 }
553
554 spin_unlock_irqrestore(&q->lock, flags);
555 }
556
557 /**
558 * zd_mac_tx_to_dev - callback for USB layer
559 * @skb: a &sk_buff pointer
560 * @error: error value, 0 if transmission successful
561 *
562 * Informs the MAC layer that the frame has successfully transferred to the
563 * device. If an ACK is required and the transfer to the device has been
564 * successful, the packets are put on the @ack_wait_queue with
565 * the control set removed.
566 */
zd_mac_tx_to_dev(struct sk_buff * skb,int error)567 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
568 {
569 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
570 struct ieee80211_hw *hw = info->rate_driver_data[0];
571 struct zd_mac *mac = zd_hw_mac(hw);
572
573 ieee80211_tx_info_clear_status(info);
574
575 skb_pull(skb, sizeof(struct zd_ctrlset));
576 if (unlikely(error ||
577 (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
578 /*
579 * FIXME : do we need to fill in anything ?
580 */
581 ieee80211_tx_status_irqsafe(hw, skb);
582 } else {
583 struct sk_buff_head *q = &mac->ack_wait_queue;
584
585 skb_queue_tail(q, skb);
586 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
587 zd_mac_tx_status(hw, skb_dequeue(q),
588 mac->ack_pending ? mac->ack_signal : 0,
589 NULL);
590 mac->ack_pending = 0;
591 }
592 }
593 }
594
zd_calc_tx_length_us(u8 * service,u8 zd_rate,u16 tx_length)595 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
596 {
597 /* ZD_PURE_RATE() must be used to remove the modulation type flag of
598 * the zd-rate values.
599 */
600 static const u8 rate_divisor[] = {
601 [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
602 [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
603 /* Bits must be doubled. */
604 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
605 [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
606 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
607 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
608 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
609 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
610 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
611 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
612 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
613 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
614 };
615
616 u32 bits = (u32)tx_length * 8;
617 u32 divisor;
618
619 divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
620 if (divisor == 0)
621 return -EINVAL;
622
623 switch (zd_rate) {
624 case ZD_CCK_RATE_5_5M:
625 bits = (2*bits) + 10; /* round up to the next integer */
626 break;
627 case ZD_CCK_RATE_11M:
628 if (service) {
629 u32 t = bits % 11;
630 *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
631 if (0 < t && t <= 3) {
632 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
633 }
634 }
635 bits += 10; /* round up to the next integer */
636 break;
637 }
638
639 return bits/divisor;
640 }
641
cs_set_control(struct zd_mac * mac,struct zd_ctrlset * cs,struct ieee80211_hdr * header,struct ieee80211_tx_info * info)642 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
643 struct ieee80211_hdr *header,
644 struct ieee80211_tx_info *info)
645 {
646 /*
647 * CONTROL TODO:
648 * - if backoff needed, enable bit 0
649 * - if burst (backoff not needed) disable bit 0
650 */
651
652 cs->control = 0;
653
654 /* First fragment */
655 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
656 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
657
658 /* No ACK expected (multicast, etc.) */
659 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
660 cs->control |= ZD_CS_NO_ACK;
661
662 /* PS-POLL */
663 if (ieee80211_is_pspoll(header->frame_control))
664 cs->control |= ZD_CS_PS_POLL_FRAME;
665
666 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
667 cs->control |= ZD_CS_RTS;
668
669 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
670 cs->control |= ZD_CS_SELF_CTS;
671
672 /* FIXME: Management frame? */
673 }
674
zd_mac_match_cur_beacon(struct zd_mac * mac,struct sk_buff * beacon)675 static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
676 {
677 if (!mac->beacon.cur_beacon)
678 return false;
679
680 if (mac->beacon.cur_beacon->len != beacon->len)
681 return false;
682
683 return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
684 }
685
zd_mac_free_cur_beacon_locked(struct zd_mac * mac)686 static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
687 {
688 ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
689
690 kfree_skb(mac->beacon.cur_beacon);
691 mac->beacon.cur_beacon = NULL;
692 }
693
zd_mac_free_cur_beacon(struct zd_mac * mac)694 static void zd_mac_free_cur_beacon(struct zd_mac *mac)
695 {
696 mutex_lock(&mac->chip.mutex);
697 zd_mac_free_cur_beacon_locked(mac);
698 mutex_unlock(&mac->chip.mutex);
699 }
700
zd_mac_config_beacon(struct ieee80211_hw * hw,struct sk_buff * beacon,bool in_intr)701 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
702 bool in_intr)
703 {
704 struct zd_mac *mac = zd_hw_mac(hw);
705 int r, ret, num_cmds, req_pos = 0;
706 u32 tmp, j = 0;
707 /* 4 more bytes for tail CRC */
708 u32 full_len = beacon->len + 4;
709 unsigned long end_jiffies, message_jiffies;
710 struct zd_ioreq32 *ioreqs;
711
712 mutex_lock(&mac->chip.mutex);
713
714 /* Check if hw already has this beacon. */
715 if (zd_mac_match_cur_beacon(mac, beacon)) {
716 r = 0;
717 goto out_nofree;
718 }
719
720 /* Alloc memory for full beacon write at once. */
721 num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
722 ioreqs = kmalloc_array(num_cmds, sizeof(struct zd_ioreq32),
723 GFP_KERNEL);
724 if (!ioreqs) {
725 r = -ENOMEM;
726 goto out_nofree;
727 }
728
729 r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
730 if (r < 0)
731 goto out;
732 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
733 if (r < 0)
734 goto release_sema;
735 if (in_intr && tmp & 0x2) {
736 r = -EBUSY;
737 goto release_sema;
738 }
739
740 end_jiffies = jiffies + HZ / 2; /*~500ms*/
741 message_jiffies = jiffies + HZ / 10; /*~100ms*/
742 while (tmp & 0x2) {
743 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
744 if (r < 0)
745 goto release_sema;
746 if (time_is_before_eq_jiffies(message_jiffies)) {
747 message_jiffies = jiffies + HZ / 10;
748 dev_err(zd_mac_dev(mac),
749 "CR_BCN_FIFO_SEMAPHORE not ready\n");
750 if (time_is_before_eq_jiffies(end_jiffies)) {
751 dev_err(zd_mac_dev(mac),
752 "Giving up beacon config.\n");
753 r = -ETIMEDOUT;
754 goto reset_device;
755 }
756 }
757 msleep(20);
758 }
759
760 ioreqs[req_pos].addr = CR_BCN_FIFO;
761 ioreqs[req_pos].value = full_len - 1;
762 req_pos++;
763 if (zd_chip_is_zd1211b(&mac->chip)) {
764 ioreqs[req_pos].addr = CR_BCN_LENGTH;
765 ioreqs[req_pos].value = full_len - 1;
766 req_pos++;
767 }
768
769 for (j = 0 ; j < beacon->len; j++) {
770 ioreqs[req_pos].addr = CR_BCN_FIFO;
771 ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
772 req_pos++;
773 }
774
775 for (j = 0; j < 4; j++) {
776 ioreqs[req_pos].addr = CR_BCN_FIFO;
777 ioreqs[req_pos].value = 0x0;
778 req_pos++;
779 }
780
781 BUG_ON(req_pos != num_cmds);
782
783 r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
784
785 release_sema:
786 /*
787 * Try very hard to release device beacon semaphore, as otherwise
788 * device/driver can be left in unusable state.
789 */
790 end_jiffies = jiffies + HZ / 2; /*~500ms*/
791 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
792 while (ret < 0) {
793 if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
794 ret = -ETIMEDOUT;
795 break;
796 }
797
798 msleep(20);
799 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
800 }
801
802 if (ret < 0)
803 dev_err(zd_mac_dev(mac), "Could not release "
804 "CR_BCN_FIFO_SEMAPHORE!\n");
805 if (r < 0 || ret < 0) {
806 if (r >= 0)
807 r = ret;
808
809 /* We don't know if beacon was written successfully or not,
810 * so clear current. */
811 zd_mac_free_cur_beacon_locked(mac);
812
813 goto out;
814 }
815
816 /* Beacon has now been written successfully, update current. */
817 zd_mac_free_cur_beacon_locked(mac);
818 mac->beacon.cur_beacon = beacon;
819 beacon = NULL;
820
821 /* 802.11b/g 2.4G CCK 1Mb
822 * 802.11a, not yet implemented, uses different values (see GPL vendor
823 * driver)
824 */
825 r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
826 CR_BCN_PLCP_CFG);
827 out:
828 kfree(ioreqs);
829 out_nofree:
830 kfree_skb(beacon);
831 mutex_unlock(&mac->chip.mutex);
832
833 return r;
834
835 reset_device:
836 zd_mac_free_cur_beacon_locked(mac);
837 kfree_skb(beacon);
838
839 mutex_unlock(&mac->chip.mutex);
840 kfree(ioreqs);
841
842 /* semaphore stuck, reset device to avoid fw freeze later */
843 dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
844 "resetting device...");
845 usb_queue_reset_device(mac->chip.usb.intf);
846
847 return r;
848 }
849
fill_ctrlset(struct zd_mac * mac,struct sk_buff * skb)850 static int fill_ctrlset(struct zd_mac *mac,
851 struct sk_buff *skb)
852 {
853 int r;
854 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
855 unsigned int frag_len = skb->len + FCS_LEN;
856 unsigned int packet_length;
857 struct ieee80211_rate *txrate;
858 struct zd_ctrlset *cs = skb_push(skb, sizeof(struct zd_ctrlset));
859 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
860
861 ZD_ASSERT(frag_len <= 0xffff);
862
863 /*
864 * Firmware computes the duration itself (for all frames except PSPoll)
865 * and needs the field set to 0 at input, otherwise firmware messes up
866 * duration_id and sets bits 14 and 15 on.
867 */
868 if (!ieee80211_is_pspoll(hdr->frame_control))
869 hdr->duration_id = 0;
870
871 txrate = ieee80211_get_tx_rate(mac->hw, info);
872
873 cs->modulation = txrate->hw_value;
874 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
875 cs->modulation = txrate->hw_value_short;
876
877 cs->tx_length = cpu_to_le16(frag_len);
878
879 cs_set_control(mac, cs, hdr, info);
880
881 packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
882 ZD_ASSERT(packet_length <= 0xffff);
883 /* ZD1211B: Computing the length difference this way, gives us
884 * flexibility to compute the packet length.
885 */
886 cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
887 packet_length - frag_len : packet_length);
888
889 /*
890 * CURRENT LENGTH:
891 * - transmit frame length in microseconds
892 * - seems to be derived from frame length
893 * - see Cal_Us_Service() in zdinlinef.h
894 * - if macp->bTxBurstEnable is enabled, then multiply by 4
895 * - bTxBurstEnable is never set in the vendor driver
896 *
897 * SERVICE:
898 * - "for PLCP configuration"
899 * - always 0 except in some situations at 802.11b 11M
900 * - see line 53 of zdinlinef.h
901 */
902 cs->service = 0;
903 r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
904 le16_to_cpu(cs->tx_length));
905 if (r < 0)
906 return r;
907 cs->current_length = cpu_to_le16(r);
908 cs->next_frame_length = 0;
909
910 return 0;
911 }
912
913 /**
914 * zd_op_tx - transmits a network frame to the device
915 *
916 * @dev: mac80211 hardware device
917 * @skb: socket buffer
918 * @control: the control structure
919 *
920 * This function transmit an IEEE 802.11 network frame to the device. The
921 * control block of the skbuff will be initialized. If necessary the incoming
922 * mac80211 queues will be stopped.
923 */
zd_op_tx(struct ieee80211_hw * hw,struct ieee80211_tx_control * control,struct sk_buff * skb)924 static void zd_op_tx(struct ieee80211_hw *hw,
925 struct ieee80211_tx_control *control,
926 struct sk_buff *skb)
927 {
928 struct zd_mac *mac = zd_hw_mac(hw);
929 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
930 int r;
931
932 r = fill_ctrlset(mac, skb);
933 if (r)
934 goto fail;
935
936 info->rate_driver_data[0] = hw;
937
938 r = zd_usb_tx(&mac->chip.usb, skb);
939 if (r)
940 goto fail;
941 return;
942
943 fail:
944 dev_kfree_skb(skb);
945 }
946
947 /**
948 * filter_ack - filters incoming packets for acknowledgements
949 * @dev: the mac80211 device
950 * @rx_hdr: received header
951 * @stats: the status for the received packet
952 *
953 * This functions looks for ACK packets and tries to match them with the
954 * frames in the tx queue. If a match is found the frame will be dequeued and
955 * the upper layers is informed about the successful transmission. If
956 * mac80211 queues have been stopped and the number of frames still to be
957 * transmitted is low the queues will be opened again.
958 *
959 * Returns 1 if the frame was an ACK, 0 if it was ignored.
960 */
filter_ack(struct ieee80211_hw * hw,struct ieee80211_hdr * rx_hdr,struct ieee80211_rx_status * stats)961 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
962 struct ieee80211_rx_status *stats)
963 {
964 struct zd_mac *mac = zd_hw_mac(hw);
965 struct sk_buff *skb;
966 struct sk_buff_head *q;
967 unsigned long flags;
968 int found = 0;
969 int i, position = 0;
970
971 if (!ieee80211_is_ack(rx_hdr->frame_control))
972 return 0;
973
974 q = &mac->ack_wait_queue;
975 spin_lock_irqsave(&q->lock, flags);
976 skb_queue_walk(q, skb) {
977 struct ieee80211_hdr *tx_hdr;
978
979 position ++;
980
981 if (mac->ack_pending && skb_queue_is_first(q, skb))
982 continue;
983
984 tx_hdr = (struct ieee80211_hdr *)skb->data;
985 if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1)))
986 {
987 found = 1;
988 break;
989 }
990 }
991
992 if (found) {
993 for (i=1; i<position; i++) {
994 skb = __skb_dequeue(q);
995 zd_mac_tx_status(hw, skb,
996 mac->ack_pending ? mac->ack_signal : 0,
997 NULL);
998 mac->ack_pending = 0;
999 }
1000
1001 mac->ack_pending = 1;
1002 mac->ack_signal = stats->signal;
1003
1004 /* Prevent pending tx-packet on AP-mode */
1005 if (mac->type == NL80211_IFTYPE_AP) {
1006 skb = __skb_dequeue(q);
1007 zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
1008 mac->ack_pending = 0;
1009 }
1010 }
1011
1012 spin_unlock_irqrestore(&q->lock, flags);
1013 return 1;
1014 }
1015
zd_mac_rx(struct ieee80211_hw * hw,const u8 * buffer,unsigned int length)1016 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
1017 {
1018 struct zd_mac *mac = zd_hw_mac(hw);
1019 struct ieee80211_rx_status stats;
1020 const struct rx_status *status;
1021 struct sk_buff *skb;
1022 int bad_frame = 0;
1023 __le16 fc;
1024 int need_padding;
1025 int i;
1026 u8 rate;
1027
1028 if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
1029 FCS_LEN + sizeof(struct rx_status))
1030 return -EINVAL;
1031
1032 memset(&stats, 0, sizeof(stats));
1033
1034 /* Note about pass_failed_fcs and pass_ctrl access below:
1035 * mac locking intentionally omitted here, as this is the only unlocked
1036 * reader and the only writer is configure_filter. Plus, if there were
1037 * any races accessing these variables, it wouldn't really matter.
1038 * If mac80211 ever provides a way for us to access filter flags
1039 * from outside configure_filter, we could improve on this. Also, this
1040 * situation may change once we implement some kind of DMA-into-skb
1041 * RX path. */
1042
1043 /* Caller has to ensure that length >= sizeof(struct rx_status). */
1044 status = (struct rx_status *)
1045 (buffer + (length - sizeof(struct rx_status)));
1046 if (status->frame_status & ZD_RX_ERROR) {
1047 if (mac->pass_failed_fcs &&
1048 (status->frame_status & ZD_RX_CRC32_ERROR)) {
1049 stats.flag |= RX_FLAG_FAILED_FCS_CRC;
1050 bad_frame = 1;
1051 } else {
1052 return -EINVAL;
1053 }
1054 }
1055
1056 stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
1057 stats.band = NL80211_BAND_2GHZ;
1058 stats.signal = zd_check_signal(hw, status->signal_strength);
1059
1060 rate = zd_rx_rate(buffer, status);
1061
1062 /* todo: return index in the big switches in zd_rx_rate instead */
1063 for (i = 0; i < mac->band.n_bitrates; i++)
1064 if (rate == mac->band.bitrates[i].hw_value)
1065 stats.rate_idx = i;
1066
1067 length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
1068 buffer += ZD_PLCP_HEADER_SIZE;
1069
1070 /* Except for bad frames, filter each frame to see if it is an ACK, in
1071 * which case our internal TX tracking is updated. Normally we then
1072 * bail here as there's no need to pass ACKs on up to the stack, but
1073 * there is also the case where the stack has requested us to pass
1074 * control frames on up (pass_ctrl) which we must consider. */
1075 if (!bad_frame &&
1076 filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1077 && !mac->pass_ctrl)
1078 return 0;
1079
1080 fc = get_unaligned((__le16*)buffer);
1081 need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1082
1083 skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1084 if (skb == NULL)
1085 return -ENOMEM;
1086 if (need_padding) {
1087 /* Make sure the payload data is 4 byte aligned. */
1088 skb_reserve(skb, 2);
1089 }
1090
1091 /* FIXME : could we avoid this big memcpy ? */
1092 skb_put_data(skb, buffer, length);
1093
1094 memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1095 ieee80211_rx_irqsafe(hw, skb);
1096 return 0;
1097 }
1098
zd_op_add_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1099 static int zd_op_add_interface(struct ieee80211_hw *hw,
1100 struct ieee80211_vif *vif)
1101 {
1102 struct zd_mac *mac = zd_hw_mac(hw);
1103
1104 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1105 if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1106 return -EOPNOTSUPP;
1107
1108 switch (vif->type) {
1109 case NL80211_IFTYPE_MONITOR:
1110 case NL80211_IFTYPE_MESH_POINT:
1111 case NL80211_IFTYPE_STATION:
1112 case NL80211_IFTYPE_ADHOC:
1113 case NL80211_IFTYPE_AP:
1114 mac->type = vif->type;
1115 break;
1116 default:
1117 return -EOPNOTSUPP;
1118 }
1119
1120 mac->vif = vif;
1121
1122 return set_mac_and_bssid(mac);
1123 }
1124
zd_op_remove_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1125 static void zd_op_remove_interface(struct ieee80211_hw *hw,
1126 struct ieee80211_vif *vif)
1127 {
1128 struct zd_mac *mac = zd_hw_mac(hw);
1129 mac->type = NL80211_IFTYPE_UNSPECIFIED;
1130 mac->vif = NULL;
1131 zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1132 zd_write_mac_addr(&mac->chip, NULL);
1133
1134 zd_mac_free_cur_beacon(mac);
1135 }
1136
zd_op_config(struct ieee80211_hw * hw,u32 changed)1137 static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1138 {
1139 struct zd_mac *mac = zd_hw_mac(hw);
1140 struct ieee80211_conf *conf = &hw->conf;
1141
1142 spin_lock_irq(&mac->lock);
1143 mac->channel = conf->chandef.chan->hw_value;
1144 spin_unlock_irq(&mac->lock);
1145
1146 return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value);
1147 }
1148
zd_beacon_done(struct zd_mac * mac)1149 static void zd_beacon_done(struct zd_mac *mac)
1150 {
1151 struct sk_buff *skb, *beacon;
1152
1153 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1154 return;
1155 if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1156 return;
1157
1158 /*
1159 * Send out buffered broad- and multicast frames.
1160 */
1161 while (!ieee80211_queue_stopped(mac->hw, 0)) {
1162 skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1163 if (!skb)
1164 break;
1165 zd_op_tx(mac->hw, NULL, skb);
1166 }
1167
1168 /*
1169 * Fetch next beacon so that tim_count is updated.
1170 */
1171 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1172 if (beacon)
1173 zd_mac_config_beacon(mac->hw, beacon, true);
1174
1175 spin_lock_irq(&mac->lock);
1176 mac->beacon.last_update = jiffies;
1177 spin_unlock_irq(&mac->lock);
1178 }
1179
zd_process_intr(struct work_struct * work)1180 static void zd_process_intr(struct work_struct *work)
1181 {
1182 u16 int_status;
1183 unsigned long flags;
1184 struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1185
1186 spin_lock_irqsave(&mac->lock, flags);
1187 int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1188 spin_unlock_irqrestore(&mac->lock, flags);
1189
1190 if (int_status & INT_CFG_NEXT_BCN) {
1191 /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1192 zd_beacon_done(mac);
1193 } else {
1194 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1195 }
1196
1197 zd_chip_enable_hwint(&mac->chip);
1198 }
1199
1200
zd_op_prepare_multicast(struct ieee80211_hw * hw,struct netdev_hw_addr_list * mc_list)1201 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1202 struct netdev_hw_addr_list *mc_list)
1203 {
1204 struct zd_mac *mac = zd_hw_mac(hw);
1205 struct zd_mc_hash hash;
1206 struct netdev_hw_addr *ha;
1207
1208 zd_mc_clear(&hash);
1209
1210 netdev_hw_addr_list_for_each(ha, mc_list) {
1211 dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1212 zd_mc_add_addr(&hash, ha->addr);
1213 }
1214
1215 return hash.low | ((u64)hash.high << 32);
1216 }
1217
1218 #define SUPPORTED_FIF_FLAGS \
1219 (FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1220 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
zd_op_configure_filter(struct ieee80211_hw * hw,unsigned int changed_flags,unsigned int * new_flags,u64 multicast)1221 static void zd_op_configure_filter(struct ieee80211_hw *hw,
1222 unsigned int changed_flags,
1223 unsigned int *new_flags,
1224 u64 multicast)
1225 {
1226 struct zd_mc_hash hash = {
1227 .low = multicast,
1228 .high = multicast >> 32,
1229 };
1230 struct zd_mac *mac = zd_hw_mac(hw);
1231 unsigned long flags;
1232 int r;
1233
1234 /* Only deal with supported flags */
1235 changed_flags &= SUPPORTED_FIF_FLAGS;
1236 *new_flags &= SUPPORTED_FIF_FLAGS;
1237
1238 /*
1239 * If multicast parameter (as returned by zd_op_prepare_multicast)
1240 * has changed, no bit in changed_flags is set. To handle this
1241 * situation, we do not return if changed_flags is 0. If we do so,
1242 * we will have some issue with IPv6 which uses multicast for link
1243 * layer address resolution.
1244 */
1245 if (*new_flags & FIF_ALLMULTI)
1246 zd_mc_add_all(&hash);
1247
1248 spin_lock_irqsave(&mac->lock, flags);
1249 mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1250 mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1251 mac->multicast_hash = hash;
1252 spin_unlock_irqrestore(&mac->lock, flags);
1253
1254 zd_chip_set_multicast_hash(&mac->chip, &hash);
1255
1256 if (changed_flags & FIF_CONTROL) {
1257 r = set_rx_filter(mac);
1258 if (r)
1259 dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1260 }
1261
1262 /* no handling required for FIF_OTHER_BSS as we don't currently
1263 * do BSSID filtering */
1264 /* FIXME: in future it would be nice to enable the probe response
1265 * filter (so that the driver doesn't see them) until
1266 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1267 * have to schedule work to enable prbresp reception, which might
1268 * happen too late. For now we'll just listen and forward them all the
1269 * time. */
1270 }
1271
set_rts_cts(struct zd_mac * mac,unsigned int short_preamble)1272 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1273 {
1274 mutex_lock(&mac->chip.mutex);
1275 zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1276 mutex_unlock(&mac->chip.mutex);
1277 }
1278
zd_op_bss_info_changed(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_bss_conf * bss_conf,u32 changes)1279 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1280 struct ieee80211_vif *vif,
1281 struct ieee80211_bss_conf *bss_conf,
1282 u32 changes)
1283 {
1284 struct zd_mac *mac = zd_hw_mac(hw);
1285 int associated;
1286
1287 dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1288
1289 if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1290 mac->type == NL80211_IFTYPE_ADHOC ||
1291 mac->type == NL80211_IFTYPE_AP) {
1292 associated = true;
1293 if (changes & BSS_CHANGED_BEACON) {
1294 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1295
1296 if (beacon) {
1297 zd_chip_disable_hwint(&mac->chip);
1298 zd_mac_config_beacon(hw, beacon, false);
1299 zd_chip_enable_hwint(&mac->chip);
1300 }
1301 }
1302
1303 if (changes & BSS_CHANGED_BEACON_ENABLED) {
1304 u16 interval = 0;
1305 u8 period = 0;
1306
1307 if (bss_conf->enable_beacon) {
1308 period = bss_conf->dtim_period;
1309 interval = bss_conf->beacon_int;
1310 }
1311
1312 spin_lock_irq(&mac->lock);
1313 mac->beacon.period = period;
1314 mac->beacon.interval = interval;
1315 mac->beacon.last_update = jiffies;
1316 spin_unlock_irq(&mac->lock);
1317
1318 zd_set_beacon_interval(&mac->chip, interval, period,
1319 mac->type);
1320 }
1321 } else
1322 associated = is_valid_ether_addr(bss_conf->bssid);
1323
1324 spin_lock_irq(&mac->lock);
1325 mac->associated = associated;
1326 spin_unlock_irq(&mac->lock);
1327
1328 /* TODO: do hardware bssid filtering */
1329
1330 if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1331 spin_lock_irq(&mac->lock);
1332 mac->short_preamble = bss_conf->use_short_preamble;
1333 spin_unlock_irq(&mac->lock);
1334
1335 set_rts_cts(mac, bss_conf->use_short_preamble);
1336 }
1337 }
1338
zd_op_get_tsf(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1339 static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1340 {
1341 struct zd_mac *mac = zd_hw_mac(hw);
1342 return zd_chip_get_tsf(&mac->chip);
1343 }
1344
1345 static const struct ieee80211_ops zd_ops = {
1346 .tx = zd_op_tx,
1347 .start = zd_op_start,
1348 .stop = zd_op_stop,
1349 .add_interface = zd_op_add_interface,
1350 .remove_interface = zd_op_remove_interface,
1351 .config = zd_op_config,
1352 .prepare_multicast = zd_op_prepare_multicast,
1353 .configure_filter = zd_op_configure_filter,
1354 .bss_info_changed = zd_op_bss_info_changed,
1355 .get_tsf = zd_op_get_tsf,
1356 };
1357
zd_mac_alloc_hw(struct usb_interface * intf)1358 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1359 {
1360 struct zd_mac *mac;
1361 struct ieee80211_hw *hw;
1362
1363 hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1364 if (!hw) {
1365 dev_dbg_f(&intf->dev, "out of memory\n");
1366 return NULL;
1367 }
1368
1369 mac = zd_hw_mac(hw);
1370
1371 memset(mac, 0, sizeof(*mac));
1372 spin_lock_init(&mac->lock);
1373 mac->hw = hw;
1374
1375 mac->type = NL80211_IFTYPE_UNSPECIFIED;
1376
1377 memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1378 memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1379 mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1380 mac->band.bitrates = mac->rates;
1381 mac->band.n_channels = ARRAY_SIZE(zd_channels);
1382 mac->band.channels = mac->channels;
1383
1384 hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band;
1385
1386 ieee80211_hw_set(hw, MFP_CAPABLE);
1387 ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
1388 ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1389 ieee80211_hw_set(hw, SIGNAL_UNSPEC);
1390
1391 hw->wiphy->interface_modes =
1392 BIT(NL80211_IFTYPE_MESH_POINT) |
1393 BIT(NL80211_IFTYPE_STATION) |
1394 BIT(NL80211_IFTYPE_ADHOC) |
1395 BIT(NL80211_IFTYPE_AP);
1396
1397 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1398
1399 hw->max_signal = 100;
1400 hw->queues = 1;
1401 hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1402
1403 /*
1404 * Tell mac80211 that we support multi rate retries
1405 */
1406 hw->max_rates = IEEE80211_TX_MAX_RATES;
1407 hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
1408
1409 skb_queue_head_init(&mac->ack_wait_queue);
1410 mac->ack_pending = 0;
1411
1412 zd_chip_init(&mac->chip, hw, intf);
1413 housekeeping_init(mac);
1414 beacon_init(mac);
1415 INIT_WORK(&mac->process_intr, zd_process_intr);
1416
1417 SET_IEEE80211_DEV(hw, &intf->dev);
1418 return hw;
1419 }
1420
1421 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1422
beacon_watchdog_handler(struct work_struct * work)1423 static void beacon_watchdog_handler(struct work_struct *work)
1424 {
1425 struct zd_mac *mac =
1426 container_of(work, struct zd_mac, beacon.watchdog_work.work);
1427 struct sk_buff *beacon;
1428 unsigned long timeout;
1429 int interval, period;
1430
1431 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1432 goto rearm;
1433 if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1434 goto rearm;
1435
1436 spin_lock_irq(&mac->lock);
1437 interval = mac->beacon.interval;
1438 period = mac->beacon.period;
1439 timeout = mac->beacon.last_update +
1440 msecs_to_jiffies(interval * 1024 / 1000) * 3;
1441 spin_unlock_irq(&mac->lock);
1442
1443 if (interval > 0 && time_is_before_jiffies(timeout)) {
1444 dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1445 "restarting. "
1446 "(interval: %d, dtim: %d)\n",
1447 interval, period);
1448
1449 zd_chip_disable_hwint(&mac->chip);
1450
1451 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1452 if (beacon) {
1453 zd_mac_free_cur_beacon(mac);
1454
1455 zd_mac_config_beacon(mac->hw, beacon, false);
1456 }
1457
1458 zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1459
1460 zd_chip_enable_hwint(&mac->chip);
1461
1462 spin_lock_irq(&mac->lock);
1463 mac->beacon.last_update = jiffies;
1464 spin_unlock_irq(&mac->lock);
1465 }
1466
1467 rearm:
1468 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1469 BEACON_WATCHDOG_DELAY);
1470 }
1471
beacon_init(struct zd_mac * mac)1472 static void beacon_init(struct zd_mac *mac)
1473 {
1474 INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1475 }
1476
beacon_enable(struct zd_mac * mac)1477 static void beacon_enable(struct zd_mac *mac)
1478 {
1479 dev_dbg_f(zd_mac_dev(mac), "\n");
1480
1481 mac->beacon.last_update = jiffies;
1482 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1483 BEACON_WATCHDOG_DELAY);
1484 }
1485
beacon_disable(struct zd_mac * mac)1486 static void beacon_disable(struct zd_mac *mac)
1487 {
1488 dev_dbg_f(zd_mac_dev(mac), "\n");
1489 cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1490
1491 zd_mac_free_cur_beacon(mac);
1492 }
1493
1494 #define LINK_LED_WORK_DELAY HZ
1495
link_led_handler(struct work_struct * work)1496 static void link_led_handler(struct work_struct *work)
1497 {
1498 struct zd_mac *mac =
1499 container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1500 struct zd_chip *chip = &mac->chip;
1501 int is_associated;
1502 int r;
1503
1504 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1505 goto requeue;
1506
1507 spin_lock_irq(&mac->lock);
1508 is_associated = mac->associated;
1509 spin_unlock_irq(&mac->lock);
1510
1511 r = zd_chip_control_leds(chip,
1512 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1513 if (r)
1514 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1515
1516 requeue:
1517 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1518 LINK_LED_WORK_DELAY);
1519 }
1520
housekeeping_init(struct zd_mac * mac)1521 static void housekeeping_init(struct zd_mac *mac)
1522 {
1523 INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1524 }
1525
housekeeping_enable(struct zd_mac * mac)1526 static void housekeeping_enable(struct zd_mac *mac)
1527 {
1528 dev_dbg_f(zd_mac_dev(mac), "\n");
1529 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1530 0);
1531 }
1532
housekeeping_disable(struct zd_mac * mac)1533 static void housekeeping_disable(struct zd_mac *mac)
1534 {
1535 dev_dbg_f(zd_mac_dev(mac), "\n");
1536 cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1537 zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1538 }
1539