1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * The full GNU General Public License is included in this distribution
20 * in the file called COPYING.
21 *
22 * Contact Information:
23 * Intel Linux Wireless <linuxwifi@intel.com>
24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 *
26 * BSD LICENSE
27 *
28 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 *
35 * * Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * * Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in
39 * the documentation and/or other materials provided with the
40 * distribution.
41 * * Neither the name Intel Corporation nor the names of its
42 * contributors may be used to endorse or promote products derived
43 * from this software without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
46 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
47 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
48 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
49 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
50 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
51 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
52 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
53 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
54 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
55 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
56 *****************************************************************************/
57
58 #include <linux/slab.h>
59 #include <net/mac80211.h>
60
61 #include "iwl-trans.h"
62
63 #include "dev.h"
64 #include "calib.h"
65 #include "agn.h"
66
67 /*****************************************************************************
68 * INIT calibrations framework
69 *****************************************************************************/
70
71 /* Opaque calibration results */
72 struct iwl_calib_result {
73 struct list_head list;
74 size_t cmd_len;
75 struct iwl_calib_hdr hdr;
76 /* data follows */
77 };
78
79 struct statistics_general_data {
80 u32 beacon_silence_rssi_a;
81 u32 beacon_silence_rssi_b;
82 u32 beacon_silence_rssi_c;
83 u32 beacon_energy_a;
84 u32 beacon_energy_b;
85 u32 beacon_energy_c;
86 };
87
iwl_send_calib_results(struct iwl_priv * priv)88 int iwl_send_calib_results(struct iwl_priv *priv)
89 {
90 struct iwl_host_cmd hcmd = {
91 .id = REPLY_PHY_CALIBRATION_CMD,
92 };
93 struct iwl_calib_result *res;
94
95 list_for_each_entry(res, &priv->calib_results, list) {
96 int ret;
97
98 hcmd.len[0] = res->cmd_len;
99 hcmd.data[0] = &res->hdr;
100 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
101 ret = iwl_dvm_send_cmd(priv, &hcmd);
102 if (ret) {
103 IWL_ERR(priv, "Error %d on calib cmd %d\n",
104 ret, res->hdr.op_code);
105 return ret;
106 }
107 }
108
109 return 0;
110 }
111
iwl_calib_set(struct iwl_priv * priv,const struct iwl_calib_hdr * cmd,int len)112 int iwl_calib_set(struct iwl_priv *priv,
113 const struct iwl_calib_hdr *cmd, int len)
114 {
115 struct iwl_calib_result *res, *tmp;
116
117 res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
118 GFP_ATOMIC);
119 if (!res)
120 return -ENOMEM;
121 memcpy(&res->hdr, cmd, len);
122 res->cmd_len = len;
123
124 list_for_each_entry(tmp, &priv->calib_results, list) {
125 if (tmp->hdr.op_code == res->hdr.op_code) {
126 list_replace(&tmp->list, &res->list);
127 kfree(tmp);
128 return 0;
129 }
130 }
131
132 /* wasn't in list already */
133 list_add_tail(&res->list, &priv->calib_results);
134
135 return 0;
136 }
137
iwl_calib_free_results(struct iwl_priv * priv)138 void iwl_calib_free_results(struct iwl_priv *priv)
139 {
140 struct iwl_calib_result *res, *tmp;
141
142 list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
143 list_del(&res->list);
144 kfree(res);
145 }
146 }
147
148 /*****************************************************************************
149 * RUNTIME calibrations framework
150 *****************************************************************************/
151
152 /* "false alarms" are signals that our DSP tries to lock onto,
153 * but then determines that they are either noise, or transmissions
154 * from a distant wireless network (also "noise", really) that get
155 * "stepped on" by stronger transmissions within our own network.
156 * This algorithm attempts to set a sensitivity level that is high
157 * enough to receive all of our own network traffic, but not so
158 * high that our DSP gets too busy trying to lock onto non-network
159 * activity/noise. */
iwl_sens_energy_cck(struct iwl_priv * priv,u32 norm_fa,u32 rx_enable_time,struct statistics_general_data * rx_info)160 static int iwl_sens_energy_cck(struct iwl_priv *priv,
161 u32 norm_fa,
162 u32 rx_enable_time,
163 struct statistics_general_data *rx_info)
164 {
165 u32 max_nrg_cck = 0;
166 int i = 0;
167 u8 max_silence_rssi = 0;
168 u32 silence_ref = 0;
169 u8 silence_rssi_a = 0;
170 u8 silence_rssi_b = 0;
171 u8 silence_rssi_c = 0;
172 u32 val;
173
174 /* "false_alarms" values below are cross-multiplications to assess the
175 * numbers of false alarms within the measured period of actual Rx
176 * (Rx is off when we're txing), vs the min/max expected false alarms
177 * (some should be expected if rx is sensitive enough) in a
178 * hypothetical listening period of 200 time units (TU), 204.8 msec:
179 *
180 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
181 *
182 * */
183 u32 false_alarms = norm_fa * 200 * 1024;
184 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
185 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
186 struct iwl_sensitivity_data *data = NULL;
187 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
188
189 data = &(priv->sensitivity_data);
190
191 data->nrg_auto_corr_silence_diff = 0;
192
193 /* Find max silence rssi among all 3 receivers.
194 * This is background noise, which may include transmissions from other
195 * networks, measured during silence before our network's beacon */
196 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
197 ALL_BAND_FILTER) >> 8);
198 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
199 ALL_BAND_FILTER) >> 8);
200 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
201 ALL_BAND_FILTER) >> 8);
202
203 val = max(silence_rssi_b, silence_rssi_c);
204 max_silence_rssi = max(silence_rssi_a, (u8) val);
205
206 /* Store silence rssi in 20-beacon history table */
207 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
208 data->nrg_silence_idx++;
209 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
210 data->nrg_silence_idx = 0;
211
212 /* Find max silence rssi across 20 beacon history */
213 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
214 val = data->nrg_silence_rssi[i];
215 silence_ref = max(silence_ref, val);
216 }
217 IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
218 silence_rssi_a, silence_rssi_b, silence_rssi_c,
219 silence_ref);
220
221 /* Find max rx energy (min value!) among all 3 receivers,
222 * measured during beacon frame.
223 * Save it in 10-beacon history table. */
224 i = data->nrg_energy_idx;
225 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
226 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
227
228 data->nrg_energy_idx++;
229 if (data->nrg_energy_idx >= 10)
230 data->nrg_energy_idx = 0;
231
232 /* Find min rx energy (max value) across 10 beacon history.
233 * This is the minimum signal level that we want to receive well.
234 * Add backoff (margin so we don't miss slightly lower energy frames).
235 * This establishes an upper bound (min value) for energy threshold. */
236 max_nrg_cck = data->nrg_value[0];
237 for (i = 1; i < 10; i++)
238 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
239 max_nrg_cck += 6;
240
241 IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
242 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
243 rx_info->beacon_energy_c, max_nrg_cck - 6);
244
245 /* Count number of consecutive beacons with fewer-than-desired
246 * false alarms. */
247 if (false_alarms < min_false_alarms)
248 data->num_in_cck_no_fa++;
249 else
250 data->num_in_cck_no_fa = 0;
251 IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
252 data->num_in_cck_no_fa);
253
254 /* If we got too many false alarms this time, reduce sensitivity */
255 if ((false_alarms > max_false_alarms) &&
256 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
257 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
258 false_alarms, max_false_alarms);
259 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
260 data->nrg_curr_state = IWL_FA_TOO_MANY;
261 /* Store for "fewer than desired" on later beacon */
262 data->nrg_silence_ref = silence_ref;
263
264 /* increase energy threshold (reduce nrg value)
265 * to decrease sensitivity */
266 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
267 /* Else if we got fewer than desired, increase sensitivity */
268 } else if (false_alarms < min_false_alarms) {
269 data->nrg_curr_state = IWL_FA_TOO_FEW;
270
271 /* Compare silence level with silence level for most recent
272 * healthy number or too many false alarms */
273 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
274 (s32)silence_ref;
275
276 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
277 false_alarms, min_false_alarms,
278 data->nrg_auto_corr_silence_diff);
279
280 /* Increase value to increase sensitivity, but only if:
281 * 1a) previous beacon did *not* have *too many* false alarms
282 * 1b) AND there's a significant difference in Rx levels
283 * from a previous beacon with too many, or healthy # FAs
284 * OR 2) We've seen a lot of beacons (100) with too few
285 * false alarms */
286 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
287 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
288 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
289
290 IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
291 /* Increase nrg value to increase sensitivity */
292 val = data->nrg_th_cck + NRG_STEP_CCK;
293 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
294 } else {
295 IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
296 }
297
298 /* Else we got a healthy number of false alarms, keep status quo */
299 } else {
300 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
301 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
302
303 /* Store for use in "fewer than desired" with later beacon */
304 data->nrg_silence_ref = silence_ref;
305
306 /* If previous beacon had too many false alarms,
307 * give it some extra margin by reducing sensitivity again
308 * (but don't go below measured energy of desired Rx) */
309 if (data->nrg_prev_state == IWL_FA_TOO_MANY) {
310 IWL_DEBUG_CALIB(priv, "... increasing margin\n");
311 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
312 data->nrg_th_cck -= NRG_MARGIN;
313 else
314 data->nrg_th_cck = max_nrg_cck;
315 }
316 }
317
318 /* Make sure the energy threshold does not go above the measured
319 * energy of the desired Rx signals (reduced by backoff margin),
320 * or else we might start missing Rx frames.
321 * Lower value is higher energy, so we use max()!
322 */
323 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
324 IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
325
326 data->nrg_prev_state = data->nrg_curr_state;
327
328 /* Auto-correlation CCK algorithm */
329 if (false_alarms > min_false_alarms) {
330
331 /* increase auto_corr values to decrease sensitivity
332 * so the DSP won't be disturbed by the noise
333 */
334 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
335 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
336 else {
337 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
338 data->auto_corr_cck =
339 min((u32)ranges->auto_corr_max_cck, val);
340 }
341 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
342 data->auto_corr_cck_mrc =
343 min((u32)ranges->auto_corr_max_cck_mrc, val);
344 } else if ((false_alarms < min_false_alarms) &&
345 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
346 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
347
348 /* Decrease auto_corr values to increase sensitivity */
349 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
350 data->auto_corr_cck =
351 max((u32)ranges->auto_corr_min_cck, val);
352 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
353 data->auto_corr_cck_mrc =
354 max((u32)ranges->auto_corr_min_cck_mrc, val);
355 }
356
357 return 0;
358 }
359
360
iwl_sens_auto_corr_ofdm(struct iwl_priv * priv,u32 norm_fa,u32 rx_enable_time)361 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
362 u32 norm_fa,
363 u32 rx_enable_time)
364 {
365 u32 val;
366 u32 false_alarms = norm_fa * 200 * 1024;
367 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
368 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
369 struct iwl_sensitivity_data *data = NULL;
370 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
371
372 data = &(priv->sensitivity_data);
373
374 /* If we got too many false alarms this time, reduce sensitivity */
375 if (false_alarms > max_false_alarms) {
376
377 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
378 false_alarms, max_false_alarms);
379
380 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
381 data->auto_corr_ofdm =
382 min((u32)ranges->auto_corr_max_ofdm, val);
383
384 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
385 data->auto_corr_ofdm_mrc =
386 min((u32)ranges->auto_corr_max_ofdm_mrc, val);
387
388 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
389 data->auto_corr_ofdm_x1 =
390 min((u32)ranges->auto_corr_max_ofdm_x1, val);
391
392 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
393 data->auto_corr_ofdm_mrc_x1 =
394 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
395 }
396
397 /* Else if we got fewer than desired, increase sensitivity */
398 else if (false_alarms < min_false_alarms) {
399
400 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
401 false_alarms, min_false_alarms);
402
403 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
404 data->auto_corr_ofdm =
405 max((u32)ranges->auto_corr_min_ofdm, val);
406
407 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
408 data->auto_corr_ofdm_mrc =
409 max((u32)ranges->auto_corr_min_ofdm_mrc, val);
410
411 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
412 data->auto_corr_ofdm_x1 =
413 max((u32)ranges->auto_corr_min_ofdm_x1, val);
414
415 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
416 data->auto_corr_ofdm_mrc_x1 =
417 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
418 } else {
419 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
420 min_false_alarms, false_alarms, max_false_alarms);
421 }
422 return 0;
423 }
424
iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv * priv,struct iwl_sensitivity_data * data,__le16 * tbl)425 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
426 struct iwl_sensitivity_data *data,
427 __le16 *tbl)
428 {
429 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
430 cpu_to_le16((u16)data->auto_corr_ofdm);
431 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
432 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
433 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
434 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
435 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
436 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
437
438 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
439 cpu_to_le16((u16)data->auto_corr_cck);
440 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
441 cpu_to_le16((u16)data->auto_corr_cck_mrc);
442
443 tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
444 cpu_to_le16((u16)data->nrg_th_cck);
445 tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
446 cpu_to_le16((u16)data->nrg_th_ofdm);
447
448 tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
449 cpu_to_le16(data->barker_corr_th_min);
450 tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
451 cpu_to_le16(data->barker_corr_th_min_mrc);
452 tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
453 cpu_to_le16(data->nrg_th_cca);
454
455 IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
456 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
457 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
458 data->nrg_th_ofdm);
459
460 IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
461 data->auto_corr_cck, data->auto_corr_cck_mrc,
462 data->nrg_th_cck);
463 }
464
465 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
iwl_sensitivity_write(struct iwl_priv * priv)466 static int iwl_sensitivity_write(struct iwl_priv *priv)
467 {
468 struct iwl_sensitivity_cmd cmd;
469 struct iwl_sensitivity_data *data = NULL;
470 struct iwl_host_cmd cmd_out = {
471 .id = SENSITIVITY_CMD,
472 .len = { sizeof(struct iwl_sensitivity_cmd), },
473 .flags = CMD_ASYNC,
474 .data = { &cmd, },
475 };
476
477 data = &(priv->sensitivity_data);
478
479 memset(&cmd, 0, sizeof(cmd));
480
481 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
482
483 /* Update uCode's "work" table, and copy it to DSP */
484 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
485
486 /* Don't send command to uCode if nothing has changed */
487 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
488 sizeof(u16)*HD_TABLE_SIZE)) {
489 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
490 return 0;
491 }
492
493 /* Copy table for comparison next time */
494 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
495 sizeof(u16)*HD_TABLE_SIZE);
496
497 return iwl_dvm_send_cmd(priv, &cmd_out);
498 }
499
500 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
iwl_enhance_sensitivity_write(struct iwl_priv * priv)501 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
502 {
503 struct iwl_enhance_sensitivity_cmd cmd;
504 struct iwl_sensitivity_data *data = NULL;
505 struct iwl_host_cmd cmd_out = {
506 .id = SENSITIVITY_CMD,
507 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
508 .flags = CMD_ASYNC,
509 .data = { &cmd, },
510 };
511
512 data = &(priv->sensitivity_data);
513
514 memset(&cmd, 0, sizeof(cmd));
515
516 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
517
518 if (priv->lib->hd_v2) {
519 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
520 HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
521 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
522 HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
523 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
524 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
525 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
526 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
527 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
528 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
529 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
530 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
531 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
532 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
533 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
534 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
535 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
536 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
537 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
538 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
539 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
540 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
541 } else {
542 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
543 HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
544 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
545 HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
546 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
547 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
548 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
549 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
550 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
551 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
552 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
553 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
554 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
555 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
556 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
557 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
558 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
559 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
560 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
561 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
562 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
563 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
564 }
565
566 /* Update uCode's "work" table, and copy it to DSP */
567 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
568
569 /* Don't send command to uCode if nothing has changed */
570 if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
571 sizeof(u16)*HD_TABLE_SIZE) &&
572 !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
573 &(priv->enhance_sensitivity_tbl[0]),
574 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
575 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
576 return 0;
577 }
578
579 /* Copy table for comparison next time */
580 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
581 sizeof(u16)*HD_TABLE_SIZE);
582 memcpy(&(priv->enhance_sensitivity_tbl[0]),
583 &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
584 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
585
586 return iwl_dvm_send_cmd(priv, &cmd_out);
587 }
588
iwl_init_sensitivity(struct iwl_priv * priv)589 void iwl_init_sensitivity(struct iwl_priv *priv)
590 {
591 int ret = 0;
592 int i;
593 struct iwl_sensitivity_data *data = NULL;
594 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
595
596 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
597 return;
598
599 IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
600
601 /* Clear driver's sensitivity algo data */
602 data = &(priv->sensitivity_data);
603
604 if (ranges == NULL)
605 return;
606
607 memset(data, 0, sizeof(struct iwl_sensitivity_data));
608
609 data->num_in_cck_no_fa = 0;
610 data->nrg_curr_state = IWL_FA_TOO_MANY;
611 data->nrg_prev_state = IWL_FA_TOO_MANY;
612 data->nrg_silence_ref = 0;
613 data->nrg_silence_idx = 0;
614 data->nrg_energy_idx = 0;
615
616 for (i = 0; i < 10; i++)
617 data->nrg_value[i] = 0;
618
619 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
620 data->nrg_silence_rssi[i] = 0;
621
622 data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
623 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
624 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
625 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
626 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
627 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
628 data->nrg_th_cck = ranges->nrg_th_cck;
629 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
630 data->barker_corr_th_min = ranges->barker_corr_th_min;
631 data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
632 data->nrg_th_cca = ranges->nrg_th_cca;
633
634 data->last_bad_plcp_cnt_ofdm = 0;
635 data->last_fa_cnt_ofdm = 0;
636 data->last_bad_plcp_cnt_cck = 0;
637 data->last_fa_cnt_cck = 0;
638
639 if (priv->fw->enhance_sensitivity_table)
640 ret |= iwl_enhance_sensitivity_write(priv);
641 else
642 ret |= iwl_sensitivity_write(priv);
643 IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
644 }
645
iwl_sensitivity_calibration(struct iwl_priv * priv)646 void iwl_sensitivity_calibration(struct iwl_priv *priv)
647 {
648 u32 rx_enable_time;
649 u32 fa_cck;
650 u32 fa_ofdm;
651 u32 bad_plcp_cck;
652 u32 bad_plcp_ofdm;
653 u32 norm_fa_ofdm;
654 u32 norm_fa_cck;
655 struct iwl_sensitivity_data *data = NULL;
656 struct statistics_rx_non_phy *rx_info;
657 struct statistics_rx_phy *ofdm, *cck;
658 struct statistics_general_data statis;
659
660 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
661 return;
662
663 data = &(priv->sensitivity_data);
664
665 if (!iwl_is_any_associated(priv)) {
666 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
667 return;
668 }
669
670 spin_lock_bh(&priv->statistics.lock);
671 rx_info = &priv->statistics.rx_non_phy;
672 ofdm = &priv->statistics.rx_ofdm;
673 cck = &priv->statistics.rx_cck;
674 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
675 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
676 spin_unlock_bh(&priv->statistics.lock);
677 return;
678 }
679
680 /* Extract Statistics: */
681 rx_enable_time = le32_to_cpu(rx_info->channel_load);
682 fa_cck = le32_to_cpu(cck->false_alarm_cnt);
683 fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
684 bad_plcp_cck = le32_to_cpu(cck->plcp_err);
685 bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
686
687 statis.beacon_silence_rssi_a =
688 le32_to_cpu(rx_info->beacon_silence_rssi_a);
689 statis.beacon_silence_rssi_b =
690 le32_to_cpu(rx_info->beacon_silence_rssi_b);
691 statis.beacon_silence_rssi_c =
692 le32_to_cpu(rx_info->beacon_silence_rssi_c);
693 statis.beacon_energy_a =
694 le32_to_cpu(rx_info->beacon_energy_a);
695 statis.beacon_energy_b =
696 le32_to_cpu(rx_info->beacon_energy_b);
697 statis.beacon_energy_c =
698 le32_to_cpu(rx_info->beacon_energy_c);
699
700 spin_unlock_bh(&priv->statistics.lock);
701
702 IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
703
704 if (!rx_enable_time) {
705 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
706 return;
707 }
708
709 /* These statistics increase monotonically, and do not reset
710 * at each beacon. Calculate difference from last value, or just
711 * use the new statistics value if it has reset or wrapped around. */
712 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
713 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
714 else {
715 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
716 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
717 }
718
719 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
720 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
721 else {
722 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
723 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
724 }
725
726 if (data->last_fa_cnt_ofdm > fa_ofdm)
727 data->last_fa_cnt_ofdm = fa_ofdm;
728 else {
729 fa_ofdm -= data->last_fa_cnt_ofdm;
730 data->last_fa_cnt_ofdm += fa_ofdm;
731 }
732
733 if (data->last_fa_cnt_cck > fa_cck)
734 data->last_fa_cnt_cck = fa_cck;
735 else {
736 fa_cck -= data->last_fa_cnt_cck;
737 data->last_fa_cnt_cck += fa_cck;
738 }
739
740 /* Total aborted signal locks */
741 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
742 norm_fa_cck = fa_cck + bad_plcp_cck;
743
744 IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
745 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
746
747 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
748 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
749 if (priv->fw->enhance_sensitivity_table)
750 iwl_enhance_sensitivity_write(priv);
751 else
752 iwl_sensitivity_write(priv);
753 }
754
find_first_chain(u8 mask)755 static inline u8 find_first_chain(u8 mask)
756 {
757 if (mask & ANT_A)
758 return CHAIN_A;
759 if (mask & ANT_B)
760 return CHAIN_B;
761 return CHAIN_C;
762 }
763
764 /**
765 * Run disconnected antenna algorithm to find out which antennas are
766 * disconnected.
767 */
iwl_find_disconn_antenna(struct iwl_priv * priv,u32 * average_sig,struct iwl_chain_noise_data * data)768 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
769 struct iwl_chain_noise_data *data)
770 {
771 u32 active_chains = 0;
772 u32 max_average_sig;
773 u16 max_average_sig_antenna_i;
774 u8 num_tx_chains;
775 u8 first_chain;
776 u16 i = 0;
777
778 average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
779 average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
780 average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
781
782 if (average_sig[0] >= average_sig[1]) {
783 max_average_sig = average_sig[0];
784 max_average_sig_antenna_i = 0;
785 active_chains = (1 << max_average_sig_antenna_i);
786 } else {
787 max_average_sig = average_sig[1];
788 max_average_sig_antenna_i = 1;
789 active_chains = (1 << max_average_sig_antenna_i);
790 }
791
792 if (average_sig[2] >= max_average_sig) {
793 max_average_sig = average_sig[2];
794 max_average_sig_antenna_i = 2;
795 active_chains = (1 << max_average_sig_antenna_i);
796 }
797
798 IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
799 average_sig[0], average_sig[1], average_sig[2]);
800 IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
801 max_average_sig, max_average_sig_antenna_i);
802
803 /* Compare signal strengths for all 3 receivers. */
804 for (i = 0; i < NUM_RX_CHAINS; i++) {
805 if (i != max_average_sig_antenna_i) {
806 s32 rssi_delta = (max_average_sig - average_sig[i]);
807
808 /* If signal is very weak, compared with
809 * strongest, mark it as disconnected. */
810 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
811 data->disconn_array[i] = 1;
812 else
813 active_chains |= (1 << i);
814 IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d "
815 "disconn_array[i] = %d\n",
816 i, rssi_delta, data->disconn_array[i]);
817 }
818 }
819
820 /*
821 * The above algorithm sometimes fails when the ucode
822 * reports 0 for all chains. It's not clear why that
823 * happens to start with, but it is then causing trouble
824 * because this can make us enable more chains than the
825 * hardware really has.
826 *
827 * To be safe, simply mask out any chains that we know
828 * are not on the device.
829 */
830 active_chains &= priv->nvm_data->valid_rx_ant;
831
832 num_tx_chains = 0;
833 for (i = 0; i < NUM_RX_CHAINS; i++) {
834 /* loops on all the bits of
835 * priv->hw_setting.valid_tx_ant */
836 u8 ant_msk = (1 << i);
837 if (!(priv->nvm_data->valid_tx_ant & ant_msk))
838 continue;
839
840 num_tx_chains++;
841 if (data->disconn_array[i] == 0)
842 /* there is a Tx antenna connected */
843 break;
844 if (num_tx_chains == priv->hw_params.tx_chains_num &&
845 data->disconn_array[i]) {
846 /*
847 * If all chains are disconnected
848 * connect the first valid tx chain
849 */
850 first_chain =
851 find_first_chain(priv->nvm_data->valid_tx_ant);
852 data->disconn_array[first_chain] = 0;
853 active_chains |= BIT(first_chain);
854 IWL_DEBUG_CALIB(priv,
855 "All Tx chains are disconnected W/A - declare %d as connected\n",
856 first_chain);
857 break;
858 }
859 }
860
861 if (active_chains != priv->nvm_data->valid_rx_ant &&
862 active_chains != priv->chain_noise_data.active_chains)
863 IWL_DEBUG_CALIB(priv,
864 "Detected that not all antennas are connected! "
865 "Connected: %#x, valid: %#x.\n",
866 active_chains,
867 priv->nvm_data->valid_rx_ant);
868
869 /* Save for use within RXON, TX, SCAN commands, etc. */
870 data->active_chains = active_chains;
871 IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
872 active_chains);
873 }
874
iwlagn_gain_computation(struct iwl_priv * priv,u32 average_noise[NUM_RX_CHAINS],u8 default_chain)875 static void iwlagn_gain_computation(struct iwl_priv *priv,
876 u32 average_noise[NUM_RX_CHAINS],
877 u8 default_chain)
878 {
879 int i;
880 s32 delta_g;
881 struct iwl_chain_noise_data *data = &priv->chain_noise_data;
882
883 /*
884 * Find Gain Code for the chains based on "default chain"
885 */
886 for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
887 if ((data->disconn_array[i])) {
888 data->delta_gain_code[i] = 0;
889 continue;
890 }
891
892 delta_g = (priv->lib->chain_noise_scale *
893 ((s32)average_noise[default_chain] -
894 (s32)average_noise[i])) / 1500;
895
896 /* bound gain by 2 bits value max, 3rd bit is sign */
897 data->delta_gain_code[i] =
898 min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
899
900 if (delta_g < 0)
901 /*
902 * set negative sign ...
903 * note to Intel developers: This is uCode API format,
904 * not the format of any internal device registers.
905 * Do not change this format for e.g. 6050 or similar
906 * devices. Change format only if more resolution
907 * (i.e. more than 2 bits magnitude) is needed.
908 */
909 data->delta_gain_code[i] |= (1 << 2);
910 }
911
912 IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n",
913 data->delta_gain_code[1], data->delta_gain_code[2]);
914
915 if (!data->radio_write) {
916 struct iwl_calib_chain_noise_gain_cmd cmd;
917
918 memset(&cmd, 0, sizeof(cmd));
919
920 iwl_set_calib_hdr(&cmd.hdr,
921 priv->phy_calib_chain_noise_gain_cmd);
922 cmd.delta_gain_1 = data->delta_gain_code[1];
923 cmd.delta_gain_2 = data->delta_gain_code[2];
924 iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
925 CMD_ASYNC, sizeof(cmd), &cmd);
926
927 data->radio_write = 1;
928 data->state = IWL_CHAIN_NOISE_CALIBRATED;
929 }
930 }
931
932 /*
933 * Accumulate 16 beacons of signal and noise statistics for each of
934 * 3 receivers/antennas/rx-chains, then figure out:
935 * 1) Which antennas are connected.
936 * 2) Differential rx gain settings to balance the 3 receivers.
937 */
iwl_chain_noise_calibration(struct iwl_priv * priv)938 void iwl_chain_noise_calibration(struct iwl_priv *priv)
939 {
940 struct iwl_chain_noise_data *data = NULL;
941
942 u32 chain_noise_a;
943 u32 chain_noise_b;
944 u32 chain_noise_c;
945 u32 chain_sig_a;
946 u32 chain_sig_b;
947 u32 chain_sig_c;
948 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
949 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
950 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
951 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
952 u16 i = 0;
953 u16 rxon_chnum = INITIALIZATION_VALUE;
954 u16 stat_chnum = INITIALIZATION_VALUE;
955 u8 rxon_band24;
956 u8 stat_band24;
957 struct statistics_rx_non_phy *rx_info;
958
959 /*
960 * MULTI-FIXME:
961 * When we support multiple interfaces on different channels,
962 * this must be modified/fixed.
963 */
964 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
965
966 if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
967 return;
968
969 data = &(priv->chain_noise_data);
970
971 /*
972 * Accumulate just the first "chain_noise_num_beacons" after
973 * the first association, then we're done forever.
974 */
975 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
976 if (data->state == IWL_CHAIN_NOISE_ALIVE)
977 IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
978 return;
979 }
980
981 spin_lock_bh(&priv->statistics.lock);
982
983 rx_info = &priv->statistics.rx_non_phy;
984
985 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
986 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
987 spin_unlock_bh(&priv->statistics.lock);
988 return;
989 }
990
991 rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
992 rxon_chnum = le16_to_cpu(ctx->staging.channel);
993 stat_band24 =
994 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
995 stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
996
997 /* Make sure we accumulate data for just the associated channel
998 * (even if scanning). */
999 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
1000 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
1001 rxon_chnum, rxon_band24);
1002 spin_unlock_bh(&priv->statistics.lock);
1003 return;
1004 }
1005
1006 /*
1007 * Accumulate beacon statistics values across
1008 * "chain_noise_num_beacons"
1009 */
1010 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
1011 IN_BAND_FILTER;
1012 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
1013 IN_BAND_FILTER;
1014 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
1015 IN_BAND_FILTER;
1016
1017 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
1018 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
1019 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
1020
1021 spin_unlock_bh(&priv->statistics.lock);
1022
1023 data->beacon_count++;
1024
1025 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
1026 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
1027 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1028
1029 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1030 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1031 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1032
1033 IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1034 rxon_chnum, rxon_band24, data->beacon_count);
1035 IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1036 chain_sig_a, chain_sig_b, chain_sig_c);
1037 IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1038 chain_noise_a, chain_noise_b, chain_noise_c);
1039
1040 /* If this is the "chain_noise_num_beacons", determine:
1041 * 1) Disconnected antennas (using signal strengths)
1042 * 2) Differential gain (using silence noise) to balance receivers */
1043 if (data->beacon_count != IWL_CAL_NUM_BEACONS)
1044 return;
1045
1046 /* Analyze signal for disconnected antenna */
1047 if (priv->lib->bt_params &&
1048 priv->lib->bt_params->advanced_bt_coexist) {
1049 /* Disable disconnected antenna algorithm for advanced
1050 bt coex, assuming valid antennas are connected */
1051 data->active_chains = priv->nvm_data->valid_rx_ant;
1052 for (i = 0; i < NUM_RX_CHAINS; i++)
1053 if (!(data->active_chains & (1<<i)))
1054 data->disconn_array[i] = 1;
1055 } else
1056 iwl_find_disconn_antenna(priv, average_sig, data);
1057
1058 /* Analyze noise for rx balance */
1059 average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1060 average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1061 average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1062
1063 for (i = 0; i < NUM_RX_CHAINS; i++) {
1064 if (!(data->disconn_array[i]) &&
1065 (average_noise[i] <= min_average_noise)) {
1066 /* This means that chain i is active and has
1067 * lower noise values so far: */
1068 min_average_noise = average_noise[i];
1069 min_average_noise_antenna_i = i;
1070 }
1071 }
1072
1073 IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1074 average_noise[0], average_noise[1],
1075 average_noise[2]);
1076
1077 IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1078 min_average_noise, min_average_noise_antenna_i);
1079
1080 iwlagn_gain_computation(
1081 priv, average_noise,
1082 find_first_chain(priv->nvm_data->valid_rx_ant));
1083
1084 /* Some power changes may have been made during the calibration.
1085 * Update and commit the RXON
1086 */
1087 iwl_update_chain_flags(priv);
1088
1089 data->state = IWL_CHAIN_NOISE_DONE;
1090 iwl_power_update_mode(priv, false);
1091 }
1092
iwl_reset_run_time_calib(struct iwl_priv * priv)1093 void iwl_reset_run_time_calib(struct iwl_priv *priv)
1094 {
1095 int i;
1096 memset(&(priv->sensitivity_data), 0,
1097 sizeof(struct iwl_sensitivity_data));
1098 memset(&(priv->chain_noise_data), 0,
1099 sizeof(struct iwl_chain_noise_data));
1100 for (i = 0; i < NUM_RX_CHAINS; i++)
1101 priv->chain_noise_data.delta_gain_code[i] =
1102 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1103
1104 /* Ask for statistics now, the uCode will send notification
1105 * periodically after association */
1106 iwl_send_statistics_request(priv, CMD_ASYNC, true);
1107 }
1108