1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* ZD1211 USB-WLAN driver for Linux
3  *
4  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
5  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
7  * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8  */
9 
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/slab.h>
13 #include <linux/usb.h>
14 #include <linux/jiffies.h>
15 #include <net/ieee80211_radiotap.h>
16 
17 #include "zd_def.h"
18 #include "zd_chip.h"
19 #include "zd_mac.h"
20 #include "zd_rf.h"
21 
22 struct zd_reg_alpha2_map {
23 	u32 reg;
24 	char alpha2[2];
25 };
26 
27 static struct zd_reg_alpha2_map reg_alpha2_map[] = {
28 	{ ZD_REGDOMAIN_FCC, "US" },
29 	{ ZD_REGDOMAIN_IC, "CA" },
30 	{ ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
31 	{ ZD_REGDOMAIN_JAPAN, "JP" },
32 	{ ZD_REGDOMAIN_JAPAN_2, "JP" },
33 	{ ZD_REGDOMAIN_JAPAN_3, "JP" },
34 	{ ZD_REGDOMAIN_SPAIN, "ES" },
35 	{ ZD_REGDOMAIN_FRANCE, "FR" },
36 };
37 
38 /* This table contains the hardware specific values for the modulation rates. */
39 static const struct ieee80211_rate zd_rates[] = {
40 	{ .bitrate = 10,
41 	  .hw_value = ZD_CCK_RATE_1M, },
42 	{ .bitrate = 20,
43 	  .hw_value = ZD_CCK_RATE_2M,
44 	  .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
45 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
46 	{ .bitrate = 55,
47 	  .hw_value = ZD_CCK_RATE_5_5M,
48 	  .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
49 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
50 	{ .bitrate = 110,
51 	  .hw_value = ZD_CCK_RATE_11M,
52 	  .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
53 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
54 	{ .bitrate = 60,
55 	  .hw_value = ZD_OFDM_RATE_6M,
56 	  .flags = 0 },
57 	{ .bitrate = 90,
58 	  .hw_value = ZD_OFDM_RATE_9M,
59 	  .flags = 0 },
60 	{ .bitrate = 120,
61 	  .hw_value = ZD_OFDM_RATE_12M,
62 	  .flags = 0 },
63 	{ .bitrate = 180,
64 	  .hw_value = ZD_OFDM_RATE_18M,
65 	  .flags = 0 },
66 	{ .bitrate = 240,
67 	  .hw_value = ZD_OFDM_RATE_24M,
68 	  .flags = 0 },
69 	{ .bitrate = 360,
70 	  .hw_value = ZD_OFDM_RATE_36M,
71 	  .flags = 0 },
72 	{ .bitrate = 480,
73 	  .hw_value = ZD_OFDM_RATE_48M,
74 	  .flags = 0 },
75 	{ .bitrate = 540,
76 	  .hw_value = ZD_OFDM_RATE_54M,
77 	  .flags = 0 },
78 };
79 
80 /*
81  * Zydas retry rates table. Each line is listed in the same order as
82  * in zd_rates[] and contains all the rate used when a packet is sent
83  * starting with a given rates. Let's consider an example :
84  *
85  * "11 Mbits : 4, 3, 2, 1, 0" means :
86  * - packet is sent using 4 different rates
87  * - 1st rate is index 3 (ie 11 Mbits)
88  * - 2nd rate is index 2 (ie 5.5 Mbits)
89  * - 3rd rate is index 1 (ie 2 Mbits)
90  * - 4th rate is index 0 (ie 1 Mbits)
91  */
92 
93 static const struct tx_retry_rate zd_retry_rates[] = {
94 	{ /*  1 Mbits */	1, { 0 }},
95 	{ /*  2 Mbits */	2, { 1,  0 }},
96 	{ /*  5.5 Mbits */	3, { 2,  1, 0 }},
97 	{ /* 11 Mbits */	4, { 3,  2, 1, 0 }},
98 	{ /*  6 Mbits */	5, { 4,  3, 2, 1, 0 }},
99 	{ /*  9 Mbits */	6, { 5,  4, 3, 2, 1, 0}},
100 	{ /* 12 Mbits */	5, { 6,  3, 2, 1, 0 }},
101 	{ /* 18 Mbits */	6, { 7,  6, 3, 2, 1, 0 }},
102 	{ /* 24 Mbits */	6, { 8,  6, 3, 2, 1, 0 }},
103 	{ /* 36 Mbits */	7, { 9,  8, 6, 3, 2, 1, 0 }},
104 	{ /* 48 Mbits */	8, {10,  9, 8, 6, 3, 2, 1, 0 }},
105 	{ /* 54 Mbits */	9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
106 };
107 
108 static const struct ieee80211_channel zd_channels[] = {
109 	{ .center_freq = 2412, .hw_value = 1 },
110 	{ .center_freq = 2417, .hw_value = 2 },
111 	{ .center_freq = 2422, .hw_value = 3 },
112 	{ .center_freq = 2427, .hw_value = 4 },
113 	{ .center_freq = 2432, .hw_value = 5 },
114 	{ .center_freq = 2437, .hw_value = 6 },
115 	{ .center_freq = 2442, .hw_value = 7 },
116 	{ .center_freq = 2447, .hw_value = 8 },
117 	{ .center_freq = 2452, .hw_value = 9 },
118 	{ .center_freq = 2457, .hw_value = 10 },
119 	{ .center_freq = 2462, .hw_value = 11 },
120 	{ .center_freq = 2467, .hw_value = 12 },
121 	{ .center_freq = 2472, .hw_value = 13 },
122 	{ .center_freq = 2484, .hw_value = 14 },
123 };
124 
125 static void housekeeping_init(struct zd_mac *mac);
126 static void housekeeping_enable(struct zd_mac *mac);
127 static void housekeeping_disable(struct zd_mac *mac);
128 static void beacon_init(struct zd_mac *mac);
129 static void beacon_enable(struct zd_mac *mac);
130 static void beacon_disable(struct zd_mac *mac);
131 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
132 static int zd_mac_config_beacon(struct ieee80211_hw *hw,
133 				struct sk_buff *beacon, bool in_intr);
134 
zd_reg2alpha2(u8 regdomain,char * alpha2)135 static int zd_reg2alpha2(u8 regdomain, char *alpha2)
136 {
137 	unsigned int i;
138 	struct zd_reg_alpha2_map *reg_map;
139 	for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
140 		reg_map = &reg_alpha2_map[i];
141 		if (regdomain == reg_map->reg) {
142 			alpha2[0] = reg_map->alpha2[0];
143 			alpha2[1] = reg_map->alpha2[1];
144 			return 0;
145 		}
146 	}
147 	return 1;
148 }
149 
zd_check_signal(struct ieee80211_hw * hw,int signal)150 static int zd_check_signal(struct ieee80211_hw *hw, int signal)
151 {
152 	struct zd_mac *mac = zd_hw_mac(hw);
153 
154 	dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
155 			"%s: signal value from device not in range 0..100, "
156 			"but %d.\n", __func__, signal);
157 
158 	if (signal < 0)
159 		signal = 0;
160 	else if (signal > 100)
161 		signal = 100;
162 
163 	return signal;
164 }
165 
zd_mac_preinit_hw(struct ieee80211_hw * hw)166 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
167 {
168 	int r;
169 	u8 addr[ETH_ALEN];
170 	struct zd_mac *mac = zd_hw_mac(hw);
171 
172 	r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
173 	if (r)
174 		return r;
175 
176 	SET_IEEE80211_PERM_ADDR(hw, addr);
177 
178 	return 0;
179 }
180 
zd_mac_init_hw(struct ieee80211_hw * hw)181 int zd_mac_init_hw(struct ieee80211_hw *hw)
182 {
183 	int r;
184 	struct zd_mac *mac = zd_hw_mac(hw);
185 	struct zd_chip *chip = &mac->chip;
186 	char alpha2[2];
187 	u8 default_regdomain;
188 
189 	r = zd_chip_enable_int(chip);
190 	if (r)
191 		goto out;
192 	r = zd_chip_init_hw(chip);
193 	if (r)
194 		goto disable_int;
195 
196 	ZD_ASSERT(!irqs_disabled());
197 
198 	r = zd_read_regdomain(chip, &default_regdomain);
199 	if (r)
200 		goto disable_int;
201 	spin_lock_irq(&mac->lock);
202 	mac->regdomain = mac->default_regdomain = default_regdomain;
203 	spin_unlock_irq(&mac->lock);
204 
205 	/* We must inform the device that we are doing encryption/decryption in
206 	 * software at the moment. */
207 	r = zd_set_encryption_type(chip, ENC_SNIFFER);
208 	if (r)
209 		goto disable_int;
210 
211 	r = zd_reg2alpha2(mac->regdomain, alpha2);
212 	if (r)
213 		goto disable_int;
214 
215 	r = regulatory_hint(hw->wiphy, alpha2);
216 disable_int:
217 	zd_chip_disable_int(chip);
218 out:
219 	return r;
220 }
221 
zd_mac_clear(struct zd_mac * mac)222 void zd_mac_clear(struct zd_mac *mac)
223 {
224 	flush_workqueue(zd_workqueue);
225 	zd_chip_clear(&mac->chip);
226 	ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
227 }
228 
set_rx_filter(struct zd_mac * mac)229 static int set_rx_filter(struct zd_mac *mac)
230 {
231 	unsigned long flags;
232 	u32 filter = STA_RX_FILTER;
233 
234 	spin_lock_irqsave(&mac->lock, flags);
235 	if (mac->pass_ctrl)
236 		filter |= RX_FILTER_CTRL;
237 	spin_unlock_irqrestore(&mac->lock, flags);
238 
239 	return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
240 }
241 
set_mac_and_bssid(struct zd_mac * mac)242 static int set_mac_and_bssid(struct zd_mac *mac)
243 {
244 	int r;
245 
246 	if (!mac->vif)
247 		return -1;
248 
249 	r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
250 	if (r)
251 		return r;
252 
253 	/* Vendor driver after setting MAC either sets BSSID for AP or
254 	 * filter for other modes.
255 	 */
256 	if (mac->type != NL80211_IFTYPE_AP)
257 		return set_rx_filter(mac);
258 	else
259 		return zd_write_bssid(&mac->chip, mac->vif->addr);
260 }
261 
set_mc_hash(struct zd_mac * mac)262 static int set_mc_hash(struct zd_mac *mac)
263 {
264 	struct zd_mc_hash hash;
265 	zd_mc_clear(&hash);
266 	return zd_chip_set_multicast_hash(&mac->chip, &hash);
267 }
268 
zd_op_start(struct ieee80211_hw * hw)269 int zd_op_start(struct ieee80211_hw *hw)
270 {
271 	struct zd_mac *mac = zd_hw_mac(hw);
272 	struct zd_chip *chip = &mac->chip;
273 	struct zd_usb *usb = &chip->usb;
274 	int r;
275 
276 	if (!usb->initialized) {
277 		r = zd_usb_init_hw(usb);
278 		if (r)
279 			goto out;
280 	}
281 
282 	r = zd_chip_enable_int(chip);
283 	if (r < 0)
284 		goto out;
285 
286 	r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
287 	if (r < 0)
288 		goto disable_int;
289 	r = set_rx_filter(mac);
290 	if (r)
291 		goto disable_int;
292 	r = set_mc_hash(mac);
293 	if (r)
294 		goto disable_int;
295 
296 	/* Wait after setting the multicast hash table and powering on
297 	 * the radio otherwise interface bring up will fail. This matches
298 	 * what the vendor driver did.
299 	 */
300 	msleep(10);
301 
302 	r = zd_chip_switch_radio_on(chip);
303 	if (r < 0) {
304 		dev_err(zd_chip_dev(chip),
305 			"%s: failed to set radio on\n", __func__);
306 		goto disable_int;
307 	}
308 	r = zd_chip_enable_rxtx(chip);
309 	if (r < 0)
310 		goto disable_radio;
311 	r = zd_chip_enable_hwint(chip);
312 	if (r < 0)
313 		goto disable_rxtx;
314 
315 	housekeeping_enable(mac);
316 	beacon_enable(mac);
317 	set_bit(ZD_DEVICE_RUNNING, &mac->flags);
318 	return 0;
319 disable_rxtx:
320 	zd_chip_disable_rxtx(chip);
321 disable_radio:
322 	zd_chip_switch_radio_off(chip);
323 disable_int:
324 	zd_chip_disable_int(chip);
325 out:
326 	return r;
327 }
328 
zd_op_stop(struct ieee80211_hw * hw)329 void zd_op_stop(struct ieee80211_hw *hw)
330 {
331 	struct zd_mac *mac = zd_hw_mac(hw);
332 	struct zd_chip *chip = &mac->chip;
333 	struct sk_buff *skb;
334 	struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
335 
336 	clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
337 
338 	/* The order here deliberately is a little different from the open()
339 	 * method, since we need to make sure there is no opportunity for RX
340 	 * frames to be processed by mac80211 after we have stopped it.
341 	 */
342 
343 	zd_chip_disable_rxtx(chip);
344 	beacon_disable(mac);
345 	housekeeping_disable(mac);
346 	flush_workqueue(zd_workqueue);
347 
348 	zd_chip_disable_hwint(chip);
349 	zd_chip_switch_radio_off(chip);
350 	zd_chip_disable_int(chip);
351 
352 
353 	while ((skb = skb_dequeue(ack_wait_queue)))
354 		dev_kfree_skb_any(skb);
355 }
356 
zd_restore_settings(struct zd_mac * mac)357 int zd_restore_settings(struct zd_mac *mac)
358 {
359 	struct sk_buff *beacon;
360 	struct zd_mc_hash multicast_hash;
361 	unsigned int short_preamble;
362 	int r, beacon_interval, beacon_period;
363 	u8 channel;
364 
365 	dev_dbg_f(zd_mac_dev(mac), "\n");
366 
367 	spin_lock_irq(&mac->lock);
368 	multicast_hash = mac->multicast_hash;
369 	short_preamble = mac->short_preamble;
370 	beacon_interval = mac->beacon.interval;
371 	beacon_period = mac->beacon.period;
372 	channel = mac->channel;
373 	spin_unlock_irq(&mac->lock);
374 
375 	r = set_mac_and_bssid(mac);
376 	if (r < 0) {
377 		dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
378 		return r;
379 	}
380 
381 	r = zd_chip_set_channel(&mac->chip, channel);
382 	if (r < 0) {
383 		dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
384 			  r);
385 		return r;
386 	}
387 
388 	set_rts_cts(mac, short_preamble);
389 
390 	r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
391 	if (r < 0) {
392 		dev_dbg_f(zd_mac_dev(mac),
393 			  "zd_chip_set_multicast_hash failed, %d\n", r);
394 		return r;
395 	}
396 
397 	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
398 	    mac->type == NL80211_IFTYPE_ADHOC ||
399 	    mac->type == NL80211_IFTYPE_AP) {
400 		if (mac->vif != NULL) {
401 			beacon = ieee80211_beacon_get(mac->hw, mac->vif);
402 			if (beacon)
403 				zd_mac_config_beacon(mac->hw, beacon, false);
404 		}
405 
406 		zd_set_beacon_interval(&mac->chip, beacon_interval,
407 					beacon_period, mac->type);
408 
409 		spin_lock_irq(&mac->lock);
410 		mac->beacon.last_update = jiffies;
411 		spin_unlock_irq(&mac->lock);
412 	}
413 
414 	return 0;
415 }
416 
417 /**
418  * zd_mac_tx_status - reports tx status of a packet if required
419  * @hw - a &struct ieee80211_hw pointer
420  * @skb - a sk-buffer
421  * @flags: extra flags to set in the TX status info
422  * @ackssi: ACK signal strength
423  * @success - True for successful transmission of the frame
424  *
425  * This information calls ieee80211_tx_status_irqsafe() if required by the
426  * control information. It copies the control information into the status
427  * information.
428  *
429  * If no status information has been requested, the skb is freed.
430  */
zd_mac_tx_status(struct ieee80211_hw * hw,struct sk_buff * skb,int ackssi,struct tx_status * tx_status)431 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
432 		      int ackssi, struct tx_status *tx_status)
433 {
434 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
435 	int i;
436 	int success = 1, retry = 1;
437 	int first_idx;
438 	const struct tx_retry_rate *retries;
439 
440 	ieee80211_tx_info_clear_status(info);
441 
442 	if (tx_status) {
443 		success = !tx_status->failure;
444 		retry = tx_status->retry + success;
445 	}
446 
447 	if (success) {
448 		/* success */
449 		info->flags |= IEEE80211_TX_STAT_ACK;
450 	} else {
451 		/* failure */
452 		info->flags &= ~IEEE80211_TX_STAT_ACK;
453 	}
454 
455 	first_idx = info->status.rates[0].idx;
456 	ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
457 	retries = &zd_retry_rates[first_idx];
458 	ZD_ASSERT(1 <= retry && retry <= retries->count);
459 
460 	info->status.rates[0].idx = retries->rate[0];
461 	info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
462 
463 	for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
464 		info->status.rates[i].idx = retries->rate[i];
465 		info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
466 	}
467 	for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
468 		info->status.rates[i].idx = retries->rate[retry - 1];
469 		info->status.rates[i].count = 1; // (success ? 1:2);
470 	}
471 	if (i<IEEE80211_TX_MAX_RATES)
472 		info->status.rates[i].idx = -1; /* terminate */
473 
474 	info->status.ack_signal = zd_check_signal(hw, ackssi);
475 	ieee80211_tx_status_irqsafe(hw, skb);
476 }
477 
478 /**
479  * zd_mac_tx_failed - callback for failed frames
480  * @dev: the mac80211 wireless device
481  *
482  * This function is called if a frame couldn't be successfully
483  * transferred. The first frame from the tx queue, will be selected and
484  * reported as error to the upper layers.
485  */
zd_mac_tx_failed(struct urb * urb)486 void zd_mac_tx_failed(struct urb *urb)
487 {
488 	struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
489 	struct zd_mac *mac = zd_hw_mac(hw);
490 	struct sk_buff_head *q = &mac->ack_wait_queue;
491 	struct sk_buff *skb;
492 	struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
493 	unsigned long flags;
494 	int success = !tx_status->failure;
495 	int retry = tx_status->retry + success;
496 	int found = 0;
497 	int i, position = 0;
498 
499 	spin_lock_irqsave(&q->lock, flags);
500 
501 	skb_queue_walk(q, skb) {
502 		struct ieee80211_hdr *tx_hdr;
503 		struct ieee80211_tx_info *info;
504 		int first_idx, final_idx;
505 		const struct tx_retry_rate *retries;
506 		u8 final_rate;
507 
508 		position ++;
509 
510 		/* if the hardware reports a failure and we had a 802.11 ACK
511 		 * pending, then we skip the first skb when searching for a
512 		 * matching frame */
513 		if (tx_status->failure && mac->ack_pending &&
514 		    skb_queue_is_first(q, skb)) {
515 			continue;
516 		}
517 
518 		tx_hdr = (struct ieee80211_hdr *)skb->data;
519 
520 		/* we skip all frames not matching the reported destination */
521 		if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac)))
522 			continue;
523 
524 		/* we skip all frames not matching the reported final rate */
525 
526 		info = IEEE80211_SKB_CB(skb);
527 		first_idx = info->status.rates[0].idx;
528 		ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
529 		retries = &zd_retry_rates[first_idx];
530 		if (retry <= 0 || retry > retries->count)
531 			continue;
532 
533 		final_idx = retries->rate[retry - 1];
534 		final_rate = zd_rates[final_idx].hw_value;
535 
536 		if (final_rate != tx_status->rate) {
537 			continue;
538 		}
539 
540 		found = 1;
541 		break;
542 	}
543 
544 	if (found) {
545 		for (i=1; i<=position; i++) {
546 			skb = __skb_dequeue(q);
547 			zd_mac_tx_status(hw, skb,
548 					 mac->ack_pending ? mac->ack_signal : 0,
549 					 i == position ? tx_status : NULL);
550 			mac->ack_pending = 0;
551 		}
552 	}
553 
554 	spin_unlock_irqrestore(&q->lock, flags);
555 }
556 
557 /**
558  * zd_mac_tx_to_dev - callback for USB layer
559  * @skb: a &sk_buff pointer
560  * @error: error value, 0 if transmission successful
561  *
562  * Informs the MAC layer that the frame has successfully transferred to the
563  * device. If an ACK is required and the transfer to the device has been
564  * successful, the packets are put on the @ack_wait_queue with
565  * the control set removed.
566  */
zd_mac_tx_to_dev(struct sk_buff * skb,int error)567 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
568 {
569 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
570 	struct ieee80211_hw *hw = info->rate_driver_data[0];
571 	struct zd_mac *mac = zd_hw_mac(hw);
572 
573 	ieee80211_tx_info_clear_status(info);
574 
575 	skb_pull(skb, sizeof(struct zd_ctrlset));
576 	if (unlikely(error ||
577 	    (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
578 		/*
579 		 * FIXME : do we need to fill in anything ?
580 		 */
581 		ieee80211_tx_status_irqsafe(hw, skb);
582 	} else {
583 		struct sk_buff_head *q = &mac->ack_wait_queue;
584 
585 		skb_queue_tail(q, skb);
586 		while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
587 			zd_mac_tx_status(hw, skb_dequeue(q),
588 					 mac->ack_pending ? mac->ack_signal : 0,
589 					 NULL);
590 			mac->ack_pending = 0;
591 		}
592 	}
593 }
594 
zd_calc_tx_length_us(u8 * service,u8 zd_rate,u16 tx_length)595 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
596 {
597 	/* ZD_PURE_RATE() must be used to remove the modulation type flag of
598 	 * the zd-rate values.
599 	 */
600 	static const u8 rate_divisor[] = {
601 		[ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
602 		[ZD_PURE_RATE(ZD_CCK_RATE_2M)]	 =  2,
603 		/* Bits must be doubled. */
604 		[ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
605 		[ZD_PURE_RATE(ZD_CCK_RATE_11M)]	 = 11,
606 		[ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
607 		[ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
608 		[ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
609 		[ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
610 		[ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
611 		[ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
612 		[ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
613 		[ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
614 	};
615 
616 	u32 bits = (u32)tx_length * 8;
617 	u32 divisor;
618 
619 	divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
620 	if (divisor == 0)
621 		return -EINVAL;
622 
623 	switch (zd_rate) {
624 	case ZD_CCK_RATE_5_5M:
625 		bits = (2*bits) + 10; /* round up to the next integer */
626 		break;
627 	case ZD_CCK_RATE_11M:
628 		if (service) {
629 			u32 t = bits % 11;
630 			*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
631 			if (0 < t && t <= 3) {
632 				*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
633 			}
634 		}
635 		bits += 10; /* round up to the next integer */
636 		break;
637 	}
638 
639 	return bits/divisor;
640 }
641 
cs_set_control(struct zd_mac * mac,struct zd_ctrlset * cs,struct ieee80211_hdr * header,struct ieee80211_tx_info * info)642 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
643 	                   struct ieee80211_hdr *header,
644 	                   struct ieee80211_tx_info *info)
645 {
646 	/*
647 	 * CONTROL TODO:
648 	 * - if backoff needed, enable bit 0
649 	 * - if burst (backoff not needed) disable bit 0
650 	 */
651 
652 	cs->control = 0;
653 
654 	/* First fragment */
655 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
656 		cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
657 
658 	/* No ACK expected (multicast, etc.) */
659 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
660 		cs->control |= ZD_CS_NO_ACK;
661 
662 	/* PS-POLL */
663 	if (ieee80211_is_pspoll(header->frame_control))
664 		cs->control |= ZD_CS_PS_POLL_FRAME;
665 
666 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
667 		cs->control |= ZD_CS_RTS;
668 
669 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
670 		cs->control |= ZD_CS_SELF_CTS;
671 
672 	/* FIXME: Management frame? */
673 }
674 
zd_mac_match_cur_beacon(struct zd_mac * mac,struct sk_buff * beacon)675 static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
676 {
677 	if (!mac->beacon.cur_beacon)
678 		return false;
679 
680 	if (mac->beacon.cur_beacon->len != beacon->len)
681 		return false;
682 
683 	return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
684 }
685 
zd_mac_free_cur_beacon_locked(struct zd_mac * mac)686 static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
687 {
688 	ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
689 
690 	kfree_skb(mac->beacon.cur_beacon);
691 	mac->beacon.cur_beacon = NULL;
692 }
693 
zd_mac_free_cur_beacon(struct zd_mac * mac)694 static void zd_mac_free_cur_beacon(struct zd_mac *mac)
695 {
696 	mutex_lock(&mac->chip.mutex);
697 	zd_mac_free_cur_beacon_locked(mac);
698 	mutex_unlock(&mac->chip.mutex);
699 }
700 
zd_mac_config_beacon(struct ieee80211_hw * hw,struct sk_buff * beacon,bool in_intr)701 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
702 				bool in_intr)
703 {
704 	struct zd_mac *mac = zd_hw_mac(hw);
705 	int r, ret, num_cmds, req_pos = 0;
706 	u32 tmp, j = 0;
707 	/* 4 more bytes for tail CRC */
708 	u32 full_len = beacon->len + 4;
709 	unsigned long end_jiffies, message_jiffies;
710 	struct zd_ioreq32 *ioreqs;
711 
712 	mutex_lock(&mac->chip.mutex);
713 
714 	/* Check if hw already has this beacon. */
715 	if (zd_mac_match_cur_beacon(mac, beacon)) {
716 		r = 0;
717 		goto out_nofree;
718 	}
719 
720 	/* Alloc memory for full beacon write at once. */
721 	num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
722 	ioreqs = kmalloc_array(num_cmds, sizeof(struct zd_ioreq32),
723 			       GFP_KERNEL);
724 	if (!ioreqs) {
725 		r = -ENOMEM;
726 		goto out_nofree;
727 	}
728 
729 	r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
730 	if (r < 0)
731 		goto out;
732 	r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
733 	if (r < 0)
734 		goto release_sema;
735 	if (in_intr && tmp & 0x2) {
736 		r = -EBUSY;
737 		goto release_sema;
738 	}
739 
740 	end_jiffies = jiffies + HZ / 2; /*~500ms*/
741 	message_jiffies = jiffies + HZ / 10; /*~100ms*/
742 	while (tmp & 0x2) {
743 		r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
744 		if (r < 0)
745 			goto release_sema;
746 		if (time_is_before_eq_jiffies(message_jiffies)) {
747 			message_jiffies = jiffies + HZ / 10;
748 			dev_err(zd_mac_dev(mac),
749 					"CR_BCN_FIFO_SEMAPHORE not ready\n");
750 			if (time_is_before_eq_jiffies(end_jiffies))  {
751 				dev_err(zd_mac_dev(mac),
752 						"Giving up beacon config.\n");
753 				r = -ETIMEDOUT;
754 				goto reset_device;
755 			}
756 		}
757 		msleep(20);
758 	}
759 
760 	ioreqs[req_pos].addr = CR_BCN_FIFO;
761 	ioreqs[req_pos].value = full_len - 1;
762 	req_pos++;
763 	if (zd_chip_is_zd1211b(&mac->chip)) {
764 		ioreqs[req_pos].addr = CR_BCN_LENGTH;
765 		ioreqs[req_pos].value = full_len - 1;
766 		req_pos++;
767 	}
768 
769 	for (j = 0 ; j < beacon->len; j++) {
770 		ioreqs[req_pos].addr = CR_BCN_FIFO;
771 		ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
772 		req_pos++;
773 	}
774 
775 	for (j = 0; j < 4; j++) {
776 		ioreqs[req_pos].addr = CR_BCN_FIFO;
777 		ioreqs[req_pos].value = 0x0;
778 		req_pos++;
779 	}
780 
781 	BUG_ON(req_pos != num_cmds);
782 
783 	r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
784 
785 release_sema:
786 	/*
787 	 * Try very hard to release device beacon semaphore, as otherwise
788 	 * device/driver can be left in unusable state.
789 	 */
790 	end_jiffies = jiffies + HZ / 2; /*~500ms*/
791 	ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
792 	while (ret < 0) {
793 		if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
794 			ret = -ETIMEDOUT;
795 			break;
796 		}
797 
798 		msleep(20);
799 		ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
800 	}
801 
802 	if (ret < 0)
803 		dev_err(zd_mac_dev(mac), "Could not release "
804 					 "CR_BCN_FIFO_SEMAPHORE!\n");
805 	if (r < 0 || ret < 0) {
806 		if (r >= 0)
807 			r = ret;
808 
809 		/* We don't know if beacon was written successfully or not,
810 		 * so clear current. */
811 		zd_mac_free_cur_beacon_locked(mac);
812 
813 		goto out;
814 	}
815 
816 	/* Beacon has now been written successfully, update current. */
817 	zd_mac_free_cur_beacon_locked(mac);
818 	mac->beacon.cur_beacon = beacon;
819 	beacon = NULL;
820 
821 	/* 802.11b/g 2.4G CCK 1Mb
822 	 * 802.11a, not yet implemented, uses different values (see GPL vendor
823 	 * driver)
824 	 */
825 	r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
826 				CR_BCN_PLCP_CFG);
827 out:
828 	kfree(ioreqs);
829 out_nofree:
830 	kfree_skb(beacon);
831 	mutex_unlock(&mac->chip.mutex);
832 
833 	return r;
834 
835 reset_device:
836 	zd_mac_free_cur_beacon_locked(mac);
837 	kfree_skb(beacon);
838 
839 	mutex_unlock(&mac->chip.mutex);
840 	kfree(ioreqs);
841 
842 	/* semaphore stuck, reset device to avoid fw freeze later */
843 	dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
844 				  "resetting device...");
845 	usb_queue_reset_device(mac->chip.usb.intf);
846 
847 	return r;
848 }
849 
fill_ctrlset(struct zd_mac * mac,struct sk_buff * skb)850 static int fill_ctrlset(struct zd_mac *mac,
851 			struct sk_buff *skb)
852 {
853 	int r;
854 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
855 	unsigned int frag_len = skb->len + FCS_LEN;
856 	unsigned int packet_length;
857 	struct ieee80211_rate *txrate;
858 	struct zd_ctrlset *cs = skb_push(skb, sizeof(struct zd_ctrlset));
859 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
860 
861 	ZD_ASSERT(frag_len <= 0xffff);
862 
863 	/*
864 	 * Firmware computes the duration itself (for all frames except PSPoll)
865 	 * and needs the field set to 0 at input, otherwise firmware messes up
866 	 * duration_id and sets bits 14 and 15 on.
867 	 */
868 	if (!ieee80211_is_pspoll(hdr->frame_control))
869 		hdr->duration_id = 0;
870 
871 	txrate = ieee80211_get_tx_rate(mac->hw, info);
872 
873 	cs->modulation = txrate->hw_value;
874 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
875 		cs->modulation = txrate->hw_value_short;
876 
877 	cs->tx_length = cpu_to_le16(frag_len);
878 
879 	cs_set_control(mac, cs, hdr, info);
880 
881 	packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
882 	ZD_ASSERT(packet_length <= 0xffff);
883 	/* ZD1211B: Computing the length difference this way, gives us
884 	 * flexibility to compute the packet length.
885 	 */
886 	cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
887 			packet_length - frag_len : packet_length);
888 
889 	/*
890 	 * CURRENT LENGTH:
891 	 * - transmit frame length in microseconds
892 	 * - seems to be derived from frame length
893 	 * - see Cal_Us_Service() in zdinlinef.h
894 	 * - if macp->bTxBurstEnable is enabled, then multiply by 4
895 	 *  - bTxBurstEnable is never set in the vendor driver
896 	 *
897 	 * SERVICE:
898 	 * - "for PLCP configuration"
899 	 * - always 0 except in some situations at 802.11b 11M
900 	 * - see line 53 of zdinlinef.h
901 	 */
902 	cs->service = 0;
903 	r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
904 		                 le16_to_cpu(cs->tx_length));
905 	if (r < 0)
906 		return r;
907 	cs->current_length = cpu_to_le16(r);
908 	cs->next_frame_length = 0;
909 
910 	return 0;
911 }
912 
913 /**
914  * zd_op_tx - transmits a network frame to the device
915  *
916  * @dev: mac80211 hardware device
917  * @skb: socket buffer
918  * @control: the control structure
919  *
920  * This function transmit an IEEE 802.11 network frame to the device. The
921  * control block of the skbuff will be initialized. If necessary the incoming
922  * mac80211 queues will be stopped.
923  */
zd_op_tx(struct ieee80211_hw * hw,struct ieee80211_tx_control * control,struct sk_buff * skb)924 static void zd_op_tx(struct ieee80211_hw *hw,
925 		     struct ieee80211_tx_control *control,
926 		     struct sk_buff *skb)
927 {
928 	struct zd_mac *mac = zd_hw_mac(hw);
929 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
930 	int r;
931 
932 	r = fill_ctrlset(mac, skb);
933 	if (r)
934 		goto fail;
935 
936 	info->rate_driver_data[0] = hw;
937 
938 	r = zd_usb_tx(&mac->chip.usb, skb);
939 	if (r)
940 		goto fail;
941 	return;
942 
943 fail:
944 	dev_kfree_skb(skb);
945 }
946 
947 /**
948  * filter_ack - filters incoming packets for acknowledgements
949  * @dev: the mac80211 device
950  * @rx_hdr: received header
951  * @stats: the status for the received packet
952  *
953  * This functions looks for ACK packets and tries to match them with the
954  * frames in the tx queue. If a match is found the frame will be dequeued and
955  * the upper layers is informed about the successful transmission. If
956  * mac80211 queues have been stopped and the number of frames still to be
957  * transmitted is low the queues will be opened again.
958  *
959  * Returns 1 if the frame was an ACK, 0 if it was ignored.
960  */
filter_ack(struct ieee80211_hw * hw,struct ieee80211_hdr * rx_hdr,struct ieee80211_rx_status * stats)961 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
962 		      struct ieee80211_rx_status *stats)
963 {
964 	struct zd_mac *mac = zd_hw_mac(hw);
965 	struct sk_buff *skb;
966 	struct sk_buff_head *q;
967 	unsigned long flags;
968 	int found = 0;
969 	int i, position = 0;
970 
971 	if (!ieee80211_is_ack(rx_hdr->frame_control))
972 		return 0;
973 
974 	q = &mac->ack_wait_queue;
975 	spin_lock_irqsave(&q->lock, flags);
976 	skb_queue_walk(q, skb) {
977 		struct ieee80211_hdr *tx_hdr;
978 
979 		position ++;
980 
981 		if (mac->ack_pending && skb_queue_is_first(q, skb))
982 		    continue;
983 
984 		tx_hdr = (struct ieee80211_hdr *)skb->data;
985 		if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1)))
986 		{
987 			found = 1;
988 			break;
989 		}
990 	}
991 
992 	if (found) {
993 		for (i=1; i<position; i++) {
994 			skb = __skb_dequeue(q);
995 			zd_mac_tx_status(hw, skb,
996 					 mac->ack_pending ? mac->ack_signal : 0,
997 					 NULL);
998 			mac->ack_pending = 0;
999 		}
1000 
1001 		mac->ack_pending = 1;
1002 		mac->ack_signal = stats->signal;
1003 
1004 		/* Prevent pending tx-packet on AP-mode */
1005 		if (mac->type == NL80211_IFTYPE_AP) {
1006 			skb = __skb_dequeue(q);
1007 			zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
1008 			mac->ack_pending = 0;
1009 		}
1010 	}
1011 
1012 	spin_unlock_irqrestore(&q->lock, flags);
1013 	return 1;
1014 }
1015 
zd_mac_rx(struct ieee80211_hw * hw,const u8 * buffer,unsigned int length)1016 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
1017 {
1018 	struct zd_mac *mac = zd_hw_mac(hw);
1019 	struct ieee80211_rx_status stats;
1020 	const struct rx_status *status;
1021 	struct sk_buff *skb;
1022 	int bad_frame = 0;
1023 	__le16 fc;
1024 	int need_padding;
1025 	int i;
1026 	u8 rate;
1027 
1028 	if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
1029 	             FCS_LEN + sizeof(struct rx_status))
1030 		return -EINVAL;
1031 
1032 	memset(&stats, 0, sizeof(stats));
1033 
1034 	/* Note about pass_failed_fcs and pass_ctrl access below:
1035 	 * mac locking intentionally omitted here, as this is the only unlocked
1036 	 * reader and the only writer is configure_filter. Plus, if there were
1037 	 * any races accessing these variables, it wouldn't really matter.
1038 	 * If mac80211 ever provides a way for us to access filter flags
1039 	 * from outside configure_filter, we could improve on this. Also, this
1040 	 * situation may change once we implement some kind of DMA-into-skb
1041 	 * RX path. */
1042 
1043 	/* Caller has to ensure that length >= sizeof(struct rx_status). */
1044 	status = (struct rx_status *)
1045 		(buffer + (length - sizeof(struct rx_status)));
1046 	if (status->frame_status & ZD_RX_ERROR) {
1047 		if (mac->pass_failed_fcs &&
1048 				(status->frame_status & ZD_RX_CRC32_ERROR)) {
1049 			stats.flag |= RX_FLAG_FAILED_FCS_CRC;
1050 			bad_frame = 1;
1051 		} else {
1052 			return -EINVAL;
1053 		}
1054 	}
1055 
1056 	stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
1057 	stats.band = NL80211_BAND_2GHZ;
1058 	stats.signal = zd_check_signal(hw, status->signal_strength);
1059 
1060 	rate = zd_rx_rate(buffer, status);
1061 
1062 	/* todo: return index in the big switches in zd_rx_rate instead */
1063 	for (i = 0; i < mac->band.n_bitrates; i++)
1064 		if (rate == mac->band.bitrates[i].hw_value)
1065 			stats.rate_idx = i;
1066 
1067 	length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
1068 	buffer += ZD_PLCP_HEADER_SIZE;
1069 
1070 	/* Except for bad frames, filter each frame to see if it is an ACK, in
1071 	 * which case our internal TX tracking is updated. Normally we then
1072 	 * bail here as there's no need to pass ACKs on up to the stack, but
1073 	 * there is also the case where the stack has requested us to pass
1074 	 * control frames on up (pass_ctrl) which we must consider. */
1075 	if (!bad_frame &&
1076 			filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1077 			&& !mac->pass_ctrl)
1078 		return 0;
1079 
1080 	fc = get_unaligned((__le16*)buffer);
1081 	need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1082 
1083 	skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1084 	if (skb == NULL)
1085 		return -ENOMEM;
1086 	if (need_padding) {
1087 		/* Make sure the payload data is 4 byte aligned. */
1088 		skb_reserve(skb, 2);
1089 	}
1090 
1091 	/* FIXME : could we avoid this big memcpy ? */
1092 	skb_put_data(skb, buffer, length);
1093 
1094 	memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1095 	ieee80211_rx_irqsafe(hw, skb);
1096 	return 0;
1097 }
1098 
zd_op_add_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1099 static int zd_op_add_interface(struct ieee80211_hw *hw,
1100 				struct ieee80211_vif *vif)
1101 {
1102 	struct zd_mac *mac = zd_hw_mac(hw);
1103 
1104 	/* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1105 	if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1106 		return -EOPNOTSUPP;
1107 
1108 	switch (vif->type) {
1109 	case NL80211_IFTYPE_MONITOR:
1110 	case NL80211_IFTYPE_MESH_POINT:
1111 	case NL80211_IFTYPE_STATION:
1112 	case NL80211_IFTYPE_ADHOC:
1113 	case NL80211_IFTYPE_AP:
1114 		mac->type = vif->type;
1115 		break;
1116 	default:
1117 		return -EOPNOTSUPP;
1118 	}
1119 
1120 	mac->vif = vif;
1121 
1122 	return set_mac_and_bssid(mac);
1123 }
1124 
zd_op_remove_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1125 static void zd_op_remove_interface(struct ieee80211_hw *hw,
1126 				    struct ieee80211_vif *vif)
1127 {
1128 	struct zd_mac *mac = zd_hw_mac(hw);
1129 	mac->type = NL80211_IFTYPE_UNSPECIFIED;
1130 	mac->vif = NULL;
1131 	zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1132 	zd_write_mac_addr(&mac->chip, NULL);
1133 
1134 	zd_mac_free_cur_beacon(mac);
1135 }
1136 
zd_op_config(struct ieee80211_hw * hw,u32 changed)1137 static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1138 {
1139 	struct zd_mac *mac = zd_hw_mac(hw);
1140 	struct ieee80211_conf *conf = &hw->conf;
1141 
1142 	spin_lock_irq(&mac->lock);
1143 	mac->channel = conf->chandef.chan->hw_value;
1144 	spin_unlock_irq(&mac->lock);
1145 
1146 	return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value);
1147 }
1148 
zd_beacon_done(struct zd_mac * mac)1149 static void zd_beacon_done(struct zd_mac *mac)
1150 {
1151 	struct sk_buff *skb, *beacon;
1152 
1153 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1154 		return;
1155 	if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1156 		return;
1157 
1158 	/*
1159 	 * Send out buffered broad- and multicast frames.
1160 	 */
1161 	while (!ieee80211_queue_stopped(mac->hw, 0)) {
1162 		skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1163 		if (!skb)
1164 			break;
1165 		zd_op_tx(mac->hw, NULL, skb);
1166 	}
1167 
1168 	/*
1169 	 * Fetch next beacon so that tim_count is updated.
1170 	 */
1171 	beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1172 	if (beacon)
1173 		zd_mac_config_beacon(mac->hw, beacon, true);
1174 
1175 	spin_lock_irq(&mac->lock);
1176 	mac->beacon.last_update = jiffies;
1177 	spin_unlock_irq(&mac->lock);
1178 }
1179 
zd_process_intr(struct work_struct * work)1180 static void zd_process_intr(struct work_struct *work)
1181 {
1182 	u16 int_status;
1183 	unsigned long flags;
1184 	struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1185 
1186 	spin_lock_irqsave(&mac->lock, flags);
1187 	int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1188 	spin_unlock_irqrestore(&mac->lock, flags);
1189 
1190 	if (int_status & INT_CFG_NEXT_BCN) {
1191 		/*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1192 		zd_beacon_done(mac);
1193 	} else {
1194 		dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1195 	}
1196 
1197 	zd_chip_enable_hwint(&mac->chip);
1198 }
1199 
1200 
zd_op_prepare_multicast(struct ieee80211_hw * hw,struct netdev_hw_addr_list * mc_list)1201 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1202 				   struct netdev_hw_addr_list *mc_list)
1203 {
1204 	struct zd_mac *mac = zd_hw_mac(hw);
1205 	struct zd_mc_hash hash;
1206 	struct netdev_hw_addr *ha;
1207 
1208 	zd_mc_clear(&hash);
1209 
1210 	netdev_hw_addr_list_for_each(ha, mc_list) {
1211 		dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1212 		zd_mc_add_addr(&hash, ha->addr);
1213 	}
1214 
1215 	return hash.low | ((u64)hash.high << 32);
1216 }
1217 
1218 #define SUPPORTED_FIF_FLAGS \
1219 	(FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1220 	FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
zd_op_configure_filter(struct ieee80211_hw * hw,unsigned int changed_flags,unsigned int * new_flags,u64 multicast)1221 static void zd_op_configure_filter(struct ieee80211_hw *hw,
1222 			unsigned int changed_flags,
1223 			unsigned int *new_flags,
1224 			u64 multicast)
1225 {
1226 	struct zd_mc_hash hash = {
1227 		.low = multicast,
1228 		.high = multicast >> 32,
1229 	};
1230 	struct zd_mac *mac = zd_hw_mac(hw);
1231 	unsigned long flags;
1232 	int r;
1233 
1234 	/* Only deal with supported flags */
1235 	changed_flags &= SUPPORTED_FIF_FLAGS;
1236 	*new_flags &= SUPPORTED_FIF_FLAGS;
1237 
1238 	/*
1239 	 * If multicast parameter (as returned by zd_op_prepare_multicast)
1240 	 * has changed, no bit in changed_flags is set. To handle this
1241 	 * situation, we do not return if changed_flags is 0. If we do so,
1242 	 * we will have some issue with IPv6 which uses multicast for link
1243 	 * layer address resolution.
1244 	 */
1245 	if (*new_flags & FIF_ALLMULTI)
1246 		zd_mc_add_all(&hash);
1247 
1248 	spin_lock_irqsave(&mac->lock, flags);
1249 	mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1250 	mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1251 	mac->multicast_hash = hash;
1252 	spin_unlock_irqrestore(&mac->lock, flags);
1253 
1254 	zd_chip_set_multicast_hash(&mac->chip, &hash);
1255 
1256 	if (changed_flags & FIF_CONTROL) {
1257 		r = set_rx_filter(mac);
1258 		if (r)
1259 			dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1260 	}
1261 
1262 	/* no handling required for FIF_OTHER_BSS as we don't currently
1263 	 * do BSSID filtering */
1264 	/* FIXME: in future it would be nice to enable the probe response
1265 	 * filter (so that the driver doesn't see them) until
1266 	 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1267 	 * have to schedule work to enable prbresp reception, which might
1268 	 * happen too late. For now we'll just listen and forward them all the
1269 	 * time. */
1270 }
1271 
set_rts_cts(struct zd_mac * mac,unsigned int short_preamble)1272 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1273 {
1274 	mutex_lock(&mac->chip.mutex);
1275 	zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1276 	mutex_unlock(&mac->chip.mutex);
1277 }
1278 
zd_op_bss_info_changed(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_bss_conf * bss_conf,u32 changes)1279 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1280 				   struct ieee80211_vif *vif,
1281 				   struct ieee80211_bss_conf *bss_conf,
1282 				   u32 changes)
1283 {
1284 	struct zd_mac *mac = zd_hw_mac(hw);
1285 	int associated;
1286 
1287 	dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1288 
1289 	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1290 	    mac->type == NL80211_IFTYPE_ADHOC ||
1291 	    mac->type == NL80211_IFTYPE_AP) {
1292 		associated = true;
1293 		if (changes & BSS_CHANGED_BEACON) {
1294 			struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1295 
1296 			if (beacon) {
1297 				zd_chip_disable_hwint(&mac->chip);
1298 				zd_mac_config_beacon(hw, beacon, false);
1299 				zd_chip_enable_hwint(&mac->chip);
1300 			}
1301 		}
1302 
1303 		if (changes & BSS_CHANGED_BEACON_ENABLED) {
1304 			u16 interval = 0;
1305 			u8 period = 0;
1306 
1307 			if (bss_conf->enable_beacon) {
1308 				period = bss_conf->dtim_period;
1309 				interval = bss_conf->beacon_int;
1310 			}
1311 
1312 			spin_lock_irq(&mac->lock);
1313 			mac->beacon.period = period;
1314 			mac->beacon.interval = interval;
1315 			mac->beacon.last_update = jiffies;
1316 			spin_unlock_irq(&mac->lock);
1317 
1318 			zd_set_beacon_interval(&mac->chip, interval, period,
1319 					       mac->type);
1320 		}
1321 	} else
1322 		associated = is_valid_ether_addr(bss_conf->bssid);
1323 
1324 	spin_lock_irq(&mac->lock);
1325 	mac->associated = associated;
1326 	spin_unlock_irq(&mac->lock);
1327 
1328 	/* TODO: do hardware bssid filtering */
1329 
1330 	if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1331 		spin_lock_irq(&mac->lock);
1332 		mac->short_preamble = bss_conf->use_short_preamble;
1333 		spin_unlock_irq(&mac->lock);
1334 
1335 		set_rts_cts(mac, bss_conf->use_short_preamble);
1336 	}
1337 }
1338 
zd_op_get_tsf(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1339 static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1340 {
1341 	struct zd_mac *mac = zd_hw_mac(hw);
1342 	return zd_chip_get_tsf(&mac->chip);
1343 }
1344 
1345 static const struct ieee80211_ops zd_ops = {
1346 	.tx			= zd_op_tx,
1347 	.start			= zd_op_start,
1348 	.stop			= zd_op_stop,
1349 	.add_interface		= zd_op_add_interface,
1350 	.remove_interface	= zd_op_remove_interface,
1351 	.config			= zd_op_config,
1352 	.prepare_multicast	= zd_op_prepare_multicast,
1353 	.configure_filter	= zd_op_configure_filter,
1354 	.bss_info_changed	= zd_op_bss_info_changed,
1355 	.get_tsf		= zd_op_get_tsf,
1356 };
1357 
zd_mac_alloc_hw(struct usb_interface * intf)1358 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1359 {
1360 	struct zd_mac *mac;
1361 	struct ieee80211_hw *hw;
1362 
1363 	hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1364 	if (!hw) {
1365 		dev_dbg_f(&intf->dev, "out of memory\n");
1366 		return NULL;
1367 	}
1368 
1369 	mac = zd_hw_mac(hw);
1370 
1371 	memset(mac, 0, sizeof(*mac));
1372 	spin_lock_init(&mac->lock);
1373 	mac->hw = hw;
1374 
1375 	mac->type = NL80211_IFTYPE_UNSPECIFIED;
1376 
1377 	memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1378 	memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1379 	mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1380 	mac->band.bitrates = mac->rates;
1381 	mac->band.n_channels = ARRAY_SIZE(zd_channels);
1382 	mac->band.channels = mac->channels;
1383 
1384 	hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band;
1385 
1386 	ieee80211_hw_set(hw, MFP_CAPABLE);
1387 	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
1388 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1389 	ieee80211_hw_set(hw, SIGNAL_UNSPEC);
1390 
1391 	hw->wiphy->interface_modes =
1392 		BIT(NL80211_IFTYPE_MESH_POINT) |
1393 		BIT(NL80211_IFTYPE_STATION) |
1394 		BIT(NL80211_IFTYPE_ADHOC) |
1395 		BIT(NL80211_IFTYPE_AP);
1396 
1397 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1398 
1399 	hw->max_signal = 100;
1400 	hw->queues = 1;
1401 	hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1402 
1403 	/*
1404 	 * Tell mac80211 that we support multi rate retries
1405 	 */
1406 	hw->max_rates = IEEE80211_TX_MAX_RATES;
1407 	hw->max_rate_tries = 18;	/* 9 rates * 2 retries/rate */
1408 
1409 	skb_queue_head_init(&mac->ack_wait_queue);
1410 	mac->ack_pending = 0;
1411 
1412 	zd_chip_init(&mac->chip, hw, intf);
1413 	housekeeping_init(mac);
1414 	beacon_init(mac);
1415 	INIT_WORK(&mac->process_intr, zd_process_intr);
1416 
1417 	SET_IEEE80211_DEV(hw, &intf->dev);
1418 	return hw;
1419 }
1420 
1421 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1422 
beacon_watchdog_handler(struct work_struct * work)1423 static void beacon_watchdog_handler(struct work_struct *work)
1424 {
1425 	struct zd_mac *mac =
1426 		container_of(work, struct zd_mac, beacon.watchdog_work.work);
1427 	struct sk_buff *beacon;
1428 	unsigned long timeout;
1429 	int interval, period;
1430 
1431 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1432 		goto rearm;
1433 	if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1434 		goto rearm;
1435 
1436 	spin_lock_irq(&mac->lock);
1437 	interval = mac->beacon.interval;
1438 	period = mac->beacon.period;
1439 	timeout = mac->beacon.last_update +
1440 			msecs_to_jiffies(interval * 1024 / 1000) * 3;
1441 	spin_unlock_irq(&mac->lock);
1442 
1443 	if (interval > 0 && time_is_before_jiffies(timeout)) {
1444 		dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1445 					   "restarting. "
1446 					   "(interval: %d, dtim: %d)\n",
1447 					   interval, period);
1448 
1449 		zd_chip_disable_hwint(&mac->chip);
1450 
1451 		beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1452 		if (beacon) {
1453 			zd_mac_free_cur_beacon(mac);
1454 
1455 			zd_mac_config_beacon(mac->hw, beacon, false);
1456 		}
1457 
1458 		zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1459 
1460 		zd_chip_enable_hwint(&mac->chip);
1461 
1462 		spin_lock_irq(&mac->lock);
1463 		mac->beacon.last_update = jiffies;
1464 		spin_unlock_irq(&mac->lock);
1465 	}
1466 
1467 rearm:
1468 	queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1469 			   BEACON_WATCHDOG_DELAY);
1470 }
1471 
beacon_init(struct zd_mac * mac)1472 static void beacon_init(struct zd_mac *mac)
1473 {
1474 	INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1475 }
1476 
beacon_enable(struct zd_mac * mac)1477 static void beacon_enable(struct zd_mac *mac)
1478 {
1479 	dev_dbg_f(zd_mac_dev(mac), "\n");
1480 
1481 	mac->beacon.last_update = jiffies;
1482 	queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1483 			   BEACON_WATCHDOG_DELAY);
1484 }
1485 
beacon_disable(struct zd_mac * mac)1486 static void beacon_disable(struct zd_mac *mac)
1487 {
1488 	dev_dbg_f(zd_mac_dev(mac), "\n");
1489 	cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1490 
1491 	zd_mac_free_cur_beacon(mac);
1492 }
1493 
1494 #define LINK_LED_WORK_DELAY HZ
1495 
link_led_handler(struct work_struct * work)1496 static void link_led_handler(struct work_struct *work)
1497 {
1498 	struct zd_mac *mac =
1499 		container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1500 	struct zd_chip *chip = &mac->chip;
1501 	int is_associated;
1502 	int r;
1503 
1504 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1505 		goto requeue;
1506 
1507 	spin_lock_irq(&mac->lock);
1508 	is_associated = mac->associated;
1509 	spin_unlock_irq(&mac->lock);
1510 
1511 	r = zd_chip_control_leds(chip,
1512 		                 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1513 	if (r)
1514 		dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1515 
1516 requeue:
1517 	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1518 		           LINK_LED_WORK_DELAY);
1519 }
1520 
housekeeping_init(struct zd_mac * mac)1521 static void housekeeping_init(struct zd_mac *mac)
1522 {
1523 	INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1524 }
1525 
housekeeping_enable(struct zd_mac * mac)1526 static void housekeeping_enable(struct zd_mac *mac)
1527 {
1528 	dev_dbg_f(zd_mac_dev(mac), "\n");
1529 	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1530 			   0);
1531 }
1532 
housekeeping_disable(struct zd_mac * mac)1533 static void housekeeping_disable(struct zd_mac *mac)
1534 {
1535 	dev_dbg_f(zd_mac_dev(mac), "\n");
1536 	cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1537 	zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1538 }
1539