1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3
4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5
6 802.11 status code portion of this file from ethereal-0.10.6:
7 Copyright 2000, Axis Communications AB
8 Ethereal - Network traffic analyzer
9 By Gerald Combs <gerald@ethereal.com>
10 Copyright 1998 Gerald Combs
11
12
13 Contact Information:
14 Intel Linux Wireless <ilw@linux.intel.com>
15 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
16
17 ******************************************************************************/
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <net/cfg80211-wext.h>
22 #include "ipw2200.h"
23 #include "ipw.h"
24
25
26 #ifndef KBUILD_EXTMOD
27 #define VK "k"
28 #else
29 #define VK
30 #endif
31
32 #ifdef CONFIG_IPW2200_DEBUG
33 #define VD "d"
34 #else
35 #define VD
36 #endif
37
38 #ifdef CONFIG_IPW2200_MONITOR
39 #define VM "m"
40 #else
41 #define VM
42 #endif
43
44 #ifdef CONFIG_IPW2200_PROMISCUOUS
45 #define VP "p"
46 #else
47 #define VP
48 #endif
49
50 #ifdef CONFIG_IPW2200_RADIOTAP
51 #define VR "r"
52 #else
53 #define VR
54 #endif
55
56 #ifdef CONFIG_IPW2200_QOS
57 #define VQ "q"
58 #else
59 #define VQ
60 #endif
61
62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
63 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
64 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
65 #define DRV_VERSION IPW2200_VERSION
66
67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
68
69 MODULE_DESCRIPTION(DRV_DESCRIPTION);
70 MODULE_VERSION(DRV_VERSION);
71 MODULE_AUTHOR(DRV_COPYRIGHT);
72 MODULE_LICENSE("GPL");
73 MODULE_FIRMWARE("ipw2200-ibss.fw");
74 #ifdef CONFIG_IPW2200_MONITOR
75 MODULE_FIRMWARE("ipw2200-sniffer.fw");
76 #endif
77 MODULE_FIRMWARE("ipw2200-bss.fw");
78
79 static int cmdlog = 0;
80 static int debug = 0;
81 static int default_channel = 0;
82 static int network_mode = 0;
83
84 static u32 ipw_debug_level;
85 static int associate;
86 static int auto_create = 1;
87 static int led_support = 1;
88 static int disable = 0;
89 static int bt_coexist = 0;
90 static int hwcrypto = 0;
91 static int roaming = 1;
92 static const char ipw_modes[] = {
93 'a', 'b', 'g', '?'
94 };
95 static int antenna = CFG_SYS_ANTENNA_BOTH;
96
97 #ifdef CONFIG_IPW2200_PROMISCUOUS
98 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
99 #endif
100
101 static struct ieee80211_rate ipw2200_rates[] = {
102 { .bitrate = 10 },
103 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
104 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
105 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
106 { .bitrate = 60 },
107 { .bitrate = 90 },
108 { .bitrate = 120 },
109 { .bitrate = 180 },
110 { .bitrate = 240 },
111 { .bitrate = 360 },
112 { .bitrate = 480 },
113 { .bitrate = 540 }
114 };
115
116 #define ipw2200_a_rates (ipw2200_rates + 4)
117 #define ipw2200_num_a_rates 8
118 #define ipw2200_bg_rates (ipw2200_rates + 0)
119 #define ipw2200_num_bg_rates 12
120
121 /* Ugly macro to convert literal channel numbers into their mhz equivalents
122 * There are certianly some conditions that will break this (like feeding it '30')
123 * but they shouldn't arise since nothing talks on channel 30. */
124 #define ieee80211chan2mhz(x) \
125 (((x) <= 14) ? \
126 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
127 ((x) + 1000) * 5)
128
129 #ifdef CONFIG_IPW2200_QOS
130 static int qos_enable = 0;
131 static int qos_burst_enable = 0;
132 static int qos_no_ack_mask = 0;
133 static int burst_duration_CCK = 0;
134 static int burst_duration_OFDM = 0;
135
136 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
137 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
138 QOS_TX3_CW_MIN_OFDM},
139 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
140 QOS_TX3_CW_MAX_OFDM},
141 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
142 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
143 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
144 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
145 };
146
147 static struct libipw_qos_parameters def_qos_parameters_CCK = {
148 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
149 QOS_TX3_CW_MIN_CCK},
150 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
151 QOS_TX3_CW_MAX_CCK},
152 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
153 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
154 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
155 QOS_TX3_TXOP_LIMIT_CCK}
156 };
157
158 static struct libipw_qos_parameters def_parameters_OFDM = {
159 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
160 DEF_TX3_CW_MIN_OFDM},
161 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
162 DEF_TX3_CW_MAX_OFDM},
163 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
164 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
165 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
166 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
167 };
168
169 static struct libipw_qos_parameters def_parameters_CCK = {
170 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
171 DEF_TX3_CW_MIN_CCK},
172 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
173 DEF_TX3_CW_MAX_CCK},
174 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
175 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
176 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
177 DEF_TX3_TXOP_LIMIT_CCK}
178 };
179
180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
181
182 static int from_priority_to_tx_queue[] = {
183 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
184 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
185 };
186
187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
188
189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
190 *qos_param);
191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
192 *qos_param);
193 #endif /* CONFIG_IPW2200_QOS */
194
195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
196 static void ipw_remove_current_network(struct ipw_priv *priv);
197 static void ipw_rx(struct ipw_priv *priv);
198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
199 struct clx2_tx_queue *txq, int qindex);
200 static int ipw_queue_reset(struct ipw_priv *priv);
201
202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
203 int len, int sync);
204
205 static void ipw_tx_queue_free(struct ipw_priv *);
206
207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
209 static void ipw_rx_queue_replenish(void *);
210 static int ipw_up(struct ipw_priv *);
211 static void ipw_bg_up(struct work_struct *work);
212 static void ipw_down(struct ipw_priv *);
213 static void ipw_bg_down(struct work_struct *work);
214 static int ipw_config(struct ipw_priv *);
215 static int init_supported_rates(struct ipw_priv *priv,
216 struct ipw_supported_rates *prates);
217 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
218 static void ipw_send_wep_keys(struct ipw_priv *, int);
219
snprint_line(char * buf,size_t count,const u8 * data,u32 len,u32 ofs)220 static int snprint_line(char *buf, size_t count,
221 const u8 * data, u32 len, u32 ofs)
222 {
223 int out, i, j, l;
224 char c;
225
226 out = snprintf(buf, count, "%08X", ofs);
227
228 for (l = 0, i = 0; i < 2; i++) {
229 out += snprintf(buf + out, count - out, " ");
230 for (j = 0; j < 8 && l < len; j++, l++)
231 out += snprintf(buf + out, count - out, "%02X ",
232 data[(i * 8 + j)]);
233 for (; j < 8; j++)
234 out += snprintf(buf + out, count - out, " ");
235 }
236
237 out += snprintf(buf + out, count - out, " ");
238 for (l = 0, i = 0; i < 2; i++) {
239 out += snprintf(buf + out, count - out, " ");
240 for (j = 0; j < 8 && l < len; j++, l++) {
241 c = data[(i * 8 + j)];
242 if (!isascii(c) || !isprint(c))
243 c = '.';
244
245 out += snprintf(buf + out, count - out, "%c", c);
246 }
247
248 for (; j < 8; j++)
249 out += snprintf(buf + out, count - out, " ");
250 }
251
252 return out;
253 }
254
printk_buf(int level,const u8 * data,u32 len)255 static void printk_buf(int level, const u8 * data, u32 len)
256 {
257 char line[81];
258 u32 ofs = 0;
259 if (!(ipw_debug_level & level))
260 return;
261
262 while (len) {
263 snprint_line(line, sizeof(line), &data[ofs],
264 min(len, 16U), ofs);
265 printk(KERN_DEBUG "%s\n", line);
266 ofs += 16;
267 len -= min(len, 16U);
268 }
269 }
270
snprintk_buf(u8 * output,size_t size,const u8 * data,size_t len)271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
272 {
273 size_t out = size;
274 u32 ofs = 0;
275 int total = 0;
276
277 while (size && len) {
278 out = snprint_line(output, size, &data[ofs],
279 min_t(size_t, len, 16U), ofs);
280
281 ofs += 16;
282 output += out;
283 size -= out;
284 len -= min_t(size_t, len, 16U);
285 total += out;
286 }
287 return total;
288 }
289
290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
293
294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
297
298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
ipw_write_reg8(struct ipw_priv * a,u32 b,u8 c)300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
301 {
302 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
303 __LINE__, (u32) (b), (u32) (c));
304 _ipw_write_reg8(a, b, c);
305 }
306
307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
ipw_write_reg16(struct ipw_priv * a,u32 b,u16 c)309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
310 {
311 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
312 __LINE__, (u32) (b), (u32) (c));
313 _ipw_write_reg16(a, b, c);
314 }
315
316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
ipw_write_reg32(struct ipw_priv * a,u32 b,u32 c)318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
319 {
320 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
321 __LINE__, (u32) (b), (u32) (c));
322 _ipw_write_reg32(a, b, c);
323 }
324
325 /* 8-bit direct write (low 4K) */
_ipw_write8(struct ipw_priv * ipw,unsigned long ofs,u8 val)326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
327 u8 val)
328 {
329 writeb(val, ipw->hw_base + ofs);
330 }
331
332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
333 #define ipw_write8(ipw, ofs, val) do { \
334 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
335 __LINE__, (u32)(ofs), (u32)(val)); \
336 _ipw_write8(ipw, ofs, val); \
337 } while (0)
338
339 /* 16-bit direct write (low 4K) */
_ipw_write16(struct ipw_priv * ipw,unsigned long ofs,u16 val)340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
341 u16 val)
342 {
343 writew(val, ipw->hw_base + ofs);
344 }
345
346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write16(ipw, ofs, val) do { \
348 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
349 __LINE__, (u32)(ofs), (u32)(val)); \
350 _ipw_write16(ipw, ofs, val); \
351 } while (0)
352
353 /* 32-bit direct write (low 4K) */
_ipw_write32(struct ipw_priv * ipw,unsigned long ofs,u32 val)354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
355 u32 val)
356 {
357 writel(val, ipw->hw_base + ofs);
358 }
359
360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write32(ipw, ofs, val) do { \
362 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
363 __LINE__, (u32)(ofs), (u32)(val)); \
364 _ipw_write32(ipw, ofs, val); \
365 } while (0)
366
367 /* 8-bit direct read (low 4K) */
_ipw_read8(struct ipw_priv * ipw,unsigned long ofs)368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
369 {
370 return readb(ipw->hw_base + ofs);
371 }
372
373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
374 #define ipw_read8(ipw, ofs) ({ \
375 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
376 (u32)(ofs)); \
377 _ipw_read8(ipw, ofs); \
378 })
379
380 /* 16-bit direct read (low 4K) */
_ipw_read16(struct ipw_priv * ipw,unsigned long ofs)381 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
382 {
383 return readw(ipw->hw_base + ofs);
384 }
385
386 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
387 #define ipw_read16(ipw, ofs) ({ \
388 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
389 (u32)(ofs)); \
390 _ipw_read16(ipw, ofs); \
391 })
392
393 /* 32-bit direct read (low 4K) */
_ipw_read32(struct ipw_priv * ipw,unsigned long ofs)394 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
395 {
396 return readl(ipw->hw_base + ofs);
397 }
398
399 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
400 #define ipw_read32(ipw, ofs) ({ \
401 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
402 (u32)(ofs)); \
403 _ipw_read32(ipw, ofs); \
404 })
405
406 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
407 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
408 #define ipw_read_indirect(a, b, c, d) ({ \
409 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
410 __LINE__, (u32)(b), (u32)(d)); \
411 _ipw_read_indirect(a, b, c, d); \
412 })
413
414 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
415 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
416 int num);
417 #define ipw_write_indirect(a, b, c, d) do { \
418 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
419 __LINE__, (u32)(b), (u32)(d)); \
420 _ipw_write_indirect(a, b, c, d); \
421 } while (0)
422
423 /* 32-bit indirect write (above 4K) */
_ipw_write_reg32(struct ipw_priv * priv,u32 reg,u32 value)424 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
425 {
426 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
427 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
428 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
429 }
430
431 /* 8-bit indirect write (above 4K) */
_ipw_write_reg8(struct ipw_priv * priv,u32 reg,u8 value)432 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
433 {
434 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
435 u32 dif_len = reg - aligned_addr;
436
437 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
438 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
439 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
440 }
441
442 /* 16-bit indirect write (above 4K) */
_ipw_write_reg16(struct ipw_priv * priv,u32 reg,u16 value)443 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
444 {
445 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
447
448 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
449 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
450 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
451 }
452
453 /* 8-bit indirect read (above 4K) */
_ipw_read_reg8(struct ipw_priv * priv,u32 reg)454 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
455 {
456 u32 word;
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
458 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
459 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
460 return (word >> ((reg & 0x3) * 8)) & 0xff;
461 }
462
463 /* 32-bit indirect read (above 4K) */
_ipw_read_reg32(struct ipw_priv * priv,u32 reg)464 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
465 {
466 u32 value;
467
468 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
469
470 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
471 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
472 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
473 return value;
474 }
475
476 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
477 /* for area above 1st 4K of SRAM/reg space */
_ipw_read_indirect(struct ipw_priv * priv,u32 addr,u8 * buf,int num)478 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
479 int num)
480 {
481 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
482 u32 dif_len = addr - aligned_addr;
483 u32 i;
484
485 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
486
487 if (num <= 0) {
488 return;
489 }
490
491 /* Read the first dword (or portion) byte by byte */
492 if (unlikely(dif_len)) {
493 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
494 /* Start reading at aligned_addr + dif_len */
495 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
496 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
497 aligned_addr += 4;
498 }
499
500 /* Read all of the middle dwords as dwords, with auto-increment */
501 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
502 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
503 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
504
505 /* Read the last dword (or portion) byte by byte */
506 if (unlikely(num)) {
507 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508 for (i = 0; num > 0; i++, num--)
509 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
510 }
511 }
512
513 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
514 /* for area above 1st 4K of SRAM/reg space */
_ipw_write_indirect(struct ipw_priv * priv,u32 addr,u8 * buf,int num)515 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
516 int num)
517 {
518 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
519 u32 dif_len = addr - aligned_addr;
520 u32 i;
521
522 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
523
524 if (num <= 0) {
525 return;
526 }
527
528 /* Write the first dword (or portion) byte by byte */
529 if (unlikely(dif_len)) {
530 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
531 /* Start writing at aligned_addr + dif_len */
532 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
533 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
534 aligned_addr += 4;
535 }
536
537 /* Write all of the middle dwords as dwords, with auto-increment */
538 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
539 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
540 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
541
542 /* Write the last dword (or portion) byte by byte */
543 if (unlikely(num)) {
544 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545 for (i = 0; num > 0; i++, num--, buf++)
546 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
547 }
548 }
549
550 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
551 /* for 1st 4K of SRAM/regs space */
ipw_write_direct(struct ipw_priv * priv,u32 addr,void * buf,int num)552 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
553 int num)
554 {
555 memcpy_toio((priv->hw_base + addr), buf, num);
556 }
557
558 /* Set bit(s) in low 4K of SRAM/regs */
ipw_set_bit(struct ipw_priv * priv,u32 reg,u32 mask)559 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
560 {
561 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
562 }
563
564 /* Clear bit(s) in low 4K of SRAM/regs */
ipw_clear_bit(struct ipw_priv * priv,u32 reg,u32 mask)565 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
566 {
567 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
568 }
569
__ipw_enable_interrupts(struct ipw_priv * priv)570 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
571 {
572 if (priv->status & STATUS_INT_ENABLED)
573 return;
574 priv->status |= STATUS_INT_ENABLED;
575 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
576 }
577
__ipw_disable_interrupts(struct ipw_priv * priv)578 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
579 {
580 if (!(priv->status & STATUS_INT_ENABLED))
581 return;
582 priv->status &= ~STATUS_INT_ENABLED;
583 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
584 }
585
ipw_enable_interrupts(struct ipw_priv * priv)586 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
587 {
588 unsigned long flags;
589
590 spin_lock_irqsave(&priv->irq_lock, flags);
591 __ipw_enable_interrupts(priv);
592 spin_unlock_irqrestore(&priv->irq_lock, flags);
593 }
594
ipw_disable_interrupts(struct ipw_priv * priv)595 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
596 {
597 unsigned long flags;
598
599 spin_lock_irqsave(&priv->irq_lock, flags);
600 __ipw_disable_interrupts(priv);
601 spin_unlock_irqrestore(&priv->irq_lock, flags);
602 }
603
ipw_error_desc(u32 val)604 static char *ipw_error_desc(u32 val)
605 {
606 switch (val) {
607 case IPW_FW_ERROR_OK:
608 return "ERROR_OK";
609 case IPW_FW_ERROR_FAIL:
610 return "ERROR_FAIL";
611 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
612 return "MEMORY_UNDERFLOW";
613 case IPW_FW_ERROR_MEMORY_OVERFLOW:
614 return "MEMORY_OVERFLOW";
615 case IPW_FW_ERROR_BAD_PARAM:
616 return "BAD_PARAM";
617 case IPW_FW_ERROR_BAD_CHECKSUM:
618 return "BAD_CHECKSUM";
619 case IPW_FW_ERROR_NMI_INTERRUPT:
620 return "NMI_INTERRUPT";
621 case IPW_FW_ERROR_BAD_DATABASE:
622 return "BAD_DATABASE";
623 case IPW_FW_ERROR_ALLOC_FAIL:
624 return "ALLOC_FAIL";
625 case IPW_FW_ERROR_DMA_UNDERRUN:
626 return "DMA_UNDERRUN";
627 case IPW_FW_ERROR_DMA_STATUS:
628 return "DMA_STATUS";
629 case IPW_FW_ERROR_DINO_ERROR:
630 return "DINO_ERROR";
631 case IPW_FW_ERROR_EEPROM_ERROR:
632 return "EEPROM_ERROR";
633 case IPW_FW_ERROR_SYSASSERT:
634 return "SYSASSERT";
635 case IPW_FW_ERROR_FATAL_ERROR:
636 return "FATAL_ERROR";
637 default:
638 return "UNKNOWN_ERROR";
639 }
640 }
641
ipw_dump_error_log(struct ipw_priv * priv,struct ipw_fw_error * error)642 static void ipw_dump_error_log(struct ipw_priv *priv,
643 struct ipw_fw_error *error)
644 {
645 u32 i;
646
647 if (!error) {
648 IPW_ERROR("Error allocating and capturing error log. "
649 "Nothing to dump.\n");
650 return;
651 }
652
653 IPW_ERROR("Start IPW Error Log Dump:\n");
654 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
655 error->status, error->config);
656
657 for (i = 0; i < error->elem_len; i++)
658 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
659 ipw_error_desc(error->elem[i].desc),
660 error->elem[i].time,
661 error->elem[i].blink1,
662 error->elem[i].blink2,
663 error->elem[i].link1,
664 error->elem[i].link2, error->elem[i].data);
665 for (i = 0; i < error->log_len; i++)
666 IPW_ERROR("%i\t0x%08x\t%i\n",
667 error->log[i].time,
668 error->log[i].data, error->log[i].event);
669 }
670
ipw_is_init(struct ipw_priv * priv)671 static inline int ipw_is_init(struct ipw_priv *priv)
672 {
673 return (priv->status & STATUS_INIT) ? 1 : 0;
674 }
675
ipw_get_ordinal(struct ipw_priv * priv,u32 ord,void * val,u32 * len)676 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
677 {
678 u32 addr, field_info, field_len, field_count, total_len;
679
680 IPW_DEBUG_ORD("ordinal = %i\n", ord);
681
682 if (!priv || !val || !len) {
683 IPW_DEBUG_ORD("Invalid argument\n");
684 return -EINVAL;
685 }
686
687 /* verify device ordinal tables have been initialized */
688 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
689 IPW_DEBUG_ORD("Access ordinals before initialization\n");
690 return -EINVAL;
691 }
692
693 switch (IPW_ORD_TABLE_ID_MASK & ord) {
694 case IPW_ORD_TABLE_0_MASK:
695 /*
696 * TABLE 0: Direct access to a table of 32 bit values
697 *
698 * This is a very simple table with the data directly
699 * read from the table
700 */
701
702 /* remove the table id from the ordinal */
703 ord &= IPW_ORD_TABLE_VALUE_MASK;
704
705 /* boundary check */
706 if (ord > priv->table0_len) {
707 IPW_DEBUG_ORD("ordinal value (%i) longer then "
708 "max (%i)\n", ord, priv->table0_len);
709 return -EINVAL;
710 }
711
712 /* verify we have enough room to store the value */
713 if (*len < sizeof(u32)) {
714 IPW_DEBUG_ORD("ordinal buffer length too small, "
715 "need %zd\n", sizeof(u32));
716 return -EINVAL;
717 }
718
719 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
720 ord, priv->table0_addr + (ord << 2));
721
722 *len = sizeof(u32);
723 ord <<= 2;
724 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
725 break;
726
727 case IPW_ORD_TABLE_1_MASK:
728 /*
729 * TABLE 1: Indirect access to a table of 32 bit values
730 *
731 * This is a fairly large table of u32 values each
732 * representing starting addr for the data (which is
733 * also a u32)
734 */
735
736 /* remove the table id from the ordinal */
737 ord &= IPW_ORD_TABLE_VALUE_MASK;
738
739 /* boundary check */
740 if (ord > priv->table1_len) {
741 IPW_DEBUG_ORD("ordinal value too long\n");
742 return -EINVAL;
743 }
744
745 /* verify we have enough room to store the value */
746 if (*len < sizeof(u32)) {
747 IPW_DEBUG_ORD("ordinal buffer length too small, "
748 "need %zd\n", sizeof(u32));
749 return -EINVAL;
750 }
751
752 *((u32 *) val) =
753 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
754 *len = sizeof(u32);
755 break;
756
757 case IPW_ORD_TABLE_2_MASK:
758 /*
759 * TABLE 2: Indirect access to a table of variable sized values
760 *
761 * This table consist of six values, each containing
762 * - dword containing the starting offset of the data
763 * - dword containing the lengh in the first 16bits
764 * and the count in the second 16bits
765 */
766
767 /* remove the table id from the ordinal */
768 ord &= IPW_ORD_TABLE_VALUE_MASK;
769
770 /* boundary check */
771 if (ord > priv->table2_len) {
772 IPW_DEBUG_ORD("ordinal value too long\n");
773 return -EINVAL;
774 }
775
776 /* get the address of statistic */
777 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
778
779 /* get the second DW of statistics ;
780 * two 16-bit words - first is length, second is count */
781 field_info =
782 ipw_read_reg32(priv,
783 priv->table2_addr + (ord << 3) +
784 sizeof(u32));
785
786 /* get each entry length */
787 field_len = *((u16 *) & field_info);
788
789 /* get number of entries */
790 field_count = *(((u16 *) & field_info) + 1);
791
792 /* abort if not enough memory */
793 total_len = field_len * field_count;
794 if (total_len > *len) {
795 *len = total_len;
796 return -EINVAL;
797 }
798
799 *len = total_len;
800 if (!total_len)
801 return 0;
802
803 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
804 "field_info = 0x%08x\n",
805 addr, total_len, field_info);
806 ipw_read_indirect(priv, addr, val, total_len);
807 break;
808
809 default:
810 IPW_DEBUG_ORD("Invalid ordinal!\n");
811 return -EINVAL;
812
813 }
814
815 return 0;
816 }
817
ipw_init_ordinals(struct ipw_priv * priv)818 static void ipw_init_ordinals(struct ipw_priv *priv)
819 {
820 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
821 priv->table0_len = ipw_read32(priv, priv->table0_addr);
822
823 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
824 priv->table0_addr, priv->table0_len);
825
826 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
827 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
828
829 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
830 priv->table1_addr, priv->table1_len);
831
832 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
833 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
834 priv->table2_len &= 0x0000ffff; /* use first two bytes */
835
836 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
837 priv->table2_addr, priv->table2_len);
838
839 }
840
ipw_register_toggle(u32 reg)841 static u32 ipw_register_toggle(u32 reg)
842 {
843 reg &= ~IPW_START_STANDBY;
844 if (reg & IPW_GATE_ODMA)
845 reg &= ~IPW_GATE_ODMA;
846 if (reg & IPW_GATE_IDMA)
847 reg &= ~IPW_GATE_IDMA;
848 if (reg & IPW_GATE_ADMA)
849 reg &= ~IPW_GATE_ADMA;
850 return reg;
851 }
852
853 /*
854 * LED behavior:
855 * - On radio ON, turn on any LEDs that require to be on during start
856 * - On initialization, start unassociated blink
857 * - On association, disable unassociated blink
858 * - On disassociation, start unassociated blink
859 * - On radio OFF, turn off any LEDs started during radio on
860 *
861 */
862 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
863 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
864 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
865
ipw_led_link_on(struct ipw_priv * priv)866 static void ipw_led_link_on(struct ipw_priv *priv)
867 {
868 unsigned long flags;
869 u32 led;
870
871 /* If configured to not use LEDs, or nic_type is 1,
872 * then we don't toggle a LINK led */
873 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
874 return;
875
876 spin_lock_irqsave(&priv->lock, flags);
877
878 if (!(priv->status & STATUS_RF_KILL_MASK) &&
879 !(priv->status & STATUS_LED_LINK_ON)) {
880 IPW_DEBUG_LED("Link LED On\n");
881 led = ipw_read_reg32(priv, IPW_EVENT_REG);
882 led |= priv->led_association_on;
883
884 led = ipw_register_toggle(led);
885
886 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
887 ipw_write_reg32(priv, IPW_EVENT_REG, led);
888
889 priv->status |= STATUS_LED_LINK_ON;
890
891 /* If we aren't associated, schedule turning the LED off */
892 if (!(priv->status & STATUS_ASSOCIATED))
893 schedule_delayed_work(&priv->led_link_off,
894 LD_TIME_LINK_ON);
895 }
896
897 spin_unlock_irqrestore(&priv->lock, flags);
898 }
899
ipw_bg_led_link_on(struct work_struct * work)900 static void ipw_bg_led_link_on(struct work_struct *work)
901 {
902 struct ipw_priv *priv =
903 container_of(work, struct ipw_priv, led_link_on.work);
904 mutex_lock(&priv->mutex);
905 ipw_led_link_on(priv);
906 mutex_unlock(&priv->mutex);
907 }
908
ipw_led_link_off(struct ipw_priv * priv)909 static void ipw_led_link_off(struct ipw_priv *priv)
910 {
911 unsigned long flags;
912 u32 led;
913
914 /* If configured not to use LEDs, or nic type is 1,
915 * then we don't goggle the LINK led. */
916 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
917 return;
918
919 spin_lock_irqsave(&priv->lock, flags);
920
921 if (priv->status & STATUS_LED_LINK_ON) {
922 led = ipw_read_reg32(priv, IPW_EVENT_REG);
923 led &= priv->led_association_off;
924 led = ipw_register_toggle(led);
925
926 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
927 ipw_write_reg32(priv, IPW_EVENT_REG, led);
928
929 IPW_DEBUG_LED("Link LED Off\n");
930
931 priv->status &= ~STATUS_LED_LINK_ON;
932
933 /* If we aren't associated and the radio is on, schedule
934 * turning the LED on (blink while unassociated) */
935 if (!(priv->status & STATUS_RF_KILL_MASK) &&
936 !(priv->status & STATUS_ASSOCIATED))
937 schedule_delayed_work(&priv->led_link_on,
938 LD_TIME_LINK_OFF);
939
940 }
941
942 spin_unlock_irqrestore(&priv->lock, flags);
943 }
944
ipw_bg_led_link_off(struct work_struct * work)945 static void ipw_bg_led_link_off(struct work_struct *work)
946 {
947 struct ipw_priv *priv =
948 container_of(work, struct ipw_priv, led_link_off.work);
949 mutex_lock(&priv->mutex);
950 ipw_led_link_off(priv);
951 mutex_unlock(&priv->mutex);
952 }
953
__ipw_led_activity_on(struct ipw_priv * priv)954 static void __ipw_led_activity_on(struct ipw_priv *priv)
955 {
956 u32 led;
957
958 if (priv->config & CFG_NO_LED)
959 return;
960
961 if (priv->status & STATUS_RF_KILL_MASK)
962 return;
963
964 if (!(priv->status & STATUS_LED_ACT_ON)) {
965 led = ipw_read_reg32(priv, IPW_EVENT_REG);
966 led |= priv->led_activity_on;
967
968 led = ipw_register_toggle(led);
969
970 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
971 ipw_write_reg32(priv, IPW_EVENT_REG, led);
972
973 IPW_DEBUG_LED("Activity LED On\n");
974
975 priv->status |= STATUS_LED_ACT_ON;
976
977 cancel_delayed_work(&priv->led_act_off);
978 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
979 } else {
980 /* Reschedule LED off for full time period */
981 cancel_delayed_work(&priv->led_act_off);
982 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
983 }
984 }
985
986 #if 0
987 void ipw_led_activity_on(struct ipw_priv *priv)
988 {
989 unsigned long flags;
990 spin_lock_irqsave(&priv->lock, flags);
991 __ipw_led_activity_on(priv);
992 spin_unlock_irqrestore(&priv->lock, flags);
993 }
994 #endif /* 0 */
995
ipw_led_activity_off(struct ipw_priv * priv)996 static void ipw_led_activity_off(struct ipw_priv *priv)
997 {
998 unsigned long flags;
999 u32 led;
1000
1001 if (priv->config & CFG_NO_LED)
1002 return;
1003
1004 spin_lock_irqsave(&priv->lock, flags);
1005
1006 if (priv->status & STATUS_LED_ACT_ON) {
1007 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1008 led &= priv->led_activity_off;
1009
1010 led = ipw_register_toggle(led);
1011
1012 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1013 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1014
1015 IPW_DEBUG_LED("Activity LED Off\n");
1016
1017 priv->status &= ~STATUS_LED_ACT_ON;
1018 }
1019
1020 spin_unlock_irqrestore(&priv->lock, flags);
1021 }
1022
ipw_bg_led_activity_off(struct work_struct * work)1023 static void ipw_bg_led_activity_off(struct work_struct *work)
1024 {
1025 struct ipw_priv *priv =
1026 container_of(work, struct ipw_priv, led_act_off.work);
1027 mutex_lock(&priv->mutex);
1028 ipw_led_activity_off(priv);
1029 mutex_unlock(&priv->mutex);
1030 }
1031
ipw_led_band_on(struct ipw_priv * priv)1032 static void ipw_led_band_on(struct ipw_priv *priv)
1033 {
1034 unsigned long flags;
1035 u32 led;
1036
1037 /* Only nic type 1 supports mode LEDs */
1038 if (priv->config & CFG_NO_LED ||
1039 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1040 return;
1041
1042 spin_lock_irqsave(&priv->lock, flags);
1043
1044 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045 if (priv->assoc_network->mode == IEEE_A) {
1046 led |= priv->led_ofdm_on;
1047 led &= priv->led_association_off;
1048 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1049 } else if (priv->assoc_network->mode == IEEE_G) {
1050 led |= priv->led_ofdm_on;
1051 led |= priv->led_association_on;
1052 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1053 } else {
1054 led &= priv->led_ofdm_off;
1055 led |= priv->led_association_on;
1056 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1057 }
1058
1059 led = ipw_register_toggle(led);
1060
1061 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1062 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1063
1064 spin_unlock_irqrestore(&priv->lock, flags);
1065 }
1066
ipw_led_band_off(struct ipw_priv * priv)1067 static void ipw_led_band_off(struct ipw_priv *priv)
1068 {
1069 unsigned long flags;
1070 u32 led;
1071
1072 /* Only nic type 1 supports mode LEDs */
1073 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1074 return;
1075
1076 spin_lock_irqsave(&priv->lock, flags);
1077
1078 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1079 led &= priv->led_ofdm_off;
1080 led &= priv->led_association_off;
1081
1082 led = ipw_register_toggle(led);
1083
1084 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1085 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1086
1087 spin_unlock_irqrestore(&priv->lock, flags);
1088 }
1089
ipw_led_radio_on(struct ipw_priv * priv)1090 static void ipw_led_radio_on(struct ipw_priv *priv)
1091 {
1092 ipw_led_link_on(priv);
1093 }
1094
ipw_led_radio_off(struct ipw_priv * priv)1095 static void ipw_led_radio_off(struct ipw_priv *priv)
1096 {
1097 ipw_led_activity_off(priv);
1098 ipw_led_link_off(priv);
1099 }
1100
ipw_led_link_up(struct ipw_priv * priv)1101 static void ipw_led_link_up(struct ipw_priv *priv)
1102 {
1103 /* Set the Link Led on for all nic types */
1104 ipw_led_link_on(priv);
1105 }
1106
ipw_led_link_down(struct ipw_priv * priv)1107 static void ipw_led_link_down(struct ipw_priv *priv)
1108 {
1109 ipw_led_activity_off(priv);
1110 ipw_led_link_off(priv);
1111
1112 if (priv->status & STATUS_RF_KILL_MASK)
1113 ipw_led_radio_off(priv);
1114 }
1115
ipw_led_init(struct ipw_priv * priv)1116 static void ipw_led_init(struct ipw_priv *priv)
1117 {
1118 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1119
1120 /* Set the default PINs for the link and activity leds */
1121 priv->led_activity_on = IPW_ACTIVITY_LED;
1122 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1123
1124 priv->led_association_on = IPW_ASSOCIATED_LED;
1125 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1126
1127 /* Set the default PINs for the OFDM leds */
1128 priv->led_ofdm_on = IPW_OFDM_LED;
1129 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1130
1131 switch (priv->nic_type) {
1132 case EEPROM_NIC_TYPE_1:
1133 /* In this NIC type, the LEDs are reversed.... */
1134 priv->led_activity_on = IPW_ASSOCIATED_LED;
1135 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1136 priv->led_association_on = IPW_ACTIVITY_LED;
1137 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1138
1139 if (!(priv->config & CFG_NO_LED))
1140 ipw_led_band_on(priv);
1141
1142 /* And we don't blink link LEDs for this nic, so
1143 * just return here */
1144 return;
1145
1146 case EEPROM_NIC_TYPE_3:
1147 case EEPROM_NIC_TYPE_2:
1148 case EEPROM_NIC_TYPE_4:
1149 case EEPROM_NIC_TYPE_0:
1150 break;
1151
1152 default:
1153 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1154 priv->nic_type);
1155 priv->nic_type = EEPROM_NIC_TYPE_0;
1156 break;
1157 }
1158
1159 if (!(priv->config & CFG_NO_LED)) {
1160 if (priv->status & STATUS_ASSOCIATED)
1161 ipw_led_link_on(priv);
1162 else
1163 ipw_led_link_off(priv);
1164 }
1165 }
1166
ipw_led_shutdown(struct ipw_priv * priv)1167 static void ipw_led_shutdown(struct ipw_priv *priv)
1168 {
1169 ipw_led_activity_off(priv);
1170 ipw_led_link_off(priv);
1171 ipw_led_band_off(priv);
1172 cancel_delayed_work(&priv->led_link_on);
1173 cancel_delayed_work(&priv->led_link_off);
1174 cancel_delayed_work(&priv->led_act_off);
1175 }
1176
1177 /*
1178 * The following adds a new attribute to the sysfs representation
1179 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1180 * used for controlling the debug level.
1181 *
1182 * See the level definitions in ipw for details.
1183 */
debug_level_show(struct device_driver * d,char * buf)1184 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1185 {
1186 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1187 }
1188
debug_level_store(struct device_driver * d,const char * buf,size_t count)1189 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1190 size_t count)
1191 {
1192 char *p = (char *)buf;
1193 u32 val;
1194
1195 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1196 p++;
1197 if (p[0] == 'x' || p[0] == 'X')
1198 p++;
1199 val = simple_strtoul(p, &p, 16);
1200 } else
1201 val = simple_strtoul(p, &p, 10);
1202 if (p == buf)
1203 printk(KERN_INFO DRV_NAME
1204 ": %s is not in hex or decimal form.\n", buf);
1205 else
1206 ipw_debug_level = val;
1207
1208 return strnlen(buf, count);
1209 }
1210 static DRIVER_ATTR_RW(debug_level);
1211
ipw_get_event_log_len(struct ipw_priv * priv)1212 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1213 {
1214 /* length = 1st dword in log */
1215 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1216 }
1217
ipw_capture_event_log(struct ipw_priv * priv,u32 log_len,struct ipw_event * log)1218 static void ipw_capture_event_log(struct ipw_priv *priv,
1219 u32 log_len, struct ipw_event *log)
1220 {
1221 u32 base;
1222
1223 if (log_len) {
1224 base = ipw_read32(priv, IPW_EVENT_LOG);
1225 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1226 (u8 *) log, sizeof(*log) * log_len);
1227 }
1228 }
1229
ipw_alloc_error_log(struct ipw_priv * priv)1230 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1231 {
1232 struct ipw_fw_error *error;
1233 u32 log_len = ipw_get_event_log_len(priv);
1234 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1235 u32 elem_len = ipw_read_reg32(priv, base);
1236
1237 error = kmalloc(sizeof(*error) +
1238 sizeof(*error->elem) * elem_len +
1239 sizeof(*error->log) * log_len, GFP_ATOMIC);
1240 if (!error) {
1241 IPW_ERROR("Memory allocation for firmware error log "
1242 "failed.\n");
1243 return NULL;
1244 }
1245 error->jiffies = jiffies;
1246 error->status = priv->status;
1247 error->config = priv->config;
1248 error->elem_len = elem_len;
1249 error->log_len = log_len;
1250 error->elem = (struct ipw_error_elem *)error->payload;
1251 error->log = (struct ipw_event *)(error->elem + elem_len);
1252
1253 ipw_capture_event_log(priv, log_len, error->log);
1254
1255 if (elem_len)
1256 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1257 sizeof(*error->elem) * elem_len);
1258
1259 return error;
1260 }
1261
show_event_log(struct device * d,struct device_attribute * attr,char * buf)1262 static ssize_t show_event_log(struct device *d,
1263 struct device_attribute *attr, char *buf)
1264 {
1265 struct ipw_priv *priv = dev_get_drvdata(d);
1266 u32 log_len = ipw_get_event_log_len(priv);
1267 u32 log_size;
1268 struct ipw_event *log;
1269 u32 len = 0, i;
1270
1271 /* not using min() because of its strict type checking */
1272 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1273 sizeof(*log) * log_len : PAGE_SIZE;
1274 log = kzalloc(log_size, GFP_KERNEL);
1275 if (!log) {
1276 IPW_ERROR("Unable to allocate memory for log\n");
1277 return 0;
1278 }
1279 log_len = log_size / sizeof(*log);
1280 ipw_capture_event_log(priv, log_len, log);
1281
1282 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1283 for (i = 0; i < log_len; i++)
1284 len += snprintf(buf + len, PAGE_SIZE - len,
1285 "\n%08X%08X%08X",
1286 log[i].time, log[i].event, log[i].data);
1287 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1288 kfree(log);
1289 return len;
1290 }
1291
1292 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL);
1293
show_error(struct device * d,struct device_attribute * attr,char * buf)1294 static ssize_t show_error(struct device *d,
1295 struct device_attribute *attr, char *buf)
1296 {
1297 struct ipw_priv *priv = dev_get_drvdata(d);
1298 u32 len = 0, i;
1299 if (!priv->error)
1300 return 0;
1301 len += snprintf(buf + len, PAGE_SIZE - len,
1302 "%08lX%08X%08X%08X",
1303 priv->error->jiffies,
1304 priv->error->status,
1305 priv->error->config, priv->error->elem_len);
1306 for (i = 0; i < priv->error->elem_len; i++)
1307 len += snprintf(buf + len, PAGE_SIZE - len,
1308 "\n%08X%08X%08X%08X%08X%08X%08X",
1309 priv->error->elem[i].time,
1310 priv->error->elem[i].desc,
1311 priv->error->elem[i].blink1,
1312 priv->error->elem[i].blink2,
1313 priv->error->elem[i].link1,
1314 priv->error->elem[i].link2,
1315 priv->error->elem[i].data);
1316
1317 len += snprintf(buf + len, PAGE_SIZE - len,
1318 "\n%08X", priv->error->log_len);
1319 for (i = 0; i < priv->error->log_len; i++)
1320 len += snprintf(buf + len, PAGE_SIZE - len,
1321 "\n%08X%08X%08X",
1322 priv->error->log[i].time,
1323 priv->error->log[i].event,
1324 priv->error->log[i].data);
1325 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1326 return len;
1327 }
1328
clear_error(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1329 static ssize_t clear_error(struct device *d,
1330 struct device_attribute *attr,
1331 const char *buf, size_t count)
1332 {
1333 struct ipw_priv *priv = dev_get_drvdata(d);
1334
1335 kfree(priv->error);
1336 priv->error = NULL;
1337 return count;
1338 }
1339
1340 static DEVICE_ATTR(error, 0644, show_error, clear_error);
1341
show_cmd_log(struct device * d,struct device_attribute * attr,char * buf)1342 static ssize_t show_cmd_log(struct device *d,
1343 struct device_attribute *attr, char *buf)
1344 {
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1346 u32 len = 0, i;
1347 if (!priv->cmdlog)
1348 return 0;
1349 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1350 (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1351 i = (i + 1) % priv->cmdlog_len) {
1352 len +=
1353 snprintf(buf + len, PAGE_SIZE - len,
1354 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1355 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1356 priv->cmdlog[i].cmd.len);
1357 len +=
1358 snprintk_buf(buf + len, PAGE_SIZE - len,
1359 (u8 *) priv->cmdlog[i].cmd.param,
1360 priv->cmdlog[i].cmd.len);
1361 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1362 }
1363 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1364 return len;
1365 }
1366
1367 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL);
1368
1369 #ifdef CONFIG_IPW2200_PROMISCUOUS
1370 static void ipw_prom_free(struct ipw_priv *priv);
1371 static int ipw_prom_alloc(struct ipw_priv *priv);
store_rtap_iface(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1372 static ssize_t store_rtap_iface(struct device *d,
1373 struct device_attribute *attr,
1374 const char *buf, size_t count)
1375 {
1376 struct ipw_priv *priv = dev_get_drvdata(d);
1377 int rc = 0;
1378
1379 if (count < 1)
1380 return -EINVAL;
1381
1382 switch (buf[0]) {
1383 case '0':
1384 if (!rtap_iface)
1385 return count;
1386
1387 if (netif_running(priv->prom_net_dev)) {
1388 IPW_WARNING("Interface is up. Cannot unregister.\n");
1389 return count;
1390 }
1391
1392 ipw_prom_free(priv);
1393 rtap_iface = 0;
1394 break;
1395
1396 case '1':
1397 if (rtap_iface)
1398 return count;
1399
1400 rc = ipw_prom_alloc(priv);
1401 if (!rc)
1402 rtap_iface = 1;
1403 break;
1404
1405 default:
1406 return -EINVAL;
1407 }
1408
1409 if (rc) {
1410 IPW_ERROR("Failed to register promiscuous network "
1411 "device (error %d).\n", rc);
1412 }
1413
1414 return count;
1415 }
1416
show_rtap_iface(struct device * d,struct device_attribute * attr,char * buf)1417 static ssize_t show_rtap_iface(struct device *d,
1418 struct device_attribute *attr,
1419 char *buf)
1420 {
1421 struct ipw_priv *priv = dev_get_drvdata(d);
1422 if (rtap_iface)
1423 return sprintf(buf, "%s", priv->prom_net_dev->name);
1424 else {
1425 buf[0] = '-';
1426 buf[1] = '1';
1427 buf[2] = '\0';
1428 return 3;
1429 }
1430 }
1431
1432 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface);
1433
store_rtap_filter(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1434 static ssize_t store_rtap_filter(struct device *d,
1435 struct device_attribute *attr,
1436 const char *buf, size_t count)
1437 {
1438 struct ipw_priv *priv = dev_get_drvdata(d);
1439
1440 if (!priv->prom_priv) {
1441 IPW_ERROR("Attempting to set filter without "
1442 "rtap_iface enabled.\n");
1443 return -EPERM;
1444 }
1445
1446 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1447
1448 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1449 BIT_ARG16(priv->prom_priv->filter));
1450
1451 return count;
1452 }
1453
show_rtap_filter(struct device * d,struct device_attribute * attr,char * buf)1454 static ssize_t show_rtap_filter(struct device *d,
1455 struct device_attribute *attr,
1456 char *buf)
1457 {
1458 struct ipw_priv *priv = dev_get_drvdata(d);
1459 return sprintf(buf, "0x%04X",
1460 priv->prom_priv ? priv->prom_priv->filter : 0);
1461 }
1462
1463 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter);
1464 #endif
1465
show_scan_age(struct device * d,struct device_attribute * attr,char * buf)1466 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1467 char *buf)
1468 {
1469 struct ipw_priv *priv = dev_get_drvdata(d);
1470 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1471 }
1472
store_scan_age(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1473 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1474 const char *buf, size_t count)
1475 {
1476 struct ipw_priv *priv = dev_get_drvdata(d);
1477 struct net_device *dev = priv->net_dev;
1478 char buffer[] = "00000000";
1479 unsigned long len =
1480 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1481 unsigned long val;
1482 char *p = buffer;
1483
1484 IPW_DEBUG_INFO("enter\n");
1485
1486 strncpy(buffer, buf, len);
1487 buffer[len] = 0;
1488
1489 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1490 p++;
1491 if (p[0] == 'x' || p[0] == 'X')
1492 p++;
1493 val = simple_strtoul(p, &p, 16);
1494 } else
1495 val = simple_strtoul(p, &p, 10);
1496 if (p == buffer) {
1497 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1498 } else {
1499 priv->ieee->scan_age = val;
1500 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1501 }
1502
1503 IPW_DEBUG_INFO("exit\n");
1504 return len;
1505 }
1506
1507 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
1508
show_led(struct device * d,struct device_attribute * attr,char * buf)1509 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1510 char *buf)
1511 {
1512 struct ipw_priv *priv = dev_get_drvdata(d);
1513 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1514 }
1515
store_led(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1516 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1517 const char *buf, size_t count)
1518 {
1519 struct ipw_priv *priv = dev_get_drvdata(d);
1520
1521 IPW_DEBUG_INFO("enter\n");
1522
1523 if (count == 0)
1524 return 0;
1525
1526 if (*buf == 0) {
1527 IPW_DEBUG_LED("Disabling LED control.\n");
1528 priv->config |= CFG_NO_LED;
1529 ipw_led_shutdown(priv);
1530 } else {
1531 IPW_DEBUG_LED("Enabling LED control.\n");
1532 priv->config &= ~CFG_NO_LED;
1533 ipw_led_init(priv);
1534 }
1535
1536 IPW_DEBUG_INFO("exit\n");
1537 return count;
1538 }
1539
1540 static DEVICE_ATTR(led, 0644, show_led, store_led);
1541
show_status(struct device * d,struct device_attribute * attr,char * buf)1542 static ssize_t show_status(struct device *d,
1543 struct device_attribute *attr, char *buf)
1544 {
1545 struct ipw_priv *p = dev_get_drvdata(d);
1546 return sprintf(buf, "0x%08x\n", (int)p->status);
1547 }
1548
1549 static DEVICE_ATTR(status, 0444, show_status, NULL);
1550
show_cfg(struct device * d,struct device_attribute * attr,char * buf)1551 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1552 char *buf)
1553 {
1554 struct ipw_priv *p = dev_get_drvdata(d);
1555 return sprintf(buf, "0x%08x\n", (int)p->config);
1556 }
1557
1558 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
1559
show_nic_type(struct device * d,struct device_attribute * attr,char * buf)1560 static ssize_t show_nic_type(struct device *d,
1561 struct device_attribute *attr, char *buf)
1562 {
1563 struct ipw_priv *priv = dev_get_drvdata(d);
1564 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1565 }
1566
1567 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL);
1568
show_ucode_version(struct device * d,struct device_attribute * attr,char * buf)1569 static ssize_t show_ucode_version(struct device *d,
1570 struct device_attribute *attr, char *buf)
1571 {
1572 u32 len = sizeof(u32), tmp = 0;
1573 struct ipw_priv *p = dev_get_drvdata(d);
1574
1575 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1576 return 0;
1577
1578 return sprintf(buf, "0x%08x\n", tmp);
1579 }
1580
1581 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL);
1582
show_rtc(struct device * d,struct device_attribute * attr,char * buf)1583 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1584 char *buf)
1585 {
1586 u32 len = sizeof(u32), tmp = 0;
1587 struct ipw_priv *p = dev_get_drvdata(d);
1588
1589 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1590 return 0;
1591
1592 return sprintf(buf, "0x%08x\n", tmp);
1593 }
1594
1595 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL);
1596
1597 /*
1598 * Add a device attribute to view/control the delay between eeprom
1599 * operations.
1600 */
show_eeprom_delay(struct device * d,struct device_attribute * attr,char * buf)1601 static ssize_t show_eeprom_delay(struct device *d,
1602 struct device_attribute *attr, char *buf)
1603 {
1604 struct ipw_priv *p = dev_get_drvdata(d);
1605 int n = p->eeprom_delay;
1606 return sprintf(buf, "%i\n", n);
1607 }
store_eeprom_delay(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1608 static ssize_t store_eeprom_delay(struct device *d,
1609 struct device_attribute *attr,
1610 const char *buf, size_t count)
1611 {
1612 struct ipw_priv *p = dev_get_drvdata(d);
1613 sscanf(buf, "%i", &p->eeprom_delay);
1614 return strnlen(buf, count);
1615 }
1616
1617 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay);
1618
show_command_event_reg(struct device * d,struct device_attribute * attr,char * buf)1619 static ssize_t show_command_event_reg(struct device *d,
1620 struct device_attribute *attr, char *buf)
1621 {
1622 u32 reg = 0;
1623 struct ipw_priv *p = dev_get_drvdata(d);
1624
1625 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1626 return sprintf(buf, "0x%08x\n", reg);
1627 }
store_command_event_reg(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1628 static ssize_t store_command_event_reg(struct device *d,
1629 struct device_attribute *attr,
1630 const char *buf, size_t count)
1631 {
1632 u32 reg;
1633 struct ipw_priv *p = dev_get_drvdata(d);
1634
1635 sscanf(buf, "%x", ®);
1636 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1637 return strnlen(buf, count);
1638 }
1639
1640 static DEVICE_ATTR(command_event_reg, 0644,
1641 show_command_event_reg, store_command_event_reg);
1642
show_mem_gpio_reg(struct device * d,struct device_attribute * attr,char * buf)1643 static ssize_t show_mem_gpio_reg(struct device *d,
1644 struct device_attribute *attr, char *buf)
1645 {
1646 u32 reg = 0;
1647 struct ipw_priv *p = dev_get_drvdata(d);
1648
1649 reg = ipw_read_reg32(p, 0x301100);
1650 return sprintf(buf, "0x%08x\n", reg);
1651 }
store_mem_gpio_reg(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1652 static ssize_t store_mem_gpio_reg(struct device *d,
1653 struct device_attribute *attr,
1654 const char *buf, size_t count)
1655 {
1656 u32 reg;
1657 struct ipw_priv *p = dev_get_drvdata(d);
1658
1659 sscanf(buf, "%x", ®);
1660 ipw_write_reg32(p, 0x301100, reg);
1661 return strnlen(buf, count);
1662 }
1663
1664 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg);
1665
show_indirect_dword(struct device * d,struct device_attribute * attr,char * buf)1666 static ssize_t show_indirect_dword(struct device *d,
1667 struct device_attribute *attr, char *buf)
1668 {
1669 u32 reg = 0;
1670 struct ipw_priv *priv = dev_get_drvdata(d);
1671
1672 if (priv->status & STATUS_INDIRECT_DWORD)
1673 reg = ipw_read_reg32(priv, priv->indirect_dword);
1674 else
1675 reg = 0;
1676
1677 return sprintf(buf, "0x%08x\n", reg);
1678 }
store_indirect_dword(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1679 static ssize_t store_indirect_dword(struct device *d,
1680 struct device_attribute *attr,
1681 const char *buf, size_t count)
1682 {
1683 struct ipw_priv *priv = dev_get_drvdata(d);
1684
1685 sscanf(buf, "%x", &priv->indirect_dword);
1686 priv->status |= STATUS_INDIRECT_DWORD;
1687 return strnlen(buf, count);
1688 }
1689
1690 static DEVICE_ATTR(indirect_dword, 0644,
1691 show_indirect_dword, store_indirect_dword);
1692
show_indirect_byte(struct device * d,struct device_attribute * attr,char * buf)1693 static ssize_t show_indirect_byte(struct device *d,
1694 struct device_attribute *attr, char *buf)
1695 {
1696 u8 reg = 0;
1697 struct ipw_priv *priv = dev_get_drvdata(d);
1698
1699 if (priv->status & STATUS_INDIRECT_BYTE)
1700 reg = ipw_read_reg8(priv, priv->indirect_byte);
1701 else
1702 reg = 0;
1703
1704 return sprintf(buf, "0x%02x\n", reg);
1705 }
store_indirect_byte(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1706 static ssize_t store_indirect_byte(struct device *d,
1707 struct device_attribute *attr,
1708 const char *buf, size_t count)
1709 {
1710 struct ipw_priv *priv = dev_get_drvdata(d);
1711
1712 sscanf(buf, "%x", &priv->indirect_byte);
1713 priv->status |= STATUS_INDIRECT_BYTE;
1714 return strnlen(buf, count);
1715 }
1716
1717 static DEVICE_ATTR(indirect_byte, 0644,
1718 show_indirect_byte, store_indirect_byte);
1719
show_direct_dword(struct device * d,struct device_attribute * attr,char * buf)1720 static ssize_t show_direct_dword(struct device *d,
1721 struct device_attribute *attr, char *buf)
1722 {
1723 u32 reg = 0;
1724 struct ipw_priv *priv = dev_get_drvdata(d);
1725
1726 if (priv->status & STATUS_DIRECT_DWORD)
1727 reg = ipw_read32(priv, priv->direct_dword);
1728 else
1729 reg = 0;
1730
1731 return sprintf(buf, "0x%08x\n", reg);
1732 }
store_direct_dword(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1733 static ssize_t store_direct_dword(struct device *d,
1734 struct device_attribute *attr,
1735 const char *buf, size_t count)
1736 {
1737 struct ipw_priv *priv = dev_get_drvdata(d);
1738
1739 sscanf(buf, "%x", &priv->direct_dword);
1740 priv->status |= STATUS_DIRECT_DWORD;
1741 return strnlen(buf, count);
1742 }
1743
1744 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword);
1745
rf_kill_active(struct ipw_priv * priv)1746 static int rf_kill_active(struct ipw_priv *priv)
1747 {
1748 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1749 priv->status |= STATUS_RF_KILL_HW;
1750 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1751 } else {
1752 priv->status &= ~STATUS_RF_KILL_HW;
1753 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1754 }
1755
1756 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1757 }
1758
show_rf_kill(struct device * d,struct device_attribute * attr,char * buf)1759 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1760 char *buf)
1761 {
1762 /* 0 - RF kill not enabled
1763 1 - SW based RF kill active (sysfs)
1764 2 - HW based RF kill active
1765 3 - Both HW and SW baed RF kill active */
1766 struct ipw_priv *priv = dev_get_drvdata(d);
1767 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1768 (rf_kill_active(priv) ? 0x2 : 0x0);
1769 return sprintf(buf, "%i\n", val);
1770 }
1771
ipw_radio_kill_sw(struct ipw_priv * priv,int disable_radio)1772 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1773 {
1774 if ((disable_radio ? 1 : 0) ==
1775 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1776 return 0;
1777
1778 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1779 disable_radio ? "OFF" : "ON");
1780
1781 if (disable_radio) {
1782 priv->status |= STATUS_RF_KILL_SW;
1783
1784 cancel_delayed_work(&priv->request_scan);
1785 cancel_delayed_work(&priv->request_direct_scan);
1786 cancel_delayed_work(&priv->request_passive_scan);
1787 cancel_delayed_work(&priv->scan_event);
1788 schedule_work(&priv->down);
1789 } else {
1790 priv->status &= ~STATUS_RF_KILL_SW;
1791 if (rf_kill_active(priv)) {
1792 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1793 "disabled by HW switch\n");
1794 /* Make sure the RF_KILL check timer is running */
1795 cancel_delayed_work(&priv->rf_kill);
1796 schedule_delayed_work(&priv->rf_kill,
1797 round_jiffies_relative(2 * HZ));
1798 } else
1799 schedule_work(&priv->up);
1800 }
1801
1802 return 1;
1803 }
1804
store_rf_kill(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1805 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1806 const char *buf, size_t count)
1807 {
1808 struct ipw_priv *priv = dev_get_drvdata(d);
1809
1810 ipw_radio_kill_sw(priv, buf[0] == '1');
1811
1812 return count;
1813 }
1814
1815 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
1816
show_speed_scan(struct device * d,struct device_attribute * attr,char * buf)1817 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1818 char *buf)
1819 {
1820 struct ipw_priv *priv = dev_get_drvdata(d);
1821 int pos = 0, len = 0;
1822 if (priv->config & CFG_SPEED_SCAN) {
1823 while (priv->speed_scan[pos] != 0)
1824 len += sprintf(&buf[len], "%d ",
1825 priv->speed_scan[pos++]);
1826 return len + sprintf(&buf[len], "\n");
1827 }
1828
1829 return sprintf(buf, "0\n");
1830 }
1831
store_speed_scan(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1832 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1833 const char *buf, size_t count)
1834 {
1835 struct ipw_priv *priv = dev_get_drvdata(d);
1836 int channel, pos = 0;
1837 const char *p = buf;
1838
1839 /* list of space separated channels to scan, optionally ending with 0 */
1840 while ((channel = simple_strtol(p, NULL, 0))) {
1841 if (pos == MAX_SPEED_SCAN - 1) {
1842 priv->speed_scan[pos] = 0;
1843 break;
1844 }
1845
1846 if (libipw_is_valid_channel(priv->ieee, channel))
1847 priv->speed_scan[pos++] = channel;
1848 else
1849 IPW_WARNING("Skipping invalid channel request: %d\n",
1850 channel);
1851 p = strchr(p, ' ');
1852 if (!p)
1853 break;
1854 while (*p == ' ' || *p == '\t')
1855 p++;
1856 }
1857
1858 if (pos == 0)
1859 priv->config &= ~CFG_SPEED_SCAN;
1860 else {
1861 priv->speed_scan_pos = 0;
1862 priv->config |= CFG_SPEED_SCAN;
1863 }
1864
1865 return count;
1866 }
1867
1868 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan);
1869
show_net_stats(struct device * d,struct device_attribute * attr,char * buf)1870 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1871 char *buf)
1872 {
1873 struct ipw_priv *priv = dev_get_drvdata(d);
1874 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1875 }
1876
store_net_stats(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1877 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1878 const char *buf, size_t count)
1879 {
1880 struct ipw_priv *priv = dev_get_drvdata(d);
1881 if (buf[0] == '1')
1882 priv->config |= CFG_NET_STATS;
1883 else
1884 priv->config &= ~CFG_NET_STATS;
1885
1886 return count;
1887 }
1888
1889 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats);
1890
show_channels(struct device * d,struct device_attribute * attr,char * buf)1891 static ssize_t show_channels(struct device *d,
1892 struct device_attribute *attr,
1893 char *buf)
1894 {
1895 struct ipw_priv *priv = dev_get_drvdata(d);
1896 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1897 int len = 0, i;
1898
1899 len = sprintf(&buf[len],
1900 "Displaying %d channels in 2.4Ghz band "
1901 "(802.11bg):\n", geo->bg_channels);
1902
1903 for (i = 0; i < geo->bg_channels; i++) {
1904 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1905 geo->bg[i].channel,
1906 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1907 " (radar spectrum)" : "",
1908 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1909 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1910 ? "" : ", IBSS",
1911 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1912 "passive only" : "active/passive",
1913 geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1914 "B" : "B/G");
1915 }
1916
1917 len += sprintf(&buf[len],
1918 "Displaying %d channels in 5.2Ghz band "
1919 "(802.11a):\n", geo->a_channels);
1920 for (i = 0; i < geo->a_channels; i++) {
1921 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1922 geo->a[i].channel,
1923 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1924 " (radar spectrum)" : "",
1925 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1926 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1927 ? "" : ", IBSS",
1928 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1929 "passive only" : "active/passive");
1930 }
1931
1932 return len;
1933 }
1934
1935 static DEVICE_ATTR(channels, 0400, show_channels, NULL);
1936
notify_wx_assoc_event(struct ipw_priv * priv)1937 static void notify_wx_assoc_event(struct ipw_priv *priv)
1938 {
1939 union iwreq_data wrqu;
1940 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1941 if (priv->status & STATUS_ASSOCIATED)
1942 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1943 else
1944 eth_zero_addr(wrqu.ap_addr.sa_data);
1945 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1946 }
1947
ipw_irq_tasklet(struct ipw_priv * priv)1948 static void ipw_irq_tasklet(struct ipw_priv *priv)
1949 {
1950 u32 inta, inta_mask, handled = 0;
1951 unsigned long flags;
1952 int rc = 0;
1953
1954 spin_lock_irqsave(&priv->irq_lock, flags);
1955
1956 inta = ipw_read32(priv, IPW_INTA_RW);
1957 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1958
1959 if (inta == 0xFFFFFFFF) {
1960 /* Hardware disappeared */
1961 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1962 /* Only handle the cached INTA values */
1963 inta = 0;
1964 }
1965 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1966
1967 /* Add any cached INTA values that need to be handled */
1968 inta |= priv->isr_inta;
1969
1970 spin_unlock_irqrestore(&priv->irq_lock, flags);
1971
1972 spin_lock_irqsave(&priv->lock, flags);
1973
1974 /* handle all the justifications for the interrupt */
1975 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1976 ipw_rx(priv);
1977 handled |= IPW_INTA_BIT_RX_TRANSFER;
1978 }
1979
1980 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1981 IPW_DEBUG_HC("Command completed.\n");
1982 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1983 priv->status &= ~STATUS_HCMD_ACTIVE;
1984 wake_up_interruptible(&priv->wait_command_queue);
1985 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1986 }
1987
1988 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1989 IPW_DEBUG_TX("TX_QUEUE_1\n");
1990 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1991 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1992 }
1993
1994 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1995 IPW_DEBUG_TX("TX_QUEUE_2\n");
1996 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1997 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1998 }
1999
2000 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2001 IPW_DEBUG_TX("TX_QUEUE_3\n");
2002 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2003 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2004 }
2005
2006 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2007 IPW_DEBUG_TX("TX_QUEUE_4\n");
2008 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2009 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2010 }
2011
2012 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2013 IPW_WARNING("STATUS_CHANGE\n");
2014 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2015 }
2016
2017 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2018 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2019 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2020 }
2021
2022 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2023 IPW_WARNING("HOST_CMD_DONE\n");
2024 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2025 }
2026
2027 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2028 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2029 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2030 }
2031
2032 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2033 IPW_WARNING("PHY_OFF_DONE\n");
2034 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2035 }
2036
2037 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2038 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2039 priv->status |= STATUS_RF_KILL_HW;
2040 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2041 wake_up_interruptible(&priv->wait_command_queue);
2042 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2043 cancel_delayed_work(&priv->request_scan);
2044 cancel_delayed_work(&priv->request_direct_scan);
2045 cancel_delayed_work(&priv->request_passive_scan);
2046 cancel_delayed_work(&priv->scan_event);
2047 schedule_work(&priv->link_down);
2048 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2049 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2050 }
2051
2052 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2053 IPW_WARNING("Firmware error detected. Restarting.\n");
2054 if (priv->error) {
2055 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2056 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2057 struct ipw_fw_error *error =
2058 ipw_alloc_error_log(priv);
2059 ipw_dump_error_log(priv, error);
2060 kfree(error);
2061 }
2062 } else {
2063 priv->error = ipw_alloc_error_log(priv);
2064 if (priv->error)
2065 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2066 else
2067 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2068 "log.\n");
2069 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2070 ipw_dump_error_log(priv, priv->error);
2071 }
2072
2073 /* XXX: If hardware encryption is for WPA/WPA2,
2074 * we have to notify the supplicant. */
2075 if (priv->ieee->sec.encrypt) {
2076 priv->status &= ~STATUS_ASSOCIATED;
2077 notify_wx_assoc_event(priv);
2078 }
2079
2080 /* Keep the restart process from trying to send host
2081 * commands by clearing the INIT status bit */
2082 priv->status &= ~STATUS_INIT;
2083
2084 /* Cancel currently queued command. */
2085 priv->status &= ~STATUS_HCMD_ACTIVE;
2086 wake_up_interruptible(&priv->wait_command_queue);
2087
2088 schedule_work(&priv->adapter_restart);
2089 handled |= IPW_INTA_BIT_FATAL_ERROR;
2090 }
2091
2092 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2093 IPW_ERROR("Parity error\n");
2094 handled |= IPW_INTA_BIT_PARITY_ERROR;
2095 }
2096
2097 if (handled != inta) {
2098 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2099 }
2100
2101 spin_unlock_irqrestore(&priv->lock, flags);
2102
2103 /* enable all interrupts */
2104 ipw_enable_interrupts(priv);
2105 }
2106
2107 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
get_cmd_string(u8 cmd)2108 static char *get_cmd_string(u8 cmd)
2109 {
2110 switch (cmd) {
2111 IPW_CMD(HOST_COMPLETE);
2112 IPW_CMD(POWER_DOWN);
2113 IPW_CMD(SYSTEM_CONFIG);
2114 IPW_CMD(MULTICAST_ADDRESS);
2115 IPW_CMD(SSID);
2116 IPW_CMD(ADAPTER_ADDRESS);
2117 IPW_CMD(PORT_TYPE);
2118 IPW_CMD(RTS_THRESHOLD);
2119 IPW_CMD(FRAG_THRESHOLD);
2120 IPW_CMD(POWER_MODE);
2121 IPW_CMD(WEP_KEY);
2122 IPW_CMD(TGI_TX_KEY);
2123 IPW_CMD(SCAN_REQUEST);
2124 IPW_CMD(SCAN_REQUEST_EXT);
2125 IPW_CMD(ASSOCIATE);
2126 IPW_CMD(SUPPORTED_RATES);
2127 IPW_CMD(SCAN_ABORT);
2128 IPW_CMD(TX_FLUSH);
2129 IPW_CMD(QOS_PARAMETERS);
2130 IPW_CMD(DINO_CONFIG);
2131 IPW_CMD(RSN_CAPABILITIES);
2132 IPW_CMD(RX_KEY);
2133 IPW_CMD(CARD_DISABLE);
2134 IPW_CMD(SEED_NUMBER);
2135 IPW_CMD(TX_POWER);
2136 IPW_CMD(COUNTRY_INFO);
2137 IPW_CMD(AIRONET_INFO);
2138 IPW_CMD(AP_TX_POWER);
2139 IPW_CMD(CCKM_INFO);
2140 IPW_CMD(CCX_VER_INFO);
2141 IPW_CMD(SET_CALIBRATION);
2142 IPW_CMD(SENSITIVITY_CALIB);
2143 IPW_CMD(RETRY_LIMIT);
2144 IPW_CMD(IPW_PRE_POWER_DOWN);
2145 IPW_CMD(VAP_BEACON_TEMPLATE);
2146 IPW_CMD(VAP_DTIM_PERIOD);
2147 IPW_CMD(EXT_SUPPORTED_RATES);
2148 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2149 IPW_CMD(VAP_QUIET_INTERVALS);
2150 IPW_CMD(VAP_CHANNEL_SWITCH);
2151 IPW_CMD(VAP_MANDATORY_CHANNELS);
2152 IPW_CMD(VAP_CELL_PWR_LIMIT);
2153 IPW_CMD(VAP_CF_PARAM_SET);
2154 IPW_CMD(VAP_SET_BEACONING_STATE);
2155 IPW_CMD(MEASUREMENT);
2156 IPW_CMD(POWER_CAPABILITY);
2157 IPW_CMD(SUPPORTED_CHANNELS);
2158 IPW_CMD(TPC_REPORT);
2159 IPW_CMD(WME_INFO);
2160 IPW_CMD(PRODUCTION_COMMAND);
2161 default:
2162 return "UNKNOWN";
2163 }
2164 }
2165
2166 #define HOST_COMPLETE_TIMEOUT HZ
2167
__ipw_send_cmd(struct ipw_priv * priv,struct host_cmd * cmd)2168 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2169 {
2170 int rc = 0;
2171 unsigned long flags;
2172 unsigned long now, end;
2173
2174 spin_lock_irqsave(&priv->lock, flags);
2175 if (priv->status & STATUS_HCMD_ACTIVE) {
2176 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2177 get_cmd_string(cmd->cmd));
2178 spin_unlock_irqrestore(&priv->lock, flags);
2179 return -EAGAIN;
2180 }
2181
2182 priv->status |= STATUS_HCMD_ACTIVE;
2183
2184 if (priv->cmdlog) {
2185 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2186 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2187 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2188 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2189 cmd->len);
2190 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2191 }
2192
2193 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2194 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2195 priv->status);
2196
2197 #ifndef DEBUG_CMD_WEP_KEY
2198 if (cmd->cmd == IPW_CMD_WEP_KEY)
2199 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2200 else
2201 #endif
2202 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2203
2204 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2205 if (rc) {
2206 priv->status &= ~STATUS_HCMD_ACTIVE;
2207 IPW_ERROR("Failed to send %s: Reason %d\n",
2208 get_cmd_string(cmd->cmd), rc);
2209 spin_unlock_irqrestore(&priv->lock, flags);
2210 goto exit;
2211 }
2212 spin_unlock_irqrestore(&priv->lock, flags);
2213
2214 now = jiffies;
2215 end = now + HOST_COMPLETE_TIMEOUT;
2216 again:
2217 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2218 !(priv->
2219 status & STATUS_HCMD_ACTIVE),
2220 end - now);
2221 if (rc < 0) {
2222 now = jiffies;
2223 if (time_before(now, end))
2224 goto again;
2225 rc = 0;
2226 }
2227
2228 if (rc == 0) {
2229 spin_lock_irqsave(&priv->lock, flags);
2230 if (priv->status & STATUS_HCMD_ACTIVE) {
2231 IPW_ERROR("Failed to send %s: Command timed out.\n",
2232 get_cmd_string(cmd->cmd));
2233 priv->status &= ~STATUS_HCMD_ACTIVE;
2234 spin_unlock_irqrestore(&priv->lock, flags);
2235 rc = -EIO;
2236 goto exit;
2237 }
2238 spin_unlock_irqrestore(&priv->lock, flags);
2239 } else
2240 rc = 0;
2241
2242 if (priv->status & STATUS_RF_KILL_HW) {
2243 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2244 get_cmd_string(cmd->cmd));
2245 rc = -EIO;
2246 goto exit;
2247 }
2248
2249 exit:
2250 if (priv->cmdlog) {
2251 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2252 priv->cmdlog_pos %= priv->cmdlog_len;
2253 }
2254 return rc;
2255 }
2256
ipw_send_cmd_simple(struct ipw_priv * priv,u8 command)2257 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2258 {
2259 struct host_cmd cmd = {
2260 .cmd = command,
2261 };
2262
2263 return __ipw_send_cmd(priv, &cmd);
2264 }
2265
ipw_send_cmd_pdu(struct ipw_priv * priv,u8 command,u8 len,void * data)2266 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2267 void *data)
2268 {
2269 struct host_cmd cmd = {
2270 .cmd = command,
2271 .len = len,
2272 .param = data,
2273 };
2274
2275 return __ipw_send_cmd(priv, &cmd);
2276 }
2277
ipw_send_host_complete(struct ipw_priv * priv)2278 static int ipw_send_host_complete(struct ipw_priv *priv)
2279 {
2280 if (!priv) {
2281 IPW_ERROR("Invalid args\n");
2282 return -1;
2283 }
2284
2285 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2286 }
2287
ipw_send_system_config(struct ipw_priv * priv)2288 static int ipw_send_system_config(struct ipw_priv *priv)
2289 {
2290 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2291 sizeof(priv->sys_config),
2292 &priv->sys_config);
2293 }
2294
ipw_send_ssid(struct ipw_priv * priv,u8 * ssid,int len)2295 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2296 {
2297 if (!priv || !ssid) {
2298 IPW_ERROR("Invalid args\n");
2299 return -1;
2300 }
2301
2302 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2303 ssid);
2304 }
2305
ipw_send_adapter_address(struct ipw_priv * priv,u8 * mac)2306 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2307 {
2308 if (!priv || !mac) {
2309 IPW_ERROR("Invalid args\n");
2310 return -1;
2311 }
2312
2313 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2314 priv->net_dev->name, mac);
2315
2316 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2317 }
2318
ipw_adapter_restart(void * adapter)2319 static void ipw_adapter_restart(void *adapter)
2320 {
2321 struct ipw_priv *priv = adapter;
2322
2323 if (priv->status & STATUS_RF_KILL_MASK)
2324 return;
2325
2326 ipw_down(priv);
2327
2328 if (priv->assoc_network &&
2329 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2330 ipw_remove_current_network(priv);
2331
2332 if (ipw_up(priv)) {
2333 IPW_ERROR("Failed to up device\n");
2334 return;
2335 }
2336 }
2337
ipw_bg_adapter_restart(struct work_struct * work)2338 static void ipw_bg_adapter_restart(struct work_struct *work)
2339 {
2340 struct ipw_priv *priv =
2341 container_of(work, struct ipw_priv, adapter_restart);
2342 mutex_lock(&priv->mutex);
2343 ipw_adapter_restart(priv);
2344 mutex_unlock(&priv->mutex);
2345 }
2346
2347 static void ipw_abort_scan(struct ipw_priv *priv);
2348
2349 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2350
ipw_scan_check(void * data)2351 static void ipw_scan_check(void *data)
2352 {
2353 struct ipw_priv *priv = data;
2354
2355 if (priv->status & STATUS_SCAN_ABORTING) {
2356 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2357 "adapter after (%dms).\n",
2358 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2359 schedule_work(&priv->adapter_restart);
2360 } else if (priv->status & STATUS_SCANNING) {
2361 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2362 "after (%dms).\n",
2363 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2364 ipw_abort_scan(priv);
2365 schedule_delayed_work(&priv->scan_check, HZ);
2366 }
2367 }
2368
ipw_bg_scan_check(struct work_struct * work)2369 static void ipw_bg_scan_check(struct work_struct *work)
2370 {
2371 struct ipw_priv *priv =
2372 container_of(work, struct ipw_priv, scan_check.work);
2373 mutex_lock(&priv->mutex);
2374 ipw_scan_check(priv);
2375 mutex_unlock(&priv->mutex);
2376 }
2377
ipw_send_scan_request_ext(struct ipw_priv * priv,struct ipw_scan_request_ext * request)2378 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2379 struct ipw_scan_request_ext *request)
2380 {
2381 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2382 sizeof(*request), request);
2383 }
2384
ipw_send_scan_abort(struct ipw_priv * priv)2385 static int ipw_send_scan_abort(struct ipw_priv *priv)
2386 {
2387 if (!priv) {
2388 IPW_ERROR("Invalid args\n");
2389 return -1;
2390 }
2391
2392 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2393 }
2394
ipw_set_sensitivity(struct ipw_priv * priv,u16 sens)2395 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2396 {
2397 struct ipw_sensitivity_calib calib = {
2398 .beacon_rssi_raw = cpu_to_le16(sens),
2399 };
2400
2401 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2402 &calib);
2403 }
2404
ipw_send_associate(struct ipw_priv * priv,struct ipw_associate * associate)2405 static int ipw_send_associate(struct ipw_priv *priv,
2406 struct ipw_associate *associate)
2407 {
2408 if (!priv || !associate) {
2409 IPW_ERROR("Invalid args\n");
2410 return -1;
2411 }
2412
2413 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2414 associate);
2415 }
2416
ipw_send_supported_rates(struct ipw_priv * priv,struct ipw_supported_rates * rates)2417 static int ipw_send_supported_rates(struct ipw_priv *priv,
2418 struct ipw_supported_rates *rates)
2419 {
2420 if (!priv || !rates) {
2421 IPW_ERROR("Invalid args\n");
2422 return -1;
2423 }
2424
2425 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2426 rates);
2427 }
2428
ipw_set_random_seed(struct ipw_priv * priv)2429 static int ipw_set_random_seed(struct ipw_priv *priv)
2430 {
2431 u32 val;
2432
2433 if (!priv) {
2434 IPW_ERROR("Invalid args\n");
2435 return -1;
2436 }
2437
2438 get_random_bytes(&val, sizeof(val));
2439
2440 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2441 }
2442
ipw_send_card_disable(struct ipw_priv * priv,u32 phy_off)2443 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2444 {
2445 __le32 v = cpu_to_le32(phy_off);
2446 if (!priv) {
2447 IPW_ERROR("Invalid args\n");
2448 return -1;
2449 }
2450
2451 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2452 }
2453
ipw_send_tx_power(struct ipw_priv * priv,struct ipw_tx_power * power)2454 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2455 {
2456 if (!priv || !power) {
2457 IPW_ERROR("Invalid args\n");
2458 return -1;
2459 }
2460
2461 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2462 }
2463
ipw_set_tx_power(struct ipw_priv * priv)2464 static int ipw_set_tx_power(struct ipw_priv *priv)
2465 {
2466 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2467 struct ipw_tx_power tx_power;
2468 s8 max_power;
2469 int i;
2470
2471 memset(&tx_power, 0, sizeof(tx_power));
2472
2473 /* configure device for 'G' band */
2474 tx_power.ieee_mode = IPW_G_MODE;
2475 tx_power.num_channels = geo->bg_channels;
2476 for (i = 0; i < geo->bg_channels; i++) {
2477 max_power = geo->bg[i].max_power;
2478 tx_power.channels_tx_power[i].channel_number =
2479 geo->bg[i].channel;
2480 tx_power.channels_tx_power[i].tx_power = max_power ?
2481 min(max_power, priv->tx_power) : priv->tx_power;
2482 }
2483 if (ipw_send_tx_power(priv, &tx_power))
2484 return -EIO;
2485
2486 /* configure device to also handle 'B' band */
2487 tx_power.ieee_mode = IPW_B_MODE;
2488 if (ipw_send_tx_power(priv, &tx_power))
2489 return -EIO;
2490
2491 /* configure device to also handle 'A' band */
2492 if (priv->ieee->abg_true) {
2493 tx_power.ieee_mode = IPW_A_MODE;
2494 tx_power.num_channels = geo->a_channels;
2495 for (i = 0; i < tx_power.num_channels; i++) {
2496 max_power = geo->a[i].max_power;
2497 tx_power.channels_tx_power[i].channel_number =
2498 geo->a[i].channel;
2499 tx_power.channels_tx_power[i].tx_power = max_power ?
2500 min(max_power, priv->tx_power) : priv->tx_power;
2501 }
2502 if (ipw_send_tx_power(priv, &tx_power))
2503 return -EIO;
2504 }
2505 return 0;
2506 }
2507
ipw_send_rts_threshold(struct ipw_priv * priv,u16 rts)2508 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2509 {
2510 struct ipw_rts_threshold rts_threshold = {
2511 .rts_threshold = cpu_to_le16(rts),
2512 };
2513
2514 if (!priv) {
2515 IPW_ERROR("Invalid args\n");
2516 return -1;
2517 }
2518
2519 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2520 sizeof(rts_threshold), &rts_threshold);
2521 }
2522
ipw_send_frag_threshold(struct ipw_priv * priv,u16 frag)2523 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2524 {
2525 struct ipw_frag_threshold frag_threshold = {
2526 .frag_threshold = cpu_to_le16(frag),
2527 };
2528
2529 if (!priv) {
2530 IPW_ERROR("Invalid args\n");
2531 return -1;
2532 }
2533
2534 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2535 sizeof(frag_threshold), &frag_threshold);
2536 }
2537
ipw_send_power_mode(struct ipw_priv * priv,u32 mode)2538 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2539 {
2540 __le32 param;
2541
2542 if (!priv) {
2543 IPW_ERROR("Invalid args\n");
2544 return -1;
2545 }
2546
2547 /* If on battery, set to 3, if AC set to CAM, else user
2548 * level */
2549 switch (mode) {
2550 case IPW_POWER_BATTERY:
2551 param = cpu_to_le32(IPW_POWER_INDEX_3);
2552 break;
2553 case IPW_POWER_AC:
2554 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2555 break;
2556 default:
2557 param = cpu_to_le32(mode);
2558 break;
2559 }
2560
2561 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2562 ¶m);
2563 }
2564
ipw_send_retry_limit(struct ipw_priv * priv,u8 slimit,u8 llimit)2565 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2566 {
2567 struct ipw_retry_limit retry_limit = {
2568 .short_retry_limit = slimit,
2569 .long_retry_limit = llimit
2570 };
2571
2572 if (!priv) {
2573 IPW_ERROR("Invalid args\n");
2574 return -1;
2575 }
2576
2577 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2578 &retry_limit);
2579 }
2580
2581 /*
2582 * The IPW device contains a Microwire compatible EEPROM that stores
2583 * various data like the MAC address. Usually the firmware has exclusive
2584 * access to the eeprom, but during device initialization (before the
2585 * device driver has sent the HostComplete command to the firmware) the
2586 * device driver has read access to the EEPROM by way of indirect addressing
2587 * through a couple of memory mapped registers.
2588 *
2589 * The following is a simplified implementation for pulling data out of the
2590 * the eeprom, along with some helper functions to find information in
2591 * the per device private data's copy of the eeprom.
2592 *
2593 * NOTE: To better understand how these functions work (i.e what is a chip
2594 * select and why do have to keep driving the eeprom clock?), read
2595 * just about any data sheet for a Microwire compatible EEPROM.
2596 */
2597
2598 /* write a 32 bit value into the indirect accessor register */
eeprom_write_reg(struct ipw_priv * p,u32 data)2599 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2600 {
2601 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2602
2603 /* the eeprom requires some time to complete the operation */
2604 udelay(p->eeprom_delay);
2605 }
2606
2607 /* perform a chip select operation */
eeprom_cs(struct ipw_priv * priv)2608 static void eeprom_cs(struct ipw_priv *priv)
2609 {
2610 eeprom_write_reg(priv, 0);
2611 eeprom_write_reg(priv, EEPROM_BIT_CS);
2612 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2613 eeprom_write_reg(priv, EEPROM_BIT_CS);
2614 }
2615
2616 /* perform a chip select operation */
eeprom_disable_cs(struct ipw_priv * priv)2617 static void eeprom_disable_cs(struct ipw_priv *priv)
2618 {
2619 eeprom_write_reg(priv, EEPROM_BIT_CS);
2620 eeprom_write_reg(priv, 0);
2621 eeprom_write_reg(priv, EEPROM_BIT_SK);
2622 }
2623
2624 /* push a single bit down to the eeprom */
eeprom_write_bit(struct ipw_priv * p,u8 bit)2625 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2626 {
2627 int d = (bit ? EEPROM_BIT_DI : 0);
2628 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2629 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2630 }
2631
2632 /* push an opcode followed by an address down to the eeprom */
eeprom_op(struct ipw_priv * priv,u8 op,u8 addr)2633 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2634 {
2635 int i;
2636
2637 eeprom_cs(priv);
2638 eeprom_write_bit(priv, 1);
2639 eeprom_write_bit(priv, op & 2);
2640 eeprom_write_bit(priv, op & 1);
2641 for (i = 7; i >= 0; i--) {
2642 eeprom_write_bit(priv, addr & (1 << i));
2643 }
2644 }
2645
2646 /* pull 16 bits off the eeprom, one bit at a time */
eeprom_read_u16(struct ipw_priv * priv,u8 addr)2647 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2648 {
2649 int i;
2650 u16 r = 0;
2651
2652 /* Send READ Opcode */
2653 eeprom_op(priv, EEPROM_CMD_READ, addr);
2654
2655 /* Send dummy bit */
2656 eeprom_write_reg(priv, EEPROM_BIT_CS);
2657
2658 /* Read the byte off the eeprom one bit at a time */
2659 for (i = 0; i < 16; i++) {
2660 u32 data = 0;
2661 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2662 eeprom_write_reg(priv, EEPROM_BIT_CS);
2663 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2664 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2665 }
2666
2667 /* Send another dummy bit */
2668 eeprom_write_reg(priv, 0);
2669 eeprom_disable_cs(priv);
2670
2671 return r;
2672 }
2673
2674 /* helper function for pulling the mac address out of the private */
2675 /* data's copy of the eeprom data */
eeprom_parse_mac(struct ipw_priv * priv,u8 * mac)2676 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2677 {
2678 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2679 }
2680
ipw_read_eeprom(struct ipw_priv * priv)2681 static void ipw_read_eeprom(struct ipw_priv *priv)
2682 {
2683 int i;
2684 __le16 *eeprom = (__le16 *) priv->eeprom;
2685
2686 IPW_DEBUG_TRACE(">>\n");
2687
2688 /* read entire contents of eeprom into private buffer */
2689 for (i = 0; i < 128; i++)
2690 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2691
2692 IPW_DEBUG_TRACE("<<\n");
2693 }
2694
2695 /*
2696 * Either the device driver (i.e. the host) or the firmware can
2697 * load eeprom data into the designated region in SRAM. If neither
2698 * happens then the FW will shutdown with a fatal error.
2699 *
2700 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2701 * bit needs region of shared SRAM needs to be non-zero.
2702 */
ipw_eeprom_init_sram(struct ipw_priv * priv)2703 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2704 {
2705 int i;
2706
2707 IPW_DEBUG_TRACE(">>\n");
2708
2709 /*
2710 If the data looks correct, then copy it to our private
2711 copy. Otherwise let the firmware know to perform the operation
2712 on its own.
2713 */
2714 if (priv->eeprom[EEPROM_VERSION] != 0) {
2715 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2716
2717 /* write the eeprom data to sram */
2718 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2719 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2720
2721 /* Do not load eeprom data on fatal error or suspend */
2722 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2723 } else {
2724 IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2725
2726 /* Load eeprom data on fatal error or suspend */
2727 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2728 }
2729
2730 IPW_DEBUG_TRACE("<<\n");
2731 }
2732
ipw_zero_memory(struct ipw_priv * priv,u32 start,u32 count)2733 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2734 {
2735 count >>= 2;
2736 if (!count)
2737 return;
2738 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2739 while (count--)
2740 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2741 }
2742
ipw_fw_dma_reset_command_blocks(struct ipw_priv * priv)2743 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2744 {
2745 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2746 CB_NUMBER_OF_ELEMENTS_SMALL *
2747 sizeof(struct command_block));
2748 }
2749
ipw_fw_dma_enable(struct ipw_priv * priv)2750 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2751 { /* start dma engine but no transfers yet */
2752
2753 IPW_DEBUG_FW(">> :\n");
2754
2755 /* Start the dma */
2756 ipw_fw_dma_reset_command_blocks(priv);
2757
2758 /* Write CB base address */
2759 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2760
2761 IPW_DEBUG_FW("<< :\n");
2762 return 0;
2763 }
2764
ipw_fw_dma_abort(struct ipw_priv * priv)2765 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2766 {
2767 u32 control = 0;
2768
2769 IPW_DEBUG_FW(">> :\n");
2770
2771 /* set the Stop and Abort bit */
2772 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2773 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2774 priv->sram_desc.last_cb_index = 0;
2775
2776 IPW_DEBUG_FW("<<\n");
2777 }
2778
ipw_fw_dma_write_command_block(struct ipw_priv * priv,int index,struct command_block * cb)2779 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2780 struct command_block *cb)
2781 {
2782 u32 address =
2783 IPW_SHARED_SRAM_DMA_CONTROL +
2784 (sizeof(struct command_block) * index);
2785 IPW_DEBUG_FW(">> :\n");
2786
2787 ipw_write_indirect(priv, address, (u8 *) cb,
2788 (int)sizeof(struct command_block));
2789
2790 IPW_DEBUG_FW("<< :\n");
2791 return 0;
2792
2793 }
2794
ipw_fw_dma_kick(struct ipw_priv * priv)2795 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2796 {
2797 u32 control = 0;
2798 u32 index = 0;
2799
2800 IPW_DEBUG_FW(">> :\n");
2801
2802 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2803 ipw_fw_dma_write_command_block(priv, index,
2804 &priv->sram_desc.cb_list[index]);
2805
2806 /* Enable the DMA in the CSR register */
2807 ipw_clear_bit(priv, IPW_RESET_REG,
2808 IPW_RESET_REG_MASTER_DISABLED |
2809 IPW_RESET_REG_STOP_MASTER);
2810
2811 /* Set the Start bit. */
2812 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2813 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2814
2815 IPW_DEBUG_FW("<< :\n");
2816 return 0;
2817 }
2818
ipw_fw_dma_dump_command_block(struct ipw_priv * priv)2819 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2820 {
2821 u32 address;
2822 u32 register_value = 0;
2823 u32 cb_fields_address = 0;
2824
2825 IPW_DEBUG_FW(">> :\n");
2826 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2827 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2828
2829 /* Read the DMA Controlor register */
2830 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2831 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2832
2833 /* Print the CB values */
2834 cb_fields_address = address;
2835 register_value = ipw_read_reg32(priv, cb_fields_address);
2836 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2837
2838 cb_fields_address += sizeof(u32);
2839 register_value = ipw_read_reg32(priv, cb_fields_address);
2840 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2841
2842 cb_fields_address += sizeof(u32);
2843 register_value = ipw_read_reg32(priv, cb_fields_address);
2844 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2845 register_value);
2846
2847 cb_fields_address += sizeof(u32);
2848 register_value = ipw_read_reg32(priv, cb_fields_address);
2849 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2850
2851 IPW_DEBUG_FW(">> :\n");
2852 }
2853
ipw_fw_dma_command_block_index(struct ipw_priv * priv)2854 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2855 {
2856 u32 current_cb_address = 0;
2857 u32 current_cb_index = 0;
2858
2859 IPW_DEBUG_FW("<< :\n");
2860 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2861
2862 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2863 sizeof(struct command_block);
2864
2865 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2866 current_cb_index, current_cb_address);
2867
2868 IPW_DEBUG_FW(">> :\n");
2869 return current_cb_index;
2870
2871 }
2872
ipw_fw_dma_add_command_block(struct ipw_priv * priv,u32 src_address,u32 dest_address,u32 length,int interrupt_enabled,int is_last)2873 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2874 u32 src_address,
2875 u32 dest_address,
2876 u32 length,
2877 int interrupt_enabled, int is_last)
2878 {
2879
2880 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2881 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2882 CB_DEST_SIZE_LONG;
2883 struct command_block *cb;
2884 u32 last_cb_element = 0;
2885
2886 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2887 src_address, dest_address, length);
2888
2889 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2890 return -1;
2891
2892 last_cb_element = priv->sram_desc.last_cb_index;
2893 cb = &priv->sram_desc.cb_list[last_cb_element];
2894 priv->sram_desc.last_cb_index++;
2895
2896 /* Calculate the new CB control word */
2897 if (interrupt_enabled)
2898 control |= CB_INT_ENABLED;
2899
2900 if (is_last)
2901 control |= CB_LAST_VALID;
2902
2903 control |= length;
2904
2905 /* Calculate the CB Element's checksum value */
2906 cb->status = control ^ src_address ^ dest_address;
2907
2908 /* Copy the Source and Destination addresses */
2909 cb->dest_addr = dest_address;
2910 cb->source_addr = src_address;
2911
2912 /* Copy the Control Word last */
2913 cb->control = control;
2914
2915 return 0;
2916 }
2917
ipw_fw_dma_add_buffer(struct ipw_priv * priv,dma_addr_t * src_address,int nr,u32 dest_address,u32 len)2918 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2919 int nr, u32 dest_address, u32 len)
2920 {
2921 int ret, i;
2922 u32 size;
2923
2924 IPW_DEBUG_FW(">>\n");
2925 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2926 nr, dest_address, len);
2927
2928 for (i = 0; i < nr; i++) {
2929 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2930 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2931 dest_address +
2932 i * CB_MAX_LENGTH, size,
2933 0, 0);
2934 if (ret) {
2935 IPW_DEBUG_FW_INFO(": Failed\n");
2936 return -1;
2937 } else
2938 IPW_DEBUG_FW_INFO(": Added new cb\n");
2939 }
2940
2941 IPW_DEBUG_FW("<<\n");
2942 return 0;
2943 }
2944
ipw_fw_dma_wait(struct ipw_priv * priv)2945 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2946 {
2947 u32 current_index = 0, previous_index;
2948 u32 watchdog = 0;
2949
2950 IPW_DEBUG_FW(">> :\n");
2951
2952 current_index = ipw_fw_dma_command_block_index(priv);
2953 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2954 (int)priv->sram_desc.last_cb_index);
2955
2956 while (current_index < priv->sram_desc.last_cb_index) {
2957 udelay(50);
2958 previous_index = current_index;
2959 current_index = ipw_fw_dma_command_block_index(priv);
2960
2961 if (previous_index < current_index) {
2962 watchdog = 0;
2963 continue;
2964 }
2965 if (++watchdog > 400) {
2966 IPW_DEBUG_FW_INFO("Timeout\n");
2967 ipw_fw_dma_dump_command_block(priv);
2968 ipw_fw_dma_abort(priv);
2969 return -1;
2970 }
2971 }
2972
2973 ipw_fw_dma_abort(priv);
2974
2975 /*Disable the DMA in the CSR register */
2976 ipw_set_bit(priv, IPW_RESET_REG,
2977 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2978
2979 IPW_DEBUG_FW("<< dmaWaitSync\n");
2980 return 0;
2981 }
2982
ipw_remove_current_network(struct ipw_priv * priv)2983 static void ipw_remove_current_network(struct ipw_priv *priv)
2984 {
2985 struct list_head *element, *safe;
2986 struct libipw_network *network = NULL;
2987 unsigned long flags;
2988
2989 spin_lock_irqsave(&priv->ieee->lock, flags);
2990 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2991 network = list_entry(element, struct libipw_network, list);
2992 if (ether_addr_equal(network->bssid, priv->bssid)) {
2993 list_del(element);
2994 list_add_tail(&network->list,
2995 &priv->ieee->network_free_list);
2996 }
2997 }
2998 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2999 }
3000
3001 /**
3002 * Check that card is still alive.
3003 * Reads debug register from domain0.
3004 * If card is present, pre-defined value should
3005 * be found there.
3006 *
3007 * @param priv
3008 * @return 1 if card is present, 0 otherwise
3009 */
ipw_alive(struct ipw_priv * priv)3010 static inline int ipw_alive(struct ipw_priv *priv)
3011 {
3012 return ipw_read32(priv, 0x90) == 0xd55555d5;
3013 }
3014
3015 /* timeout in msec, attempted in 10-msec quanta */
ipw_poll_bit(struct ipw_priv * priv,u32 addr,u32 mask,int timeout)3016 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3017 int timeout)
3018 {
3019 int i = 0;
3020
3021 do {
3022 if ((ipw_read32(priv, addr) & mask) == mask)
3023 return i;
3024 mdelay(10);
3025 i += 10;
3026 } while (i < timeout);
3027
3028 return -ETIME;
3029 }
3030
3031 /* These functions load the firmware and micro code for the operation of
3032 * the ipw hardware. It assumes the buffer has all the bits for the
3033 * image and the caller is handling the memory allocation and clean up.
3034 */
3035
ipw_stop_master(struct ipw_priv * priv)3036 static int ipw_stop_master(struct ipw_priv *priv)
3037 {
3038 int rc;
3039
3040 IPW_DEBUG_TRACE(">>\n");
3041 /* stop master. typical delay - 0 */
3042 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3043
3044 /* timeout is in msec, polled in 10-msec quanta */
3045 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3046 IPW_RESET_REG_MASTER_DISABLED, 100);
3047 if (rc < 0) {
3048 IPW_ERROR("wait for stop master failed after 100ms\n");
3049 return -1;
3050 }
3051
3052 IPW_DEBUG_INFO("stop master %dms\n", rc);
3053
3054 return rc;
3055 }
3056
ipw_arc_release(struct ipw_priv * priv)3057 static void ipw_arc_release(struct ipw_priv *priv)
3058 {
3059 IPW_DEBUG_TRACE(">>\n");
3060 mdelay(5);
3061
3062 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3063
3064 /* no one knows timing, for safety add some delay */
3065 mdelay(5);
3066 }
3067
3068 struct fw_chunk {
3069 __le32 address;
3070 __le32 length;
3071 };
3072
ipw_load_ucode(struct ipw_priv * priv,u8 * data,size_t len)3073 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3074 {
3075 int rc = 0, i, addr;
3076 u8 cr = 0;
3077 __le16 *image;
3078
3079 image = (__le16 *) data;
3080
3081 IPW_DEBUG_TRACE(">>\n");
3082
3083 rc = ipw_stop_master(priv);
3084
3085 if (rc < 0)
3086 return rc;
3087
3088 for (addr = IPW_SHARED_LOWER_BOUND;
3089 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3090 ipw_write32(priv, addr, 0);
3091 }
3092
3093 /* no ucode (yet) */
3094 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3095 /* destroy DMA queues */
3096 /* reset sequence */
3097
3098 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3099 ipw_arc_release(priv);
3100 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3101 mdelay(1);
3102
3103 /* reset PHY */
3104 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3105 mdelay(1);
3106
3107 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3108 mdelay(1);
3109
3110 /* enable ucode store */
3111 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3112 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3113 mdelay(1);
3114
3115 /* write ucode */
3116 /**
3117 * @bug
3118 * Do NOT set indirect address register once and then
3119 * store data to indirect data register in the loop.
3120 * It seems very reasonable, but in this case DINO do not
3121 * accept ucode. It is essential to set address each time.
3122 */
3123 /* load new ipw uCode */
3124 for (i = 0; i < len / 2; i++)
3125 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3126 le16_to_cpu(image[i]));
3127
3128 /* enable DINO */
3129 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3130 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3131
3132 /* this is where the igx / win driver deveates from the VAP driver. */
3133
3134 /* wait for alive response */
3135 for (i = 0; i < 100; i++) {
3136 /* poll for incoming data */
3137 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3138 if (cr & DINO_RXFIFO_DATA)
3139 break;
3140 mdelay(1);
3141 }
3142
3143 if (cr & DINO_RXFIFO_DATA) {
3144 /* alive_command_responce size is NOT multiple of 4 */
3145 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3146
3147 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3148 response_buffer[i] =
3149 cpu_to_le32(ipw_read_reg32(priv,
3150 IPW_BASEBAND_RX_FIFO_READ));
3151 memcpy(&priv->dino_alive, response_buffer,
3152 sizeof(priv->dino_alive));
3153 if (priv->dino_alive.alive_command == 1
3154 && priv->dino_alive.ucode_valid == 1) {
3155 rc = 0;
3156 IPW_DEBUG_INFO
3157 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3158 "of %02d/%02d/%02d %02d:%02d\n",
3159 priv->dino_alive.software_revision,
3160 priv->dino_alive.software_revision,
3161 priv->dino_alive.device_identifier,
3162 priv->dino_alive.device_identifier,
3163 priv->dino_alive.time_stamp[0],
3164 priv->dino_alive.time_stamp[1],
3165 priv->dino_alive.time_stamp[2],
3166 priv->dino_alive.time_stamp[3],
3167 priv->dino_alive.time_stamp[4]);
3168 } else {
3169 IPW_DEBUG_INFO("Microcode is not alive\n");
3170 rc = -EINVAL;
3171 }
3172 } else {
3173 IPW_DEBUG_INFO("No alive response from DINO\n");
3174 rc = -ETIME;
3175 }
3176
3177 /* disable DINO, otherwise for some reason
3178 firmware have problem getting alive resp. */
3179 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3180
3181 return rc;
3182 }
3183
ipw_load_firmware(struct ipw_priv * priv,u8 * data,size_t len)3184 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3185 {
3186 int ret = -1;
3187 int offset = 0;
3188 struct fw_chunk *chunk;
3189 int total_nr = 0;
3190 int i;
3191 struct dma_pool *pool;
3192 void **virts;
3193 dma_addr_t *phys;
3194
3195 IPW_DEBUG_TRACE("<< :\n");
3196
3197 virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3198 GFP_KERNEL);
3199 if (!virts)
3200 return -ENOMEM;
3201
3202 phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3203 GFP_KERNEL);
3204 if (!phys) {
3205 kfree(virts);
3206 return -ENOMEM;
3207 }
3208 pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3209 0);
3210 if (!pool) {
3211 IPW_ERROR("dma_pool_create failed\n");
3212 kfree(phys);
3213 kfree(virts);
3214 return -ENOMEM;
3215 }
3216
3217 /* Start the Dma */
3218 ret = ipw_fw_dma_enable(priv);
3219
3220 /* the DMA is already ready this would be a bug. */
3221 BUG_ON(priv->sram_desc.last_cb_index > 0);
3222
3223 do {
3224 u32 chunk_len;
3225 u8 *start;
3226 int size;
3227 int nr = 0;
3228
3229 chunk = (struct fw_chunk *)(data + offset);
3230 offset += sizeof(struct fw_chunk);
3231 chunk_len = le32_to_cpu(chunk->length);
3232 start = data + offset;
3233
3234 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3235 for (i = 0; i < nr; i++) {
3236 virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3237 &phys[total_nr]);
3238 if (!virts[total_nr]) {
3239 ret = -ENOMEM;
3240 goto out;
3241 }
3242 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3243 CB_MAX_LENGTH);
3244 memcpy(virts[total_nr], start, size);
3245 start += size;
3246 total_nr++;
3247 /* We don't support fw chunk larger than 64*8K */
3248 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3249 }
3250
3251 /* build DMA packet and queue up for sending */
3252 /* dma to chunk->address, the chunk->length bytes from data +
3253 * offeset*/
3254 /* Dma loading */
3255 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3256 nr, le32_to_cpu(chunk->address),
3257 chunk_len);
3258 if (ret) {
3259 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3260 goto out;
3261 }
3262
3263 offset += chunk_len;
3264 } while (offset < len);
3265
3266 /* Run the DMA and wait for the answer */
3267 ret = ipw_fw_dma_kick(priv);
3268 if (ret) {
3269 IPW_ERROR("dmaKick Failed\n");
3270 goto out;
3271 }
3272
3273 ret = ipw_fw_dma_wait(priv);
3274 if (ret) {
3275 IPW_ERROR("dmaWaitSync Failed\n");
3276 goto out;
3277 }
3278 out:
3279 for (i = 0; i < total_nr; i++)
3280 dma_pool_free(pool, virts[i], phys[i]);
3281
3282 dma_pool_destroy(pool);
3283 kfree(phys);
3284 kfree(virts);
3285
3286 return ret;
3287 }
3288
3289 /* stop nic */
ipw_stop_nic(struct ipw_priv * priv)3290 static int ipw_stop_nic(struct ipw_priv *priv)
3291 {
3292 int rc = 0;
3293
3294 /* stop */
3295 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3296
3297 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3298 IPW_RESET_REG_MASTER_DISABLED, 500);
3299 if (rc < 0) {
3300 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3301 return rc;
3302 }
3303
3304 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3305
3306 return rc;
3307 }
3308
ipw_start_nic(struct ipw_priv * priv)3309 static void ipw_start_nic(struct ipw_priv *priv)
3310 {
3311 IPW_DEBUG_TRACE(">>\n");
3312
3313 /* prvHwStartNic release ARC */
3314 ipw_clear_bit(priv, IPW_RESET_REG,
3315 IPW_RESET_REG_MASTER_DISABLED |
3316 IPW_RESET_REG_STOP_MASTER |
3317 CBD_RESET_REG_PRINCETON_RESET);
3318
3319 /* enable power management */
3320 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3321 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3322
3323 IPW_DEBUG_TRACE("<<\n");
3324 }
3325
ipw_init_nic(struct ipw_priv * priv)3326 static int ipw_init_nic(struct ipw_priv *priv)
3327 {
3328 int rc;
3329
3330 IPW_DEBUG_TRACE(">>\n");
3331 /* reset */
3332 /*prvHwInitNic */
3333 /* set "initialization complete" bit to move adapter to D0 state */
3334 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3335
3336 /* low-level PLL activation */
3337 ipw_write32(priv, IPW_READ_INT_REGISTER,
3338 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3339
3340 /* wait for clock stabilization */
3341 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3342 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3343 if (rc < 0)
3344 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3345
3346 /* assert SW reset */
3347 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3348
3349 udelay(10);
3350
3351 /* set "initialization complete" bit to move adapter to D0 state */
3352 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3353
3354 IPW_DEBUG_TRACE(">>\n");
3355 return 0;
3356 }
3357
3358 /* Call this function from process context, it will sleep in request_firmware.
3359 * Probe is an ok place to call this from.
3360 */
ipw_reset_nic(struct ipw_priv * priv)3361 static int ipw_reset_nic(struct ipw_priv *priv)
3362 {
3363 int rc = 0;
3364 unsigned long flags;
3365
3366 IPW_DEBUG_TRACE(">>\n");
3367
3368 rc = ipw_init_nic(priv);
3369
3370 spin_lock_irqsave(&priv->lock, flags);
3371 /* Clear the 'host command active' bit... */
3372 priv->status &= ~STATUS_HCMD_ACTIVE;
3373 wake_up_interruptible(&priv->wait_command_queue);
3374 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3375 wake_up_interruptible(&priv->wait_state);
3376 spin_unlock_irqrestore(&priv->lock, flags);
3377
3378 IPW_DEBUG_TRACE("<<\n");
3379 return rc;
3380 }
3381
3382
3383 struct ipw_fw {
3384 __le32 ver;
3385 __le32 boot_size;
3386 __le32 ucode_size;
3387 __le32 fw_size;
3388 u8 data[0];
3389 };
3390
ipw_get_fw(struct ipw_priv * priv,const struct firmware ** raw,const char * name)3391 static int ipw_get_fw(struct ipw_priv *priv,
3392 const struct firmware **raw, const char *name)
3393 {
3394 struct ipw_fw *fw;
3395 int rc;
3396
3397 /* ask firmware_class module to get the boot firmware off disk */
3398 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3399 if (rc < 0) {
3400 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3401 return rc;
3402 }
3403
3404 if ((*raw)->size < sizeof(*fw)) {
3405 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3406 return -EINVAL;
3407 }
3408
3409 fw = (void *)(*raw)->data;
3410
3411 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3412 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3413 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3414 name, (*raw)->size);
3415 return -EINVAL;
3416 }
3417
3418 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3419 name,
3420 le32_to_cpu(fw->ver) >> 16,
3421 le32_to_cpu(fw->ver) & 0xff,
3422 (*raw)->size - sizeof(*fw));
3423 return 0;
3424 }
3425
3426 #define IPW_RX_BUF_SIZE (3000)
3427
ipw_rx_queue_reset(struct ipw_priv * priv,struct ipw_rx_queue * rxq)3428 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3429 struct ipw_rx_queue *rxq)
3430 {
3431 unsigned long flags;
3432 int i;
3433
3434 spin_lock_irqsave(&rxq->lock, flags);
3435
3436 INIT_LIST_HEAD(&rxq->rx_free);
3437 INIT_LIST_HEAD(&rxq->rx_used);
3438
3439 /* Fill the rx_used queue with _all_ of the Rx buffers */
3440 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3441 /* In the reset function, these buffers may have been allocated
3442 * to an SKB, so we need to unmap and free potential storage */
3443 if (rxq->pool[i].skb != NULL) {
3444 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3445 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3446 dev_kfree_skb(rxq->pool[i].skb);
3447 rxq->pool[i].skb = NULL;
3448 }
3449 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3450 }
3451
3452 /* Set us so that we have processed and used all buffers, but have
3453 * not restocked the Rx queue with fresh buffers */
3454 rxq->read = rxq->write = 0;
3455 rxq->free_count = 0;
3456 spin_unlock_irqrestore(&rxq->lock, flags);
3457 }
3458
3459 #ifdef CONFIG_PM
3460 static int fw_loaded = 0;
3461 static const struct firmware *raw = NULL;
3462
free_firmware(void)3463 static void free_firmware(void)
3464 {
3465 if (fw_loaded) {
3466 release_firmware(raw);
3467 raw = NULL;
3468 fw_loaded = 0;
3469 }
3470 }
3471 #else
3472 #define free_firmware() do {} while (0)
3473 #endif
3474
ipw_load(struct ipw_priv * priv)3475 static int ipw_load(struct ipw_priv *priv)
3476 {
3477 #ifndef CONFIG_PM
3478 const struct firmware *raw = NULL;
3479 #endif
3480 struct ipw_fw *fw;
3481 u8 *boot_img, *ucode_img, *fw_img;
3482 u8 *name = NULL;
3483 int rc = 0, retries = 3;
3484
3485 switch (priv->ieee->iw_mode) {
3486 case IW_MODE_ADHOC:
3487 name = "ipw2200-ibss.fw";
3488 break;
3489 #ifdef CONFIG_IPW2200_MONITOR
3490 case IW_MODE_MONITOR:
3491 name = "ipw2200-sniffer.fw";
3492 break;
3493 #endif
3494 case IW_MODE_INFRA:
3495 name = "ipw2200-bss.fw";
3496 break;
3497 }
3498
3499 if (!name) {
3500 rc = -EINVAL;
3501 goto error;
3502 }
3503
3504 #ifdef CONFIG_PM
3505 if (!fw_loaded) {
3506 #endif
3507 rc = ipw_get_fw(priv, &raw, name);
3508 if (rc < 0)
3509 goto error;
3510 #ifdef CONFIG_PM
3511 }
3512 #endif
3513
3514 fw = (void *)raw->data;
3515 boot_img = &fw->data[0];
3516 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3517 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3518 le32_to_cpu(fw->ucode_size)];
3519
3520 if (!priv->rxq)
3521 priv->rxq = ipw_rx_queue_alloc(priv);
3522 else
3523 ipw_rx_queue_reset(priv, priv->rxq);
3524 if (!priv->rxq) {
3525 IPW_ERROR("Unable to initialize Rx queue\n");
3526 rc = -ENOMEM;
3527 goto error;
3528 }
3529
3530 retry:
3531 /* Ensure interrupts are disabled */
3532 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3533 priv->status &= ~STATUS_INT_ENABLED;
3534
3535 /* ack pending interrupts */
3536 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3537
3538 ipw_stop_nic(priv);
3539
3540 rc = ipw_reset_nic(priv);
3541 if (rc < 0) {
3542 IPW_ERROR("Unable to reset NIC\n");
3543 goto error;
3544 }
3545
3546 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3547 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3548
3549 /* DMA the initial boot firmware into the device */
3550 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3551 if (rc < 0) {
3552 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3553 goto error;
3554 }
3555
3556 /* kick start the device */
3557 ipw_start_nic(priv);
3558
3559 /* wait for the device to finish its initial startup sequence */
3560 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3561 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3562 if (rc < 0) {
3563 IPW_ERROR("device failed to boot initial fw image\n");
3564 goto error;
3565 }
3566 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3567
3568 /* ack fw init done interrupt */
3569 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3570
3571 /* DMA the ucode into the device */
3572 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3573 if (rc < 0) {
3574 IPW_ERROR("Unable to load ucode: %d\n", rc);
3575 goto error;
3576 }
3577
3578 /* stop nic */
3579 ipw_stop_nic(priv);
3580
3581 /* DMA bss firmware into the device */
3582 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3583 if (rc < 0) {
3584 IPW_ERROR("Unable to load firmware: %d\n", rc);
3585 goto error;
3586 }
3587 #ifdef CONFIG_PM
3588 fw_loaded = 1;
3589 #endif
3590
3591 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3592
3593 rc = ipw_queue_reset(priv);
3594 if (rc < 0) {
3595 IPW_ERROR("Unable to initialize queues\n");
3596 goto error;
3597 }
3598
3599 /* Ensure interrupts are disabled */
3600 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3601 /* ack pending interrupts */
3602 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3603
3604 /* kick start the device */
3605 ipw_start_nic(priv);
3606
3607 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3608 if (retries > 0) {
3609 IPW_WARNING("Parity error. Retrying init.\n");
3610 retries--;
3611 goto retry;
3612 }
3613
3614 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3615 rc = -EIO;
3616 goto error;
3617 }
3618
3619 /* wait for the device */
3620 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3621 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3622 if (rc < 0) {
3623 IPW_ERROR("device failed to start within 500ms\n");
3624 goto error;
3625 }
3626 IPW_DEBUG_INFO("device response after %dms\n", rc);
3627
3628 /* ack fw init done interrupt */
3629 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3630
3631 /* read eeprom data */
3632 priv->eeprom_delay = 1;
3633 ipw_read_eeprom(priv);
3634 /* initialize the eeprom region of sram */
3635 ipw_eeprom_init_sram(priv);
3636
3637 /* enable interrupts */
3638 ipw_enable_interrupts(priv);
3639
3640 /* Ensure our queue has valid packets */
3641 ipw_rx_queue_replenish(priv);
3642
3643 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3644
3645 /* ack pending interrupts */
3646 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3647
3648 #ifndef CONFIG_PM
3649 release_firmware(raw);
3650 #endif
3651 return 0;
3652
3653 error:
3654 if (priv->rxq) {
3655 ipw_rx_queue_free(priv, priv->rxq);
3656 priv->rxq = NULL;
3657 }
3658 ipw_tx_queue_free(priv);
3659 release_firmware(raw);
3660 #ifdef CONFIG_PM
3661 fw_loaded = 0;
3662 raw = NULL;
3663 #endif
3664
3665 return rc;
3666 }
3667
3668 /**
3669 * DMA services
3670 *
3671 * Theory of operation
3672 *
3673 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3674 * 2 empty entries always kept in the buffer to protect from overflow.
3675 *
3676 * For Tx queue, there are low mark and high mark limits. If, after queuing
3677 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3678 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3679 * Tx queue resumed.
3680 *
3681 * The IPW operates with six queues, one receive queue in the device's
3682 * sram, one transmit queue for sending commands to the device firmware,
3683 * and four transmit queues for data.
3684 *
3685 * The four transmit queues allow for performing quality of service (qos)
3686 * transmissions as per the 802.11 protocol. Currently Linux does not
3687 * provide a mechanism to the user for utilizing prioritized queues, so
3688 * we only utilize the first data transmit queue (queue1).
3689 */
3690
3691 /**
3692 * Driver allocates buffers of this size for Rx
3693 */
3694
3695 /**
3696 * ipw_rx_queue_space - Return number of free slots available in queue.
3697 */
ipw_rx_queue_space(const struct ipw_rx_queue * q)3698 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3699 {
3700 int s = q->read - q->write;
3701 if (s <= 0)
3702 s += RX_QUEUE_SIZE;
3703 /* keep some buffer to not confuse full and empty queue */
3704 s -= 2;
3705 if (s < 0)
3706 s = 0;
3707 return s;
3708 }
3709
ipw_tx_queue_space(const struct clx2_queue * q)3710 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3711 {
3712 int s = q->last_used - q->first_empty;
3713 if (s <= 0)
3714 s += q->n_bd;
3715 s -= 2; /* keep some reserve to not confuse empty and full situations */
3716 if (s < 0)
3717 s = 0;
3718 return s;
3719 }
3720
ipw_queue_inc_wrap(int index,int n_bd)3721 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3722 {
3723 return (++index == n_bd) ? 0 : index;
3724 }
3725
3726 /**
3727 * Initialize common DMA queue structure
3728 *
3729 * @param q queue to init
3730 * @param count Number of BD's to allocate. Should be power of 2
3731 * @param read_register Address for 'read' register
3732 * (not offset within BAR, full address)
3733 * @param write_register Address for 'write' register
3734 * (not offset within BAR, full address)
3735 * @param base_register Address for 'base' register
3736 * (not offset within BAR, full address)
3737 * @param size Address for 'size' register
3738 * (not offset within BAR, full address)
3739 */
ipw_queue_init(struct ipw_priv * priv,struct clx2_queue * q,int count,u32 read,u32 write,u32 base,u32 size)3740 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3741 int count, u32 read, u32 write, u32 base, u32 size)
3742 {
3743 q->n_bd = count;
3744
3745 q->low_mark = q->n_bd / 4;
3746 if (q->low_mark < 4)
3747 q->low_mark = 4;
3748
3749 q->high_mark = q->n_bd / 8;
3750 if (q->high_mark < 2)
3751 q->high_mark = 2;
3752
3753 q->first_empty = q->last_used = 0;
3754 q->reg_r = read;
3755 q->reg_w = write;
3756
3757 ipw_write32(priv, base, q->dma_addr);
3758 ipw_write32(priv, size, count);
3759 ipw_write32(priv, read, 0);
3760 ipw_write32(priv, write, 0);
3761
3762 _ipw_read32(priv, 0x90);
3763 }
3764
ipw_queue_tx_init(struct ipw_priv * priv,struct clx2_tx_queue * q,int count,u32 read,u32 write,u32 base,u32 size)3765 static int ipw_queue_tx_init(struct ipw_priv *priv,
3766 struct clx2_tx_queue *q,
3767 int count, u32 read, u32 write, u32 base, u32 size)
3768 {
3769 struct pci_dev *dev = priv->pci_dev;
3770
3771 q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3772 if (!q->txb) {
3773 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3774 return -ENOMEM;
3775 }
3776
3777 q->bd =
3778 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3779 if (!q->bd) {
3780 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3781 sizeof(q->bd[0]) * count);
3782 kfree(q->txb);
3783 q->txb = NULL;
3784 return -ENOMEM;
3785 }
3786
3787 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3788 return 0;
3789 }
3790
3791 /**
3792 * Free one TFD, those at index [txq->q.last_used].
3793 * Do NOT advance any indexes
3794 *
3795 * @param dev
3796 * @param txq
3797 */
ipw_queue_tx_free_tfd(struct ipw_priv * priv,struct clx2_tx_queue * txq)3798 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3799 struct clx2_tx_queue *txq)
3800 {
3801 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3802 struct pci_dev *dev = priv->pci_dev;
3803 int i;
3804
3805 /* classify bd */
3806 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3807 /* nothing to cleanup after for host commands */
3808 return;
3809
3810 /* sanity check */
3811 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3812 IPW_ERROR("Too many chunks: %i\n",
3813 le32_to_cpu(bd->u.data.num_chunks));
3814 /** @todo issue fatal error, it is quite serious situation */
3815 return;
3816 }
3817
3818 /* unmap chunks if any */
3819 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3820 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3821 le16_to_cpu(bd->u.data.chunk_len[i]),
3822 PCI_DMA_TODEVICE);
3823 if (txq->txb[txq->q.last_used]) {
3824 libipw_txb_free(txq->txb[txq->q.last_used]);
3825 txq->txb[txq->q.last_used] = NULL;
3826 }
3827 }
3828 }
3829
3830 /**
3831 * Deallocate DMA queue.
3832 *
3833 * Empty queue by removing and destroying all BD's.
3834 * Free all buffers.
3835 *
3836 * @param dev
3837 * @param q
3838 */
ipw_queue_tx_free(struct ipw_priv * priv,struct clx2_tx_queue * txq)3839 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3840 {
3841 struct clx2_queue *q = &txq->q;
3842 struct pci_dev *dev = priv->pci_dev;
3843
3844 if (q->n_bd == 0)
3845 return;
3846
3847 /* first, empty all BD's */
3848 for (; q->first_empty != q->last_used;
3849 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3850 ipw_queue_tx_free_tfd(priv, txq);
3851 }
3852
3853 /* free buffers belonging to queue itself */
3854 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3855 q->dma_addr);
3856 kfree(txq->txb);
3857
3858 /* 0 fill whole structure */
3859 memset(txq, 0, sizeof(*txq));
3860 }
3861
3862 /**
3863 * Destroy all DMA queues and structures
3864 *
3865 * @param priv
3866 */
ipw_tx_queue_free(struct ipw_priv * priv)3867 static void ipw_tx_queue_free(struct ipw_priv *priv)
3868 {
3869 /* Tx CMD queue */
3870 ipw_queue_tx_free(priv, &priv->txq_cmd);
3871
3872 /* Tx queues */
3873 ipw_queue_tx_free(priv, &priv->txq[0]);
3874 ipw_queue_tx_free(priv, &priv->txq[1]);
3875 ipw_queue_tx_free(priv, &priv->txq[2]);
3876 ipw_queue_tx_free(priv, &priv->txq[3]);
3877 }
3878
ipw_create_bssid(struct ipw_priv * priv,u8 * bssid)3879 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3880 {
3881 /* First 3 bytes are manufacturer */
3882 bssid[0] = priv->mac_addr[0];
3883 bssid[1] = priv->mac_addr[1];
3884 bssid[2] = priv->mac_addr[2];
3885
3886 /* Last bytes are random */
3887 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3888
3889 bssid[0] &= 0xfe; /* clear multicast bit */
3890 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3891 }
3892
ipw_add_station(struct ipw_priv * priv,u8 * bssid)3893 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3894 {
3895 struct ipw_station_entry entry;
3896 int i;
3897
3898 for (i = 0; i < priv->num_stations; i++) {
3899 if (ether_addr_equal(priv->stations[i], bssid)) {
3900 /* Another node is active in network */
3901 priv->missed_adhoc_beacons = 0;
3902 if (!(priv->config & CFG_STATIC_CHANNEL))
3903 /* when other nodes drop out, we drop out */
3904 priv->config &= ~CFG_ADHOC_PERSIST;
3905
3906 return i;
3907 }
3908 }
3909
3910 if (i == MAX_STATIONS)
3911 return IPW_INVALID_STATION;
3912
3913 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3914
3915 entry.reserved = 0;
3916 entry.support_mode = 0;
3917 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3918 memcpy(priv->stations[i], bssid, ETH_ALEN);
3919 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3920 &entry, sizeof(entry));
3921 priv->num_stations++;
3922
3923 return i;
3924 }
3925
ipw_find_station(struct ipw_priv * priv,u8 * bssid)3926 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3927 {
3928 int i;
3929
3930 for (i = 0; i < priv->num_stations; i++)
3931 if (ether_addr_equal(priv->stations[i], bssid))
3932 return i;
3933
3934 return IPW_INVALID_STATION;
3935 }
3936
ipw_send_disassociate(struct ipw_priv * priv,int quiet)3937 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3938 {
3939 int err;
3940
3941 if (priv->status & STATUS_ASSOCIATING) {
3942 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3943 schedule_work(&priv->disassociate);
3944 return;
3945 }
3946
3947 if (!(priv->status & STATUS_ASSOCIATED)) {
3948 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3949 return;
3950 }
3951
3952 IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3953 "on channel %d.\n",
3954 priv->assoc_request.bssid,
3955 priv->assoc_request.channel);
3956
3957 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3958 priv->status |= STATUS_DISASSOCIATING;
3959
3960 if (quiet)
3961 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3962 else
3963 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3964
3965 err = ipw_send_associate(priv, &priv->assoc_request);
3966 if (err) {
3967 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3968 "failed.\n");
3969 return;
3970 }
3971
3972 }
3973
ipw_disassociate(void * data)3974 static int ipw_disassociate(void *data)
3975 {
3976 struct ipw_priv *priv = data;
3977 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3978 return 0;
3979 ipw_send_disassociate(data, 0);
3980 netif_carrier_off(priv->net_dev);
3981 return 1;
3982 }
3983
ipw_bg_disassociate(struct work_struct * work)3984 static void ipw_bg_disassociate(struct work_struct *work)
3985 {
3986 struct ipw_priv *priv =
3987 container_of(work, struct ipw_priv, disassociate);
3988 mutex_lock(&priv->mutex);
3989 ipw_disassociate(priv);
3990 mutex_unlock(&priv->mutex);
3991 }
3992
ipw_system_config(struct work_struct * work)3993 static void ipw_system_config(struct work_struct *work)
3994 {
3995 struct ipw_priv *priv =
3996 container_of(work, struct ipw_priv, system_config);
3997
3998 #ifdef CONFIG_IPW2200_PROMISCUOUS
3999 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4000 priv->sys_config.accept_all_data_frames = 1;
4001 priv->sys_config.accept_non_directed_frames = 1;
4002 priv->sys_config.accept_all_mgmt_bcpr = 1;
4003 priv->sys_config.accept_all_mgmt_frames = 1;
4004 }
4005 #endif
4006
4007 ipw_send_system_config(priv);
4008 }
4009
4010 struct ipw_status_code {
4011 u16 status;
4012 const char *reason;
4013 };
4014
4015 static const struct ipw_status_code ipw_status_codes[] = {
4016 {0x00, "Successful"},
4017 {0x01, "Unspecified failure"},
4018 {0x0A, "Cannot support all requested capabilities in the "
4019 "Capability information field"},
4020 {0x0B, "Reassociation denied due to inability to confirm that "
4021 "association exists"},
4022 {0x0C, "Association denied due to reason outside the scope of this "
4023 "standard"},
4024 {0x0D,
4025 "Responding station does not support the specified authentication "
4026 "algorithm"},
4027 {0x0E,
4028 "Received an Authentication frame with authentication sequence "
4029 "transaction sequence number out of expected sequence"},
4030 {0x0F, "Authentication rejected because of challenge failure"},
4031 {0x10, "Authentication rejected due to timeout waiting for next "
4032 "frame in sequence"},
4033 {0x11, "Association denied because AP is unable to handle additional "
4034 "associated stations"},
4035 {0x12,
4036 "Association denied due to requesting station not supporting all "
4037 "of the datarates in the BSSBasicServiceSet Parameter"},
4038 {0x13,
4039 "Association denied due to requesting station not supporting "
4040 "short preamble operation"},
4041 {0x14,
4042 "Association denied due to requesting station not supporting "
4043 "PBCC encoding"},
4044 {0x15,
4045 "Association denied due to requesting station not supporting "
4046 "channel agility"},
4047 {0x19,
4048 "Association denied due to requesting station not supporting "
4049 "short slot operation"},
4050 {0x1A,
4051 "Association denied due to requesting station not supporting "
4052 "DSSS-OFDM operation"},
4053 {0x28, "Invalid Information Element"},
4054 {0x29, "Group Cipher is not valid"},
4055 {0x2A, "Pairwise Cipher is not valid"},
4056 {0x2B, "AKMP is not valid"},
4057 {0x2C, "Unsupported RSN IE version"},
4058 {0x2D, "Invalid RSN IE Capabilities"},
4059 {0x2E, "Cipher suite is rejected per security policy"},
4060 };
4061
ipw_get_status_code(u16 status)4062 static const char *ipw_get_status_code(u16 status)
4063 {
4064 int i;
4065 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4066 if (ipw_status_codes[i].status == (status & 0xff))
4067 return ipw_status_codes[i].reason;
4068 return "Unknown status value.";
4069 }
4070
average_init(struct average * avg)4071 static inline void average_init(struct average *avg)
4072 {
4073 memset(avg, 0, sizeof(*avg));
4074 }
4075
4076 #define DEPTH_RSSI 8
4077 #define DEPTH_NOISE 16
exponential_average(s16 prev_avg,s16 val,u8 depth)4078 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4079 {
4080 return ((depth-1)*prev_avg + val)/depth;
4081 }
4082
average_add(struct average * avg,s16 val)4083 static void average_add(struct average *avg, s16 val)
4084 {
4085 avg->sum -= avg->entries[avg->pos];
4086 avg->sum += val;
4087 avg->entries[avg->pos++] = val;
4088 if (unlikely(avg->pos == AVG_ENTRIES)) {
4089 avg->init = 1;
4090 avg->pos = 0;
4091 }
4092 }
4093
average_value(struct average * avg)4094 static s16 average_value(struct average *avg)
4095 {
4096 if (!unlikely(avg->init)) {
4097 if (avg->pos)
4098 return avg->sum / avg->pos;
4099 return 0;
4100 }
4101
4102 return avg->sum / AVG_ENTRIES;
4103 }
4104
ipw_reset_stats(struct ipw_priv * priv)4105 static void ipw_reset_stats(struct ipw_priv *priv)
4106 {
4107 u32 len = sizeof(u32);
4108
4109 priv->quality = 0;
4110
4111 average_init(&priv->average_missed_beacons);
4112 priv->exp_avg_rssi = -60;
4113 priv->exp_avg_noise = -85 + 0x100;
4114
4115 priv->last_rate = 0;
4116 priv->last_missed_beacons = 0;
4117 priv->last_rx_packets = 0;
4118 priv->last_tx_packets = 0;
4119 priv->last_tx_failures = 0;
4120
4121 /* Firmware managed, reset only when NIC is restarted, so we have to
4122 * normalize on the current value */
4123 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4124 &priv->last_rx_err, &len);
4125 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4126 &priv->last_tx_failures, &len);
4127
4128 /* Driver managed, reset with each association */
4129 priv->missed_adhoc_beacons = 0;
4130 priv->missed_beacons = 0;
4131 priv->tx_packets = 0;
4132 priv->rx_packets = 0;
4133
4134 }
4135
ipw_get_max_rate(struct ipw_priv * priv)4136 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4137 {
4138 u32 i = 0x80000000;
4139 u32 mask = priv->rates_mask;
4140 /* If currently associated in B mode, restrict the maximum
4141 * rate match to B rates */
4142 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4143 mask &= LIBIPW_CCK_RATES_MASK;
4144
4145 /* TODO: Verify that the rate is supported by the current rates
4146 * list. */
4147
4148 while (i && !(mask & i))
4149 i >>= 1;
4150 switch (i) {
4151 case LIBIPW_CCK_RATE_1MB_MASK:
4152 return 1000000;
4153 case LIBIPW_CCK_RATE_2MB_MASK:
4154 return 2000000;
4155 case LIBIPW_CCK_RATE_5MB_MASK:
4156 return 5500000;
4157 case LIBIPW_OFDM_RATE_6MB_MASK:
4158 return 6000000;
4159 case LIBIPW_OFDM_RATE_9MB_MASK:
4160 return 9000000;
4161 case LIBIPW_CCK_RATE_11MB_MASK:
4162 return 11000000;
4163 case LIBIPW_OFDM_RATE_12MB_MASK:
4164 return 12000000;
4165 case LIBIPW_OFDM_RATE_18MB_MASK:
4166 return 18000000;
4167 case LIBIPW_OFDM_RATE_24MB_MASK:
4168 return 24000000;
4169 case LIBIPW_OFDM_RATE_36MB_MASK:
4170 return 36000000;
4171 case LIBIPW_OFDM_RATE_48MB_MASK:
4172 return 48000000;
4173 case LIBIPW_OFDM_RATE_54MB_MASK:
4174 return 54000000;
4175 }
4176
4177 if (priv->ieee->mode == IEEE_B)
4178 return 11000000;
4179 else
4180 return 54000000;
4181 }
4182
ipw_get_current_rate(struct ipw_priv * priv)4183 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4184 {
4185 u32 rate, len = sizeof(rate);
4186 int err;
4187
4188 if (!(priv->status & STATUS_ASSOCIATED))
4189 return 0;
4190
4191 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4192 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4193 &len);
4194 if (err) {
4195 IPW_DEBUG_INFO("failed querying ordinals.\n");
4196 return 0;
4197 }
4198 } else
4199 return ipw_get_max_rate(priv);
4200
4201 switch (rate) {
4202 case IPW_TX_RATE_1MB:
4203 return 1000000;
4204 case IPW_TX_RATE_2MB:
4205 return 2000000;
4206 case IPW_TX_RATE_5MB:
4207 return 5500000;
4208 case IPW_TX_RATE_6MB:
4209 return 6000000;
4210 case IPW_TX_RATE_9MB:
4211 return 9000000;
4212 case IPW_TX_RATE_11MB:
4213 return 11000000;
4214 case IPW_TX_RATE_12MB:
4215 return 12000000;
4216 case IPW_TX_RATE_18MB:
4217 return 18000000;
4218 case IPW_TX_RATE_24MB:
4219 return 24000000;
4220 case IPW_TX_RATE_36MB:
4221 return 36000000;
4222 case IPW_TX_RATE_48MB:
4223 return 48000000;
4224 case IPW_TX_RATE_54MB:
4225 return 54000000;
4226 }
4227
4228 return 0;
4229 }
4230
4231 #define IPW_STATS_INTERVAL (2 * HZ)
ipw_gather_stats(struct ipw_priv * priv)4232 static void ipw_gather_stats(struct ipw_priv *priv)
4233 {
4234 u32 rx_err, rx_err_delta, rx_packets_delta;
4235 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4236 u32 missed_beacons_percent, missed_beacons_delta;
4237 u32 quality = 0;
4238 u32 len = sizeof(u32);
4239 s16 rssi;
4240 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4241 rate_quality;
4242 u32 max_rate;
4243
4244 if (!(priv->status & STATUS_ASSOCIATED)) {
4245 priv->quality = 0;
4246 return;
4247 }
4248
4249 /* Update the statistics */
4250 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4251 &priv->missed_beacons, &len);
4252 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4253 priv->last_missed_beacons = priv->missed_beacons;
4254 if (priv->assoc_request.beacon_interval) {
4255 missed_beacons_percent = missed_beacons_delta *
4256 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4257 (IPW_STATS_INTERVAL * 10);
4258 } else {
4259 missed_beacons_percent = 0;
4260 }
4261 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4262
4263 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4264 rx_err_delta = rx_err - priv->last_rx_err;
4265 priv->last_rx_err = rx_err;
4266
4267 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4268 tx_failures_delta = tx_failures - priv->last_tx_failures;
4269 priv->last_tx_failures = tx_failures;
4270
4271 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4272 priv->last_rx_packets = priv->rx_packets;
4273
4274 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4275 priv->last_tx_packets = priv->tx_packets;
4276
4277 /* Calculate quality based on the following:
4278 *
4279 * Missed beacon: 100% = 0, 0% = 70% missed
4280 * Rate: 60% = 1Mbs, 100% = Max
4281 * Rx and Tx errors represent a straight % of total Rx/Tx
4282 * RSSI: 100% = > -50, 0% = < -80
4283 * Rx errors: 100% = 0, 0% = 50% missed
4284 *
4285 * The lowest computed quality is used.
4286 *
4287 */
4288 #define BEACON_THRESHOLD 5
4289 beacon_quality = 100 - missed_beacons_percent;
4290 if (beacon_quality < BEACON_THRESHOLD)
4291 beacon_quality = 0;
4292 else
4293 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4294 (100 - BEACON_THRESHOLD);
4295 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4296 beacon_quality, missed_beacons_percent);
4297
4298 priv->last_rate = ipw_get_current_rate(priv);
4299 max_rate = ipw_get_max_rate(priv);
4300 rate_quality = priv->last_rate * 40 / max_rate + 60;
4301 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4302 rate_quality, priv->last_rate / 1000000);
4303
4304 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4305 rx_quality = 100 - (rx_err_delta * 100) /
4306 (rx_packets_delta + rx_err_delta);
4307 else
4308 rx_quality = 100;
4309 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4310 rx_quality, rx_err_delta, rx_packets_delta);
4311
4312 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4313 tx_quality = 100 - (tx_failures_delta * 100) /
4314 (tx_packets_delta + tx_failures_delta);
4315 else
4316 tx_quality = 100;
4317 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4318 tx_quality, tx_failures_delta, tx_packets_delta);
4319
4320 rssi = priv->exp_avg_rssi;
4321 signal_quality =
4322 (100 *
4323 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4324 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4325 (priv->ieee->perfect_rssi - rssi) *
4326 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4327 62 * (priv->ieee->perfect_rssi - rssi))) /
4328 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4329 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4330 if (signal_quality > 100)
4331 signal_quality = 100;
4332 else if (signal_quality < 1)
4333 signal_quality = 0;
4334
4335 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4336 signal_quality, rssi);
4337
4338 quality = min(rx_quality, signal_quality);
4339 quality = min(tx_quality, quality);
4340 quality = min(rate_quality, quality);
4341 quality = min(beacon_quality, quality);
4342 if (quality == beacon_quality)
4343 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4344 quality);
4345 if (quality == rate_quality)
4346 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4347 quality);
4348 if (quality == tx_quality)
4349 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4350 quality);
4351 if (quality == rx_quality)
4352 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4353 quality);
4354 if (quality == signal_quality)
4355 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4356 quality);
4357
4358 priv->quality = quality;
4359
4360 schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4361 }
4362
ipw_bg_gather_stats(struct work_struct * work)4363 static void ipw_bg_gather_stats(struct work_struct *work)
4364 {
4365 struct ipw_priv *priv =
4366 container_of(work, struct ipw_priv, gather_stats.work);
4367 mutex_lock(&priv->mutex);
4368 ipw_gather_stats(priv);
4369 mutex_unlock(&priv->mutex);
4370 }
4371
4372 /* Missed beacon behavior:
4373 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4374 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4375 * Above disassociate threshold, give up and stop scanning.
4376 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
ipw_handle_missed_beacon(struct ipw_priv * priv,int missed_count)4377 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4378 int missed_count)
4379 {
4380 priv->notif_missed_beacons = missed_count;
4381
4382 if (missed_count > priv->disassociate_threshold &&
4383 priv->status & STATUS_ASSOCIATED) {
4384 /* If associated and we've hit the missed
4385 * beacon threshold, disassociate, turn
4386 * off roaming, and abort any active scans */
4387 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4388 IPW_DL_STATE | IPW_DL_ASSOC,
4389 "Missed beacon: %d - disassociate\n", missed_count);
4390 priv->status &= ~STATUS_ROAMING;
4391 if (priv->status & STATUS_SCANNING) {
4392 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4393 IPW_DL_STATE,
4394 "Aborting scan with missed beacon.\n");
4395 schedule_work(&priv->abort_scan);
4396 }
4397
4398 schedule_work(&priv->disassociate);
4399 return;
4400 }
4401
4402 if (priv->status & STATUS_ROAMING) {
4403 /* If we are currently roaming, then just
4404 * print a debug statement... */
4405 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4406 "Missed beacon: %d - roam in progress\n",
4407 missed_count);
4408 return;
4409 }
4410
4411 if (roaming &&
4412 (missed_count > priv->roaming_threshold &&
4413 missed_count <= priv->disassociate_threshold)) {
4414 /* If we are not already roaming, set the ROAM
4415 * bit in the status and kick off a scan.
4416 * This can happen several times before we reach
4417 * disassociate_threshold. */
4418 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4419 "Missed beacon: %d - initiate "
4420 "roaming\n", missed_count);
4421 if (!(priv->status & STATUS_ROAMING)) {
4422 priv->status |= STATUS_ROAMING;
4423 if (!(priv->status & STATUS_SCANNING))
4424 schedule_delayed_work(&priv->request_scan, 0);
4425 }
4426 return;
4427 }
4428
4429 if (priv->status & STATUS_SCANNING &&
4430 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4431 /* Stop scan to keep fw from getting
4432 * stuck (only if we aren't roaming --
4433 * otherwise we'll never scan more than 2 or 3
4434 * channels..) */
4435 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4436 "Aborting scan with missed beacon.\n");
4437 schedule_work(&priv->abort_scan);
4438 }
4439
4440 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4441 }
4442
ipw_scan_event(struct work_struct * work)4443 static void ipw_scan_event(struct work_struct *work)
4444 {
4445 union iwreq_data wrqu;
4446
4447 struct ipw_priv *priv =
4448 container_of(work, struct ipw_priv, scan_event.work);
4449
4450 wrqu.data.length = 0;
4451 wrqu.data.flags = 0;
4452 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4453 }
4454
handle_scan_event(struct ipw_priv * priv)4455 static void handle_scan_event(struct ipw_priv *priv)
4456 {
4457 /* Only userspace-requested scan completion events go out immediately */
4458 if (!priv->user_requested_scan) {
4459 schedule_delayed_work(&priv->scan_event,
4460 round_jiffies_relative(msecs_to_jiffies(4000)));
4461 } else {
4462 priv->user_requested_scan = 0;
4463 mod_delayed_work(system_wq, &priv->scan_event, 0);
4464 }
4465 }
4466
4467 /**
4468 * Handle host notification packet.
4469 * Called from interrupt routine
4470 */
ipw_rx_notification(struct ipw_priv * priv,struct ipw_rx_notification * notif)4471 static void ipw_rx_notification(struct ipw_priv *priv,
4472 struct ipw_rx_notification *notif)
4473 {
4474 u16 size = le16_to_cpu(notif->size);
4475
4476 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4477
4478 switch (notif->subtype) {
4479 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4480 struct notif_association *assoc = ¬if->u.assoc;
4481
4482 switch (assoc->state) {
4483 case CMAS_ASSOCIATED:{
4484 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4485 IPW_DL_ASSOC,
4486 "associated: '%*pE' %pM\n",
4487 priv->essid_len, priv->essid,
4488 priv->bssid);
4489
4490 switch (priv->ieee->iw_mode) {
4491 case IW_MODE_INFRA:
4492 memcpy(priv->ieee->bssid,
4493 priv->bssid, ETH_ALEN);
4494 break;
4495
4496 case IW_MODE_ADHOC:
4497 memcpy(priv->ieee->bssid,
4498 priv->bssid, ETH_ALEN);
4499
4500 /* clear out the station table */
4501 priv->num_stations = 0;
4502
4503 IPW_DEBUG_ASSOC
4504 ("queueing adhoc check\n");
4505 schedule_delayed_work(
4506 &priv->adhoc_check,
4507 le16_to_cpu(priv->
4508 assoc_request.
4509 beacon_interval));
4510 break;
4511 }
4512
4513 priv->status &= ~STATUS_ASSOCIATING;
4514 priv->status |= STATUS_ASSOCIATED;
4515 schedule_work(&priv->system_config);
4516
4517 #ifdef CONFIG_IPW2200_QOS
4518 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4519 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4520 if ((priv->status & STATUS_AUTH) &&
4521 (IPW_GET_PACKET_STYPE(¬if->u.raw)
4522 == IEEE80211_STYPE_ASSOC_RESP)) {
4523 if ((sizeof
4524 (struct
4525 libipw_assoc_response)
4526 <= size)
4527 && (size <= 2314)) {
4528 struct
4529 libipw_rx_stats
4530 stats = {
4531 .len = size - 1,
4532 };
4533
4534 IPW_DEBUG_QOS
4535 ("QoS Associate "
4536 "size %d\n", size);
4537 libipw_rx_mgt(priv->
4538 ieee,
4539 (struct
4540 libipw_hdr_4addr
4541 *)
4542 ¬if->u.raw, &stats);
4543 }
4544 }
4545 #endif
4546
4547 schedule_work(&priv->link_up);
4548
4549 break;
4550 }
4551
4552 case CMAS_AUTHENTICATED:{
4553 if (priv->
4554 status & (STATUS_ASSOCIATED |
4555 STATUS_AUTH)) {
4556 struct notif_authenticate *auth
4557 = ¬if->u.auth;
4558 IPW_DEBUG(IPW_DL_NOTIF |
4559 IPW_DL_STATE |
4560 IPW_DL_ASSOC,
4561 "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4562 priv->essid_len,
4563 priv->essid,
4564 priv->bssid,
4565 le16_to_cpu(auth->status),
4566 ipw_get_status_code
4567 (le16_to_cpu
4568 (auth->status)));
4569
4570 priv->status &=
4571 ~(STATUS_ASSOCIATING |
4572 STATUS_AUTH |
4573 STATUS_ASSOCIATED);
4574
4575 schedule_work(&priv->link_down);
4576 break;
4577 }
4578
4579 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4580 IPW_DL_ASSOC,
4581 "authenticated: '%*pE' %pM\n",
4582 priv->essid_len, priv->essid,
4583 priv->bssid);
4584 break;
4585 }
4586
4587 case CMAS_INIT:{
4588 if (priv->status & STATUS_AUTH) {
4589 struct
4590 libipw_assoc_response
4591 *resp;
4592 resp =
4593 (struct
4594 libipw_assoc_response
4595 *)¬if->u.raw;
4596 IPW_DEBUG(IPW_DL_NOTIF |
4597 IPW_DL_STATE |
4598 IPW_DL_ASSOC,
4599 "association failed (0x%04X): %s\n",
4600 le16_to_cpu(resp->status),
4601 ipw_get_status_code
4602 (le16_to_cpu
4603 (resp->status)));
4604 }
4605
4606 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4607 IPW_DL_ASSOC,
4608 "disassociated: '%*pE' %pM\n",
4609 priv->essid_len, priv->essid,
4610 priv->bssid);
4611
4612 priv->status &=
4613 ~(STATUS_DISASSOCIATING |
4614 STATUS_ASSOCIATING |
4615 STATUS_ASSOCIATED | STATUS_AUTH);
4616 if (priv->assoc_network
4617 && (priv->assoc_network->
4618 capability &
4619 WLAN_CAPABILITY_IBSS))
4620 ipw_remove_current_network
4621 (priv);
4622
4623 schedule_work(&priv->link_down);
4624
4625 break;
4626 }
4627
4628 case CMAS_RX_ASSOC_RESP:
4629 break;
4630
4631 default:
4632 IPW_ERROR("assoc: unknown (%d)\n",
4633 assoc->state);
4634 break;
4635 }
4636
4637 break;
4638 }
4639
4640 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4641 struct notif_authenticate *auth = ¬if->u.auth;
4642 switch (auth->state) {
4643 case CMAS_AUTHENTICATED:
4644 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4645 "authenticated: '%*pE' %pM\n",
4646 priv->essid_len, priv->essid,
4647 priv->bssid);
4648 priv->status |= STATUS_AUTH;
4649 break;
4650
4651 case CMAS_INIT:
4652 if (priv->status & STATUS_AUTH) {
4653 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4654 IPW_DL_ASSOC,
4655 "authentication failed (0x%04X): %s\n",
4656 le16_to_cpu(auth->status),
4657 ipw_get_status_code(le16_to_cpu
4658 (auth->
4659 status)));
4660 }
4661 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4662 IPW_DL_ASSOC,
4663 "deauthenticated: '%*pE' %pM\n",
4664 priv->essid_len, priv->essid,
4665 priv->bssid);
4666
4667 priv->status &= ~(STATUS_ASSOCIATING |
4668 STATUS_AUTH |
4669 STATUS_ASSOCIATED);
4670
4671 schedule_work(&priv->link_down);
4672 break;
4673
4674 case CMAS_TX_AUTH_SEQ_1:
4675 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4676 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4677 break;
4678 case CMAS_RX_AUTH_SEQ_2:
4679 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4680 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4681 break;
4682 case CMAS_AUTH_SEQ_1_PASS:
4683 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4684 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4685 break;
4686 case CMAS_AUTH_SEQ_1_FAIL:
4687 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4688 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4689 break;
4690 case CMAS_TX_AUTH_SEQ_3:
4691 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4692 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4693 break;
4694 case CMAS_RX_AUTH_SEQ_4:
4695 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4696 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4697 break;
4698 case CMAS_AUTH_SEQ_2_PASS:
4699 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4700 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4701 break;
4702 case CMAS_AUTH_SEQ_2_FAIL:
4703 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4704 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4705 break;
4706 case CMAS_TX_ASSOC:
4707 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4708 IPW_DL_ASSOC, "TX_ASSOC\n");
4709 break;
4710 case CMAS_RX_ASSOC_RESP:
4711 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4712 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4713
4714 break;
4715 case CMAS_ASSOCIATED:
4716 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4717 IPW_DL_ASSOC, "ASSOCIATED\n");
4718 break;
4719 default:
4720 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4721 auth->state);
4722 break;
4723 }
4724 break;
4725 }
4726
4727 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4728 struct notif_channel_result *x =
4729 ¬if->u.channel_result;
4730
4731 if (size == sizeof(*x)) {
4732 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4733 x->channel_num);
4734 } else {
4735 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4736 "(should be %zd)\n",
4737 size, sizeof(*x));
4738 }
4739 break;
4740 }
4741
4742 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4743 struct notif_scan_complete *x = ¬if->u.scan_complete;
4744 if (size == sizeof(*x)) {
4745 IPW_DEBUG_SCAN
4746 ("Scan completed: type %d, %d channels, "
4747 "%d status\n", x->scan_type,
4748 x->num_channels, x->status);
4749 } else {
4750 IPW_ERROR("Scan completed of wrong size %d "
4751 "(should be %zd)\n",
4752 size, sizeof(*x));
4753 }
4754
4755 priv->status &=
4756 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4757
4758 wake_up_interruptible(&priv->wait_state);
4759 cancel_delayed_work(&priv->scan_check);
4760
4761 if (priv->status & STATUS_EXIT_PENDING)
4762 break;
4763
4764 priv->ieee->scans++;
4765
4766 #ifdef CONFIG_IPW2200_MONITOR
4767 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4768 priv->status |= STATUS_SCAN_FORCED;
4769 schedule_delayed_work(&priv->request_scan, 0);
4770 break;
4771 }
4772 priv->status &= ~STATUS_SCAN_FORCED;
4773 #endif /* CONFIG_IPW2200_MONITOR */
4774
4775 /* Do queued direct scans first */
4776 if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4777 schedule_delayed_work(&priv->request_direct_scan, 0);
4778
4779 if (!(priv->status & (STATUS_ASSOCIATED |
4780 STATUS_ASSOCIATING |
4781 STATUS_ROAMING |
4782 STATUS_DISASSOCIATING)))
4783 schedule_work(&priv->associate);
4784 else if (priv->status & STATUS_ROAMING) {
4785 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4786 /* If a scan completed and we are in roam mode, then
4787 * the scan that completed was the one requested as a
4788 * result of entering roam... so, schedule the
4789 * roam work */
4790 schedule_work(&priv->roam);
4791 else
4792 /* Don't schedule if we aborted the scan */
4793 priv->status &= ~STATUS_ROAMING;
4794 } else if (priv->status & STATUS_SCAN_PENDING)
4795 schedule_delayed_work(&priv->request_scan, 0);
4796 else if (priv->config & CFG_BACKGROUND_SCAN
4797 && priv->status & STATUS_ASSOCIATED)
4798 schedule_delayed_work(&priv->request_scan,
4799 round_jiffies_relative(HZ));
4800
4801 /* Send an empty event to user space.
4802 * We don't send the received data on the event because
4803 * it would require us to do complex transcoding, and
4804 * we want to minimise the work done in the irq handler
4805 * Use a request to extract the data.
4806 * Also, we generate this even for any scan, regardless
4807 * on how the scan was initiated. User space can just
4808 * sync on periodic scan to get fresh data...
4809 * Jean II */
4810 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4811 handle_scan_event(priv);
4812 break;
4813 }
4814
4815 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4816 struct notif_frag_length *x = ¬if->u.frag_len;
4817
4818 if (size == sizeof(*x))
4819 IPW_ERROR("Frag length: %d\n",
4820 le16_to_cpu(x->frag_length));
4821 else
4822 IPW_ERROR("Frag length of wrong size %d "
4823 "(should be %zd)\n",
4824 size, sizeof(*x));
4825 break;
4826 }
4827
4828 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4829 struct notif_link_deterioration *x =
4830 ¬if->u.link_deterioration;
4831
4832 if (size == sizeof(*x)) {
4833 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4834 "link deterioration: type %d, cnt %d\n",
4835 x->silence_notification_type,
4836 x->silence_count);
4837 memcpy(&priv->last_link_deterioration, x,
4838 sizeof(*x));
4839 } else {
4840 IPW_ERROR("Link Deterioration of wrong size %d "
4841 "(should be %zd)\n",
4842 size, sizeof(*x));
4843 }
4844 break;
4845 }
4846
4847 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4848 IPW_ERROR("Dino config\n");
4849 if (priv->hcmd
4850 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4851 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4852
4853 break;
4854 }
4855
4856 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4857 struct notif_beacon_state *x = ¬if->u.beacon_state;
4858 if (size != sizeof(*x)) {
4859 IPW_ERROR
4860 ("Beacon state of wrong size %d (should "
4861 "be %zd)\n", size, sizeof(*x));
4862 break;
4863 }
4864
4865 if (le32_to_cpu(x->state) ==
4866 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4867 ipw_handle_missed_beacon(priv,
4868 le32_to_cpu(x->
4869 number));
4870
4871 break;
4872 }
4873
4874 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4875 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key;
4876 if (size == sizeof(*x)) {
4877 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4878 "0x%02x station %d\n",
4879 x->key_state, x->security_type,
4880 x->station_index);
4881 break;
4882 }
4883
4884 IPW_ERROR
4885 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4886 size, sizeof(*x));
4887 break;
4888 }
4889
4890 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4891 struct notif_calibration *x = ¬if->u.calibration;
4892
4893 if (size == sizeof(*x)) {
4894 memcpy(&priv->calib, x, sizeof(*x));
4895 IPW_DEBUG_INFO("TODO: Calibration\n");
4896 break;
4897 }
4898
4899 IPW_ERROR
4900 ("Calibration of wrong size %d (should be %zd)\n",
4901 size, sizeof(*x));
4902 break;
4903 }
4904
4905 case HOST_NOTIFICATION_NOISE_STATS:{
4906 if (size == sizeof(u32)) {
4907 priv->exp_avg_noise =
4908 exponential_average(priv->exp_avg_noise,
4909 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4910 DEPTH_NOISE);
4911 break;
4912 }
4913
4914 IPW_ERROR
4915 ("Noise stat is wrong size %d (should be %zd)\n",
4916 size, sizeof(u32));
4917 break;
4918 }
4919
4920 default:
4921 IPW_DEBUG_NOTIF("Unknown notification: "
4922 "subtype=%d,flags=0x%2x,size=%d\n",
4923 notif->subtype, notif->flags, size);
4924 }
4925 }
4926
4927 /**
4928 * Destroys all DMA structures and initialise them again
4929 *
4930 * @param priv
4931 * @return error code
4932 */
ipw_queue_reset(struct ipw_priv * priv)4933 static int ipw_queue_reset(struct ipw_priv *priv)
4934 {
4935 int rc = 0;
4936 /** @todo customize queue sizes */
4937 int nTx = 64, nTxCmd = 8;
4938 ipw_tx_queue_free(priv);
4939 /* Tx CMD queue */
4940 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4941 IPW_TX_CMD_QUEUE_READ_INDEX,
4942 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4943 IPW_TX_CMD_QUEUE_BD_BASE,
4944 IPW_TX_CMD_QUEUE_BD_SIZE);
4945 if (rc) {
4946 IPW_ERROR("Tx Cmd queue init failed\n");
4947 goto error;
4948 }
4949 /* Tx queue(s) */
4950 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4951 IPW_TX_QUEUE_0_READ_INDEX,
4952 IPW_TX_QUEUE_0_WRITE_INDEX,
4953 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4954 if (rc) {
4955 IPW_ERROR("Tx 0 queue init failed\n");
4956 goto error;
4957 }
4958 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4959 IPW_TX_QUEUE_1_READ_INDEX,
4960 IPW_TX_QUEUE_1_WRITE_INDEX,
4961 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4962 if (rc) {
4963 IPW_ERROR("Tx 1 queue init failed\n");
4964 goto error;
4965 }
4966 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4967 IPW_TX_QUEUE_2_READ_INDEX,
4968 IPW_TX_QUEUE_2_WRITE_INDEX,
4969 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4970 if (rc) {
4971 IPW_ERROR("Tx 2 queue init failed\n");
4972 goto error;
4973 }
4974 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4975 IPW_TX_QUEUE_3_READ_INDEX,
4976 IPW_TX_QUEUE_3_WRITE_INDEX,
4977 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4978 if (rc) {
4979 IPW_ERROR("Tx 3 queue init failed\n");
4980 goto error;
4981 }
4982 /* statistics */
4983 priv->rx_bufs_min = 0;
4984 priv->rx_pend_max = 0;
4985 return rc;
4986
4987 error:
4988 ipw_tx_queue_free(priv);
4989 return rc;
4990 }
4991
4992 /**
4993 * Reclaim Tx queue entries no more used by NIC.
4994 *
4995 * When FW advances 'R' index, all entries between old and
4996 * new 'R' index need to be reclaimed. As result, some free space
4997 * forms. If there is enough free space (> low mark), wake Tx queue.
4998 *
4999 * @note Need to protect against garbage in 'R' index
5000 * @param priv
5001 * @param txq
5002 * @param qindex
5003 * @return Number of used entries remains in the queue
5004 */
ipw_queue_tx_reclaim(struct ipw_priv * priv,struct clx2_tx_queue * txq,int qindex)5005 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5006 struct clx2_tx_queue *txq, int qindex)
5007 {
5008 u32 hw_tail;
5009 int used;
5010 struct clx2_queue *q = &txq->q;
5011
5012 hw_tail = ipw_read32(priv, q->reg_r);
5013 if (hw_tail >= q->n_bd) {
5014 IPW_ERROR
5015 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5016 hw_tail, q->n_bd);
5017 goto done;
5018 }
5019 for (; q->last_used != hw_tail;
5020 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5021 ipw_queue_tx_free_tfd(priv, txq);
5022 priv->tx_packets++;
5023 }
5024 done:
5025 if ((ipw_tx_queue_space(q) > q->low_mark) &&
5026 (qindex >= 0))
5027 netif_wake_queue(priv->net_dev);
5028 used = q->first_empty - q->last_used;
5029 if (used < 0)
5030 used += q->n_bd;
5031
5032 return used;
5033 }
5034
ipw_queue_tx_hcmd(struct ipw_priv * priv,int hcmd,void * buf,int len,int sync)5035 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5036 int len, int sync)
5037 {
5038 struct clx2_tx_queue *txq = &priv->txq_cmd;
5039 struct clx2_queue *q = &txq->q;
5040 struct tfd_frame *tfd;
5041
5042 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5043 IPW_ERROR("No space for Tx\n");
5044 return -EBUSY;
5045 }
5046
5047 tfd = &txq->bd[q->first_empty];
5048 txq->txb[q->first_empty] = NULL;
5049
5050 memset(tfd, 0, sizeof(*tfd));
5051 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5052 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5053 priv->hcmd_seq++;
5054 tfd->u.cmd.index = hcmd;
5055 tfd->u.cmd.length = len;
5056 memcpy(tfd->u.cmd.payload, buf, len);
5057 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5058 ipw_write32(priv, q->reg_w, q->first_empty);
5059 _ipw_read32(priv, 0x90);
5060
5061 return 0;
5062 }
5063
5064 /*
5065 * Rx theory of operation
5066 *
5067 * The host allocates 32 DMA target addresses and passes the host address
5068 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5069 * 0 to 31
5070 *
5071 * Rx Queue Indexes
5072 * The host/firmware share two index registers for managing the Rx buffers.
5073 *
5074 * The READ index maps to the first position that the firmware may be writing
5075 * to -- the driver can read up to (but not including) this position and get
5076 * good data.
5077 * The READ index is managed by the firmware once the card is enabled.
5078 *
5079 * The WRITE index maps to the last position the driver has read from -- the
5080 * position preceding WRITE is the last slot the firmware can place a packet.
5081 *
5082 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5083 * WRITE = READ.
5084 *
5085 * During initialization the host sets up the READ queue position to the first
5086 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5087 *
5088 * When the firmware places a packet in a buffer it will advance the READ index
5089 * and fire the RX interrupt. The driver can then query the READ index and
5090 * process as many packets as possible, moving the WRITE index forward as it
5091 * resets the Rx queue buffers with new memory.
5092 *
5093 * The management in the driver is as follows:
5094 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5095 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5096 * to replensish the ipw->rxq->rx_free.
5097 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5098 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5099 * 'processed' and 'read' driver indexes as well)
5100 * + A received packet is processed and handed to the kernel network stack,
5101 * detached from the ipw->rxq. The driver 'processed' index is updated.
5102 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5103 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5104 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5105 * were enough free buffers and RX_STALLED is set it is cleared.
5106 *
5107 *
5108 * Driver sequence:
5109 *
5110 * ipw_rx_queue_alloc() Allocates rx_free
5111 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5112 * ipw_rx_queue_restock
5113 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5114 * queue, updates firmware pointers, and updates
5115 * the WRITE index. If insufficient rx_free buffers
5116 * are available, schedules ipw_rx_queue_replenish
5117 *
5118 * -- enable interrupts --
5119 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5120 * READ INDEX, detaching the SKB from the pool.
5121 * Moves the packet buffer from queue to rx_used.
5122 * Calls ipw_rx_queue_restock to refill any empty
5123 * slots.
5124 * ...
5125 *
5126 */
5127
5128 /*
5129 * If there are slots in the RX queue that need to be restocked,
5130 * and we have free pre-allocated buffers, fill the ranks as much
5131 * as we can pulling from rx_free.
5132 *
5133 * This moves the 'write' index forward to catch up with 'processed', and
5134 * also updates the memory address in the firmware to reference the new
5135 * target buffer.
5136 */
ipw_rx_queue_restock(struct ipw_priv * priv)5137 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5138 {
5139 struct ipw_rx_queue *rxq = priv->rxq;
5140 struct list_head *element;
5141 struct ipw_rx_mem_buffer *rxb;
5142 unsigned long flags;
5143 int write;
5144
5145 spin_lock_irqsave(&rxq->lock, flags);
5146 write = rxq->write;
5147 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5148 element = rxq->rx_free.next;
5149 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5150 list_del(element);
5151
5152 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5153 rxb->dma_addr);
5154 rxq->queue[rxq->write] = rxb;
5155 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5156 rxq->free_count--;
5157 }
5158 spin_unlock_irqrestore(&rxq->lock, flags);
5159
5160 /* If the pre-allocated buffer pool is dropping low, schedule to
5161 * refill it */
5162 if (rxq->free_count <= RX_LOW_WATERMARK)
5163 schedule_work(&priv->rx_replenish);
5164
5165 /* If we've added more space for the firmware to place data, tell it */
5166 if (write != rxq->write)
5167 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5168 }
5169
5170 /*
5171 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5172 * Also restock the Rx queue via ipw_rx_queue_restock.
5173 *
5174 * This is called as a scheduled work item (except for during initialization)
5175 */
ipw_rx_queue_replenish(void * data)5176 static void ipw_rx_queue_replenish(void *data)
5177 {
5178 struct ipw_priv *priv = data;
5179 struct ipw_rx_queue *rxq = priv->rxq;
5180 struct list_head *element;
5181 struct ipw_rx_mem_buffer *rxb;
5182 unsigned long flags;
5183
5184 spin_lock_irqsave(&rxq->lock, flags);
5185 while (!list_empty(&rxq->rx_used)) {
5186 element = rxq->rx_used.next;
5187 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5188 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5189 if (!rxb->skb) {
5190 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5191 priv->net_dev->name);
5192 /* We don't reschedule replenish work here -- we will
5193 * call the restock method and if it still needs
5194 * more buffers it will schedule replenish */
5195 break;
5196 }
5197 list_del(element);
5198
5199 rxb->dma_addr =
5200 pci_map_single(priv->pci_dev, rxb->skb->data,
5201 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5202
5203 list_add_tail(&rxb->list, &rxq->rx_free);
5204 rxq->free_count++;
5205 }
5206 spin_unlock_irqrestore(&rxq->lock, flags);
5207
5208 ipw_rx_queue_restock(priv);
5209 }
5210
ipw_bg_rx_queue_replenish(struct work_struct * work)5211 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5212 {
5213 struct ipw_priv *priv =
5214 container_of(work, struct ipw_priv, rx_replenish);
5215 mutex_lock(&priv->mutex);
5216 ipw_rx_queue_replenish(priv);
5217 mutex_unlock(&priv->mutex);
5218 }
5219
5220 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5221 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5222 * This free routine walks the list of POOL entries and if SKB is set to
5223 * non NULL it is unmapped and freed
5224 */
ipw_rx_queue_free(struct ipw_priv * priv,struct ipw_rx_queue * rxq)5225 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5226 {
5227 int i;
5228
5229 if (!rxq)
5230 return;
5231
5232 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5233 if (rxq->pool[i].skb != NULL) {
5234 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5235 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5236 dev_kfree_skb(rxq->pool[i].skb);
5237 }
5238 }
5239
5240 kfree(rxq);
5241 }
5242
ipw_rx_queue_alloc(struct ipw_priv * priv)5243 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5244 {
5245 struct ipw_rx_queue *rxq;
5246 int i;
5247
5248 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5249 if (unlikely(!rxq)) {
5250 IPW_ERROR("memory allocation failed\n");
5251 return NULL;
5252 }
5253 spin_lock_init(&rxq->lock);
5254 INIT_LIST_HEAD(&rxq->rx_free);
5255 INIT_LIST_HEAD(&rxq->rx_used);
5256
5257 /* Fill the rx_used queue with _all_ of the Rx buffers */
5258 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5259 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5260
5261 /* Set us so that we have processed and used all buffers, but have
5262 * not restocked the Rx queue with fresh buffers */
5263 rxq->read = rxq->write = 0;
5264 rxq->free_count = 0;
5265
5266 return rxq;
5267 }
5268
ipw_is_rate_in_mask(struct ipw_priv * priv,int ieee_mode,u8 rate)5269 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5270 {
5271 rate &= ~LIBIPW_BASIC_RATE_MASK;
5272 if (ieee_mode == IEEE_A) {
5273 switch (rate) {
5274 case LIBIPW_OFDM_RATE_6MB:
5275 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5276 1 : 0;
5277 case LIBIPW_OFDM_RATE_9MB:
5278 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5279 1 : 0;
5280 case LIBIPW_OFDM_RATE_12MB:
5281 return priv->
5282 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5283 case LIBIPW_OFDM_RATE_18MB:
5284 return priv->
5285 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5286 case LIBIPW_OFDM_RATE_24MB:
5287 return priv->
5288 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5289 case LIBIPW_OFDM_RATE_36MB:
5290 return priv->
5291 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5292 case LIBIPW_OFDM_RATE_48MB:
5293 return priv->
5294 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5295 case LIBIPW_OFDM_RATE_54MB:
5296 return priv->
5297 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5298 default:
5299 return 0;
5300 }
5301 }
5302
5303 /* B and G mixed */
5304 switch (rate) {
5305 case LIBIPW_CCK_RATE_1MB:
5306 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5307 case LIBIPW_CCK_RATE_2MB:
5308 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5309 case LIBIPW_CCK_RATE_5MB:
5310 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5311 case LIBIPW_CCK_RATE_11MB:
5312 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5313 }
5314
5315 /* If we are limited to B modulations, bail at this point */
5316 if (ieee_mode == IEEE_B)
5317 return 0;
5318
5319 /* G */
5320 switch (rate) {
5321 case LIBIPW_OFDM_RATE_6MB:
5322 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5323 case LIBIPW_OFDM_RATE_9MB:
5324 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5325 case LIBIPW_OFDM_RATE_12MB:
5326 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5327 case LIBIPW_OFDM_RATE_18MB:
5328 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5329 case LIBIPW_OFDM_RATE_24MB:
5330 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5331 case LIBIPW_OFDM_RATE_36MB:
5332 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5333 case LIBIPW_OFDM_RATE_48MB:
5334 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5335 case LIBIPW_OFDM_RATE_54MB:
5336 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5337 }
5338
5339 return 0;
5340 }
5341
ipw_compatible_rates(struct ipw_priv * priv,const struct libipw_network * network,struct ipw_supported_rates * rates)5342 static int ipw_compatible_rates(struct ipw_priv *priv,
5343 const struct libipw_network *network,
5344 struct ipw_supported_rates *rates)
5345 {
5346 int num_rates, i;
5347
5348 memset(rates, 0, sizeof(*rates));
5349 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5350 rates->num_rates = 0;
5351 for (i = 0; i < num_rates; i++) {
5352 if (!ipw_is_rate_in_mask(priv, network->mode,
5353 network->rates[i])) {
5354
5355 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5356 IPW_DEBUG_SCAN("Adding masked mandatory "
5357 "rate %02X\n",
5358 network->rates[i]);
5359 rates->supported_rates[rates->num_rates++] =
5360 network->rates[i];
5361 continue;
5362 }
5363
5364 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5365 network->rates[i], priv->rates_mask);
5366 continue;
5367 }
5368
5369 rates->supported_rates[rates->num_rates++] = network->rates[i];
5370 }
5371
5372 num_rates = min(network->rates_ex_len,
5373 (u8) (IPW_MAX_RATES - num_rates));
5374 for (i = 0; i < num_rates; i++) {
5375 if (!ipw_is_rate_in_mask(priv, network->mode,
5376 network->rates_ex[i])) {
5377 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5378 IPW_DEBUG_SCAN("Adding masked mandatory "
5379 "rate %02X\n",
5380 network->rates_ex[i]);
5381 rates->supported_rates[rates->num_rates++] =
5382 network->rates[i];
5383 continue;
5384 }
5385
5386 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5387 network->rates_ex[i], priv->rates_mask);
5388 continue;
5389 }
5390
5391 rates->supported_rates[rates->num_rates++] =
5392 network->rates_ex[i];
5393 }
5394
5395 return 1;
5396 }
5397
ipw_copy_rates(struct ipw_supported_rates * dest,const struct ipw_supported_rates * src)5398 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5399 const struct ipw_supported_rates *src)
5400 {
5401 u8 i;
5402 for (i = 0; i < src->num_rates; i++)
5403 dest->supported_rates[i] = src->supported_rates[i];
5404 dest->num_rates = src->num_rates;
5405 }
5406
5407 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5408 * mask should ever be used -- right now all callers to add the scan rates are
5409 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
ipw_add_cck_scan_rates(struct ipw_supported_rates * rates,u8 modulation,u32 rate_mask)5410 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5411 u8 modulation, u32 rate_mask)
5412 {
5413 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5414 LIBIPW_BASIC_RATE_MASK : 0;
5415
5416 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5417 rates->supported_rates[rates->num_rates++] =
5418 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5419
5420 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5421 rates->supported_rates[rates->num_rates++] =
5422 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5423
5424 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5425 rates->supported_rates[rates->num_rates++] = basic_mask |
5426 LIBIPW_CCK_RATE_5MB;
5427
5428 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5429 rates->supported_rates[rates->num_rates++] = basic_mask |
5430 LIBIPW_CCK_RATE_11MB;
5431 }
5432
ipw_add_ofdm_scan_rates(struct ipw_supported_rates * rates,u8 modulation,u32 rate_mask)5433 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5434 u8 modulation, u32 rate_mask)
5435 {
5436 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5437 LIBIPW_BASIC_RATE_MASK : 0;
5438
5439 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5440 rates->supported_rates[rates->num_rates++] = basic_mask |
5441 LIBIPW_OFDM_RATE_6MB;
5442
5443 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5444 rates->supported_rates[rates->num_rates++] =
5445 LIBIPW_OFDM_RATE_9MB;
5446
5447 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5448 rates->supported_rates[rates->num_rates++] = basic_mask |
5449 LIBIPW_OFDM_RATE_12MB;
5450
5451 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5452 rates->supported_rates[rates->num_rates++] =
5453 LIBIPW_OFDM_RATE_18MB;
5454
5455 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5456 rates->supported_rates[rates->num_rates++] = basic_mask |
5457 LIBIPW_OFDM_RATE_24MB;
5458
5459 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5460 rates->supported_rates[rates->num_rates++] =
5461 LIBIPW_OFDM_RATE_36MB;
5462
5463 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5464 rates->supported_rates[rates->num_rates++] =
5465 LIBIPW_OFDM_RATE_48MB;
5466
5467 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5468 rates->supported_rates[rates->num_rates++] =
5469 LIBIPW_OFDM_RATE_54MB;
5470 }
5471
5472 struct ipw_network_match {
5473 struct libipw_network *network;
5474 struct ipw_supported_rates rates;
5475 };
5476
ipw_find_adhoc_network(struct ipw_priv * priv,struct ipw_network_match * match,struct libipw_network * network,int roaming)5477 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5478 struct ipw_network_match *match,
5479 struct libipw_network *network,
5480 int roaming)
5481 {
5482 struct ipw_supported_rates rates;
5483
5484 /* Verify that this network's capability is compatible with the
5485 * current mode (AdHoc or Infrastructure) */
5486 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5487 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5488 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5489 network->ssid_len, network->ssid,
5490 network->bssid);
5491 return 0;
5492 }
5493
5494 if (unlikely(roaming)) {
5495 /* If we are roaming, then ensure check if this is a valid
5496 * network to try and roam to */
5497 if ((network->ssid_len != match->network->ssid_len) ||
5498 memcmp(network->ssid, match->network->ssid,
5499 network->ssid_len)) {
5500 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5501 network->ssid_len, network->ssid,
5502 network->bssid);
5503 return 0;
5504 }
5505 } else {
5506 /* If an ESSID has been configured then compare the broadcast
5507 * ESSID to ours */
5508 if ((priv->config & CFG_STATIC_ESSID) &&
5509 ((network->ssid_len != priv->essid_len) ||
5510 memcmp(network->ssid, priv->essid,
5511 min(network->ssid_len, priv->essid_len)))) {
5512 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5513 network->ssid_len, network->ssid,
5514 network->bssid, priv->essid_len,
5515 priv->essid);
5516 return 0;
5517 }
5518 }
5519
5520 /* If the old network rate is better than this one, don't bother
5521 * testing everything else. */
5522
5523 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5524 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5525 match->network->ssid_len, match->network->ssid);
5526 return 0;
5527 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5528 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5529 match->network->ssid_len, match->network->ssid);
5530 return 0;
5531 }
5532
5533 /* Now go through and see if the requested network is valid... */
5534 if (priv->ieee->scan_age != 0 &&
5535 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5536 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5537 network->ssid_len, network->ssid,
5538 network->bssid,
5539 jiffies_to_msecs(jiffies -
5540 network->last_scanned));
5541 return 0;
5542 }
5543
5544 if ((priv->config & CFG_STATIC_CHANNEL) &&
5545 (network->channel != priv->channel)) {
5546 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5547 network->ssid_len, network->ssid,
5548 network->bssid,
5549 network->channel, priv->channel);
5550 return 0;
5551 }
5552
5553 /* Verify privacy compatibility */
5554 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5555 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5556 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5557 network->ssid_len, network->ssid,
5558 network->bssid,
5559 priv->
5560 capability & CAP_PRIVACY_ON ? "on" : "off",
5561 network->
5562 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5563 "off");
5564 return 0;
5565 }
5566
5567 if (ether_addr_equal(network->bssid, priv->bssid)) {
5568 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5569 network->ssid_len, network->ssid,
5570 network->bssid, priv->bssid);
5571 return 0;
5572 }
5573
5574 /* Filter out any incompatible freq / mode combinations */
5575 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5576 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5577 network->ssid_len, network->ssid,
5578 network->bssid);
5579 return 0;
5580 }
5581
5582 /* Ensure that the rates supported by the driver are compatible with
5583 * this AP, including verification of basic rates (mandatory) */
5584 if (!ipw_compatible_rates(priv, network, &rates)) {
5585 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5586 network->ssid_len, network->ssid,
5587 network->bssid);
5588 return 0;
5589 }
5590
5591 if (rates.num_rates == 0) {
5592 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5593 network->ssid_len, network->ssid,
5594 network->bssid);
5595 return 0;
5596 }
5597
5598 /* TODO: Perform any further minimal comparititive tests. We do not
5599 * want to put too much policy logic here; intelligent scan selection
5600 * should occur within a generic IEEE 802.11 user space tool. */
5601
5602 /* Set up 'new' AP to this network */
5603 ipw_copy_rates(&match->rates, &rates);
5604 match->network = network;
5605 IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5606 network->ssid_len, network->ssid, network->bssid);
5607
5608 return 1;
5609 }
5610
ipw_merge_adhoc_network(struct work_struct * work)5611 static void ipw_merge_adhoc_network(struct work_struct *work)
5612 {
5613 struct ipw_priv *priv =
5614 container_of(work, struct ipw_priv, merge_networks);
5615 struct libipw_network *network = NULL;
5616 struct ipw_network_match match = {
5617 .network = priv->assoc_network
5618 };
5619
5620 if ((priv->status & STATUS_ASSOCIATED) &&
5621 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5622 /* First pass through ROAM process -- look for a better
5623 * network */
5624 unsigned long flags;
5625
5626 spin_lock_irqsave(&priv->ieee->lock, flags);
5627 list_for_each_entry(network, &priv->ieee->network_list, list) {
5628 if (network != priv->assoc_network)
5629 ipw_find_adhoc_network(priv, &match, network,
5630 1);
5631 }
5632 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5633
5634 if (match.network == priv->assoc_network) {
5635 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5636 "merge to.\n");
5637 return;
5638 }
5639
5640 mutex_lock(&priv->mutex);
5641 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5642 IPW_DEBUG_MERGE("remove network %*pE\n",
5643 priv->essid_len, priv->essid);
5644 ipw_remove_current_network(priv);
5645 }
5646
5647 ipw_disassociate(priv);
5648 priv->assoc_network = match.network;
5649 mutex_unlock(&priv->mutex);
5650 return;
5651 }
5652 }
5653
ipw_best_network(struct ipw_priv * priv,struct ipw_network_match * match,struct libipw_network * network,int roaming)5654 static int ipw_best_network(struct ipw_priv *priv,
5655 struct ipw_network_match *match,
5656 struct libipw_network *network, int roaming)
5657 {
5658 struct ipw_supported_rates rates;
5659
5660 /* Verify that this network's capability is compatible with the
5661 * current mode (AdHoc or Infrastructure) */
5662 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5663 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5664 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5665 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5666 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5667 network->ssid_len, network->ssid,
5668 network->bssid);
5669 return 0;
5670 }
5671
5672 if (unlikely(roaming)) {
5673 /* If we are roaming, then ensure check if this is a valid
5674 * network to try and roam to */
5675 if ((network->ssid_len != match->network->ssid_len) ||
5676 memcmp(network->ssid, match->network->ssid,
5677 network->ssid_len)) {
5678 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5679 network->ssid_len, network->ssid,
5680 network->bssid);
5681 return 0;
5682 }
5683 } else {
5684 /* If an ESSID has been configured then compare the broadcast
5685 * ESSID to ours */
5686 if ((priv->config & CFG_STATIC_ESSID) &&
5687 ((network->ssid_len != priv->essid_len) ||
5688 memcmp(network->ssid, priv->essid,
5689 min(network->ssid_len, priv->essid_len)))) {
5690 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5691 network->ssid_len, network->ssid,
5692 network->bssid, priv->essid_len,
5693 priv->essid);
5694 return 0;
5695 }
5696 }
5697
5698 /* If the old network rate is better than this one, don't bother
5699 * testing everything else. */
5700 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5701 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5702 network->ssid_len, network->ssid,
5703 network->bssid, match->network->ssid_len,
5704 match->network->ssid, match->network->bssid);
5705 return 0;
5706 }
5707
5708 /* If this network has already had an association attempt within the
5709 * last 3 seconds, do not try and associate again... */
5710 if (network->last_associate &&
5711 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5712 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5713 network->ssid_len, network->ssid,
5714 network->bssid,
5715 jiffies_to_msecs(jiffies -
5716 network->last_associate));
5717 return 0;
5718 }
5719
5720 /* Now go through and see if the requested network is valid... */
5721 if (priv->ieee->scan_age != 0 &&
5722 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5723 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5724 network->ssid_len, network->ssid,
5725 network->bssid,
5726 jiffies_to_msecs(jiffies -
5727 network->last_scanned));
5728 return 0;
5729 }
5730
5731 if ((priv->config & CFG_STATIC_CHANNEL) &&
5732 (network->channel != priv->channel)) {
5733 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5734 network->ssid_len, network->ssid,
5735 network->bssid,
5736 network->channel, priv->channel);
5737 return 0;
5738 }
5739
5740 /* Verify privacy compatibility */
5741 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5742 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5743 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5744 network->ssid_len, network->ssid,
5745 network->bssid,
5746 priv->capability & CAP_PRIVACY_ON ? "on" :
5747 "off",
5748 network->capability &
5749 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5750 return 0;
5751 }
5752
5753 if ((priv->config & CFG_STATIC_BSSID) &&
5754 !ether_addr_equal(network->bssid, priv->bssid)) {
5755 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5756 network->ssid_len, network->ssid,
5757 network->bssid, priv->bssid);
5758 return 0;
5759 }
5760
5761 /* Filter out any incompatible freq / mode combinations */
5762 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5763 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5764 network->ssid_len, network->ssid,
5765 network->bssid);
5766 return 0;
5767 }
5768
5769 /* Filter out invalid channel in current GEO */
5770 if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5771 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5772 network->ssid_len, network->ssid,
5773 network->bssid);
5774 return 0;
5775 }
5776
5777 /* Ensure that the rates supported by the driver are compatible with
5778 * this AP, including verification of basic rates (mandatory) */
5779 if (!ipw_compatible_rates(priv, network, &rates)) {
5780 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5781 network->ssid_len, network->ssid,
5782 network->bssid);
5783 return 0;
5784 }
5785
5786 if (rates.num_rates == 0) {
5787 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5788 network->ssid_len, network->ssid,
5789 network->bssid);
5790 return 0;
5791 }
5792
5793 /* TODO: Perform any further minimal comparititive tests. We do not
5794 * want to put too much policy logic here; intelligent scan selection
5795 * should occur within a generic IEEE 802.11 user space tool. */
5796
5797 /* Set up 'new' AP to this network */
5798 ipw_copy_rates(&match->rates, &rates);
5799 match->network = network;
5800
5801 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5802 network->ssid_len, network->ssid, network->bssid);
5803
5804 return 1;
5805 }
5806
ipw_adhoc_create(struct ipw_priv * priv,struct libipw_network * network)5807 static void ipw_adhoc_create(struct ipw_priv *priv,
5808 struct libipw_network *network)
5809 {
5810 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5811 int i;
5812
5813 /*
5814 * For the purposes of scanning, we can set our wireless mode
5815 * to trigger scans across combinations of bands, but when it
5816 * comes to creating a new ad-hoc network, we have tell the FW
5817 * exactly which band to use.
5818 *
5819 * We also have the possibility of an invalid channel for the
5820 * chossen band. Attempting to create a new ad-hoc network
5821 * with an invalid channel for wireless mode will trigger a
5822 * FW fatal error.
5823 *
5824 */
5825 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5826 case LIBIPW_52GHZ_BAND:
5827 network->mode = IEEE_A;
5828 i = libipw_channel_to_index(priv->ieee, priv->channel);
5829 BUG_ON(i == -1);
5830 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5831 IPW_WARNING("Overriding invalid channel\n");
5832 priv->channel = geo->a[0].channel;
5833 }
5834 break;
5835
5836 case LIBIPW_24GHZ_BAND:
5837 if (priv->ieee->mode & IEEE_G)
5838 network->mode = IEEE_G;
5839 else
5840 network->mode = IEEE_B;
5841 i = libipw_channel_to_index(priv->ieee, priv->channel);
5842 BUG_ON(i == -1);
5843 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5844 IPW_WARNING("Overriding invalid channel\n");
5845 priv->channel = geo->bg[0].channel;
5846 }
5847 break;
5848
5849 default:
5850 IPW_WARNING("Overriding invalid channel\n");
5851 if (priv->ieee->mode & IEEE_A) {
5852 network->mode = IEEE_A;
5853 priv->channel = geo->a[0].channel;
5854 } else if (priv->ieee->mode & IEEE_G) {
5855 network->mode = IEEE_G;
5856 priv->channel = geo->bg[0].channel;
5857 } else {
5858 network->mode = IEEE_B;
5859 priv->channel = geo->bg[0].channel;
5860 }
5861 break;
5862 }
5863
5864 network->channel = priv->channel;
5865 priv->config |= CFG_ADHOC_PERSIST;
5866 ipw_create_bssid(priv, network->bssid);
5867 network->ssid_len = priv->essid_len;
5868 memcpy(network->ssid, priv->essid, priv->essid_len);
5869 memset(&network->stats, 0, sizeof(network->stats));
5870 network->capability = WLAN_CAPABILITY_IBSS;
5871 if (!(priv->config & CFG_PREAMBLE_LONG))
5872 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5873 if (priv->capability & CAP_PRIVACY_ON)
5874 network->capability |= WLAN_CAPABILITY_PRIVACY;
5875 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5876 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5877 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5878 memcpy(network->rates_ex,
5879 &priv->rates.supported_rates[network->rates_len],
5880 network->rates_ex_len);
5881 network->last_scanned = 0;
5882 network->flags = 0;
5883 network->last_associate = 0;
5884 network->time_stamp[0] = 0;
5885 network->time_stamp[1] = 0;
5886 network->beacon_interval = 100; /* Default */
5887 network->listen_interval = 10; /* Default */
5888 network->atim_window = 0; /* Default */
5889 network->wpa_ie_len = 0;
5890 network->rsn_ie_len = 0;
5891 }
5892
ipw_send_tgi_tx_key(struct ipw_priv * priv,int type,int index)5893 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5894 {
5895 struct ipw_tgi_tx_key key;
5896
5897 if (!(priv->ieee->sec.flags & (1 << index)))
5898 return;
5899
5900 key.key_id = index;
5901 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5902 key.security_type = type;
5903 key.station_index = 0; /* always 0 for BSS */
5904 key.flags = 0;
5905 /* 0 for new key; previous value of counter (after fatal error) */
5906 key.tx_counter[0] = cpu_to_le32(0);
5907 key.tx_counter[1] = cpu_to_le32(0);
5908
5909 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5910 }
5911
ipw_send_wep_keys(struct ipw_priv * priv,int type)5912 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5913 {
5914 struct ipw_wep_key key;
5915 int i;
5916
5917 key.cmd_id = DINO_CMD_WEP_KEY;
5918 key.seq_num = 0;
5919
5920 /* Note: AES keys cannot be set for multiple times.
5921 * Only set it at the first time. */
5922 for (i = 0; i < 4; i++) {
5923 key.key_index = i | type;
5924 if (!(priv->ieee->sec.flags & (1 << i))) {
5925 key.key_size = 0;
5926 continue;
5927 }
5928
5929 key.key_size = priv->ieee->sec.key_sizes[i];
5930 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5931
5932 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5933 }
5934 }
5935
ipw_set_hw_decrypt_unicast(struct ipw_priv * priv,int level)5936 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5937 {
5938 if (priv->ieee->host_encrypt)
5939 return;
5940
5941 switch (level) {
5942 case SEC_LEVEL_3:
5943 priv->sys_config.disable_unicast_decryption = 0;
5944 priv->ieee->host_decrypt = 0;
5945 break;
5946 case SEC_LEVEL_2:
5947 priv->sys_config.disable_unicast_decryption = 1;
5948 priv->ieee->host_decrypt = 1;
5949 break;
5950 case SEC_LEVEL_1:
5951 priv->sys_config.disable_unicast_decryption = 0;
5952 priv->ieee->host_decrypt = 0;
5953 break;
5954 case SEC_LEVEL_0:
5955 priv->sys_config.disable_unicast_decryption = 1;
5956 break;
5957 default:
5958 break;
5959 }
5960 }
5961
ipw_set_hw_decrypt_multicast(struct ipw_priv * priv,int level)5962 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5963 {
5964 if (priv->ieee->host_encrypt)
5965 return;
5966
5967 switch (level) {
5968 case SEC_LEVEL_3:
5969 priv->sys_config.disable_multicast_decryption = 0;
5970 break;
5971 case SEC_LEVEL_2:
5972 priv->sys_config.disable_multicast_decryption = 1;
5973 break;
5974 case SEC_LEVEL_1:
5975 priv->sys_config.disable_multicast_decryption = 0;
5976 break;
5977 case SEC_LEVEL_0:
5978 priv->sys_config.disable_multicast_decryption = 1;
5979 break;
5980 default:
5981 break;
5982 }
5983 }
5984
ipw_set_hwcrypto_keys(struct ipw_priv * priv)5985 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5986 {
5987 switch (priv->ieee->sec.level) {
5988 case SEC_LEVEL_3:
5989 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5990 ipw_send_tgi_tx_key(priv,
5991 DCT_FLAG_EXT_SECURITY_CCM,
5992 priv->ieee->sec.active_key);
5993
5994 if (!priv->ieee->host_mc_decrypt)
5995 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5996 break;
5997 case SEC_LEVEL_2:
5998 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5999 ipw_send_tgi_tx_key(priv,
6000 DCT_FLAG_EXT_SECURITY_TKIP,
6001 priv->ieee->sec.active_key);
6002 break;
6003 case SEC_LEVEL_1:
6004 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6005 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6006 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6007 break;
6008 case SEC_LEVEL_0:
6009 default:
6010 break;
6011 }
6012 }
6013
ipw_adhoc_check(void * data)6014 static void ipw_adhoc_check(void *data)
6015 {
6016 struct ipw_priv *priv = data;
6017
6018 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6019 !(priv->config & CFG_ADHOC_PERSIST)) {
6020 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6021 IPW_DL_STATE | IPW_DL_ASSOC,
6022 "Missed beacon: %d - disassociate\n",
6023 priv->missed_adhoc_beacons);
6024 ipw_remove_current_network(priv);
6025 ipw_disassociate(priv);
6026 return;
6027 }
6028
6029 schedule_delayed_work(&priv->adhoc_check,
6030 le16_to_cpu(priv->assoc_request.beacon_interval));
6031 }
6032
ipw_bg_adhoc_check(struct work_struct * work)6033 static void ipw_bg_adhoc_check(struct work_struct *work)
6034 {
6035 struct ipw_priv *priv =
6036 container_of(work, struct ipw_priv, adhoc_check.work);
6037 mutex_lock(&priv->mutex);
6038 ipw_adhoc_check(priv);
6039 mutex_unlock(&priv->mutex);
6040 }
6041
ipw_debug_config(struct ipw_priv * priv)6042 static void ipw_debug_config(struct ipw_priv *priv)
6043 {
6044 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6045 "[CFG 0x%08X]\n", priv->config);
6046 if (priv->config & CFG_STATIC_CHANNEL)
6047 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6048 else
6049 IPW_DEBUG_INFO("Channel unlocked.\n");
6050 if (priv->config & CFG_STATIC_ESSID)
6051 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6052 priv->essid_len, priv->essid);
6053 else
6054 IPW_DEBUG_INFO("ESSID unlocked.\n");
6055 if (priv->config & CFG_STATIC_BSSID)
6056 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6057 else
6058 IPW_DEBUG_INFO("BSSID unlocked.\n");
6059 if (priv->capability & CAP_PRIVACY_ON)
6060 IPW_DEBUG_INFO("PRIVACY on\n");
6061 else
6062 IPW_DEBUG_INFO("PRIVACY off\n");
6063 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6064 }
6065
ipw_set_fixed_rate(struct ipw_priv * priv,int mode)6066 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6067 {
6068 /* TODO: Verify that this works... */
6069 struct ipw_fixed_rate fr;
6070 u32 reg;
6071 u16 mask = 0;
6072 u16 new_tx_rates = priv->rates_mask;
6073
6074 /* Identify 'current FW band' and match it with the fixed
6075 * Tx rates */
6076
6077 switch (priv->ieee->freq_band) {
6078 case LIBIPW_52GHZ_BAND: /* A only */
6079 /* IEEE_A */
6080 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6081 /* Invalid fixed rate mask */
6082 IPW_DEBUG_WX
6083 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6084 new_tx_rates = 0;
6085 break;
6086 }
6087
6088 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6089 break;
6090
6091 default: /* 2.4Ghz or Mixed */
6092 /* IEEE_B */
6093 if (mode == IEEE_B) {
6094 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6095 /* Invalid fixed rate mask */
6096 IPW_DEBUG_WX
6097 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6098 new_tx_rates = 0;
6099 }
6100 break;
6101 }
6102
6103 /* IEEE_G */
6104 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6105 LIBIPW_OFDM_RATES_MASK)) {
6106 /* Invalid fixed rate mask */
6107 IPW_DEBUG_WX
6108 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6109 new_tx_rates = 0;
6110 break;
6111 }
6112
6113 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6114 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6115 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6116 }
6117
6118 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6119 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6120 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6121 }
6122
6123 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6124 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6125 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6126 }
6127
6128 new_tx_rates |= mask;
6129 break;
6130 }
6131
6132 fr.tx_rates = cpu_to_le16(new_tx_rates);
6133
6134 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6135 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6136 }
6137
ipw_abort_scan(struct ipw_priv * priv)6138 static void ipw_abort_scan(struct ipw_priv *priv)
6139 {
6140 int err;
6141
6142 if (priv->status & STATUS_SCAN_ABORTING) {
6143 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6144 return;
6145 }
6146 priv->status |= STATUS_SCAN_ABORTING;
6147
6148 err = ipw_send_scan_abort(priv);
6149 if (err)
6150 IPW_DEBUG_HC("Request to abort scan failed.\n");
6151 }
6152
ipw_add_scan_channels(struct ipw_priv * priv,struct ipw_scan_request_ext * scan,int scan_type)6153 static void ipw_add_scan_channels(struct ipw_priv *priv,
6154 struct ipw_scan_request_ext *scan,
6155 int scan_type)
6156 {
6157 int channel_index = 0;
6158 const struct libipw_geo *geo;
6159 int i;
6160
6161 geo = libipw_get_geo(priv->ieee);
6162
6163 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6164 int start = channel_index;
6165 for (i = 0; i < geo->a_channels; i++) {
6166 if ((priv->status & STATUS_ASSOCIATED) &&
6167 geo->a[i].channel == priv->channel)
6168 continue;
6169 channel_index++;
6170 scan->channels_list[channel_index] = geo->a[i].channel;
6171 ipw_set_scan_type(scan, channel_index,
6172 geo->a[i].
6173 flags & LIBIPW_CH_PASSIVE_ONLY ?
6174 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6175 scan_type);
6176 }
6177
6178 if (start != channel_index) {
6179 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6180 (channel_index - start);
6181 channel_index++;
6182 }
6183 }
6184
6185 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6186 int start = channel_index;
6187 if (priv->config & CFG_SPEED_SCAN) {
6188 int index;
6189 u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6190 /* nop out the list */
6191 [0] = 0
6192 };
6193
6194 u8 channel;
6195 while (channel_index < IPW_SCAN_CHANNELS - 1) {
6196 channel =
6197 priv->speed_scan[priv->speed_scan_pos];
6198 if (channel == 0) {
6199 priv->speed_scan_pos = 0;
6200 channel = priv->speed_scan[0];
6201 }
6202 if ((priv->status & STATUS_ASSOCIATED) &&
6203 channel == priv->channel) {
6204 priv->speed_scan_pos++;
6205 continue;
6206 }
6207
6208 /* If this channel has already been
6209 * added in scan, break from loop
6210 * and this will be the first channel
6211 * in the next scan.
6212 */
6213 if (channels[channel - 1] != 0)
6214 break;
6215
6216 channels[channel - 1] = 1;
6217 priv->speed_scan_pos++;
6218 channel_index++;
6219 scan->channels_list[channel_index] = channel;
6220 index =
6221 libipw_channel_to_index(priv->ieee, channel);
6222 ipw_set_scan_type(scan, channel_index,
6223 geo->bg[index].
6224 flags &
6225 LIBIPW_CH_PASSIVE_ONLY ?
6226 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6227 : scan_type);
6228 }
6229 } else {
6230 for (i = 0; i < geo->bg_channels; i++) {
6231 if ((priv->status & STATUS_ASSOCIATED) &&
6232 geo->bg[i].channel == priv->channel)
6233 continue;
6234 channel_index++;
6235 scan->channels_list[channel_index] =
6236 geo->bg[i].channel;
6237 ipw_set_scan_type(scan, channel_index,
6238 geo->bg[i].
6239 flags &
6240 LIBIPW_CH_PASSIVE_ONLY ?
6241 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6242 : scan_type);
6243 }
6244 }
6245
6246 if (start != channel_index) {
6247 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6248 (channel_index - start);
6249 }
6250 }
6251 }
6252
ipw_passive_dwell_time(struct ipw_priv * priv)6253 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6254 {
6255 /* staying on passive channels longer than the DTIM interval during a
6256 * scan, while associated, causes the firmware to cancel the scan
6257 * without notification. Hence, don't stay on passive channels longer
6258 * than the beacon interval.
6259 */
6260 if (priv->status & STATUS_ASSOCIATED
6261 && priv->assoc_network->beacon_interval > 10)
6262 return priv->assoc_network->beacon_interval - 10;
6263 else
6264 return 120;
6265 }
6266
ipw_request_scan_helper(struct ipw_priv * priv,int type,int direct)6267 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6268 {
6269 struct ipw_scan_request_ext scan;
6270 int err = 0, scan_type;
6271
6272 if (!(priv->status & STATUS_INIT) ||
6273 (priv->status & STATUS_EXIT_PENDING))
6274 return 0;
6275
6276 mutex_lock(&priv->mutex);
6277
6278 if (direct && (priv->direct_scan_ssid_len == 0)) {
6279 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6280 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6281 goto done;
6282 }
6283
6284 if (priv->status & STATUS_SCANNING) {
6285 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6286 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6287 STATUS_SCAN_PENDING;
6288 goto done;
6289 }
6290
6291 if (!(priv->status & STATUS_SCAN_FORCED) &&
6292 priv->status & STATUS_SCAN_ABORTING) {
6293 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6294 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6295 STATUS_SCAN_PENDING;
6296 goto done;
6297 }
6298
6299 if (priv->status & STATUS_RF_KILL_MASK) {
6300 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6301 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6302 STATUS_SCAN_PENDING;
6303 goto done;
6304 }
6305
6306 memset(&scan, 0, sizeof(scan));
6307 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6308
6309 if (type == IW_SCAN_TYPE_PASSIVE) {
6310 IPW_DEBUG_WX("use passive scanning\n");
6311 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6312 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6313 cpu_to_le16(ipw_passive_dwell_time(priv));
6314 ipw_add_scan_channels(priv, &scan, scan_type);
6315 goto send_request;
6316 }
6317
6318 /* Use active scan by default. */
6319 if (priv->config & CFG_SPEED_SCAN)
6320 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6321 cpu_to_le16(30);
6322 else
6323 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6324 cpu_to_le16(20);
6325
6326 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6327 cpu_to_le16(20);
6328
6329 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6330 cpu_to_le16(ipw_passive_dwell_time(priv));
6331 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6332
6333 #ifdef CONFIG_IPW2200_MONITOR
6334 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6335 u8 channel;
6336 u8 band = 0;
6337
6338 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6339 case LIBIPW_52GHZ_BAND:
6340 band = (u8) (IPW_A_MODE << 6) | 1;
6341 channel = priv->channel;
6342 break;
6343
6344 case LIBIPW_24GHZ_BAND:
6345 band = (u8) (IPW_B_MODE << 6) | 1;
6346 channel = priv->channel;
6347 break;
6348
6349 default:
6350 band = (u8) (IPW_B_MODE << 6) | 1;
6351 channel = 9;
6352 break;
6353 }
6354
6355 scan.channels_list[0] = band;
6356 scan.channels_list[1] = channel;
6357 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6358
6359 /* NOTE: The card will sit on this channel for this time
6360 * period. Scan aborts are timing sensitive and frequently
6361 * result in firmware restarts. As such, it is best to
6362 * set a small dwell_time here and just keep re-issuing
6363 * scans. Otherwise fast channel hopping will not actually
6364 * hop channels.
6365 *
6366 * TODO: Move SPEED SCAN support to all modes and bands */
6367 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6368 cpu_to_le16(2000);
6369 } else {
6370 #endif /* CONFIG_IPW2200_MONITOR */
6371 /* Honor direct scans first, otherwise if we are roaming make
6372 * this a direct scan for the current network. Finally,
6373 * ensure that every other scan is a fast channel hop scan */
6374 if (direct) {
6375 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6376 priv->direct_scan_ssid_len);
6377 if (err) {
6378 IPW_DEBUG_HC("Attempt to send SSID command "
6379 "failed\n");
6380 goto done;
6381 }
6382
6383 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6384 } else if ((priv->status & STATUS_ROAMING)
6385 || (!(priv->status & STATUS_ASSOCIATED)
6386 && (priv->config & CFG_STATIC_ESSID)
6387 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6388 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6389 if (err) {
6390 IPW_DEBUG_HC("Attempt to send SSID command "
6391 "failed.\n");
6392 goto done;
6393 }
6394
6395 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6396 } else
6397 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6398
6399 ipw_add_scan_channels(priv, &scan, scan_type);
6400 #ifdef CONFIG_IPW2200_MONITOR
6401 }
6402 #endif
6403
6404 send_request:
6405 err = ipw_send_scan_request_ext(priv, &scan);
6406 if (err) {
6407 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6408 goto done;
6409 }
6410
6411 priv->status |= STATUS_SCANNING;
6412 if (direct) {
6413 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6414 priv->direct_scan_ssid_len = 0;
6415 } else
6416 priv->status &= ~STATUS_SCAN_PENDING;
6417
6418 schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6419 done:
6420 mutex_unlock(&priv->mutex);
6421 return err;
6422 }
6423
ipw_request_passive_scan(struct work_struct * work)6424 static void ipw_request_passive_scan(struct work_struct *work)
6425 {
6426 struct ipw_priv *priv =
6427 container_of(work, struct ipw_priv, request_passive_scan.work);
6428 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6429 }
6430
ipw_request_scan(struct work_struct * work)6431 static void ipw_request_scan(struct work_struct *work)
6432 {
6433 struct ipw_priv *priv =
6434 container_of(work, struct ipw_priv, request_scan.work);
6435 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6436 }
6437
ipw_request_direct_scan(struct work_struct * work)6438 static void ipw_request_direct_scan(struct work_struct *work)
6439 {
6440 struct ipw_priv *priv =
6441 container_of(work, struct ipw_priv, request_direct_scan.work);
6442 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6443 }
6444
ipw_bg_abort_scan(struct work_struct * work)6445 static void ipw_bg_abort_scan(struct work_struct *work)
6446 {
6447 struct ipw_priv *priv =
6448 container_of(work, struct ipw_priv, abort_scan);
6449 mutex_lock(&priv->mutex);
6450 ipw_abort_scan(priv);
6451 mutex_unlock(&priv->mutex);
6452 }
6453
ipw_wpa_enable(struct ipw_priv * priv,int value)6454 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6455 {
6456 /* This is called when wpa_supplicant loads and closes the driver
6457 * interface. */
6458 priv->ieee->wpa_enabled = value;
6459 return 0;
6460 }
6461
ipw_wpa_set_auth_algs(struct ipw_priv * priv,int value)6462 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6463 {
6464 struct libipw_device *ieee = priv->ieee;
6465 struct libipw_security sec = {
6466 .flags = SEC_AUTH_MODE,
6467 };
6468 int ret = 0;
6469
6470 if (value & IW_AUTH_ALG_SHARED_KEY) {
6471 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6472 ieee->open_wep = 0;
6473 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6474 sec.auth_mode = WLAN_AUTH_OPEN;
6475 ieee->open_wep = 1;
6476 } else if (value & IW_AUTH_ALG_LEAP) {
6477 sec.auth_mode = WLAN_AUTH_LEAP;
6478 ieee->open_wep = 1;
6479 } else
6480 return -EINVAL;
6481
6482 if (ieee->set_security)
6483 ieee->set_security(ieee->dev, &sec);
6484 else
6485 ret = -EOPNOTSUPP;
6486
6487 return ret;
6488 }
6489
ipw_wpa_assoc_frame(struct ipw_priv * priv,char * wpa_ie,int wpa_ie_len)6490 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6491 int wpa_ie_len)
6492 {
6493 /* make sure WPA is enabled */
6494 ipw_wpa_enable(priv, 1);
6495 }
6496
ipw_set_rsn_capa(struct ipw_priv * priv,char * capabilities,int length)6497 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6498 char *capabilities, int length)
6499 {
6500 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6501
6502 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6503 capabilities);
6504 }
6505
6506 /*
6507 * WE-18 support
6508 */
6509
6510 /* SIOCSIWGENIE */
ipw_wx_set_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6511 static int ipw_wx_set_genie(struct net_device *dev,
6512 struct iw_request_info *info,
6513 union iwreq_data *wrqu, char *extra)
6514 {
6515 struct ipw_priv *priv = libipw_priv(dev);
6516 struct libipw_device *ieee = priv->ieee;
6517 u8 *buf;
6518 int err = 0;
6519
6520 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6521 (wrqu->data.length && extra == NULL))
6522 return -EINVAL;
6523
6524 if (wrqu->data.length) {
6525 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6526 if (buf == NULL) {
6527 err = -ENOMEM;
6528 goto out;
6529 }
6530
6531 kfree(ieee->wpa_ie);
6532 ieee->wpa_ie = buf;
6533 ieee->wpa_ie_len = wrqu->data.length;
6534 } else {
6535 kfree(ieee->wpa_ie);
6536 ieee->wpa_ie = NULL;
6537 ieee->wpa_ie_len = 0;
6538 }
6539
6540 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6541 out:
6542 return err;
6543 }
6544
6545 /* SIOCGIWGENIE */
ipw_wx_get_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6546 static int ipw_wx_get_genie(struct net_device *dev,
6547 struct iw_request_info *info,
6548 union iwreq_data *wrqu, char *extra)
6549 {
6550 struct ipw_priv *priv = libipw_priv(dev);
6551 struct libipw_device *ieee = priv->ieee;
6552 int err = 0;
6553
6554 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6555 wrqu->data.length = 0;
6556 goto out;
6557 }
6558
6559 if (wrqu->data.length < ieee->wpa_ie_len) {
6560 err = -E2BIG;
6561 goto out;
6562 }
6563
6564 wrqu->data.length = ieee->wpa_ie_len;
6565 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6566
6567 out:
6568 return err;
6569 }
6570
wext_cipher2level(int cipher)6571 static int wext_cipher2level(int cipher)
6572 {
6573 switch (cipher) {
6574 case IW_AUTH_CIPHER_NONE:
6575 return SEC_LEVEL_0;
6576 case IW_AUTH_CIPHER_WEP40:
6577 case IW_AUTH_CIPHER_WEP104:
6578 return SEC_LEVEL_1;
6579 case IW_AUTH_CIPHER_TKIP:
6580 return SEC_LEVEL_2;
6581 case IW_AUTH_CIPHER_CCMP:
6582 return SEC_LEVEL_3;
6583 default:
6584 return -1;
6585 }
6586 }
6587
6588 /* SIOCSIWAUTH */
ipw_wx_set_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6589 static int ipw_wx_set_auth(struct net_device *dev,
6590 struct iw_request_info *info,
6591 union iwreq_data *wrqu, char *extra)
6592 {
6593 struct ipw_priv *priv = libipw_priv(dev);
6594 struct libipw_device *ieee = priv->ieee;
6595 struct iw_param *param = &wrqu->param;
6596 struct lib80211_crypt_data *crypt;
6597 unsigned long flags;
6598 int ret = 0;
6599
6600 switch (param->flags & IW_AUTH_INDEX) {
6601 case IW_AUTH_WPA_VERSION:
6602 break;
6603 case IW_AUTH_CIPHER_PAIRWISE:
6604 ipw_set_hw_decrypt_unicast(priv,
6605 wext_cipher2level(param->value));
6606 break;
6607 case IW_AUTH_CIPHER_GROUP:
6608 ipw_set_hw_decrypt_multicast(priv,
6609 wext_cipher2level(param->value));
6610 break;
6611 case IW_AUTH_KEY_MGMT:
6612 /*
6613 * ipw2200 does not use these parameters
6614 */
6615 break;
6616
6617 case IW_AUTH_TKIP_COUNTERMEASURES:
6618 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6619 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6620 break;
6621
6622 flags = crypt->ops->get_flags(crypt->priv);
6623
6624 if (param->value)
6625 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6626 else
6627 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6628
6629 crypt->ops->set_flags(flags, crypt->priv);
6630
6631 break;
6632
6633 case IW_AUTH_DROP_UNENCRYPTED:{
6634 /* HACK:
6635 *
6636 * wpa_supplicant calls set_wpa_enabled when the driver
6637 * is loaded and unloaded, regardless of if WPA is being
6638 * used. No other calls are made which can be used to
6639 * determine if encryption will be used or not prior to
6640 * association being expected. If encryption is not being
6641 * used, drop_unencrypted is set to false, else true -- we
6642 * can use this to determine if the CAP_PRIVACY_ON bit should
6643 * be set.
6644 */
6645 struct libipw_security sec = {
6646 .flags = SEC_ENABLED,
6647 .enabled = param->value,
6648 };
6649 priv->ieee->drop_unencrypted = param->value;
6650 /* We only change SEC_LEVEL for open mode. Others
6651 * are set by ipw_wpa_set_encryption.
6652 */
6653 if (!param->value) {
6654 sec.flags |= SEC_LEVEL;
6655 sec.level = SEC_LEVEL_0;
6656 } else {
6657 sec.flags |= SEC_LEVEL;
6658 sec.level = SEC_LEVEL_1;
6659 }
6660 if (priv->ieee->set_security)
6661 priv->ieee->set_security(priv->ieee->dev, &sec);
6662 break;
6663 }
6664
6665 case IW_AUTH_80211_AUTH_ALG:
6666 ret = ipw_wpa_set_auth_algs(priv, param->value);
6667 break;
6668
6669 case IW_AUTH_WPA_ENABLED:
6670 ret = ipw_wpa_enable(priv, param->value);
6671 ipw_disassociate(priv);
6672 break;
6673
6674 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6675 ieee->ieee802_1x = param->value;
6676 break;
6677
6678 case IW_AUTH_PRIVACY_INVOKED:
6679 ieee->privacy_invoked = param->value;
6680 break;
6681
6682 default:
6683 return -EOPNOTSUPP;
6684 }
6685 return ret;
6686 }
6687
6688 /* SIOCGIWAUTH */
ipw_wx_get_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6689 static int ipw_wx_get_auth(struct net_device *dev,
6690 struct iw_request_info *info,
6691 union iwreq_data *wrqu, char *extra)
6692 {
6693 struct ipw_priv *priv = libipw_priv(dev);
6694 struct libipw_device *ieee = priv->ieee;
6695 struct lib80211_crypt_data *crypt;
6696 struct iw_param *param = &wrqu->param;
6697
6698 switch (param->flags & IW_AUTH_INDEX) {
6699 case IW_AUTH_WPA_VERSION:
6700 case IW_AUTH_CIPHER_PAIRWISE:
6701 case IW_AUTH_CIPHER_GROUP:
6702 case IW_AUTH_KEY_MGMT:
6703 /*
6704 * wpa_supplicant will control these internally
6705 */
6706 return -EOPNOTSUPP;
6707
6708 case IW_AUTH_TKIP_COUNTERMEASURES:
6709 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6710 if (!crypt || !crypt->ops->get_flags)
6711 break;
6712
6713 param->value = (crypt->ops->get_flags(crypt->priv) &
6714 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6715
6716 break;
6717
6718 case IW_AUTH_DROP_UNENCRYPTED:
6719 param->value = ieee->drop_unencrypted;
6720 break;
6721
6722 case IW_AUTH_80211_AUTH_ALG:
6723 param->value = ieee->sec.auth_mode;
6724 break;
6725
6726 case IW_AUTH_WPA_ENABLED:
6727 param->value = ieee->wpa_enabled;
6728 break;
6729
6730 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6731 param->value = ieee->ieee802_1x;
6732 break;
6733
6734 case IW_AUTH_ROAMING_CONTROL:
6735 case IW_AUTH_PRIVACY_INVOKED:
6736 param->value = ieee->privacy_invoked;
6737 break;
6738
6739 default:
6740 return -EOPNOTSUPP;
6741 }
6742 return 0;
6743 }
6744
6745 /* SIOCSIWENCODEEXT */
ipw_wx_set_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6746 static int ipw_wx_set_encodeext(struct net_device *dev,
6747 struct iw_request_info *info,
6748 union iwreq_data *wrqu, char *extra)
6749 {
6750 struct ipw_priv *priv = libipw_priv(dev);
6751 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6752
6753 if (hwcrypto) {
6754 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6755 /* IPW HW can't build TKIP MIC,
6756 host decryption still needed */
6757 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6758 priv->ieee->host_mc_decrypt = 1;
6759 else {
6760 priv->ieee->host_encrypt = 0;
6761 priv->ieee->host_encrypt_msdu = 1;
6762 priv->ieee->host_decrypt = 1;
6763 }
6764 } else {
6765 priv->ieee->host_encrypt = 0;
6766 priv->ieee->host_encrypt_msdu = 0;
6767 priv->ieee->host_decrypt = 0;
6768 priv->ieee->host_mc_decrypt = 0;
6769 }
6770 }
6771
6772 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6773 }
6774
6775 /* SIOCGIWENCODEEXT */
ipw_wx_get_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6776 static int ipw_wx_get_encodeext(struct net_device *dev,
6777 struct iw_request_info *info,
6778 union iwreq_data *wrqu, char *extra)
6779 {
6780 struct ipw_priv *priv = libipw_priv(dev);
6781 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6782 }
6783
6784 /* SIOCSIWMLME */
ipw_wx_set_mlme(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6785 static int ipw_wx_set_mlme(struct net_device *dev,
6786 struct iw_request_info *info,
6787 union iwreq_data *wrqu, char *extra)
6788 {
6789 struct ipw_priv *priv = libipw_priv(dev);
6790 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6791 __le16 reason;
6792
6793 reason = cpu_to_le16(mlme->reason_code);
6794
6795 switch (mlme->cmd) {
6796 case IW_MLME_DEAUTH:
6797 /* silently ignore */
6798 break;
6799
6800 case IW_MLME_DISASSOC:
6801 ipw_disassociate(priv);
6802 break;
6803
6804 default:
6805 return -EOPNOTSUPP;
6806 }
6807 return 0;
6808 }
6809
6810 #ifdef CONFIG_IPW2200_QOS
6811
6812 /* QoS */
6813 /*
6814 * get the modulation type of the current network or
6815 * the card current mode
6816 */
ipw_qos_current_mode(struct ipw_priv * priv)6817 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6818 {
6819 u8 mode = 0;
6820
6821 if (priv->status & STATUS_ASSOCIATED) {
6822 unsigned long flags;
6823
6824 spin_lock_irqsave(&priv->ieee->lock, flags);
6825 mode = priv->assoc_network->mode;
6826 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6827 } else {
6828 mode = priv->ieee->mode;
6829 }
6830 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6831 return mode;
6832 }
6833
6834 /*
6835 * Handle management frame beacon and probe response
6836 */
ipw_qos_handle_probe_response(struct ipw_priv * priv,int active_network,struct libipw_network * network)6837 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6838 int active_network,
6839 struct libipw_network *network)
6840 {
6841 u32 size = sizeof(struct libipw_qos_parameters);
6842
6843 if (network->capability & WLAN_CAPABILITY_IBSS)
6844 network->qos_data.active = network->qos_data.supported;
6845
6846 if (network->flags & NETWORK_HAS_QOS_MASK) {
6847 if (active_network &&
6848 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6849 network->qos_data.active = network->qos_data.supported;
6850
6851 if ((network->qos_data.active == 1) && (active_network == 1) &&
6852 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6853 (network->qos_data.old_param_count !=
6854 network->qos_data.param_count)) {
6855 network->qos_data.old_param_count =
6856 network->qos_data.param_count;
6857 schedule_work(&priv->qos_activate);
6858 IPW_DEBUG_QOS("QoS parameters change call "
6859 "qos_activate\n");
6860 }
6861 } else {
6862 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6863 memcpy(&network->qos_data.parameters,
6864 &def_parameters_CCK, size);
6865 else
6866 memcpy(&network->qos_data.parameters,
6867 &def_parameters_OFDM, size);
6868
6869 if ((network->qos_data.active == 1) && (active_network == 1)) {
6870 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6871 schedule_work(&priv->qos_activate);
6872 }
6873
6874 network->qos_data.active = 0;
6875 network->qos_data.supported = 0;
6876 }
6877 if ((priv->status & STATUS_ASSOCIATED) &&
6878 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6879 if (!ether_addr_equal(network->bssid, priv->bssid))
6880 if (network->capability & WLAN_CAPABILITY_IBSS)
6881 if ((network->ssid_len ==
6882 priv->assoc_network->ssid_len) &&
6883 !memcmp(network->ssid,
6884 priv->assoc_network->ssid,
6885 network->ssid_len)) {
6886 schedule_work(&priv->merge_networks);
6887 }
6888 }
6889
6890 return 0;
6891 }
6892
6893 /*
6894 * This function set up the firmware to support QoS. It sends
6895 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6896 */
ipw_qos_activate(struct ipw_priv * priv,struct libipw_qos_data * qos_network_data)6897 static int ipw_qos_activate(struct ipw_priv *priv,
6898 struct libipw_qos_data *qos_network_data)
6899 {
6900 int err;
6901 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6902 struct libipw_qos_parameters *active_one = NULL;
6903 u32 size = sizeof(struct libipw_qos_parameters);
6904 u32 burst_duration;
6905 int i;
6906 u8 type;
6907
6908 type = ipw_qos_current_mode(priv);
6909
6910 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6911 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6912 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6913 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6914
6915 if (qos_network_data == NULL) {
6916 if (type == IEEE_B) {
6917 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6918 active_one = &def_parameters_CCK;
6919 } else
6920 active_one = &def_parameters_OFDM;
6921
6922 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6923 burst_duration = ipw_qos_get_burst_duration(priv);
6924 for (i = 0; i < QOS_QUEUE_NUM; i++)
6925 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6926 cpu_to_le16(burst_duration);
6927 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6928 if (type == IEEE_B) {
6929 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6930 type);
6931 if (priv->qos_data.qos_enable == 0)
6932 active_one = &def_parameters_CCK;
6933 else
6934 active_one = priv->qos_data.def_qos_parm_CCK;
6935 } else {
6936 if (priv->qos_data.qos_enable == 0)
6937 active_one = &def_parameters_OFDM;
6938 else
6939 active_one = priv->qos_data.def_qos_parm_OFDM;
6940 }
6941 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6942 } else {
6943 unsigned long flags;
6944 int active;
6945
6946 spin_lock_irqsave(&priv->ieee->lock, flags);
6947 active_one = &(qos_network_data->parameters);
6948 qos_network_data->old_param_count =
6949 qos_network_data->param_count;
6950 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6951 active = qos_network_data->supported;
6952 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6953
6954 if (active == 0) {
6955 burst_duration = ipw_qos_get_burst_duration(priv);
6956 for (i = 0; i < QOS_QUEUE_NUM; i++)
6957 qos_parameters[QOS_PARAM_SET_ACTIVE].
6958 tx_op_limit[i] = cpu_to_le16(burst_duration);
6959 }
6960 }
6961
6962 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6963 err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6964 if (err)
6965 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6966
6967 return err;
6968 }
6969
6970 /*
6971 * send IPW_CMD_WME_INFO to the firmware
6972 */
ipw_qos_set_info_element(struct ipw_priv * priv)6973 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6974 {
6975 int ret = 0;
6976 struct libipw_qos_information_element qos_info;
6977
6978 if (priv == NULL)
6979 return -1;
6980
6981 qos_info.elementID = QOS_ELEMENT_ID;
6982 qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6983
6984 qos_info.version = QOS_VERSION_1;
6985 qos_info.ac_info = 0;
6986
6987 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6988 qos_info.qui_type = QOS_OUI_TYPE;
6989 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6990
6991 ret = ipw_send_qos_info_command(priv, &qos_info);
6992 if (ret != 0) {
6993 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6994 }
6995 return ret;
6996 }
6997
6998 /*
6999 * Set the QoS parameter with the association request structure
7000 */
ipw_qos_association(struct ipw_priv * priv,struct libipw_network * network)7001 static int ipw_qos_association(struct ipw_priv *priv,
7002 struct libipw_network *network)
7003 {
7004 int err = 0;
7005 struct libipw_qos_data *qos_data = NULL;
7006 struct libipw_qos_data ibss_data = {
7007 .supported = 1,
7008 .active = 1,
7009 };
7010
7011 switch (priv->ieee->iw_mode) {
7012 case IW_MODE_ADHOC:
7013 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7014
7015 qos_data = &ibss_data;
7016 break;
7017
7018 case IW_MODE_INFRA:
7019 qos_data = &network->qos_data;
7020 break;
7021
7022 default:
7023 BUG();
7024 break;
7025 }
7026
7027 err = ipw_qos_activate(priv, qos_data);
7028 if (err) {
7029 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7030 return err;
7031 }
7032
7033 if (priv->qos_data.qos_enable && qos_data->supported) {
7034 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7035 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7036 return ipw_qos_set_info_element(priv);
7037 }
7038
7039 return 0;
7040 }
7041
7042 /*
7043 * handling the beaconing responses. if we get different QoS setting
7044 * off the network from the associated setting, adjust the QoS
7045 * setting
7046 */
ipw_qos_association_resp(struct ipw_priv * priv,struct libipw_network * network)7047 static int ipw_qos_association_resp(struct ipw_priv *priv,
7048 struct libipw_network *network)
7049 {
7050 int ret = 0;
7051 unsigned long flags;
7052 u32 size = sizeof(struct libipw_qos_parameters);
7053 int set_qos_param = 0;
7054
7055 if ((priv == NULL) || (network == NULL) ||
7056 (priv->assoc_network == NULL))
7057 return ret;
7058
7059 if (!(priv->status & STATUS_ASSOCIATED))
7060 return ret;
7061
7062 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7063 return ret;
7064
7065 spin_lock_irqsave(&priv->ieee->lock, flags);
7066 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7067 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7068 sizeof(struct libipw_qos_data));
7069 priv->assoc_network->qos_data.active = 1;
7070 if ((network->qos_data.old_param_count !=
7071 network->qos_data.param_count)) {
7072 set_qos_param = 1;
7073 network->qos_data.old_param_count =
7074 network->qos_data.param_count;
7075 }
7076
7077 } else {
7078 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7079 memcpy(&priv->assoc_network->qos_data.parameters,
7080 &def_parameters_CCK, size);
7081 else
7082 memcpy(&priv->assoc_network->qos_data.parameters,
7083 &def_parameters_OFDM, size);
7084 priv->assoc_network->qos_data.active = 0;
7085 priv->assoc_network->qos_data.supported = 0;
7086 set_qos_param = 1;
7087 }
7088
7089 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7090
7091 if (set_qos_param == 1)
7092 schedule_work(&priv->qos_activate);
7093
7094 return ret;
7095 }
7096
ipw_qos_get_burst_duration(struct ipw_priv * priv)7097 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7098 {
7099 u32 ret = 0;
7100
7101 if (!priv)
7102 return 0;
7103
7104 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7105 ret = priv->qos_data.burst_duration_CCK;
7106 else
7107 ret = priv->qos_data.burst_duration_OFDM;
7108
7109 return ret;
7110 }
7111
7112 /*
7113 * Initialize the setting of QoS global
7114 */
ipw_qos_init(struct ipw_priv * priv,int enable,int burst_enable,u32 burst_duration_CCK,u32 burst_duration_OFDM)7115 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7116 int burst_enable, u32 burst_duration_CCK,
7117 u32 burst_duration_OFDM)
7118 {
7119 priv->qos_data.qos_enable = enable;
7120
7121 if (priv->qos_data.qos_enable) {
7122 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7123 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7124 IPW_DEBUG_QOS("QoS is enabled\n");
7125 } else {
7126 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7127 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7128 IPW_DEBUG_QOS("QoS is not enabled\n");
7129 }
7130
7131 priv->qos_data.burst_enable = burst_enable;
7132
7133 if (burst_enable) {
7134 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7135 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7136 } else {
7137 priv->qos_data.burst_duration_CCK = 0;
7138 priv->qos_data.burst_duration_OFDM = 0;
7139 }
7140 }
7141
7142 /*
7143 * map the packet priority to the right TX Queue
7144 */
ipw_get_tx_queue_number(struct ipw_priv * priv,u16 priority)7145 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7146 {
7147 if (priority > 7 || !priv->qos_data.qos_enable)
7148 priority = 0;
7149
7150 return from_priority_to_tx_queue[priority] - 1;
7151 }
7152
ipw_is_qos_active(struct net_device * dev,struct sk_buff * skb)7153 static int ipw_is_qos_active(struct net_device *dev,
7154 struct sk_buff *skb)
7155 {
7156 struct ipw_priv *priv = libipw_priv(dev);
7157 struct libipw_qos_data *qos_data = NULL;
7158 int active, supported;
7159 u8 *daddr = skb->data + ETH_ALEN;
7160 int unicast = !is_multicast_ether_addr(daddr);
7161
7162 if (!(priv->status & STATUS_ASSOCIATED))
7163 return 0;
7164
7165 qos_data = &priv->assoc_network->qos_data;
7166
7167 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7168 if (unicast == 0)
7169 qos_data->active = 0;
7170 else
7171 qos_data->active = qos_data->supported;
7172 }
7173 active = qos_data->active;
7174 supported = qos_data->supported;
7175 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7176 "unicast %d\n",
7177 priv->qos_data.qos_enable, active, supported, unicast);
7178 if (active && priv->qos_data.qos_enable)
7179 return 1;
7180
7181 return 0;
7182
7183 }
7184 /*
7185 * add QoS parameter to the TX command
7186 */
ipw_qos_set_tx_queue_command(struct ipw_priv * priv,u16 priority,struct tfd_data * tfd)7187 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7188 u16 priority,
7189 struct tfd_data *tfd)
7190 {
7191 int tx_queue_id = 0;
7192
7193
7194 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7195 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7196
7197 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7198 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7199 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7200 }
7201 return 0;
7202 }
7203
7204 /*
7205 * background support to run QoS activate functionality
7206 */
ipw_bg_qos_activate(struct work_struct * work)7207 static void ipw_bg_qos_activate(struct work_struct *work)
7208 {
7209 struct ipw_priv *priv =
7210 container_of(work, struct ipw_priv, qos_activate);
7211
7212 mutex_lock(&priv->mutex);
7213
7214 if (priv->status & STATUS_ASSOCIATED)
7215 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7216
7217 mutex_unlock(&priv->mutex);
7218 }
7219
ipw_handle_probe_response(struct net_device * dev,struct libipw_probe_response * resp,struct libipw_network * network)7220 static int ipw_handle_probe_response(struct net_device *dev,
7221 struct libipw_probe_response *resp,
7222 struct libipw_network *network)
7223 {
7224 struct ipw_priv *priv = libipw_priv(dev);
7225 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7226 (network == priv->assoc_network));
7227
7228 ipw_qos_handle_probe_response(priv, active_network, network);
7229
7230 return 0;
7231 }
7232
ipw_handle_beacon(struct net_device * dev,struct libipw_beacon * resp,struct libipw_network * network)7233 static int ipw_handle_beacon(struct net_device *dev,
7234 struct libipw_beacon *resp,
7235 struct libipw_network *network)
7236 {
7237 struct ipw_priv *priv = libipw_priv(dev);
7238 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7239 (network == priv->assoc_network));
7240
7241 ipw_qos_handle_probe_response(priv, active_network, network);
7242
7243 return 0;
7244 }
7245
ipw_handle_assoc_response(struct net_device * dev,struct libipw_assoc_response * resp,struct libipw_network * network)7246 static int ipw_handle_assoc_response(struct net_device *dev,
7247 struct libipw_assoc_response *resp,
7248 struct libipw_network *network)
7249 {
7250 struct ipw_priv *priv = libipw_priv(dev);
7251 ipw_qos_association_resp(priv, network);
7252 return 0;
7253 }
7254
ipw_send_qos_params_command(struct ipw_priv * priv,struct libipw_qos_parameters * qos_param)7255 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7256 *qos_param)
7257 {
7258 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7259 sizeof(*qos_param) * 3, qos_param);
7260 }
7261
ipw_send_qos_info_command(struct ipw_priv * priv,struct libipw_qos_information_element * qos_param)7262 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7263 *qos_param)
7264 {
7265 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7266 qos_param);
7267 }
7268
7269 #endif /* CONFIG_IPW2200_QOS */
7270
ipw_associate_network(struct ipw_priv * priv,struct libipw_network * network,struct ipw_supported_rates * rates,int roaming)7271 static int ipw_associate_network(struct ipw_priv *priv,
7272 struct libipw_network *network,
7273 struct ipw_supported_rates *rates, int roaming)
7274 {
7275 int err;
7276
7277 if (priv->config & CFG_FIXED_RATE)
7278 ipw_set_fixed_rate(priv, network->mode);
7279
7280 if (!(priv->config & CFG_STATIC_ESSID)) {
7281 priv->essid_len = min(network->ssid_len,
7282 (u8) IW_ESSID_MAX_SIZE);
7283 memcpy(priv->essid, network->ssid, priv->essid_len);
7284 }
7285
7286 network->last_associate = jiffies;
7287
7288 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7289 priv->assoc_request.channel = network->channel;
7290 priv->assoc_request.auth_key = 0;
7291
7292 if ((priv->capability & CAP_PRIVACY_ON) &&
7293 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7294 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7295 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7296
7297 if (priv->ieee->sec.level == SEC_LEVEL_1)
7298 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7299
7300 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7301 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7302 priv->assoc_request.auth_type = AUTH_LEAP;
7303 else
7304 priv->assoc_request.auth_type = AUTH_OPEN;
7305
7306 if (priv->ieee->wpa_ie_len) {
7307 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7308 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7309 priv->ieee->wpa_ie_len);
7310 }
7311
7312 /*
7313 * It is valid for our ieee device to support multiple modes, but
7314 * when it comes to associating to a given network we have to choose
7315 * just one mode.
7316 */
7317 if (network->mode & priv->ieee->mode & IEEE_A)
7318 priv->assoc_request.ieee_mode = IPW_A_MODE;
7319 else if (network->mode & priv->ieee->mode & IEEE_G)
7320 priv->assoc_request.ieee_mode = IPW_G_MODE;
7321 else if (network->mode & priv->ieee->mode & IEEE_B)
7322 priv->assoc_request.ieee_mode = IPW_B_MODE;
7323
7324 priv->assoc_request.capability = cpu_to_le16(network->capability);
7325 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7326 && !(priv->config & CFG_PREAMBLE_LONG)) {
7327 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7328 } else {
7329 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7330
7331 /* Clear the short preamble if we won't be supporting it */
7332 priv->assoc_request.capability &=
7333 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7334 }
7335
7336 /* Clear capability bits that aren't used in Ad Hoc */
7337 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7338 priv->assoc_request.capability &=
7339 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7340
7341 IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7342 roaming ? "Rea" : "A",
7343 priv->essid_len, priv->essid,
7344 network->channel,
7345 ipw_modes[priv->assoc_request.ieee_mode],
7346 rates->num_rates,
7347 (priv->assoc_request.preamble_length ==
7348 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7349 network->capability &
7350 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7351 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7352 priv->capability & CAP_PRIVACY_ON ?
7353 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7354 "(open)") : "",
7355 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7356 priv->capability & CAP_PRIVACY_ON ?
7357 '1' + priv->ieee->sec.active_key : '.',
7358 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7359
7360 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7361 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7362 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7363 priv->assoc_request.assoc_type = HC_IBSS_START;
7364 priv->assoc_request.assoc_tsf_msw = 0;
7365 priv->assoc_request.assoc_tsf_lsw = 0;
7366 } else {
7367 if (unlikely(roaming))
7368 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7369 else
7370 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7371 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7372 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7373 }
7374
7375 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7376
7377 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7378 eth_broadcast_addr(priv->assoc_request.dest);
7379 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7380 } else {
7381 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7382 priv->assoc_request.atim_window = 0;
7383 }
7384
7385 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7386
7387 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7388 if (err) {
7389 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7390 return err;
7391 }
7392
7393 rates->ieee_mode = priv->assoc_request.ieee_mode;
7394 rates->purpose = IPW_RATE_CONNECT;
7395 ipw_send_supported_rates(priv, rates);
7396
7397 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7398 priv->sys_config.dot11g_auto_detection = 1;
7399 else
7400 priv->sys_config.dot11g_auto_detection = 0;
7401
7402 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7403 priv->sys_config.answer_broadcast_ssid_probe = 1;
7404 else
7405 priv->sys_config.answer_broadcast_ssid_probe = 0;
7406
7407 err = ipw_send_system_config(priv);
7408 if (err) {
7409 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7410 return err;
7411 }
7412
7413 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7414 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7415 if (err) {
7416 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7417 return err;
7418 }
7419
7420 /*
7421 * If preemption is enabled, it is possible for the association
7422 * to complete before we return from ipw_send_associate. Therefore
7423 * we have to be sure and update our priviate data first.
7424 */
7425 priv->channel = network->channel;
7426 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7427 priv->status |= STATUS_ASSOCIATING;
7428 priv->status &= ~STATUS_SECURITY_UPDATED;
7429
7430 priv->assoc_network = network;
7431
7432 #ifdef CONFIG_IPW2200_QOS
7433 ipw_qos_association(priv, network);
7434 #endif
7435
7436 err = ipw_send_associate(priv, &priv->assoc_request);
7437 if (err) {
7438 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7439 return err;
7440 }
7441
7442 IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7443 priv->essid_len, priv->essid, priv->bssid);
7444
7445 return 0;
7446 }
7447
ipw_roam(void * data)7448 static void ipw_roam(void *data)
7449 {
7450 struct ipw_priv *priv = data;
7451 struct libipw_network *network = NULL;
7452 struct ipw_network_match match = {
7453 .network = priv->assoc_network
7454 };
7455
7456 /* The roaming process is as follows:
7457 *
7458 * 1. Missed beacon threshold triggers the roaming process by
7459 * setting the status ROAM bit and requesting a scan.
7460 * 2. When the scan completes, it schedules the ROAM work
7461 * 3. The ROAM work looks at all of the known networks for one that
7462 * is a better network than the currently associated. If none
7463 * found, the ROAM process is over (ROAM bit cleared)
7464 * 4. If a better network is found, a disassociation request is
7465 * sent.
7466 * 5. When the disassociation completes, the roam work is again
7467 * scheduled. The second time through, the driver is no longer
7468 * associated, and the newly selected network is sent an
7469 * association request.
7470 * 6. At this point ,the roaming process is complete and the ROAM
7471 * status bit is cleared.
7472 */
7473
7474 /* If we are no longer associated, and the roaming bit is no longer
7475 * set, then we are not actively roaming, so just return */
7476 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7477 return;
7478
7479 if (priv->status & STATUS_ASSOCIATED) {
7480 /* First pass through ROAM process -- look for a better
7481 * network */
7482 unsigned long flags;
7483 u8 rssi = priv->assoc_network->stats.rssi;
7484 priv->assoc_network->stats.rssi = -128;
7485 spin_lock_irqsave(&priv->ieee->lock, flags);
7486 list_for_each_entry(network, &priv->ieee->network_list, list) {
7487 if (network != priv->assoc_network)
7488 ipw_best_network(priv, &match, network, 1);
7489 }
7490 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7491 priv->assoc_network->stats.rssi = rssi;
7492
7493 if (match.network == priv->assoc_network) {
7494 IPW_DEBUG_ASSOC("No better APs in this network to "
7495 "roam to.\n");
7496 priv->status &= ~STATUS_ROAMING;
7497 ipw_debug_config(priv);
7498 return;
7499 }
7500
7501 ipw_send_disassociate(priv, 1);
7502 priv->assoc_network = match.network;
7503
7504 return;
7505 }
7506
7507 /* Second pass through ROAM process -- request association */
7508 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7509 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7510 priv->status &= ~STATUS_ROAMING;
7511 }
7512
ipw_bg_roam(struct work_struct * work)7513 static void ipw_bg_roam(struct work_struct *work)
7514 {
7515 struct ipw_priv *priv =
7516 container_of(work, struct ipw_priv, roam);
7517 mutex_lock(&priv->mutex);
7518 ipw_roam(priv);
7519 mutex_unlock(&priv->mutex);
7520 }
7521
ipw_associate(void * data)7522 static int ipw_associate(void *data)
7523 {
7524 struct ipw_priv *priv = data;
7525
7526 struct libipw_network *network = NULL;
7527 struct ipw_network_match match = {
7528 .network = NULL
7529 };
7530 struct ipw_supported_rates *rates;
7531 struct list_head *element;
7532 unsigned long flags;
7533
7534 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7535 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7536 return 0;
7537 }
7538
7539 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7540 IPW_DEBUG_ASSOC("Not attempting association (already in "
7541 "progress)\n");
7542 return 0;
7543 }
7544
7545 if (priv->status & STATUS_DISASSOCIATING) {
7546 IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7547 schedule_work(&priv->associate);
7548 return 0;
7549 }
7550
7551 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7552 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7553 "initialized)\n");
7554 return 0;
7555 }
7556
7557 if (!(priv->config & CFG_ASSOCIATE) &&
7558 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7559 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7560 return 0;
7561 }
7562
7563 /* Protect our use of the network_list */
7564 spin_lock_irqsave(&priv->ieee->lock, flags);
7565 list_for_each_entry(network, &priv->ieee->network_list, list)
7566 ipw_best_network(priv, &match, network, 0);
7567
7568 network = match.network;
7569 rates = &match.rates;
7570
7571 if (network == NULL &&
7572 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7573 priv->config & CFG_ADHOC_CREATE &&
7574 priv->config & CFG_STATIC_ESSID &&
7575 priv->config & CFG_STATIC_CHANNEL) {
7576 /* Use oldest network if the free list is empty */
7577 if (list_empty(&priv->ieee->network_free_list)) {
7578 struct libipw_network *oldest = NULL;
7579 struct libipw_network *target;
7580
7581 list_for_each_entry(target, &priv->ieee->network_list, list) {
7582 if ((oldest == NULL) ||
7583 (target->last_scanned < oldest->last_scanned))
7584 oldest = target;
7585 }
7586
7587 /* If there are no more slots, expire the oldest */
7588 list_del(&oldest->list);
7589 target = oldest;
7590 IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7591 target->ssid_len, target->ssid,
7592 target->bssid);
7593 list_add_tail(&target->list,
7594 &priv->ieee->network_free_list);
7595 }
7596
7597 element = priv->ieee->network_free_list.next;
7598 network = list_entry(element, struct libipw_network, list);
7599 ipw_adhoc_create(priv, network);
7600 rates = &priv->rates;
7601 list_del(element);
7602 list_add_tail(&network->list, &priv->ieee->network_list);
7603 }
7604 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7605
7606 /* If we reached the end of the list, then we don't have any valid
7607 * matching APs */
7608 if (!network) {
7609 ipw_debug_config(priv);
7610
7611 if (!(priv->status & STATUS_SCANNING)) {
7612 if (!(priv->config & CFG_SPEED_SCAN))
7613 schedule_delayed_work(&priv->request_scan,
7614 SCAN_INTERVAL);
7615 else
7616 schedule_delayed_work(&priv->request_scan, 0);
7617 }
7618
7619 return 0;
7620 }
7621
7622 ipw_associate_network(priv, network, rates, 0);
7623
7624 return 1;
7625 }
7626
ipw_bg_associate(struct work_struct * work)7627 static void ipw_bg_associate(struct work_struct *work)
7628 {
7629 struct ipw_priv *priv =
7630 container_of(work, struct ipw_priv, associate);
7631 mutex_lock(&priv->mutex);
7632 ipw_associate(priv);
7633 mutex_unlock(&priv->mutex);
7634 }
7635
ipw_rebuild_decrypted_skb(struct ipw_priv * priv,struct sk_buff * skb)7636 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7637 struct sk_buff *skb)
7638 {
7639 struct ieee80211_hdr *hdr;
7640 u16 fc;
7641
7642 hdr = (struct ieee80211_hdr *)skb->data;
7643 fc = le16_to_cpu(hdr->frame_control);
7644 if (!(fc & IEEE80211_FCTL_PROTECTED))
7645 return;
7646
7647 fc &= ~IEEE80211_FCTL_PROTECTED;
7648 hdr->frame_control = cpu_to_le16(fc);
7649 switch (priv->ieee->sec.level) {
7650 case SEC_LEVEL_3:
7651 /* Remove CCMP HDR */
7652 memmove(skb->data + LIBIPW_3ADDR_LEN,
7653 skb->data + LIBIPW_3ADDR_LEN + 8,
7654 skb->len - LIBIPW_3ADDR_LEN - 8);
7655 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7656 break;
7657 case SEC_LEVEL_2:
7658 break;
7659 case SEC_LEVEL_1:
7660 /* Remove IV */
7661 memmove(skb->data + LIBIPW_3ADDR_LEN,
7662 skb->data + LIBIPW_3ADDR_LEN + 4,
7663 skb->len - LIBIPW_3ADDR_LEN - 4);
7664 skb_trim(skb, skb->len - 8); /* IV + ICV */
7665 break;
7666 case SEC_LEVEL_0:
7667 break;
7668 default:
7669 printk(KERN_ERR "Unknown security level %d\n",
7670 priv->ieee->sec.level);
7671 break;
7672 }
7673 }
7674
ipw_handle_data_packet(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)7675 static void ipw_handle_data_packet(struct ipw_priv *priv,
7676 struct ipw_rx_mem_buffer *rxb,
7677 struct libipw_rx_stats *stats)
7678 {
7679 struct net_device *dev = priv->net_dev;
7680 struct libipw_hdr_4addr *hdr;
7681 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7682
7683 /* We received data from the HW, so stop the watchdog */
7684 netif_trans_update(dev);
7685
7686 /* We only process data packets if the
7687 * interface is open */
7688 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7689 skb_tailroom(rxb->skb))) {
7690 dev->stats.rx_errors++;
7691 priv->wstats.discard.misc++;
7692 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7693 return;
7694 } else if (unlikely(!netif_running(priv->net_dev))) {
7695 dev->stats.rx_dropped++;
7696 priv->wstats.discard.misc++;
7697 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7698 return;
7699 }
7700
7701 /* Advance skb->data to the start of the actual payload */
7702 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7703
7704 /* Set the size of the skb to the size of the frame */
7705 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7706
7707 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7708
7709 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7710 hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7711 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7712 (is_multicast_ether_addr(hdr->addr1) ?
7713 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7714 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7715
7716 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7717 dev->stats.rx_errors++;
7718 else { /* libipw_rx succeeded, so it now owns the SKB */
7719 rxb->skb = NULL;
7720 __ipw_led_activity_on(priv);
7721 }
7722 }
7723
7724 #ifdef CONFIG_IPW2200_RADIOTAP
ipw_handle_data_packet_monitor(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)7725 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7726 struct ipw_rx_mem_buffer *rxb,
7727 struct libipw_rx_stats *stats)
7728 {
7729 struct net_device *dev = priv->net_dev;
7730 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7731 struct ipw_rx_frame *frame = &pkt->u.frame;
7732
7733 /* initial pull of some data */
7734 u16 received_channel = frame->received_channel;
7735 u8 antennaAndPhy = frame->antennaAndPhy;
7736 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7737 u16 pktrate = frame->rate;
7738
7739 /* Magic struct that slots into the radiotap header -- no reason
7740 * to build this manually element by element, we can write it much
7741 * more efficiently than we can parse it. ORDER MATTERS HERE */
7742 struct ipw_rt_hdr *ipw_rt;
7743
7744 unsigned short len = le16_to_cpu(pkt->u.frame.length);
7745
7746 /* We received data from the HW, so stop the watchdog */
7747 netif_trans_update(dev);
7748
7749 /* We only process data packets if the
7750 * interface is open */
7751 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7752 skb_tailroom(rxb->skb))) {
7753 dev->stats.rx_errors++;
7754 priv->wstats.discard.misc++;
7755 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7756 return;
7757 } else if (unlikely(!netif_running(priv->net_dev))) {
7758 dev->stats.rx_dropped++;
7759 priv->wstats.discard.misc++;
7760 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7761 return;
7762 }
7763
7764 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7765 * that now */
7766 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7767 /* FIXME: Should alloc bigger skb instead */
7768 dev->stats.rx_dropped++;
7769 priv->wstats.discard.misc++;
7770 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7771 return;
7772 }
7773
7774 /* copy the frame itself */
7775 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7776 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7777
7778 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7779
7780 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7781 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7782 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7783
7784 /* Big bitfield of all the fields we provide in radiotap */
7785 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7786 (1 << IEEE80211_RADIOTAP_TSFT) |
7787 (1 << IEEE80211_RADIOTAP_FLAGS) |
7788 (1 << IEEE80211_RADIOTAP_RATE) |
7789 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7790 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7791 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7792 (1 << IEEE80211_RADIOTAP_ANTENNA));
7793
7794 /* Zero the flags, we'll add to them as we go */
7795 ipw_rt->rt_flags = 0;
7796 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7797 frame->parent_tsf[2] << 16 |
7798 frame->parent_tsf[1] << 8 |
7799 frame->parent_tsf[0]);
7800
7801 /* Convert signal to DBM */
7802 ipw_rt->rt_dbmsignal = antsignal;
7803 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7804
7805 /* Convert the channel data and set the flags */
7806 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7807 if (received_channel > 14) { /* 802.11a */
7808 ipw_rt->rt_chbitmask =
7809 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7810 } else if (antennaAndPhy & 32) { /* 802.11b */
7811 ipw_rt->rt_chbitmask =
7812 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7813 } else { /* 802.11g */
7814 ipw_rt->rt_chbitmask =
7815 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7816 }
7817
7818 /* set the rate in multiples of 500k/s */
7819 switch (pktrate) {
7820 case IPW_TX_RATE_1MB:
7821 ipw_rt->rt_rate = 2;
7822 break;
7823 case IPW_TX_RATE_2MB:
7824 ipw_rt->rt_rate = 4;
7825 break;
7826 case IPW_TX_RATE_5MB:
7827 ipw_rt->rt_rate = 10;
7828 break;
7829 case IPW_TX_RATE_6MB:
7830 ipw_rt->rt_rate = 12;
7831 break;
7832 case IPW_TX_RATE_9MB:
7833 ipw_rt->rt_rate = 18;
7834 break;
7835 case IPW_TX_RATE_11MB:
7836 ipw_rt->rt_rate = 22;
7837 break;
7838 case IPW_TX_RATE_12MB:
7839 ipw_rt->rt_rate = 24;
7840 break;
7841 case IPW_TX_RATE_18MB:
7842 ipw_rt->rt_rate = 36;
7843 break;
7844 case IPW_TX_RATE_24MB:
7845 ipw_rt->rt_rate = 48;
7846 break;
7847 case IPW_TX_RATE_36MB:
7848 ipw_rt->rt_rate = 72;
7849 break;
7850 case IPW_TX_RATE_48MB:
7851 ipw_rt->rt_rate = 96;
7852 break;
7853 case IPW_TX_RATE_54MB:
7854 ipw_rt->rt_rate = 108;
7855 break;
7856 default:
7857 ipw_rt->rt_rate = 0;
7858 break;
7859 }
7860
7861 /* antenna number */
7862 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7863
7864 /* set the preamble flag if we have it */
7865 if ((antennaAndPhy & 64))
7866 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7867
7868 /* Set the size of the skb to the size of the frame */
7869 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7870
7871 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7872
7873 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7874 dev->stats.rx_errors++;
7875 else { /* libipw_rx succeeded, so it now owns the SKB */
7876 rxb->skb = NULL;
7877 /* no LED during capture */
7878 }
7879 }
7880 #endif
7881
7882 #ifdef CONFIG_IPW2200_PROMISCUOUS
7883 #define libipw_is_probe_response(fc) \
7884 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7885 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7886
7887 #define libipw_is_management(fc) \
7888 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7889
7890 #define libipw_is_control(fc) \
7891 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7892
7893 #define libipw_is_data(fc) \
7894 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7895
7896 #define libipw_is_assoc_request(fc) \
7897 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7898
7899 #define libipw_is_reassoc_request(fc) \
7900 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7901
ipw_handle_promiscuous_rx(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)7902 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7903 struct ipw_rx_mem_buffer *rxb,
7904 struct libipw_rx_stats *stats)
7905 {
7906 struct net_device *dev = priv->prom_net_dev;
7907 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7908 struct ipw_rx_frame *frame = &pkt->u.frame;
7909 struct ipw_rt_hdr *ipw_rt;
7910
7911 /* First cache any information we need before we overwrite
7912 * the information provided in the skb from the hardware */
7913 struct ieee80211_hdr *hdr;
7914 u16 channel = frame->received_channel;
7915 u8 phy_flags = frame->antennaAndPhy;
7916 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7917 s8 noise = (s8) le16_to_cpu(frame->noise);
7918 u8 rate = frame->rate;
7919 unsigned short len = le16_to_cpu(pkt->u.frame.length);
7920 struct sk_buff *skb;
7921 int hdr_only = 0;
7922 u16 filter = priv->prom_priv->filter;
7923
7924 /* If the filter is set to not include Rx frames then return */
7925 if (filter & IPW_PROM_NO_RX)
7926 return;
7927
7928 /* We received data from the HW, so stop the watchdog */
7929 netif_trans_update(dev);
7930
7931 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7932 dev->stats.rx_errors++;
7933 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7934 return;
7935 }
7936
7937 /* We only process data packets if the interface is open */
7938 if (unlikely(!netif_running(dev))) {
7939 dev->stats.rx_dropped++;
7940 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7941 return;
7942 }
7943
7944 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7945 * that now */
7946 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7947 /* FIXME: Should alloc bigger skb instead */
7948 dev->stats.rx_dropped++;
7949 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7950 return;
7951 }
7952
7953 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7954 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7955 if (filter & IPW_PROM_NO_MGMT)
7956 return;
7957 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7958 hdr_only = 1;
7959 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7960 if (filter & IPW_PROM_NO_CTL)
7961 return;
7962 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7963 hdr_only = 1;
7964 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7965 if (filter & IPW_PROM_NO_DATA)
7966 return;
7967 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7968 hdr_only = 1;
7969 }
7970
7971 /* Copy the SKB since this is for the promiscuous side */
7972 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7973 if (skb == NULL) {
7974 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7975 return;
7976 }
7977
7978 /* copy the frame data to write after where the radiotap header goes */
7979 ipw_rt = (void *)skb->data;
7980
7981 if (hdr_only)
7982 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7983
7984 memcpy(ipw_rt->payload, hdr, len);
7985
7986 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7987 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7988 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
7989
7990 /* Set the size of the skb to the size of the frame */
7991 skb_put(skb, sizeof(*ipw_rt) + len);
7992
7993 /* Big bitfield of all the fields we provide in radiotap */
7994 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7995 (1 << IEEE80211_RADIOTAP_TSFT) |
7996 (1 << IEEE80211_RADIOTAP_FLAGS) |
7997 (1 << IEEE80211_RADIOTAP_RATE) |
7998 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7999 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8000 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8001 (1 << IEEE80211_RADIOTAP_ANTENNA));
8002
8003 /* Zero the flags, we'll add to them as we go */
8004 ipw_rt->rt_flags = 0;
8005 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8006 frame->parent_tsf[2] << 16 |
8007 frame->parent_tsf[1] << 8 |
8008 frame->parent_tsf[0]);
8009
8010 /* Convert to DBM */
8011 ipw_rt->rt_dbmsignal = signal;
8012 ipw_rt->rt_dbmnoise = noise;
8013
8014 /* Convert the channel data and set the flags */
8015 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8016 if (channel > 14) { /* 802.11a */
8017 ipw_rt->rt_chbitmask =
8018 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8019 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8020 ipw_rt->rt_chbitmask =
8021 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8022 } else { /* 802.11g */
8023 ipw_rt->rt_chbitmask =
8024 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8025 }
8026
8027 /* set the rate in multiples of 500k/s */
8028 switch (rate) {
8029 case IPW_TX_RATE_1MB:
8030 ipw_rt->rt_rate = 2;
8031 break;
8032 case IPW_TX_RATE_2MB:
8033 ipw_rt->rt_rate = 4;
8034 break;
8035 case IPW_TX_RATE_5MB:
8036 ipw_rt->rt_rate = 10;
8037 break;
8038 case IPW_TX_RATE_6MB:
8039 ipw_rt->rt_rate = 12;
8040 break;
8041 case IPW_TX_RATE_9MB:
8042 ipw_rt->rt_rate = 18;
8043 break;
8044 case IPW_TX_RATE_11MB:
8045 ipw_rt->rt_rate = 22;
8046 break;
8047 case IPW_TX_RATE_12MB:
8048 ipw_rt->rt_rate = 24;
8049 break;
8050 case IPW_TX_RATE_18MB:
8051 ipw_rt->rt_rate = 36;
8052 break;
8053 case IPW_TX_RATE_24MB:
8054 ipw_rt->rt_rate = 48;
8055 break;
8056 case IPW_TX_RATE_36MB:
8057 ipw_rt->rt_rate = 72;
8058 break;
8059 case IPW_TX_RATE_48MB:
8060 ipw_rt->rt_rate = 96;
8061 break;
8062 case IPW_TX_RATE_54MB:
8063 ipw_rt->rt_rate = 108;
8064 break;
8065 default:
8066 ipw_rt->rt_rate = 0;
8067 break;
8068 }
8069
8070 /* antenna number */
8071 ipw_rt->rt_antenna = (phy_flags & 3);
8072
8073 /* set the preamble flag if we have it */
8074 if (phy_flags & (1 << 6))
8075 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8076
8077 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8078
8079 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8080 dev->stats.rx_errors++;
8081 dev_kfree_skb_any(skb);
8082 }
8083 }
8084 #endif
8085
is_network_packet(struct ipw_priv * priv,struct libipw_hdr_4addr * header)8086 static int is_network_packet(struct ipw_priv *priv,
8087 struct libipw_hdr_4addr *header)
8088 {
8089 /* Filter incoming packets to determine if they are targeted toward
8090 * this network, discarding packets coming from ourselves */
8091 switch (priv->ieee->iw_mode) {
8092 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8093 /* packets from our adapter are dropped (echo) */
8094 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8095 return 0;
8096
8097 /* {broad,multi}cast packets to our BSSID go through */
8098 if (is_multicast_ether_addr(header->addr1))
8099 return ether_addr_equal(header->addr3, priv->bssid);
8100
8101 /* packets to our adapter go through */
8102 return ether_addr_equal(header->addr1,
8103 priv->net_dev->dev_addr);
8104
8105 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8106 /* packets from our adapter are dropped (echo) */
8107 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8108 return 0;
8109
8110 /* {broad,multi}cast packets to our BSS go through */
8111 if (is_multicast_ether_addr(header->addr1))
8112 return ether_addr_equal(header->addr2, priv->bssid);
8113
8114 /* packets to our adapter go through */
8115 return ether_addr_equal(header->addr1,
8116 priv->net_dev->dev_addr);
8117 }
8118
8119 return 1;
8120 }
8121
8122 #define IPW_PACKET_RETRY_TIME HZ
8123
is_duplicate_packet(struct ipw_priv * priv,struct libipw_hdr_4addr * header)8124 static int is_duplicate_packet(struct ipw_priv *priv,
8125 struct libipw_hdr_4addr *header)
8126 {
8127 u16 sc = le16_to_cpu(header->seq_ctl);
8128 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8129 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8130 u16 *last_seq, *last_frag;
8131 unsigned long *last_time;
8132
8133 switch (priv->ieee->iw_mode) {
8134 case IW_MODE_ADHOC:
8135 {
8136 struct list_head *p;
8137 struct ipw_ibss_seq *entry = NULL;
8138 u8 *mac = header->addr2;
8139 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8140
8141 list_for_each(p, &priv->ibss_mac_hash[index]) {
8142 entry =
8143 list_entry(p, struct ipw_ibss_seq, list);
8144 if (ether_addr_equal(entry->mac, mac))
8145 break;
8146 }
8147 if (p == &priv->ibss_mac_hash[index]) {
8148 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8149 if (!entry) {
8150 IPW_ERROR
8151 ("Cannot malloc new mac entry\n");
8152 return 0;
8153 }
8154 memcpy(entry->mac, mac, ETH_ALEN);
8155 entry->seq_num = seq;
8156 entry->frag_num = frag;
8157 entry->packet_time = jiffies;
8158 list_add(&entry->list,
8159 &priv->ibss_mac_hash[index]);
8160 return 0;
8161 }
8162 last_seq = &entry->seq_num;
8163 last_frag = &entry->frag_num;
8164 last_time = &entry->packet_time;
8165 break;
8166 }
8167 case IW_MODE_INFRA:
8168 last_seq = &priv->last_seq_num;
8169 last_frag = &priv->last_frag_num;
8170 last_time = &priv->last_packet_time;
8171 break;
8172 default:
8173 return 0;
8174 }
8175 if ((*last_seq == seq) &&
8176 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8177 if (*last_frag == frag)
8178 goto drop;
8179 if (*last_frag + 1 != frag)
8180 /* out-of-order fragment */
8181 goto drop;
8182 } else
8183 *last_seq = seq;
8184
8185 *last_frag = frag;
8186 *last_time = jiffies;
8187 return 0;
8188
8189 drop:
8190 /* Comment this line now since we observed the card receives
8191 * duplicate packets but the FCTL_RETRY bit is not set in the
8192 * IBSS mode with fragmentation enabled.
8193 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8194 return 1;
8195 }
8196
ipw_handle_mgmt_packet(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)8197 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8198 struct ipw_rx_mem_buffer *rxb,
8199 struct libipw_rx_stats *stats)
8200 {
8201 struct sk_buff *skb = rxb->skb;
8202 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8203 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8204 (skb->data + IPW_RX_FRAME_SIZE);
8205
8206 libipw_rx_mgt(priv->ieee, header, stats);
8207
8208 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8209 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8210 IEEE80211_STYPE_PROBE_RESP) ||
8211 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8212 IEEE80211_STYPE_BEACON))) {
8213 if (ether_addr_equal(header->addr3, priv->bssid))
8214 ipw_add_station(priv, header->addr2);
8215 }
8216
8217 if (priv->config & CFG_NET_STATS) {
8218 IPW_DEBUG_HC("sending stat packet\n");
8219
8220 /* Set the size of the skb to the size of the full
8221 * ipw header and 802.11 frame */
8222 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8223 IPW_RX_FRAME_SIZE);
8224
8225 /* Advance past the ipw packet header to the 802.11 frame */
8226 skb_pull(skb, IPW_RX_FRAME_SIZE);
8227
8228 /* Push the libipw_rx_stats before the 802.11 frame */
8229 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8230
8231 skb->dev = priv->ieee->dev;
8232
8233 /* Point raw at the libipw_stats */
8234 skb_reset_mac_header(skb);
8235
8236 skb->pkt_type = PACKET_OTHERHOST;
8237 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8238 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8239 netif_rx(skb);
8240 rxb->skb = NULL;
8241 }
8242 }
8243
8244 /*
8245 * Main entry function for receiving a packet with 80211 headers. This
8246 * should be called when ever the FW has notified us that there is a new
8247 * skb in the receive queue.
8248 */
ipw_rx(struct ipw_priv * priv)8249 static void ipw_rx(struct ipw_priv *priv)
8250 {
8251 struct ipw_rx_mem_buffer *rxb;
8252 struct ipw_rx_packet *pkt;
8253 struct libipw_hdr_4addr *header;
8254 u32 r, w, i;
8255 u8 network_packet;
8256 u8 fill_rx = 0;
8257
8258 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8259 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8260 i = priv->rxq->read;
8261
8262 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8263 fill_rx = 1;
8264
8265 while (i != r) {
8266 rxb = priv->rxq->queue[i];
8267 if (unlikely(rxb == NULL)) {
8268 printk(KERN_CRIT "Queue not allocated!\n");
8269 break;
8270 }
8271 priv->rxq->queue[i] = NULL;
8272
8273 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8274 IPW_RX_BUF_SIZE,
8275 PCI_DMA_FROMDEVICE);
8276
8277 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8278 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8279 pkt->header.message_type,
8280 pkt->header.rx_seq_num, pkt->header.control_bits);
8281
8282 switch (pkt->header.message_type) {
8283 case RX_FRAME_TYPE: /* 802.11 frame */ {
8284 struct libipw_rx_stats stats = {
8285 .rssi = pkt->u.frame.rssi_dbm -
8286 IPW_RSSI_TO_DBM,
8287 .signal =
8288 pkt->u.frame.rssi_dbm -
8289 IPW_RSSI_TO_DBM + 0x100,
8290 .noise =
8291 le16_to_cpu(pkt->u.frame.noise),
8292 .rate = pkt->u.frame.rate,
8293 .mac_time = jiffies,
8294 .received_channel =
8295 pkt->u.frame.received_channel,
8296 .freq =
8297 (pkt->u.frame.
8298 control & (1 << 0)) ?
8299 LIBIPW_24GHZ_BAND :
8300 LIBIPW_52GHZ_BAND,
8301 .len = le16_to_cpu(pkt->u.frame.length),
8302 };
8303
8304 if (stats.rssi != 0)
8305 stats.mask |= LIBIPW_STATMASK_RSSI;
8306 if (stats.signal != 0)
8307 stats.mask |= LIBIPW_STATMASK_SIGNAL;
8308 if (stats.noise != 0)
8309 stats.mask |= LIBIPW_STATMASK_NOISE;
8310 if (stats.rate != 0)
8311 stats.mask |= LIBIPW_STATMASK_RATE;
8312
8313 priv->rx_packets++;
8314
8315 #ifdef CONFIG_IPW2200_PROMISCUOUS
8316 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8317 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8318 #endif
8319
8320 #ifdef CONFIG_IPW2200_MONITOR
8321 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8322 #ifdef CONFIG_IPW2200_RADIOTAP
8323
8324 ipw_handle_data_packet_monitor(priv,
8325 rxb,
8326 &stats);
8327 #else
8328 ipw_handle_data_packet(priv, rxb,
8329 &stats);
8330 #endif
8331 break;
8332 }
8333 #endif
8334
8335 header =
8336 (struct libipw_hdr_4addr *)(rxb->skb->
8337 data +
8338 IPW_RX_FRAME_SIZE);
8339 /* TODO: Check Ad-Hoc dest/source and make sure
8340 * that we are actually parsing these packets
8341 * correctly -- we should probably use the
8342 * frame control of the packet and disregard
8343 * the current iw_mode */
8344
8345 network_packet =
8346 is_network_packet(priv, header);
8347 if (network_packet && priv->assoc_network) {
8348 priv->assoc_network->stats.rssi =
8349 stats.rssi;
8350 priv->exp_avg_rssi =
8351 exponential_average(priv->exp_avg_rssi,
8352 stats.rssi, DEPTH_RSSI);
8353 }
8354
8355 IPW_DEBUG_RX("Frame: len=%u\n",
8356 le16_to_cpu(pkt->u.frame.length));
8357
8358 if (le16_to_cpu(pkt->u.frame.length) <
8359 libipw_get_hdrlen(le16_to_cpu(
8360 header->frame_ctl))) {
8361 IPW_DEBUG_DROP
8362 ("Received packet is too small. "
8363 "Dropping.\n");
8364 priv->net_dev->stats.rx_errors++;
8365 priv->wstats.discard.misc++;
8366 break;
8367 }
8368
8369 switch (WLAN_FC_GET_TYPE
8370 (le16_to_cpu(header->frame_ctl))) {
8371
8372 case IEEE80211_FTYPE_MGMT:
8373 ipw_handle_mgmt_packet(priv, rxb,
8374 &stats);
8375 break;
8376
8377 case IEEE80211_FTYPE_CTL:
8378 break;
8379
8380 case IEEE80211_FTYPE_DATA:
8381 if (unlikely(!network_packet ||
8382 is_duplicate_packet(priv,
8383 header)))
8384 {
8385 IPW_DEBUG_DROP("Dropping: "
8386 "%pM, "
8387 "%pM, "
8388 "%pM\n",
8389 header->addr1,
8390 header->addr2,
8391 header->addr3);
8392 break;
8393 }
8394
8395 ipw_handle_data_packet(priv, rxb,
8396 &stats);
8397
8398 break;
8399 }
8400 break;
8401 }
8402
8403 case RX_HOST_NOTIFICATION_TYPE:{
8404 IPW_DEBUG_RX
8405 ("Notification: subtype=%02X flags=%02X size=%d\n",
8406 pkt->u.notification.subtype,
8407 pkt->u.notification.flags,
8408 le16_to_cpu(pkt->u.notification.size));
8409 ipw_rx_notification(priv, &pkt->u.notification);
8410 break;
8411 }
8412
8413 default:
8414 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8415 pkt->header.message_type);
8416 break;
8417 }
8418
8419 /* For now we just don't re-use anything. We can tweak this
8420 * later to try and re-use notification packets and SKBs that
8421 * fail to Rx correctly */
8422 if (rxb->skb != NULL) {
8423 dev_kfree_skb_any(rxb->skb);
8424 rxb->skb = NULL;
8425 }
8426
8427 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8428 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8429 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8430
8431 i = (i + 1) % RX_QUEUE_SIZE;
8432
8433 /* If there are a lot of unsued frames, restock the Rx queue
8434 * so the ucode won't assert */
8435 if (fill_rx) {
8436 priv->rxq->read = i;
8437 ipw_rx_queue_replenish(priv);
8438 }
8439 }
8440
8441 /* Backtrack one entry */
8442 priv->rxq->read = i;
8443 ipw_rx_queue_restock(priv);
8444 }
8445
8446 #define DEFAULT_RTS_THRESHOLD 2304U
8447 #define MIN_RTS_THRESHOLD 1U
8448 #define MAX_RTS_THRESHOLD 2304U
8449 #define DEFAULT_BEACON_INTERVAL 100U
8450 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8451 #define DEFAULT_LONG_RETRY_LIMIT 4U
8452
8453 /**
8454 * ipw_sw_reset
8455 * @option: options to control different reset behaviour
8456 * 0 = reset everything except the 'disable' module_param
8457 * 1 = reset everything and print out driver info (for probe only)
8458 * 2 = reset everything
8459 */
ipw_sw_reset(struct ipw_priv * priv,int option)8460 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8461 {
8462 int band, modulation;
8463 int old_mode = priv->ieee->iw_mode;
8464
8465 /* Initialize module parameter values here */
8466 priv->config = 0;
8467
8468 /* We default to disabling the LED code as right now it causes
8469 * too many systems to lock up... */
8470 if (!led_support)
8471 priv->config |= CFG_NO_LED;
8472
8473 if (associate)
8474 priv->config |= CFG_ASSOCIATE;
8475 else
8476 IPW_DEBUG_INFO("Auto associate disabled.\n");
8477
8478 if (auto_create)
8479 priv->config |= CFG_ADHOC_CREATE;
8480 else
8481 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8482
8483 priv->config &= ~CFG_STATIC_ESSID;
8484 priv->essid_len = 0;
8485 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8486
8487 if (disable && option) {
8488 priv->status |= STATUS_RF_KILL_SW;
8489 IPW_DEBUG_INFO("Radio disabled.\n");
8490 }
8491
8492 if (default_channel != 0) {
8493 priv->config |= CFG_STATIC_CHANNEL;
8494 priv->channel = default_channel;
8495 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8496 /* TODO: Validate that provided channel is in range */
8497 }
8498 #ifdef CONFIG_IPW2200_QOS
8499 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8500 burst_duration_CCK, burst_duration_OFDM);
8501 #endif /* CONFIG_IPW2200_QOS */
8502
8503 switch (network_mode) {
8504 case 1:
8505 priv->ieee->iw_mode = IW_MODE_ADHOC;
8506 priv->net_dev->type = ARPHRD_ETHER;
8507
8508 break;
8509 #ifdef CONFIG_IPW2200_MONITOR
8510 case 2:
8511 priv->ieee->iw_mode = IW_MODE_MONITOR;
8512 #ifdef CONFIG_IPW2200_RADIOTAP
8513 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8514 #else
8515 priv->net_dev->type = ARPHRD_IEEE80211;
8516 #endif
8517 break;
8518 #endif
8519 default:
8520 case 0:
8521 priv->net_dev->type = ARPHRD_ETHER;
8522 priv->ieee->iw_mode = IW_MODE_INFRA;
8523 break;
8524 }
8525
8526 if (hwcrypto) {
8527 priv->ieee->host_encrypt = 0;
8528 priv->ieee->host_encrypt_msdu = 0;
8529 priv->ieee->host_decrypt = 0;
8530 priv->ieee->host_mc_decrypt = 0;
8531 }
8532 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8533
8534 /* IPW2200/2915 is abled to do hardware fragmentation. */
8535 priv->ieee->host_open_frag = 0;
8536
8537 if ((priv->pci_dev->device == 0x4223) ||
8538 (priv->pci_dev->device == 0x4224)) {
8539 if (option == 1)
8540 printk(KERN_INFO DRV_NAME
8541 ": Detected Intel PRO/Wireless 2915ABG Network "
8542 "Connection\n");
8543 priv->ieee->abg_true = 1;
8544 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8545 modulation = LIBIPW_OFDM_MODULATION |
8546 LIBIPW_CCK_MODULATION;
8547 priv->adapter = IPW_2915ABG;
8548 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8549 } else {
8550 if (option == 1)
8551 printk(KERN_INFO DRV_NAME
8552 ": Detected Intel PRO/Wireless 2200BG Network "
8553 "Connection\n");
8554
8555 priv->ieee->abg_true = 0;
8556 band = LIBIPW_24GHZ_BAND;
8557 modulation = LIBIPW_OFDM_MODULATION |
8558 LIBIPW_CCK_MODULATION;
8559 priv->adapter = IPW_2200BG;
8560 priv->ieee->mode = IEEE_G | IEEE_B;
8561 }
8562
8563 priv->ieee->freq_band = band;
8564 priv->ieee->modulation = modulation;
8565
8566 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8567
8568 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8569 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8570
8571 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8572 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8573 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8574
8575 /* If power management is turned on, default to AC mode */
8576 priv->power_mode = IPW_POWER_AC;
8577 priv->tx_power = IPW_TX_POWER_DEFAULT;
8578
8579 return old_mode == priv->ieee->iw_mode;
8580 }
8581
8582 /*
8583 * This file defines the Wireless Extension handlers. It does not
8584 * define any methods of hardware manipulation and relies on the
8585 * functions defined in ipw_main to provide the HW interaction.
8586 *
8587 * The exception to this is the use of the ipw_get_ordinal()
8588 * function used to poll the hardware vs. making unnecessary calls.
8589 *
8590 */
8591
ipw_set_channel(struct ipw_priv * priv,u8 channel)8592 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8593 {
8594 if (channel == 0) {
8595 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8596 priv->config &= ~CFG_STATIC_CHANNEL;
8597 IPW_DEBUG_ASSOC("Attempting to associate with new "
8598 "parameters.\n");
8599 ipw_associate(priv);
8600 return 0;
8601 }
8602
8603 priv->config |= CFG_STATIC_CHANNEL;
8604
8605 if (priv->channel == channel) {
8606 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8607 channel);
8608 return 0;
8609 }
8610
8611 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8612 priv->channel = channel;
8613
8614 #ifdef CONFIG_IPW2200_MONITOR
8615 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8616 int i;
8617 if (priv->status & STATUS_SCANNING) {
8618 IPW_DEBUG_SCAN("Scan abort triggered due to "
8619 "channel change.\n");
8620 ipw_abort_scan(priv);
8621 }
8622
8623 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8624 udelay(10);
8625
8626 if (priv->status & STATUS_SCANNING)
8627 IPW_DEBUG_SCAN("Still scanning...\n");
8628 else
8629 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8630 1000 - i);
8631
8632 return 0;
8633 }
8634 #endif /* CONFIG_IPW2200_MONITOR */
8635
8636 /* Network configuration changed -- force [re]association */
8637 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8638 if (!ipw_disassociate(priv))
8639 ipw_associate(priv);
8640
8641 return 0;
8642 }
8643
ipw_wx_set_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8644 static int ipw_wx_set_freq(struct net_device *dev,
8645 struct iw_request_info *info,
8646 union iwreq_data *wrqu, char *extra)
8647 {
8648 struct ipw_priv *priv = libipw_priv(dev);
8649 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8650 struct iw_freq *fwrq = &wrqu->freq;
8651 int ret = 0, i;
8652 u8 channel, flags;
8653 int band;
8654
8655 if (fwrq->m == 0) {
8656 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8657 mutex_lock(&priv->mutex);
8658 ret = ipw_set_channel(priv, 0);
8659 mutex_unlock(&priv->mutex);
8660 return ret;
8661 }
8662 /* if setting by freq convert to channel */
8663 if (fwrq->e == 1) {
8664 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8665 if (channel == 0)
8666 return -EINVAL;
8667 } else
8668 channel = fwrq->m;
8669
8670 if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8671 return -EINVAL;
8672
8673 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8674 i = libipw_channel_to_index(priv->ieee, channel);
8675 if (i == -1)
8676 return -EINVAL;
8677
8678 flags = (band == LIBIPW_24GHZ_BAND) ?
8679 geo->bg[i].flags : geo->a[i].flags;
8680 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8681 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8682 return -EINVAL;
8683 }
8684 }
8685
8686 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8687 mutex_lock(&priv->mutex);
8688 ret = ipw_set_channel(priv, channel);
8689 mutex_unlock(&priv->mutex);
8690 return ret;
8691 }
8692
ipw_wx_get_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8693 static int ipw_wx_get_freq(struct net_device *dev,
8694 struct iw_request_info *info,
8695 union iwreq_data *wrqu, char *extra)
8696 {
8697 struct ipw_priv *priv = libipw_priv(dev);
8698
8699 wrqu->freq.e = 0;
8700
8701 /* If we are associated, trying to associate, or have a statically
8702 * configured CHANNEL then return that; otherwise return ANY */
8703 mutex_lock(&priv->mutex);
8704 if (priv->config & CFG_STATIC_CHANNEL ||
8705 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8706 int i;
8707
8708 i = libipw_channel_to_index(priv->ieee, priv->channel);
8709 BUG_ON(i == -1);
8710 wrqu->freq.e = 1;
8711
8712 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8713 case LIBIPW_52GHZ_BAND:
8714 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8715 break;
8716
8717 case LIBIPW_24GHZ_BAND:
8718 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8719 break;
8720
8721 default:
8722 BUG();
8723 }
8724 } else
8725 wrqu->freq.m = 0;
8726
8727 mutex_unlock(&priv->mutex);
8728 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8729 return 0;
8730 }
8731
ipw_wx_set_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8732 static int ipw_wx_set_mode(struct net_device *dev,
8733 struct iw_request_info *info,
8734 union iwreq_data *wrqu, char *extra)
8735 {
8736 struct ipw_priv *priv = libipw_priv(dev);
8737 int err = 0;
8738
8739 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8740
8741 switch (wrqu->mode) {
8742 #ifdef CONFIG_IPW2200_MONITOR
8743 case IW_MODE_MONITOR:
8744 #endif
8745 case IW_MODE_ADHOC:
8746 case IW_MODE_INFRA:
8747 break;
8748 case IW_MODE_AUTO:
8749 wrqu->mode = IW_MODE_INFRA;
8750 break;
8751 default:
8752 return -EINVAL;
8753 }
8754 if (wrqu->mode == priv->ieee->iw_mode)
8755 return 0;
8756
8757 mutex_lock(&priv->mutex);
8758
8759 ipw_sw_reset(priv, 0);
8760
8761 #ifdef CONFIG_IPW2200_MONITOR
8762 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8763 priv->net_dev->type = ARPHRD_ETHER;
8764
8765 if (wrqu->mode == IW_MODE_MONITOR)
8766 #ifdef CONFIG_IPW2200_RADIOTAP
8767 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8768 #else
8769 priv->net_dev->type = ARPHRD_IEEE80211;
8770 #endif
8771 #endif /* CONFIG_IPW2200_MONITOR */
8772
8773 /* Free the existing firmware and reset the fw_loaded
8774 * flag so ipw_load() will bring in the new firmware */
8775 free_firmware();
8776
8777 priv->ieee->iw_mode = wrqu->mode;
8778
8779 schedule_work(&priv->adapter_restart);
8780 mutex_unlock(&priv->mutex);
8781 return err;
8782 }
8783
ipw_wx_get_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8784 static int ipw_wx_get_mode(struct net_device *dev,
8785 struct iw_request_info *info,
8786 union iwreq_data *wrqu, char *extra)
8787 {
8788 struct ipw_priv *priv = libipw_priv(dev);
8789 mutex_lock(&priv->mutex);
8790 wrqu->mode = priv->ieee->iw_mode;
8791 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8792 mutex_unlock(&priv->mutex);
8793 return 0;
8794 }
8795
8796 /* Values are in microsecond */
8797 static const s32 timeout_duration[] = {
8798 350000,
8799 250000,
8800 75000,
8801 37000,
8802 25000,
8803 };
8804
8805 static const s32 period_duration[] = {
8806 400000,
8807 700000,
8808 1000000,
8809 1000000,
8810 1000000
8811 };
8812
ipw_wx_get_range(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8813 static int ipw_wx_get_range(struct net_device *dev,
8814 struct iw_request_info *info,
8815 union iwreq_data *wrqu, char *extra)
8816 {
8817 struct ipw_priv *priv = libipw_priv(dev);
8818 struct iw_range *range = (struct iw_range *)extra;
8819 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8820 int i = 0, j;
8821
8822 wrqu->data.length = sizeof(*range);
8823 memset(range, 0, sizeof(*range));
8824
8825 /* 54Mbs == ~27 Mb/s real (802.11g) */
8826 range->throughput = 27 * 1000 * 1000;
8827
8828 range->max_qual.qual = 100;
8829 /* TODO: Find real max RSSI and stick here */
8830 range->max_qual.level = 0;
8831 range->max_qual.noise = 0;
8832 range->max_qual.updated = 7; /* Updated all three */
8833
8834 range->avg_qual.qual = 70;
8835 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8836 range->avg_qual.level = 0; /* FIXME to real average level */
8837 range->avg_qual.noise = 0;
8838 range->avg_qual.updated = 7; /* Updated all three */
8839 mutex_lock(&priv->mutex);
8840 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8841
8842 for (i = 0; i < range->num_bitrates; i++)
8843 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8844 500000;
8845
8846 range->max_rts = DEFAULT_RTS_THRESHOLD;
8847 range->min_frag = MIN_FRAG_THRESHOLD;
8848 range->max_frag = MAX_FRAG_THRESHOLD;
8849
8850 range->encoding_size[0] = 5;
8851 range->encoding_size[1] = 13;
8852 range->num_encoding_sizes = 2;
8853 range->max_encoding_tokens = WEP_KEYS;
8854
8855 /* Set the Wireless Extension versions */
8856 range->we_version_compiled = WIRELESS_EXT;
8857 range->we_version_source = 18;
8858
8859 i = 0;
8860 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8861 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8862 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8863 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8864 continue;
8865
8866 range->freq[i].i = geo->bg[j].channel;
8867 range->freq[i].m = geo->bg[j].freq * 100000;
8868 range->freq[i].e = 1;
8869 i++;
8870 }
8871 }
8872
8873 if (priv->ieee->mode & IEEE_A) {
8874 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8875 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8876 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8877 continue;
8878
8879 range->freq[i].i = geo->a[j].channel;
8880 range->freq[i].m = geo->a[j].freq * 100000;
8881 range->freq[i].e = 1;
8882 i++;
8883 }
8884 }
8885
8886 range->num_channels = i;
8887 range->num_frequency = i;
8888
8889 mutex_unlock(&priv->mutex);
8890
8891 /* Event capability (kernel + driver) */
8892 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8893 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8894 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8895 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8896 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8897
8898 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8899 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8900
8901 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8902
8903 IPW_DEBUG_WX("GET Range\n");
8904 return 0;
8905 }
8906
ipw_wx_set_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8907 static int ipw_wx_set_wap(struct net_device *dev,
8908 struct iw_request_info *info,
8909 union iwreq_data *wrqu, char *extra)
8910 {
8911 struct ipw_priv *priv = libipw_priv(dev);
8912
8913 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8914 return -EINVAL;
8915 mutex_lock(&priv->mutex);
8916 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8917 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8918 /* we disable mandatory BSSID association */
8919 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8920 priv->config &= ~CFG_STATIC_BSSID;
8921 IPW_DEBUG_ASSOC("Attempting to associate with new "
8922 "parameters.\n");
8923 ipw_associate(priv);
8924 mutex_unlock(&priv->mutex);
8925 return 0;
8926 }
8927
8928 priv->config |= CFG_STATIC_BSSID;
8929 if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8930 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8931 mutex_unlock(&priv->mutex);
8932 return 0;
8933 }
8934
8935 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8936 wrqu->ap_addr.sa_data);
8937
8938 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8939
8940 /* Network configuration changed -- force [re]association */
8941 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8942 if (!ipw_disassociate(priv))
8943 ipw_associate(priv);
8944
8945 mutex_unlock(&priv->mutex);
8946 return 0;
8947 }
8948
ipw_wx_get_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8949 static int ipw_wx_get_wap(struct net_device *dev,
8950 struct iw_request_info *info,
8951 union iwreq_data *wrqu, char *extra)
8952 {
8953 struct ipw_priv *priv = libipw_priv(dev);
8954
8955 /* If we are associated, trying to associate, or have a statically
8956 * configured BSSID then return that; otherwise return ANY */
8957 mutex_lock(&priv->mutex);
8958 if (priv->config & CFG_STATIC_BSSID ||
8959 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8960 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8961 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8962 } else
8963 eth_zero_addr(wrqu->ap_addr.sa_data);
8964
8965 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8966 wrqu->ap_addr.sa_data);
8967 mutex_unlock(&priv->mutex);
8968 return 0;
8969 }
8970
ipw_wx_set_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8971 static int ipw_wx_set_essid(struct net_device *dev,
8972 struct iw_request_info *info,
8973 union iwreq_data *wrqu, char *extra)
8974 {
8975 struct ipw_priv *priv = libipw_priv(dev);
8976 int length;
8977
8978 mutex_lock(&priv->mutex);
8979
8980 if (!wrqu->essid.flags)
8981 {
8982 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8983 ipw_disassociate(priv);
8984 priv->config &= ~CFG_STATIC_ESSID;
8985 ipw_associate(priv);
8986 mutex_unlock(&priv->mutex);
8987 return 0;
8988 }
8989
8990 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8991
8992 priv->config |= CFG_STATIC_ESSID;
8993
8994 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8995 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8996 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8997 mutex_unlock(&priv->mutex);
8998 return 0;
8999 }
9000
9001 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
9002
9003 priv->essid_len = length;
9004 memcpy(priv->essid, extra, priv->essid_len);
9005
9006 /* Network configuration changed -- force [re]association */
9007 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9008 if (!ipw_disassociate(priv))
9009 ipw_associate(priv);
9010
9011 mutex_unlock(&priv->mutex);
9012 return 0;
9013 }
9014
ipw_wx_get_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9015 static int ipw_wx_get_essid(struct net_device *dev,
9016 struct iw_request_info *info,
9017 union iwreq_data *wrqu, char *extra)
9018 {
9019 struct ipw_priv *priv = libipw_priv(dev);
9020
9021 /* If we are associated, trying to associate, or have a statically
9022 * configured ESSID then return that; otherwise return ANY */
9023 mutex_lock(&priv->mutex);
9024 if (priv->config & CFG_STATIC_ESSID ||
9025 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9026 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9027 priv->essid_len, priv->essid);
9028 memcpy(extra, priv->essid, priv->essid_len);
9029 wrqu->essid.length = priv->essid_len;
9030 wrqu->essid.flags = 1; /* active */
9031 } else {
9032 IPW_DEBUG_WX("Getting essid: ANY\n");
9033 wrqu->essid.length = 0;
9034 wrqu->essid.flags = 0; /* active */
9035 }
9036 mutex_unlock(&priv->mutex);
9037 return 0;
9038 }
9039
ipw_wx_set_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9040 static int ipw_wx_set_nick(struct net_device *dev,
9041 struct iw_request_info *info,
9042 union iwreq_data *wrqu, char *extra)
9043 {
9044 struct ipw_priv *priv = libipw_priv(dev);
9045
9046 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9047 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9048 return -E2BIG;
9049 mutex_lock(&priv->mutex);
9050 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9051 memset(priv->nick, 0, sizeof(priv->nick));
9052 memcpy(priv->nick, extra, wrqu->data.length);
9053 IPW_DEBUG_TRACE("<<\n");
9054 mutex_unlock(&priv->mutex);
9055 return 0;
9056
9057 }
9058
ipw_wx_get_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9059 static int ipw_wx_get_nick(struct net_device *dev,
9060 struct iw_request_info *info,
9061 union iwreq_data *wrqu, char *extra)
9062 {
9063 struct ipw_priv *priv = libipw_priv(dev);
9064 IPW_DEBUG_WX("Getting nick\n");
9065 mutex_lock(&priv->mutex);
9066 wrqu->data.length = strlen(priv->nick);
9067 memcpy(extra, priv->nick, wrqu->data.length);
9068 wrqu->data.flags = 1; /* active */
9069 mutex_unlock(&priv->mutex);
9070 return 0;
9071 }
9072
ipw_wx_set_sens(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9073 static int ipw_wx_set_sens(struct net_device *dev,
9074 struct iw_request_info *info,
9075 union iwreq_data *wrqu, char *extra)
9076 {
9077 struct ipw_priv *priv = libipw_priv(dev);
9078 int err = 0;
9079
9080 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9081 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9082 mutex_lock(&priv->mutex);
9083
9084 if (wrqu->sens.fixed == 0)
9085 {
9086 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9087 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9088 goto out;
9089 }
9090 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9091 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9092 err = -EINVAL;
9093 goto out;
9094 }
9095
9096 priv->roaming_threshold = wrqu->sens.value;
9097 priv->disassociate_threshold = 3*wrqu->sens.value;
9098 out:
9099 mutex_unlock(&priv->mutex);
9100 return err;
9101 }
9102
ipw_wx_get_sens(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9103 static int ipw_wx_get_sens(struct net_device *dev,
9104 struct iw_request_info *info,
9105 union iwreq_data *wrqu, char *extra)
9106 {
9107 struct ipw_priv *priv = libipw_priv(dev);
9108 mutex_lock(&priv->mutex);
9109 wrqu->sens.fixed = 1;
9110 wrqu->sens.value = priv->roaming_threshold;
9111 mutex_unlock(&priv->mutex);
9112
9113 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9114 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9115
9116 return 0;
9117 }
9118
ipw_wx_set_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9119 static int ipw_wx_set_rate(struct net_device *dev,
9120 struct iw_request_info *info,
9121 union iwreq_data *wrqu, char *extra)
9122 {
9123 /* TODO: We should use semaphores or locks for access to priv */
9124 struct ipw_priv *priv = libipw_priv(dev);
9125 u32 target_rate = wrqu->bitrate.value;
9126 u32 fixed, mask;
9127
9128 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9129 /* value = X, fixed = 1 means only rate X */
9130 /* value = X, fixed = 0 means all rates lower equal X */
9131
9132 if (target_rate == -1) {
9133 fixed = 0;
9134 mask = LIBIPW_DEFAULT_RATES_MASK;
9135 /* Now we should reassociate */
9136 goto apply;
9137 }
9138
9139 mask = 0;
9140 fixed = wrqu->bitrate.fixed;
9141
9142 if (target_rate == 1000000 || !fixed)
9143 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9144 if (target_rate == 1000000)
9145 goto apply;
9146
9147 if (target_rate == 2000000 || !fixed)
9148 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9149 if (target_rate == 2000000)
9150 goto apply;
9151
9152 if (target_rate == 5500000 || !fixed)
9153 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9154 if (target_rate == 5500000)
9155 goto apply;
9156
9157 if (target_rate == 6000000 || !fixed)
9158 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9159 if (target_rate == 6000000)
9160 goto apply;
9161
9162 if (target_rate == 9000000 || !fixed)
9163 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9164 if (target_rate == 9000000)
9165 goto apply;
9166
9167 if (target_rate == 11000000 || !fixed)
9168 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9169 if (target_rate == 11000000)
9170 goto apply;
9171
9172 if (target_rate == 12000000 || !fixed)
9173 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9174 if (target_rate == 12000000)
9175 goto apply;
9176
9177 if (target_rate == 18000000 || !fixed)
9178 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9179 if (target_rate == 18000000)
9180 goto apply;
9181
9182 if (target_rate == 24000000 || !fixed)
9183 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9184 if (target_rate == 24000000)
9185 goto apply;
9186
9187 if (target_rate == 36000000 || !fixed)
9188 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9189 if (target_rate == 36000000)
9190 goto apply;
9191
9192 if (target_rate == 48000000 || !fixed)
9193 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9194 if (target_rate == 48000000)
9195 goto apply;
9196
9197 if (target_rate == 54000000 || !fixed)
9198 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9199 if (target_rate == 54000000)
9200 goto apply;
9201
9202 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9203 return -EINVAL;
9204
9205 apply:
9206 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9207 mask, fixed ? "fixed" : "sub-rates");
9208 mutex_lock(&priv->mutex);
9209 if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9210 priv->config &= ~CFG_FIXED_RATE;
9211 ipw_set_fixed_rate(priv, priv->ieee->mode);
9212 } else
9213 priv->config |= CFG_FIXED_RATE;
9214
9215 if (priv->rates_mask == mask) {
9216 IPW_DEBUG_WX("Mask set to current mask.\n");
9217 mutex_unlock(&priv->mutex);
9218 return 0;
9219 }
9220
9221 priv->rates_mask = mask;
9222
9223 /* Network configuration changed -- force [re]association */
9224 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9225 if (!ipw_disassociate(priv))
9226 ipw_associate(priv);
9227
9228 mutex_unlock(&priv->mutex);
9229 return 0;
9230 }
9231
ipw_wx_get_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9232 static int ipw_wx_get_rate(struct net_device *dev,
9233 struct iw_request_info *info,
9234 union iwreq_data *wrqu, char *extra)
9235 {
9236 struct ipw_priv *priv = libipw_priv(dev);
9237 mutex_lock(&priv->mutex);
9238 wrqu->bitrate.value = priv->last_rate;
9239 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9240 mutex_unlock(&priv->mutex);
9241 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9242 return 0;
9243 }
9244
ipw_wx_set_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9245 static int ipw_wx_set_rts(struct net_device *dev,
9246 struct iw_request_info *info,
9247 union iwreq_data *wrqu, char *extra)
9248 {
9249 struct ipw_priv *priv = libipw_priv(dev);
9250 mutex_lock(&priv->mutex);
9251 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9252 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9253 else {
9254 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9255 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9256 mutex_unlock(&priv->mutex);
9257 return -EINVAL;
9258 }
9259 priv->rts_threshold = wrqu->rts.value;
9260 }
9261
9262 ipw_send_rts_threshold(priv, priv->rts_threshold);
9263 mutex_unlock(&priv->mutex);
9264 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9265 return 0;
9266 }
9267
ipw_wx_get_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9268 static int ipw_wx_get_rts(struct net_device *dev,
9269 struct iw_request_info *info,
9270 union iwreq_data *wrqu, char *extra)
9271 {
9272 struct ipw_priv *priv = libipw_priv(dev);
9273 mutex_lock(&priv->mutex);
9274 wrqu->rts.value = priv->rts_threshold;
9275 wrqu->rts.fixed = 0; /* no auto select */
9276 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9277 mutex_unlock(&priv->mutex);
9278 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9279 return 0;
9280 }
9281
ipw_wx_set_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9282 static int ipw_wx_set_txpow(struct net_device *dev,
9283 struct iw_request_info *info,
9284 union iwreq_data *wrqu, char *extra)
9285 {
9286 struct ipw_priv *priv = libipw_priv(dev);
9287 int err = 0;
9288
9289 mutex_lock(&priv->mutex);
9290 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9291 err = -EINPROGRESS;
9292 goto out;
9293 }
9294
9295 if (!wrqu->power.fixed)
9296 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9297
9298 if (wrqu->power.flags != IW_TXPOW_DBM) {
9299 err = -EINVAL;
9300 goto out;
9301 }
9302
9303 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9304 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9305 err = -EINVAL;
9306 goto out;
9307 }
9308
9309 priv->tx_power = wrqu->power.value;
9310 err = ipw_set_tx_power(priv);
9311 out:
9312 mutex_unlock(&priv->mutex);
9313 return err;
9314 }
9315
ipw_wx_get_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9316 static int ipw_wx_get_txpow(struct net_device *dev,
9317 struct iw_request_info *info,
9318 union iwreq_data *wrqu, char *extra)
9319 {
9320 struct ipw_priv *priv = libipw_priv(dev);
9321 mutex_lock(&priv->mutex);
9322 wrqu->power.value = priv->tx_power;
9323 wrqu->power.fixed = 1;
9324 wrqu->power.flags = IW_TXPOW_DBM;
9325 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9326 mutex_unlock(&priv->mutex);
9327
9328 IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9329 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9330
9331 return 0;
9332 }
9333
ipw_wx_set_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9334 static int ipw_wx_set_frag(struct net_device *dev,
9335 struct iw_request_info *info,
9336 union iwreq_data *wrqu, char *extra)
9337 {
9338 struct ipw_priv *priv = libipw_priv(dev);
9339 mutex_lock(&priv->mutex);
9340 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9341 priv->ieee->fts = DEFAULT_FTS;
9342 else {
9343 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9344 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9345 mutex_unlock(&priv->mutex);
9346 return -EINVAL;
9347 }
9348
9349 priv->ieee->fts = wrqu->frag.value & ~0x1;
9350 }
9351
9352 ipw_send_frag_threshold(priv, wrqu->frag.value);
9353 mutex_unlock(&priv->mutex);
9354 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9355 return 0;
9356 }
9357
ipw_wx_get_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9358 static int ipw_wx_get_frag(struct net_device *dev,
9359 struct iw_request_info *info,
9360 union iwreq_data *wrqu, char *extra)
9361 {
9362 struct ipw_priv *priv = libipw_priv(dev);
9363 mutex_lock(&priv->mutex);
9364 wrqu->frag.value = priv->ieee->fts;
9365 wrqu->frag.fixed = 0; /* no auto select */
9366 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9367 mutex_unlock(&priv->mutex);
9368 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9369
9370 return 0;
9371 }
9372
ipw_wx_set_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9373 static int ipw_wx_set_retry(struct net_device *dev,
9374 struct iw_request_info *info,
9375 union iwreq_data *wrqu, char *extra)
9376 {
9377 struct ipw_priv *priv = libipw_priv(dev);
9378
9379 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9380 return -EINVAL;
9381
9382 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9383 return 0;
9384
9385 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9386 return -EINVAL;
9387
9388 mutex_lock(&priv->mutex);
9389 if (wrqu->retry.flags & IW_RETRY_SHORT)
9390 priv->short_retry_limit = (u8) wrqu->retry.value;
9391 else if (wrqu->retry.flags & IW_RETRY_LONG)
9392 priv->long_retry_limit = (u8) wrqu->retry.value;
9393 else {
9394 priv->short_retry_limit = (u8) wrqu->retry.value;
9395 priv->long_retry_limit = (u8) wrqu->retry.value;
9396 }
9397
9398 ipw_send_retry_limit(priv, priv->short_retry_limit,
9399 priv->long_retry_limit);
9400 mutex_unlock(&priv->mutex);
9401 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9402 priv->short_retry_limit, priv->long_retry_limit);
9403 return 0;
9404 }
9405
ipw_wx_get_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9406 static int ipw_wx_get_retry(struct net_device *dev,
9407 struct iw_request_info *info,
9408 union iwreq_data *wrqu, char *extra)
9409 {
9410 struct ipw_priv *priv = libipw_priv(dev);
9411
9412 mutex_lock(&priv->mutex);
9413 wrqu->retry.disabled = 0;
9414
9415 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9416 mutex_unlock(&priv->mutex);
9417 return -EINVAL;
9418 }
9419
9420 if (wrqu->retry.flags & IW_RETRY_LONG) {
9421 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9422 wrqu->retry.value = priv->long_retry_limit;
9423 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9424 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9425 wrqu->retry.value = priv->short_retry_limit;
9426 } else {
9427 wrqu->retry.flags = IW_RETRY_LIMIT;
9428 wrqu->retry.value = priv->short_retry_limit;
9429 }
9430 mutex_unlock(&priv->mutex);
9431
9432 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9433
9434 return 0;
9435 }
9436
ipw_wx_set_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9437 static int ipw_wx_set_scan(struct net_device *dev,
9438 struct iw_request_info *info,
9439 union iwreq_data *wrqu, char *extra)
9440 {
9441 struct ipw_priv *priv = libipw_priv(dev);
9442 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9443 struct delayed_work *work = NULL;
9444
9445 mutex_lock(&priv->mutex);
9446
9447 priv->user_requested_scan = 1;
9448
9449 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9450 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9451 int len = min((int)req->essid_len,
9452 (int)sizeof(priv->direct_scan_ssid));
9453 memcpy(priv->direct_scan_ssid, req->essid, len);
9454 priv->direct_scan_ssid_len = len;
9455 work = &priv->request_direct_scan;
9456 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9457 work = &priv->request_passive_scan;
9458 }
9459 } else {
9460 /* Normal active broadcast scan */
9461 work = &priv->request_scan;
9462 }
9463
9464 mutex_unlock(&priv->mutex);
9465
9466 IPW_DEBUG_WX("Start scan\n");
9467
9468 schedule_delayed_work(work, 0);
9469
9470 return 0;
9471 }
9472
ipw_wx_get_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9473 static int ipw_wx_get_scan(struct net_device *dev,
9474 struct iw_request_info *info,
9475 union iwreq_data *wrqu, char *extra)
9476 {
9477 struct ipw_priv *priv = libipw_priv(dev);
9478 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9479 }
9480
ipw_wx_set_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)9481 static int ipw_wx_set_encode(struct net_device *dev,
9482 struct iw_request_info *info,
9483 union iwreq_data *wrqu, char *key)
9484 {
9485 struct ipw_priv *priv = libipw_priv(dev);
9486 int ret;
9487 u32 cap = priv->capability;
9488
9489 mutex_lock(&priv->mutex);
9490 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9491
9492 /* In IBSS mode, we need to notify the firmware to update
9493 * the beacon info after we changed the capability. */
9494 if (cap != priv->capability &&
9495 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9496 priv->status & STATUS_ASSOCIATED)
9497 ipw_disassociate(priv);
9498
9499 mutex_unlock(&priv->mutex);
9500 return ret;
9501 }
9502
ipw_wx_get_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)9503 static int ipw_wx_get_encode(struct net_device *dev,
9504 struct iw_request_info *info,
9505 union iwreq_data *wrqu, char *key)
9506 {
9507 struct ipw_priv *priv = libipw_priv(dev);
9508 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9509 }
9510
ipw_wx_set_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9511 static int ipw_wx_set_power(struct net_device *dev,
9512 struct iw_request_info *info,
9513 union iwreq_data *wrqu, char *extra)
9514 {
9515 struct ipw_priv *priv = libipw_priv(dev);
9516 int err;
9517 mutex_lock(&priv->mutex);
9518 if (wrqu->power.disabled) {
9519 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9520 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9521 if (err) {
9522 IPW_DEBUG_WX("failed setting power mode.\n");
9523 mutex_unlock(&priv->mutex);
9524 return err;
9525 }
9526 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9527 mutex_unlock(&priv->mutex);
9528 return 0;
9529 }
9530
9531 switch (wrqu->power.flags & IW_POWER_MODE) {
9532 case IW_POWER_ON: /* If not specified */
9533 case IW_POWER_MODE: /* If set all mask */
9534 case IW_POWER_ALL_R: /* If explicitly state all */
9535 break;
9536 default: /* Otherwise we don't support it */
9537 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9538 wrqu->power.flags);
9539 mutex_unlock(&priv->mutex);
9540 return -EOPNOTSUPP;
9541 }
9542
9543 /* If the user hasn't specified a power management mode yet, default
9544 * to BATTERY */
9545 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9546 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9547 else
9548 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9549
9550 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9551 if (err) {
9552 IPW_DEBUG_WX("failed setting power mode.\n");
9553 mutex_unlock(&priv->mutex);
9554 return err;
9555 }
9556
9557 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9558 mutex_unlock(&priv->mutex);
9559 return 0;
9560 }
9561
ipw_wx_get_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9562 static int ipw_wx_get_power(struct net_device *dev,
9563 struct iw_request_info *info,
9564 union iwreq_data *wrqu, char *extra)
9565 {
9566 struct ipw_priv *priv = libipw_priv(dev);
9567 mutex_lock(&priv->mutex);
9568 if (!(priv->power_mode & IPW_POWER_ENABLED))
9569 wrqu->power.disabled = 1;
9570 else
9571 wrqu->power.disabled = 0;
9572
9573 mutex_unlock(&priv->mutex);
9574 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9575
9576 return 0;
9577 }
9578
ipw_wx_set_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9579 static int ipw_wx_set_powermode(struct net_device *dev,
9580 struct iw_request_info *info,
9581 union iwreq_data *wrqu, char *extra)
9582 {
9583 struct ipw_priv *priv = libipw_priv(dev);
9584 int mode = *(int *)extra;
9585 int err;
9586
9587 mutex_lock(&priv->mutex);
9588 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9589 mode = IPW_POWER_AC;
9590
9591 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9592 err = ipw_send_power_mode(priv, mode);
9593 if (err) {
9594 IPW_DEBUG_WX("failed setting power mode.\n");
9595 mutex_unlock(&priv->mutex);
9596 return err;
9597 }
9598 priv->power_mode = IPW_POWER_ENABLED | mode;
9599 }
9600 mutex_unlock(&priv->mutex);
9601 return 0;
9602 }
9603
9604 #define MAX_WX_STRING 80
ipw_wx_get_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9605 static int ipw_wx_get_powermode(struct net_device *dev,
9606 struct iw_request_info *info,
9607 union iwreq_data *wrqu, char *extra)
9608 {
9609 struct ipw_priv *priv = libipw_priv(dev);
9610 int level = IPW_POWER_LEVEL(priv->power_mode);
9611 char *p = extra;
9612
9613 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9614
9615 switch (level) {
9616 case IPW_POWER_AC:
9617 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9618 break;
9619 case IPW_POWER_BATTERY:
9620 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9621 break;
9622 default:
9623 p += snprintf(p, MAX_WX_STRING - (p - extra),
9624 "(Timeout %dms, Period %dms)",
9625 timeout_duration[level - 1] / 1000,
9626 period_duration[level - 1] / 1000);
9627 }
9628
9629 if (!(priv->power_mode & IPW_POWER_ENABLED))
9630 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9631
9632 wrqu->data.length = p - extra + 1;
9633
9634 return 0;
9635 }
9636
ipw_wx_set_wireless_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9637 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9638 struct iw_request_info *info,
9639 union iwreq_data *wrqu, char *extra)
9640 {
9641 struct ipw_priv *priv = libipw_priv(dev);
9642 int mode = *(int *)extra;
9643 u8 band = 0, modulation = 0;
9644
9645 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9646 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9647 return -EINVAL;
9648 }
9649 mutex_lock(&priv->mutex);
9650 if (priv->adapter == IPW_2915ABG) {
9651 priv->ieee->abg_true = 1;
9652 if (mode & IEEE_A) {
9653 band |= LIBIPW_52GHZ_BAND;
9654 modulation |= LIBIPW_OFDM_MODULATION;
9655 } else
9656 priv->ieee->abg_true = 0;
9657 } else {
9658 if (mode & IEEE_A) {
9659 IPW_WARNING("Attempt to set 2200BG into "
9660 "802.11a mode\n");
9661 mutex_unlock(&priv->mutex);
9662 return -EINVAL;
9663 }
9664
9665 priv->ieee->abg_true = 0;
9666 }
9667
9668 if (mode & IEEE_B) {
9669 band |= LIBIPW_24GHZ_BAND;
9670 modulation |= LIBIPW_CCK_MODULATION;
9671 } else
9672 priv->ieee->abg_true = 0;
9673
9674 if (mode & IEEE_G) {
9675 band |= LIBIPW_24GHZ_BAND;
9676 modulation |= LIBIPW_OFDM_MODULATION;
9677 } else
9678 priv->ieee->abg_true = 0;
9679
9680 priv->ieee->mode = mode;
9681 priv->ieee->freq_band = band;
9682 priv->ieee->modulation = modulation;
9683 init_supported_rates(priv, &priv->rates);
9684
9685 /* Network configuration changed -- force [re]association */
9686 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9687 if (!ipw_disassociate(priv)) {
9688 ipw_send_supported_rates(priv, &priv->rates);
9689 ipw_associate(priv);
9690 }
9691
9692 /* Update the band LEDs */
9693 ipw_led_band_on(priv);
9694
9695 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9696 mode & IEEE_A ? 'a' : '.',
9697 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9698 mutex_unlock(&priv->mutex);
9699 return 0;
9700 }
9701
ipw_wx_get_wireless_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9702 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9703 struct iw_request_info *info,
9704 union iwreq_data *wrqu, char *extra)
9705 {
9706 struct ipw_priv *priv = libipw_priv(dev);
9707 mutex_lock(&priv->mutex);
9708 switch (priv->ieee->mode) {
9709 case IEEE_A:
9710 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9711 break;
9712 case IEEE_B:
9713 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9714 break;
9715 case IEEE_A | IEEE_B:
9716 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9717 break;
9718 case IEEE_G:
9719 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9720 break;
9721 case IEEE_A | IEEE_G:
9722 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9723 break;
9724 case IEEE_B | IEEE_G:
9725 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9726 break;
9727 case IEEE_A | IEEE_B | IEEE_G:
9728 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9729 break;
9730 default:
9731 strncpy(extra, "unknown", MAX_WX_STRING);
9732 break;
9733 }
9734 extra[MAX_WX_STRING - 1] = '\0';
9735
9736 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9737
9738 wrqu->data.length = strlen(extra) + 1;
9739 mutex_unlock(&priv->mutex);
9740
9741 return 0;
9742 }
9743
ipw_wx_set_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9744 static int ipw_wx_set_preamble(struct net_device *dev,
9745 struct iw_request_info *info,
9746 union iwreq_data *wrqu, char *extra)
9747 {
9748 struct ipw_priv *priv = libipw_priv(dev);
9749 int mode = *(int *)extra;
9750 mutex_lock(&priv->mutex);
9751 /* Switching from SHORT -> LONG requires a disassociation */
9752 if (mode == 1) {
9753 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9754 priv->config |= CFG_PREAMBLE_LONG;
9755
9756 /* Network configuration changed -- force [re]association */
9757 IPW_DEBUG_ASSOC
9758 ("[re]association triggered due to preamble change.\n");
9759 if (!ipw_disassociate(priv))
9760 ipw_associate(priv);
9761 }
9762 goto done;
9763 }
9764
9765 if (mode == 0) {
9766 priv->config &= ~CFG_PREAMBLE_LONG;
9767 goto done;
9768 }
9769 mutex_unlock(&priv->mutex);
9770 return -EINVAL;
9771
9772 done:
9773 mutex_unlock(&priv->mutex);
9774 return 0;
9775 }
9776
ipw_wx_get_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9777 static int ipw_wx_get_preamble(struct net_device *dev,
9778 struct iw_request_info *info,
9779 union iwreq_data *wrqu, char *extra)
9780 {
9781 struct ipw_priv *priv = libipw_priv(dev);
9782 mutex_lock(&priv->mutex);
9783 if (priv->config & CFG_PREAMBLE_LONG)
9784 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9785 else
9786 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9787 mutex_unlock(&priv->mutex);
9788 return 0;
9789 }
9790
9791 #ifdef CONFIG_IPW2200_MONITOR
ipw_wx_set_monitor(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9792 static int ipw_wx_set_monitor(struct net_device *dev,
9793 struct iw_request_info *info,
9794 union iwreq_data *wrqu, char *extra)
9795 {
9796 struct ipw_priv *priv = libipw_priv(dev);
9797 int *parms = (int *)extra;
9798 int enable = (parms[0] > 0);
9799 mutex_lock(&priv->mutex);
9800 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9801 if (enable) {
9802 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9803 #ifdef CONFIG_IPW2200_RADIOTAP
9804 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9805 #else
9806 priv->net_dev->type = ARPHRD_IEEE80211;
9807 #endif
9808 schedule_work(&priv->adapter_restart);
9809 }
9810
9811 ipw_set_channel(priv, parms[1]);
9812 } else {
9813 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9814 mutex_unlock(&priv->mutex);
9815 return 0;
9816 }
9817 priv->net_dev->type = ARPHRD_ETHER;
9818 schedule_work(&priv->adapter_restart);
9819 }
9820 mutex_unlock(&priv->mutex);
9821 return 0;
9822 }
9823
9824 #endif /* CONFIG_IPW2200_MONITOR */
9825
ipw_wx_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9826 static int ipw_wx_reset(struct net_device *dev,
9827 struct iw_request_info *info,
9828 union iwreq_data *wrqu, char *extra)
9829 {
9830 struct ipw_priv *priv = libipw_priv(dev);
9831 IPW_DEBUG_WX("RESET\n");
9832 schedule_work(&priv->adapter_restart);
9833 return 0;
9834 }
9835
ipw_wx_sw_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9836 static int ipw_wx_sw_reset(struct net_device *dev,
9837 struct iw_request_info *info,
9838 union iwreq_data *wrqu, char *extra)
9839 {
9840 struct ipw_priv *priv = libipw_priv(dev);
9841 union iwreq_data wrqu_sec = {
9842 .encoding = {
9843 .flags = IW_ENCODE_DISABLED,
9844 },
9845 };
9846 int ret;
9847
9848 IPW_DEBUG_WX("SW_RESET\n");
9849
9850 mutex_lock(&priv->mutex);
9851
9852 ret = ipw_sw_reset(priv, 2);
9853 if (!ret) {
9854 free_firmware();
9855 ipw_adapter_restart(priv);
9856 }
9857
9858 /* The SW reset bit might have been toggled on by the 'disable'
9859 * module parameter, so take appropriate action */
9860 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9861
9862 mutex_unlock(&priv->mutex);
9863 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9864 mutex_lock(&priv->mutex);
9865
9866 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9867 /* Configuration likely changed -- force [re]association */
9868 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9869 "reset.\n");
9870 if (!ipw_disassociate(priv))
9871 ipw_associate(priv);
9872 }
9873
9874 mutex_unlock(&priv->mutex);
9875
9876 return 0;
9877 }
9878
9879 /* Rebase the WE IOCTLs to zero for the handler array */
9880 static iw_handler ipw_wx_handlers[] = {
9881 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9882 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9883 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9884 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9885 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9886 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9887 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9888 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9889 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9890 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9891 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9892 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9893 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9894 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9895 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9896 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9897 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9898 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9899 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9900 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9901 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9902 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9903 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9904 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9905 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9906 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9907 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9908 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9909 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9910 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9911 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9912 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9913 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9914 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9915 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9916 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9917 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9918 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9919 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9920 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9921 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9922 };
9923
9924 enum {
9925 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9926 IPW_PRIV_GET_POWER,
9927 IPW_PRIV_SET_MODE,
9928 IPW_PRIV_GET_MODE,
9929 IPW_PRIV_SET_PREAMBLE,
9930 IPW_PRIV_GET_PREAMBLE,
9931 IPW_PRIV_RESET,
9932 IPW_PRIV_SW_RESET,
9933 #ifdef CONFIG_IPW2200_MONITOR
9934 IPW_PRIV_SET_MONITOR,
9935 #endif
9936 };
9937
9938 static struct iw_priv_args ipw_priv_args[] = {
9939 {
9940 .cmd = IPW_PRIV_SET_POWER,
9941 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9942 .name = "set_power"},
9943 {
9944 .cmd = IPW_PRIV_GET_POWER,
9945 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9946 .name = "get_power"},
9947 {
9948 .cmd = IPW_PRIV_SET_MODE,
9949 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9950 .name = "set_mode"},
9951 {
9952 .cmd = IPW_PRIV_GET_MODE,
9953 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9954 .name = "get_mode"},
9955 {
9956 .cmd = IPW_PRIV_SET_PREAMBLE,
9957 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9958 .name = "set_preamble"},
9959 {
9960 .cmd = IPW_PRIV_GET_PREAMBLE,
9961 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9962 .name = "get_preamble"},
9963 {
9964 IPW_PRIV_RESET,
9965 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9966 {
9967 IPW_PRIV_SW_RESET,
9968 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9969 #ifdef CONFIG_IPW2200_MONITOR
9970 {
9971 IPW_PRIV_SET_MONITOR,
9972 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9973 #endif /* CONFIG_IPW2200_MONITOR */
9974 };
9975
9976 static iw_handler ipw_priv_handler[] = {
9977 ipw_wx_set_powermode,
9978 ipw_wx_get_powermode,
9979 ipw_wx_set_wireless_mode,
9980 ipw_wx_get_wireless_mode,
9981 ipw_wx_set_preamble,
9982 ipw_wx_get_preamble,
9983 ipw_wx_reset,
9984 ipw_wx_sw_reset,
9985 #ifdef CONFIG_IPW2200_MONITOR
9986 ipw_wx_set_monitor,
9987 #endif
9988 };
9989
9990 static const struct iw_handler_def ipw_wx_handler_def = {
9991 .standard = ipw_wx_handlers,
9992 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9993 .num_private = ARRAY_SIZE(ipw_priv_handler),
9994 .num_private_args = ARRAY_SIZE(ipw_priv_args),
9995 .private = ipw_priv_handler,
9996 .private_args = ipw_priv_args,
9997 .get_wireless_stats = ipw_get_wireless_stats,
9998 };
9999
10000 /*
10001 * Get wireless statistics.
10002 * Called by /proc/net/wireless
10003 * Also called by SIOCGIWSTATS
10004 */
ipw_get_wireless_stats(struct net_device * dev)10005 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10006 {
10007 struct ipw_priv *priv = libipw_priv(dev);
10008 struct iw_statistics *wstats;
10009
10010 wstats = &priv->wstats;
10011
10012 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10013 * netdev->get_wireless_stats seems to be called before fw is
10014 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10015 * and associated; if not associcated, the values are all meaningless
10016 * anyway, so set them all to NULL and INVALID */
10017 if (!(priv->status & STATUS_ASSOCIATED)) {
10018 wstats->miss.beacon = 0;
10019 wstats->discard.retries = 0;
10020 wstats->qual.qual = 0;
10021 wstats->qual.level = 0;
10022 wstats->qual.noise = 0;
10023 wstats->qual.updated = 7;
10024 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10025 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10026 return wstats;
10027 }
10028
10029 wstats->qual.qual = priv->quality;
10030 wstats->qual.level = priv->exp_avg_rssi;
10031 wstats->qual.noise = priv->exp_avg_noise;
10032 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10033 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10034
10035 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10036 wstats->discard.retries = priv->last_tx_failures;
10037 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10038
10039 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10040 goto fail_get_ordinal;
10041 wstats->discard.retries += tx_retry; */
10042
10043 return wstats;
10044 }
10045
10046 /* net device stuff */
10047
init_sys_config(struct ipw_sys_config * sys_config)10048 static void init_sys_config(struct ipw_sys_config *sys_config)
10049 {
10050 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10051 sys_config->bt_coexistence = 0;
10052 sys_config->answer_broadcast_ssid_probe = 0;
10053 sys_config->accept_all_data_frames = 0;
10054 sys_config->accept_non_directed_frames = 1;
10055 sys_config->exclude_unicast_unencrypted = 0;
10056 sys_config->disable_unicast_decryption = 1;
10057 sys_config->exclude_multicast_unencrypted = 0;
10058 sys_config->disable_multicast_decryption = 1;
10059 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10060 antenna = CFG_SYS_ANTENNA_BOTH;
10061 sys_config->antenna_diversity = antenna;
10062 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10063 sys_config->dot11g_auto_detection = 0;
10064 sys_config->enable_cts_to_self = 0;
10065 sys_config->bt_coexist_collision_thr = 0;
10066 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10067 sys_config->silence_threshold = 0x1e;
10068 }
10069
ipw_net_open(struct net_device * dev)10070 static int ipw_net_open(struct net_device *dev)
10071 {
10072 IPW_DEBUG_INFO("dev->open\n");
10073 netif_start_queue(dev);
10074 return 0;
10075 }
10076
ipw_net_stop(struct net_device * dev)10077 static int ipw_net_stop(struct net_device *dev)
10078 {
10079 IPW_DEBUG_INFO("dev->close\n");
10080 netif_stop_queue(dev);
10081 return 0;
10082 }
10083
10084 /*
10085 todo:
10086
10087 modify to send one tfd per fragment instead of using chunking. otherwise
10088 we need to heavily modify the libipw_skb_to_txb.
10089 */
10090
ipw_tx_skb(struct ipw_priv * priv,struct libipw_txb * txb,int pri)10091 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10092 int pri)
10093 {
10094 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10095 txb->fragments[0]->data;
10096 int i = 0;
10097 struct tfd_frame *tfd;
10098 #ifdef CONFIG_IPW2200_QOS
10099 int tx_id = ipw_get_tx_queue_number(priv, pri);
10100 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10101 #else
10102 struct clx2_tx_queue *txq = &priv->txq[0];
10103 #endif
10104 struct clx2_queue *q = &txq->q;
10105 u8 id, hdr_len, unicast;
10106 int fc;
10107
10108 if (!(priv->status & STATUS_ASSOCIATED))
10109 goto drop;
10110
10111 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10112 switch (priv->ieee->iw_mode) {
10113 case IW_MODE_ADHOC:
10114 unicast = !is_multicast_ether_addr(hdr->addr1);
10115 id = ipw_find_station(priv, hdr->addr1);
10116 if (id == IPW_INVALID_STATION) {
10117 id = ipw_add_station(priv, hdr->addr1);
10118 if (id == IPW_INVALID_STATION) {
10119 IPW_WARNING("Attempt to send data to "
10120 "invalid cell: %pM\n",
10121 hdr->addr1);
10122 goto drop;
10123 }
10124 }
10125 break;
10126
10127 case IW_MODE_INFRA:
10128 default:
10129 unicast = !is_multicast_ether_addr(hdr->addr3);
10130 id = 0;
10131 break;
10132 }
10133
10134 tfd = &txq->bd[q->first_empty];
10135 txq->txb[q->first_empty] = txb;
10136 memset(tfd, 0, sizeof(*tfd));
10137 tfd->u.data.station_number = id;
10138
10139 tfd->control_flags.message_type = TX_FRAME_TYPE;
10140 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10141
10142 tfd->u.data.cmd_id = DINO_CMD_TX;
10143 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10144
10145 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10146 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10147 else
10148 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10149
10150 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10151 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10152
10153 fc = le16_to_cpu(hdr->frame_ctl);
10154 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10155
10156 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10157
10158 if (likely(unicast))
10159 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10160
10161 if (txb->encrypted && !priv->ieee->host_encrypt) {
10162 switch (priv->ieee->sec.level) {
10163 case SEC_LEVEL_3:
10164 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10165 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10166 /* XXX: ACK flag must be set for CCMP even if it
10167 * is a multicast/broadcast packet, because CCMP
10168 * group communication encrypted by GTK is
10169 * actually done by the AP. */
10170 if (!unicast)
10171 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10172
10173 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10174 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10175 tfd->u.data.key_index = 0;
10176 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10177 break;
10178 case SEC_LEVEL_2:
10179 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10180 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10181 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10182 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10183 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10184 break;
10185 case SEC_LEVEL_1:
10186 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10187 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10188 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10189 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10190 40)
10191 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10192 else
10193 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10194 break;
10195 case SEC_LEVEL_0:
10196 break;
10197 default:
10198 printk(KERN_ERR "Unknown security level %d\n",
10199 priv->ieee->sec.level);
10200 break;
10201 }
10202 } else
10203 /* No hardware encryption */
10204 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10205
10206 #ifdef CONFIG_IPW2200_QOS
10207 if (fc & IEEE80211_STYPE_QOS_DATA)
10208 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10209 #endif /* CONFIG_IPW2200_QOS */
10210
10211 /* payload */
10212 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10213 txb->nr_frags));
10214 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10215 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10216 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10217 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10218 i, le32_to_cpu(tfd->u.data.num_chunks),
10219 txb->fragments[i]->len - hdr_len);
10220 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10221 i, tfd->u.data.num_chunks,
10222 txb->fragments[i]->len - hdr_len);
10223 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10224 txb->fragments[i]->len - hdr_len);
10225
10226 tfd->u.data.chunk_ptr[i] =
10227 cpu_to_le32(pci_map_single
10228 (priv->pci_dev,
10229 txb->fragments[i]->data + hdr_len,
10230 txb->fragments[i]->len - hdr_len,
10231 PCI_DMA_TODEVICE));
10232 tfd->u.data.chunk_len[i] =
10233 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10234 }
10235
10236 if (i != txb->nr_frags) {
10237 struct sk_buff *skb;
10238 u16 remaining_bytes = 0;
10239 int j;
10240
10241 for (j = i; j < txb->nr_frags; j++)
10242 remaining_bytes += txb->fragments[j]->len - hdr_len;
10243
10244 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10245 remaining_bytes);
10246 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10247 if (skb != NULL) {
10248 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10249 for (j = i; j < txb->nr_frags; j++) {
10250 int size = txb->fragments[j]->len - hdr_len;
10251
10252 printk(KERN_INFO "Adding frag %d %d...\n",
10253 j, size);
10254 skb_put_data(skb,
10255 txb->fragments[j]->data + hdr_len,
10256 size);
10257 }
10258 dev_kfree_skb_any(txb->fragments[i]);
10259 txb->fragments[i] = skb;
10260 tfd->u.data.chunk_ptr[i] =
10261 cpu_to_le32(pci_map_single
10262 (priv->pci_dev, skb->data,
10263 remaining_bytes,
10264 PCI_DMA_TODEVICE));
10265
10266 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10267 }
10268 }
10269
10270 /* kick DMA */
10271 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10272 ipw_write32(priv, q->reg_w, q->first_empty);
10273
10274 if (ipw_tx_queue_space(q) < q->high_mark)
10275 netif_stop_queue(priv->net_dev);
10276
10277 return NETDEV_TX_OK;
10278
10279 drop:
10280 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10281 libipw_txb_free(txb);
10282 return NETDEV_TX_OK;
10283 }
10284
ipw_net_is_queue_full(struct net_device * dev,int pri)10285 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10286 {
10287 struct ipw_priv *priv = libipw_priv(dev);
10288 #ifdef CONFIG_IPW2200_QOS
10289 int tx_id = ipw_get_tx_queue_number(priv, pri);
10290 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10291 #else
10292 struct clx2_tx_queue *txq = &priv->txq[0];
10293 #endif /* CONFIG_IPW2200_QOS */
10294
10295 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10296 return 1;
10297
10298 return 0;
10299 }
10300
10301 #ifdef CONFIG_IPW2200_PROMISCUOUS
ipw_handle_promiscuous_tx(struct ipw_priv * priv,struct libipw_txb * txb)10302 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10303 struct libipw_txb *txb)
10304 {
10305 struct libipw_rx_stats dummystats;
10306 struct ieee80211_hdr *hdr;
10307 u8 n;
10308 u16 filter = priv->prom_priv->filter;
10309 int hdr_only = 0;
10310
10311 if (filter & IPW_PROM_NO_TX)
10312 return;
10313
10314 memset(&dummystats, 0, sizeof(dummystats));
10315
10316 /* Filtering of fragment chains is done against the first fragment */
10317 hdr = (void *)txb->fragments[0]->data;
10318 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10319 if (filter & IPW_PROM_NO_MGMT)
10320 return;
10321 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10322 hdr_only = 1;
10323 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10324 if (filter & IPW_PROM_NO_CTL)
10325 return;
10326 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10327 hdr_only = 1;
10328 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10329 if (filter & IPW_PROM_NO_DATA)
10330 return;
10331 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10332 hdr_only = 1;
10333 }
10334
10335 for(n=0; n<txb->nr_frags; ++n) {
10336 struct sk_buff *src = txb->fragments[n];
10337 struct sk_buff *dst;
10338 struct ieee80211_radiotap_header *rt_hdr;
10339 int len;
10340
10341 if (hdr_only) {
10342 hdr = (void *)src->data;
10343 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10344 } else
10345 len = src->len;
10346
10347 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10348 if (!dst)
10349 continue;
10350
10351 rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10352
10353 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10354 rt_hdr->it_pad = 0;
10355 rt_hdr->it_present = 0; /* after all, it's just an idea */
10356 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10357
10358 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10359 ieee80211chan2mhz(priv->channel));
10360 if (priv->channel > 14) /* 802.11a */
10361 *(__le16*)skb_put(dst, sizeof(u16)) =
10362 cpu_to_le16(IEEE80211_CHAN_OFDM |
10363 IEEE80211_CHAN_5GHZ);
10364 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10365 *(__le16*)skb_put(dst, sizeof(u16)) =
10366 cpu_to_le16(IEEE80211_CHAN_CCK |
10367 IEEE80211_CHAN_2GHZ);
10368 else /* 802.11g */
10369 *(__le16*)skb_put(dst, sizeof(u16)) =
10370 cpu_to_le16(IEEE80211_CHAN_OFDM |
10371 IEEE80211_CHAN_2GHZ);
10372
10373 rt_hdr->it_len = cpu_to_le16(dst->len);
10374
10375 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10376
10377 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10378 dev_kfree_skb_any(dst);
10379 }
10380 }
10381 #endif
10382
ipw_net_hard_start_xmit(struct libipw_txb * txb,struct net_device * dev,int pri)10383 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10384 struct net_device *dev, int pri)
10385 {
10386 struct ipw_priv *priv = libipw_priv(dev);
10387 unsigned long flags;
10388 netdev_tx_t ret;
10389
10390 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10391 spin_lock_irqsave(&priv->lock, flags);
10392
10393 #ifdef CONFIG_IPW2200_PROMISCUOUS
10394 if (rtap_iface && netif_running(priv->prom_net_dev))
10395 ipw_handle_promiscuous_tx(priv, txb);
10396 #endif
10397
10398 ret = ipw_tx_skb(priv, txb, pri);
10399 if (ret == NETDEV_TX_OK)
10400 __ipw_led_activity_on(priv);
10401 spin_unlock_irqrestore(&priv->lock, flags);
10402
10403 return ret;
10404 }
10405
ipw_net_set_multicast_list(struct net_device * dev)10406 static void ipw_net_set_multicast_list(struct net_device *dev)
10407 {
10408
10409 }
10410
ipw_net_set_mac_address(struct net_device * dev,void * p)10411 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10412 {
10413 struct ipw_priv *priv = libipw_priv(dev);
10414 struct sockaddr *addr = p;
10415
10416 if (!is_valid_ether_addr(addr->sa_data))
10417 return -EADDRNOTAVAIL;
10418 mutex_lock(&priv->mutex);
10419 priv->config |= CFG_CUSTOM_MAC;
10420 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10421 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10422 priv->net_dev->name, priv->mac_addr);
10423 schedule_work(&priv->adapter_restart);
10424 mutex_unlock(&priv->mutex);
10425 return 0;
10426 }
10427
ipw_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)10428 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10429 struct ethtool_drvinfo *info)
10430 {
10431 struct ipw_priv *p = libipw_priv(dev);
10432 char vers[64];
10433 char date[32];
10434 u32 len;
10435
10436 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10437 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10438
10439 len = sizeof(vers);
10440 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10441 len = sizeof(date);
10442 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10443
10444 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10445 vers, date);
10446 strlcpy(info->bus_info, pci_name(p->pci_dev),
10447 sizeof(info->bus_info));
10448 }
10449
ipw_ethtool_get_link(struct net_device * dev)10450 static u32 ipw_ethtool_get_link(struct net_device *dev)
10451 {
10452 struct ipw_priv *priv = libipw_priv(dev);
10453 return (priv->status & STATUS_ASSOCIATED) != 0;
10454 }
10455
ipw_ethtool_get_eeprom_len(struct net_device * dev)10456 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10457 {
10458 return IPW_EEPROM_IMAGE_SIZE;
10459 }
10460
ipw_ethtool_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * bytes)10461 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10462 struct ethtool_eeprom *eeprom, u8 * bytes)
10463 {
10464 struct ipw_priv *p = libipw_priv(dev);
10465
10466 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10467 return -EINVAL;
10468 mutex_lock(&p->mutex);
10469 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10470 mutex_unlock(&p->mutex);
10471 return 0;
10472 }
10473
ipw_ethtool_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * bytes)10474 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10475 struct ethtool_eeprom *eeprom, u8 * bytes)
10476 {
10477 struct ipw_priv *p = libipw_priv(dev);
10478 int i;
10479
10480 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10481 return -EINVAL;
10482 mutex_lock(&p->mutex);
10483 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10484 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10485 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10486 mutex_unlock(&p->mutex);
10487 return 0;
10488 }
10489
10490 static const struct ethtool_ops ipw_ethtool_ops = {
10491 .get_link = ipw_ethtool_get_link,
10492 .get_drvinfo = ipw_ethtool_get_drvinfo,
10493 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10494 .get_eeprom = ipw_ethtool_get_eeprom,
10495 .set_eeprom = ipw_ethtool_set_eeprom,
10496 };
10497
ipw_isr(int irq,void * data)10498 static irqreturn_t ipw_isr(int irq, void *data)
10499 {
10500 struct ipw_priv *priv = data;
10501 u32 inta, inta_mask;
10502
10503 if (!priv)
10504 return IRQ_NONE;
10505
10506 spin_lock(&priv->irq_lock);
10507
10508 if (!(priv->status & STATUS_INT_ENABLED)) {
10509 /* IRQ is disabled */
10510 goto none;
10511 }
10512
10513 inta = ipw_read32(priv, IPW_INTA_RW);
10514 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10515
10516 if (inta == 0xFFFFFFFF) {
10517 /* Hardware disappeared */
10518 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10519 goto none;
10520 }
10521
10522 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10523 /* Shared interrupt */
10524 goto none;
10525 }
10526
10527 /* tell the device to stop sending interrupts */
10528 __ipw_disable_interrupts(priv);
10529
10530 /* ack current interrupts */
10531 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10532 ipw_write32(priv, IPW_INTA_RW, inta);
10533
10534 /* Cache INTA value for our tasklet */
10535 priv->isr_inta = inta;
10536
10537 tasklet_schedule(&priv->irq_tasklet);
10538
10539 spin_unlock(&priv->irq_lock);
10540
10541 return IRQ_HANDLED;
10542 none:
10543 spin_unlock(&priv->irq_lock);
10544 return IRQ_NONE;
10545 }
10546
ipw_rf_kill(void * adapter)10547 static void ipw_rf_kill(void *adapter)
10548 {
10549 struct ipw_priv *priv = adapter;
10550 unsigned long flags;
10551
10552 spin_lock_irqsave(&priv->lock, flags);
10553
10554 if (rf_kill_active(priv)) {
10555 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10556 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10557 goto exit_unlock;
10558 }
10559
10560 /* RF Kill is now disabled, so bring the device back up */
10561
10562 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10563 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10564 "device\n");
10565
10566 /* we can not do an adapter restart while inside an irq lock */
10567 schedule_work(&priv->adapter_restart);
10568 } else
10569 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10570 "enabled\n");
10571
10572 exit_unlock:
10573 spin_unlock_irqrestore(&priv->lock, flags);
10574 }
10575
ipw_bg_rf_kill(struct work_struct * work)10576 static void ipw_bg_rf_kill(struct work_struct *work)
10577 {
10578 struct ipw_priv *priv =
10579 container_of(work, struct ipw_priv, rf_kill.work);
10580 mutex_lock(&priv->mutex);
10581 ipw_rf_kill(priv);
10582 mutex_unlock(&priv->mutex);
10583 }
10584
ipw_link_up(struct ipw_priv * priv)10585 static void ipw_link_up(struct ipw_priv *priv)
10586 {
10587 priv->last_seq_num = -1;
10588 priv->last_frag_num = -1;
10589 priv->last_packet_time = 0;
10590
10591 netif_carrier_on(priv->net_dev);
10592
10593 cancel_delayed_work(&priv->request_scan);
10594 cancel_delayed_work(&priv->request_direct_scan);
10595 cancel_delayed_work(&priv->request_passive_scan);
10596 cancel_delayed_work(&priv->scan_event);
10597 ipw_reset_stats(priv);
10598 /* Ensure the rate is updated immediately */
10599 priv->last_rate = ipw_get_current_rate(priv);
10600 ipw_gather_stats(priv);
10601 ipw_led_link_up(priv);
10602 notify_wx_assoc_event(priv);
10603
10604 if (priv->config & CFG_BACKGROUND_SCAN)
10605 schedule_delayed_work(&priv->request_scan, HZ);
10606 }
10607
ipw_bg_link_up(struct work_struct * work)10608 static void ipw_bg_link_up(struct work_struct *work)
10609 {
10610 struct ipw_priv *priv =
10611 container_of(work, struct ipw_priv, link_up);
10612 mutex_lock(&priv->mutex);
10613 ipw_link_up(priv);
10614 mutex_unlock(&priv->mutex);
10615 }
10616
ipw_link_down(struct ipw_priv * priv)10617 static void ipw_link_down(struct ipw_priv *priv)
10618 {
10619 ipw_led_link_down(priv);
10620 netif_carrier_off(priv->net_dev);
10621 notify_wx_assoc_event(priv);
10622
10623 /* Cancel any queued work ... */
10624 cancel_delayed_work(&priv->request_scan);
10625 cancel_delayed_work(&priv->request_direct_scan);
10626 cancel_delayed_work(&priv->request_passive_scan);
10627 cancel_delayed_work(&priv->adhoc_check);
10628 cancel_delayed_work(&priv->gather_stats);
10629
10630 ipw_reset_stats(priv);
10631
10632 if (!(priv->status & STATUS_EXIT_PENDING)) {
10633 /* Queue up another scan... */
10634 schedule_delayed_work(&priv->request_scan, 0);
10635 } else
10636 cancel_delayed_work(&priv->scan_event);
10637 }
10638
ipw_bg_link_down(struct work_struct * work)10639 static void ipw_bg_link_down(struct work_struct *work)
10640 {
10641 struct ipw_priv *priv =
10642 container_of(work, struct ipw_priv, link_down);
10643 mutex_lock(&priv->mutex);
10644 ipw_link_down(priv);
10645 mutex_unlock(&priv->mutex);
10646 }
10647
ipw_setup_deferred_work(struct ipw_priv * priv)10648 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10649 {
10650 int ret = 0;
10651
10652 init_waitqueue_head(&priv->wait_command_queue);
10653 init_waitqueue_head(&priv->wait_state);
10654
10655 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10656 INIT_WORK(&priv->associate, ipw_bg_associate);
10657 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10658 INIT_WORK(&priv->system_config, ipw_system_config);
10659 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10660 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10661 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10662 INIT_WORK(&priv->up, ipw_bg_up);
10663 INIT_WORK(&priv->down, ipw_bg_down);
10664 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10665 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10666 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10667 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10668 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10669 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10670 INIT_WORK(&priv->roam, ipw_bg_roam);
10671 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10672 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10673 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10674 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10675 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10676 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10677 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10678
10679 #ifdef CONFIG_IPW2200_QOS
10680 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10681 #endif /* CONFIG_IPW2200_QOS */
10682
10683 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10684 ipw_irq_tasklet, (unsigned long)priv);
10685
10686 return ret;
10687 }
10688
shim__set_security(struct net_device * dev,struct libipw_security * sec)10689 static void shim__set_security(struct net_device *dev,
10690 struct libipw_security *sec)
10691 {
10692 struct ipw_priv *priv = libipw_priv(dev);
10693 int i;
10694 for (i = 0; i < 4; i++) {
10695 if (sec->flags & (1 << i)) {
10696 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10697 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10698 if (sec->key_sizes[i] == 0)
10699 priv->ieee->sec.flags &= ~(1 << i);
10700 else {
10701 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10702 sec->key_sizes[i]);
10703 priv->ieee->sec.flags |= (1 << i);
10704 }
10705 priv->status |= STATUS_SECURITY_UPDATED;
10706 } else if (sec->level != SEC_LEVEL_1)
10707 priv->ieee->sec.flags &= ~(1 << i);
10708 }
10709
10710 if (sec->flags & SEC_ACTIVE_KEY) {
10711 priv->ieee->sec.active_key = sec->active_key;
10712 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10713 priv->status |= STATUS_SECURITY_UPDATED;
10714 } else
10715 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10716
10717 if ((sec->flags & SEC_AUTH_MODE) &&
10718 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10719 priv->ieee->sec.auth_mode = sec->auth_mode;
10720 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10721 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10722 priv->capability |= CAP_SHARED_KEY;
10723 else
10724 priv->capability &= ~CAP_SHARED_KEY;
10725 priv->status |= STATUS_SECURITY_UPDATED;
10726 }
10727
10728 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10729 priv->ieee->sec.flags |= SEC_ENABLED;
10730 priv->ieee->sec.enabled = sec->enabled;
10731 priv->status |= STATUS_SECURITY_UPDATED;
10732 if (sec->enabled)
10733 priv->capability |= CAP_PRIVACY_ON;
10734 else
10735 priv->capability &= ~CAP_PRIVACY_ON;
10736 }
10737
10738 if (sec->flags & SEC_ENCRYPT)
10739 priv->ieee->sec.encrypt = sec->encrypt;
10740
10741 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10742 priv->ieee->sec.level = sec->level;
10743 priv->ieee->sec.flags |= SEC_LEVEL;
10744 priv->status |= STATUS_SECURITY_UPDATED;
10745 }
10746
10747 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10748 ipw_set_hwcrypto_keys(priv);
10749
10750 /* To match current functionality of ipw2100 (which works well w/
10751 * various supplicants, we don't force a disassociate if the
10752 * privacy capability changes ... */
10753 #if 0
10754 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10755 (((priv->assoc_request.capability &
10756 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10757 (!(priv->assoc_request.capability &
10758 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10759 IPW_DEBUG_ASSOC("Disassociating due to capability "
10760 "change.\n");
10761 ipw_disassociate(priv);
10762 }
10763 #endif
10764 }
10765
init_supported_rates(struct ipw_priv * priv,struct ipw_supported_rates * rates)10766 static int init_supported_rates(struct ipw_priv *priv,
10767 struct ipw_supported_rates *rates)
10768 {
10769 /* TODO: Mask out rates based on priv->rates_mask */
10770
10771 memset(rates, 0, sizeof(*rates));
10772 /* configure supported rates */
10773 switch (priv->ieee->freq_band) {
10774 case LIBIPW_52GHZ_BAND:
10775 rates->ieee_mode = IPW_A_MODE;
10776 rates->purpose = IPW_RATE_CAPABILITIES;
10777 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10778 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10779 break;
10780
10781 default: /* Mixed or 2.4Ghz */
10782 rates->ieee_mode = IPW_G_MODE;
10783 rates->purpose = IPW_RATE_CAPABILITIES;
10784 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10785 LIBIPW_CCK_DEFAULT_RATES_MASK);
10786 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10787 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10788 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10789 }
10790 break;
10791 }
10792
10793 return 0;
10794 }
10795
ipw_config(struct ipw_priv * priv)10796 static int ipw_config(struct ipw_priv *priv)
10797 {
10798 /* This is only called from ipw_up, which resets/reloads the firmware
10799 so, we don't need to first disable the card before we configure
10800 it */
10801 if (ipw_set_tx_power(priv))
10802 goto error;
10803
10804 /* initialize adapter address */
10805 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10806 goto error;
10807
10808 /* set basic system config settings */
10809 init_sys_config(&priv->sys_config);
10810
10811 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10812 * Does not support BT priority yet (don't abort or defer our Tx) */
10813 if (bt_coexist) {
10814 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10815
10816 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10817 priv->sys_config.bt_coexistence
10818 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10819 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10820 priv->sys_config.bt_coexistence
10821 |= CFG_BT_COEXISTENCE_OOB;
10822 }
10823
10824 #ifdef CONFIG_IPW2200_PROMISCUOUS
10825 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10826 priv->sys_config.accept_all_data_frames = 1;
10827 priv->sys_config.accept_non_directed_frames = 1;
10828 priv->sys_config.accept_all_mgmt_bcpr = 1;
10829 priv->sys_config.accept_all_mgmt_frames = 1;
10830 }
10831 #endif
10832
10833 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10834 priv->sys_config.answer_broadcast_ssid_probe = 1;
10835 else
10836 priv->sys_config.answer_broadcast_ssid_probe = 0;
10837
10838 if (ipw_send_system_config(priv))
10839 goto error;
10840
10841 init_supported_rates(priv, &priv->rates);
10842 if (ipw_send_supported_rates(priv, &priv->rates))
10843 goto error;
10844
10845 /* Set request-to-send threshold */
10846 if (priv->rts_threshold) {
10847 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10848 goto error;
10849 }
10850 #ifdef CONFIG_IPW2200_QOS
10851 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10852 ipw_qos_activate(priv, NULL);
10853 #endif /* CONFIG_IPW2200_QOS */
10854
10855 if (ipw_set_random_seed(priv))
10856 goto error;
10857
10858 /* final state transition to the RUN state */
10859 if (ipw_send_host_complete(priv))
10860 goto error;
10861
10862 priv->status |= STATUS_INIT;
10863
10864 ipw_led_init(priv);
10865 ipw_led_radio_on(priv);
10866 priv->notif_missed_beacons = 0;
10867
10868 /* Set hardware WEP key if it is configured. */
10869 if ((priv->capability & CAP_PRIVACY_ON) &&
10870 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10871 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10872 ipw_set_hwcrypto_keys(priv);
10873
10874 return 0;
10875
10876 error:
10877 return -EIO;
10878 }
10879
10880 /*
10881 * NOTE:
10882 *
10883 * These tables have been tested in conjunction with the
10884 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10885 *
10886 * Altering this values, using it on other hardware, or in geographies
10887 * not intended for resale of the above mentioned Intel adapters has
10888 * not been tested.
10889 *
10890 * Remember to update the table in README.ipw2200 when changing this
10891 * table.
10892 *
10893 */
10894 static const struct libipw_geo ipw_geos[] = {
10895 { /* Restricted */
10896 "---",
10897 .bg_channels = 11,
10898 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10899 {2427, 4}, {2432, 5}, {2437, 6},
10900 {2442, 7}, {2447, 8}, {2452, 9},
10901 {2457, 10}, {2462, 11}},
10902 },
10903
10904 { /* Custom US/Canada */
10905 "ZZF",
10906 .bg_channels = 11,
10907 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10908 {2427, 4}, {2432, 5}, {2437, 6},
10909 {2442, 7}, {2447, 8}, {2452, 9},
10910 {2457, 10}, {2462, 11}},
10911 .a_channels = 8,
10912 .a = {{5180, 36},
10913 {5200, 40},
10914 {5220, 44},
10915 {5240, 48},
10916 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10917 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10918 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10919 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10920 },
10921
10922 { /* Rest of World */
10923 "ZZD",
10924 .bg_channels = 13,
10925 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10926 {2427, 4}, {2432, 5}, {2437, 6},
10927 {2442, 7}, {2447, 8}, {2452, 9},
10928 {2457, 10}, {2462, 11}, {2467, 12},
10929 {2472, 13}},
10930 },
10931
10932 { /* Custom USA & Europe & High */
10933 "ZZA",
10934 .bg_channels = 11,
10935 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10936 {2427, 4}, {2432, 5}, {2437, 6},
10937 {2442, 7}, {2447, 8}, {2452, 9},
10938 {2457, 10}, {2462, 11}},
10939 .a_channels = 13,
10940 .a = {{5180, 36},
10941 {5200, 40},
10942 {5220, 44},
10943 {5240, 48},
10944 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10945 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10946 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10947 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10948 {5745, 149},
10949 {5765, 153},
10950 {5785, 157},
10951 {5805, 161},
10952 {5825, 165}},
10953 },
10954
10955 { /* Custom NA & Europe */
10956 "ZZB",
10957 .bg_channels = 11,
10958 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10959 {2427, 4}, {2432, 5}, {2437, 6},
10960 {2442, 7}, {2447, 8}, {2452, 9},
10961 {2457, 10}, {2462, 11}},
10962 .a_channels = 13,
10963 .a = {{5180, 36},
10964 {5200, 40},
10965 {5220, 44},
10966 {5240, 48},
10967 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10968 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10969 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10970 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10971 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10972 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10973 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10974 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10975 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10976 },
10977
10978 { /* Custom Japan */
10979 "ZZC",
10980 .bg_channels = 11,
10981 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10982 {2427, 4}, {2432, 5}, {2437, 6},
10983 {2442, 7}, {2447, 8}, {2452, 9},
10984 {2457, 10}, {2462, 11}},
10985 .a_channels = 4,
10986 .a = {{5170, 34}, {5190, 38},
10987 {5210, 42}, {5230, 46}},
10988 },
10989
10990 { /* Custom */
10991 "ZZM",
10992 .bg_channels = 11,
10993 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10994 {2427, 4}, {2432, 5}, {2437, 6},
10995 {2442, 7}, {2447, 8}, {2452, 9},
10996 {2457, 10}, {2462, 11}},
10997 },
10998
10999 { /* Europe */
11000 "ZZE",
11001 .bg_channels = 13,
11002 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11003 {2427, 4}, {2432, 5}, {2437, 6},
11004 {2442, 7}, {2447, 8}, {2452, 9},
11005 {2457, 10}, {2462, 11}, {2467, 12},
11006 {2472, 13}},
11007 .a_channels = 19,
11008 .a = {{5180, 36},
11009 {5200, 40},
11010 {5220, 44},
11011 {5240, 48},
11012 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11013 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11014 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11015 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11016 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11017 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11018 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11019 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11020 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11021 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11022 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11023 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11024 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11025 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11026 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11027 },
11028
11029 { /* Custom Japan */
11030 "ZZJ",
11031 .bg_channels = 14,
11032 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11033 {2427, 4}, {2432, 5}, {2437, 6},
11034 {2442, 7}, {2447, 8}, {2452, 9},
11035 {2457, 10}, {2462, 11}, {2467, 12},
11036 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11037 .a_channels = 4,
11038 .a = {{5170, 34}, {5190, 38},
11039 {5210, 42}, {5230, 46}},
11040 },
11041
11042 { /* Rest of World */
11043 "ZZR",
11044 .bg_channels = 14,
11045 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11046 {2427, 4}, {2432, 5}, {2437, 6},
11047 {2442, 7}, {2447, 8}, {2452, 9},
11048 {2457, 10}, {2462, 11}, {2467, 12},
11049 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11050 LIBIPW_CH_PASSIVE_ONLY}},
11051 },
11052
11053 { /* High Band */
11054 "ZZH",
11055 .bg_channels = 13,
11056 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11057 {2427, 4}, {2432, 5}, {2437, 6},
11058 {2442, 7}, {2447, 8}, {2452, 9},
11059 {2457, 10}, {2462, 11},
11060 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11061 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11062 .a_channels = 4,
11063 .a = {{5745, 149}, {5765, 153},
11064 {5785, 157}, {5805, 161}},
11065 },
11066
11067 { /* Custom Europe */
11068 "ZZG",
11069 .bg_channels = 13,
11070 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11071 {2427, 4}, {2432, 5}, {2437, 6},
11072 {2442, 7}, {2447, 8}, {2452, 9},
11073 {2457, 10}, {2462, 11},
11074 {2467, 12}, {2472, 13}},
11075 .a_channels = 4,
11076 .a = {{5180, 36}, {5200, 40},
11077 {5220, 44}, {5240, 48}},
11078 },
11079
11080 { /* Europe */
11081 "ZZK",
11082 .bg_channels = 13,
11083 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11084 {2427, 4}, {2432, 5}, {2437, 6},
11085 {2442, 7}, {2447, 8}, {2452, 9},
11086 {2457, 10}, {2462, 11},
11087 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11088 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11089 .a_channels = 24,
11090 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11091 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11092 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11093 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11094 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11095 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11096 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11097 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11098 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11099 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11100 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11101 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11102 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11103 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11104 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11105 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11106 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11107 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11108 {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11109 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11110 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11111 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11112 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11113 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11114 },
11115
11116 { /* Europe */
11117 "ZZL",
11118 .bg_channels = 11,
11119 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11120 {2427, 4}, {2432, 5}, {2437, 6},
11121 {2442, 7}, {2447, 8}, {2452, 9},
11122 {2457, 10}, {2462, 11}},
11123 .a_channels = 13,
11124 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11125 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11126 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11127 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11128 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11129 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11130 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11131 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11132 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11133 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11134 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11135 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11136 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11137 }
11138 };
11139
ipw_set_geo(struct ipw_priv * priv)11140 static void ipw_set_geo(struct ipw_priv *priv)
11141 {
11142 int j;
11143
11144 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11145 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11146 ipw_geos[j].name, 3))
11147 break;
11148 }
11149
11150 if (j == ARRAY_SIZE(ipw_geos)) {
11151 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11152 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11153 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11154 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11155 j = 0;
11156 }
11157
11158 libipw_set_geo(priv->ieee, &ipw_geos[j]);
11159 }
11160
11161 #define MAX_HW_RESTARTS 5
ipw_up(struct ipw_priv * priv)11162 static int ipw_up(struct ipw_priv *priv)
11163 {
11164 int rc, i;
11165
11166 /* Age scan list entries found before suspend */
11167 if (priv->suspend_time) {
11168 libipw_networks_age(priv->ieee, priv->suspend_time);
11169 priv->suspend_time = 0;
11170 }
11171
11172 if (priv->status & STATUS_EXIT_PENDING)
11173 return -EIO;
11174
11175 if (cmdlog && !priv->cmdlog) {
11176 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11177 GFP_KERNEL);
11178 if (priv->cmdlog == NULL) {
11179 IPW_ERROR("Error allocating %d command log entries.\n",
11180 cmdlog);
11181 return -ENOMEM;
11182 } else {
11183 priv->cmdlog_len = cmdlog;
11184 }
11185 }
11186
11187 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11188 /* Load the microcode, firmware, and eeprom.
11189 * Also start the clocks. */
11190 rc = ipw_load(priv);
11191 if (rc) {
11192 IPW_ERROR("Unable to load firmware: %d\n", rc);
11193 return rc;
11194 }
11195
11196 ipw_init_ordinals(priv);
11197 if (!(priv->config & CFG_CUSTOM_MAC))
11198 eeprom_parse_mac(priv, priv->mac_addr);
11199 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11200
11201 ipw_set_geo(priv);
11202
11203 if (priv->status & STATUS_RF_KILL_SW) {
11204 IPW_WARNING("Radio disabled by module parameter.\n");
11205 return 0;
11206 } else if (rf_kill_active(priv)) {
11207 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11208 "Kill switch must be turned off for "
11209 "wireless networking to work.\n");
11210 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11211 return 0;
11212 }
11213
11214 rc = ipw_config(priv);
11215 if (!rc) {
11216 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11217
11218 /* If configure to try and auto-associate, kick
11219 * off a scan. */
11220 schedule_delayed_work(&priv->request_scan, 0);
11221
11222 return 0;
11223 }
11224
11225 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11226 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11227 i, MAX_HW_RESTARTS);
11228
11229 /* We had an error bringing up the hardware, so take it
11230 * all the way back down so we can try again */
11231 ipw_down(priv);
11232 }
11233
11234 /* tried to restart and config the device for as long as our
11235 * patience could withstand */
11236 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11237
11238 return -EIO;
11239 }
11240
ipw_bg_up(struct work_struct * work)11241 static void ipw_bg_up(struct work_struct *work)
11242 {
11243 struct ipw_priv *priv =
11244 container_of(work, struct ipw_priv, up);
11245 mutex_lock(&priv->mutex);
11246 ipw_up(priv);
11247 mutex_unlock(&priv->mutex);
11248 }
11249
ipw_deinit(struct ipw_priv * priv)11250 static void ipw_deinit(struct ipw_priv *priv)
11251 {
11252 int i;
11253
11254 if (priv->status & STATUS_SCANNING) {
11255 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11256 ipw_abort_scan(priv);
11257 }
11258
11259 if (priv->status & STATUS_ASSOCIATED) {
11260 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11261 ipw_disassociate(priv);
11262 }
11263
11264 ipw_led_shutdown(priv);
11265
11266 /* Wait up to 1s for status to change to not scanning and not
11267 * associated (disassociation can take a while for a ful 802.11
11268 * exchange */
11269 for (i = 1000; i && (priv->status &
11270 (STATUS_DISASSOCIATING |
11271 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11272 udelay(10);
11273
11274 if (priv->status & (STATUS_DISASSOCIATING |
11275 STATUS_ASSOCIATED | STATUS_SCANNING))
11276 IPW_DEBUG_INFO("Still associated or scanning...\n");
11277 else
11278 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11279
11280 /* Attempt to disable the card */
11281 ipw_send_card_disable(priv, 0);
11282
11283 priv->status &= ~STATUS_INIT;
11284 }
11285
ipw_down(struct ipw_priv * priv)11286 static void ipw_down(struct ipw_priv *priv)
11287 {
11288 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11289
11290 priv->status |= STATUS_EXIT_PENDING;
11291
11292 if (ipw_is_init(priv))
11293 ipw_deinit(priv);
11294
11295 /* Wipe out the EXIT_PENDING status bit if we are not actually
11296 * exiting the module */
11297 if (!exit_pending)
11298 priv->status &= ~STATUS_EXIT_PENDING;
11299
11300 /* tell the device to stop sending interrupts */
11301 ipw_disable_interrupts(priv);
11302
11303 /* Clear all bits but the RF Kill */
11304 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11305 netif_carrier_off(priv->net_dev);
11306
11307 ipw_stop_nic(priv);
11308
11309 ipw_led_radio_off(priv);
11310 }
11311
ipw_bg_down(struct work_struct * work)11312 static void ipw_bg_down(struct work_struct *work)
11313 {
11314 struct ipw_priv *priv =
11315 container_of(work, struct ipw_priv, down);
11316 mutex_lock(&priv->mutex);
11317 ipw_down(priv);
11318 mutex_unlock(&priv->mutex);
11319 }
11320
ipw_wdev_init(struct net_device * dev)11321 static int ipw_wdev_init(struct net_device *dev)
11322 {
11323 int i, rc = 0;
11324 struct ipw_priv *priv = libipw_priv(dev);
11325 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11326 struct wireless_dev *wdev = &priv->ieee->wdev;
11327
11328 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11329
11330 /* fill-out priv->ieee->bg_band */
11331 if (geo->bg_channels) {
11332 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11333
11334 bg_band->band = NL80211_BAND_2GHZ;
11335 bg_band->n_channels = geo->bg_channels;
11336 bg_band->channels = kcalloc(geo->bg_channels,
11337 sizeof(struct ieee80211_channel),
11338 GFP_KERNEL);
11339 if (!bg_band->channels) {
11340 rc = -ENOMEM;
11341 goto out;
11342 }
11343 /* translate geo->bg to bg_band.channels */
11344 for (i = 0; i < geo->bg_channels; i++) {
11345 bg_band->channels[i].band = NL80211_BAND_2GHZ;
11346 bg_band->channels[i].center_freq = geo->bg[i].freq;
11347 bg_band->channels[i].hw_value = geo->bg[i].channel;
11348 bg_band->channels[i].max_power = geo->bg[i].max_power;
11349 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11350 bg_band->channels[i].flags |=
11351 IEEE80211_CHAN_NO_IR;
11352 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11353 bg_band->channels[i].flags |=
11354 IEEE80211_CHAN_NO_IR;
11355 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11356 bg_band->channels[i].flags |=
11357 IEEE80211_CHAN_RADAR;
11358 /* No equivalent for LIBIPW_CH_80211H_RULES,
11359 LIBIPW_CH_UNIFORM_SPREADING, or
11360 LIBIPW_CH_B_ONLY... */
11361 }
11362 /* point at bitrate info */
11363 bg_band->bitrates = ipw2200_bg_rates;
11364 bg_band->n_bitrates = ipw2200_num_bg_rates;
11365
11366 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11367 }
11368
11369 /* fill-out priv->ieee->a_band */
11370 if (geo->a_channels) {
11371 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11372
11373 a_band->band = NL80211_BAND_5GHZ;
11374 a_band->n_channels = geo->a_channels;
11375 a_band->channels = kcalloc(geo->a_channels,
11376 sizeof(struct ieee80211_channel),
11377 GFP_KERNEL);
11378 if (!a_band->channels) {
11379 rc = -ENOMEM;
11380 goto out;
11381 }
11382 /* translate geo->a to a_band.channels */
11383 for (i = 0; i < geo->a_channels; i++) {
11384 a_band->channels[i].band = NL80211_BAND_5GHZ;
11385 a_band->channels[i].center_freq = geo->a[i].freq;
11386 a_band->channels[i].hw_value = geo->a[i].channel;
11387 a_band->channels[i].max_power = geo->a[i].max_power;
11388 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11389 a_band->channels[i].flags |=
11390 IEEE80211_CHAN_NO_IR;
11391 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11392 a_band->channels[i].flags |=
11393 IEEE80211_CHAN_NO_IR;
11394 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11395 a_band->channels[i].flags |=
11396 IEEE80211_CHAN_RADAR;
11397 /* No equivalent for LIBIPW_CH_80211H_RULES,
11398 LIBIPW_CH_UNIFORM_SPREADING, or
11399 LIBIPW_CH_B_ONLY... */
11400 }
11401 /* point at bitrate info */
11402 a_band->bitrates = ipw2200_a_rates;
11403 a_band->n_bitrates = ipw2200_num_a_rates;
11404
11405 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11406 }
11407
11408 wdev->wiphy->cipher_suites = ipw_cipher_suites;
11409 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11410
11411 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11412
11413 /* With that information in place, we can now register the wiphy... */
11414 if (wiphy_register(wdev->wiphy))
11415 rc = -EIO;
11416 out:
11417 return rc;
11418 }
11419
11420 /* PCI driver stuff */
11421 static const struct pci_device_id card_ids[] = {
11422 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11423 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11425 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11426 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11427 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11428 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11429 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11430 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11431 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11432 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11433 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11434 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11435 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11436 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11437 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11438 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11439 {PCI_VDEVICE(INTEL, 0x104f), 0},
11440 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */
11441 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */
11442 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */
11443 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */
11444
11445 /* required last entry */
11446 {0,}
11447 };
11448
11449 MODULE_DEVICE_TABLE(pci, card_ids);
11450
11451 static struct attribute *ipw_sysfs_entries[] = {
11452 &dev_attr_rf_kill.attr,
11453 &dev_attr_direct_dword.attr,
11454 &dev_attr_indirect_byte.attr,
11455 &dev_attr_indirect_dword.attr,
11456 &dev_attr_mem_gpio_reg.attr,
11457 &dev_attr_command_event_reg.attr,
11458 &dev_attr_nic_type.attr,
11459 &dev_attr_status.attr,
11460 &dev_attr_cfg.attr,
11461 &dev_attr_error.attr,
11462 &dev_attr_event_log.attr,
11463 &dev_attr_cmd_log.attr,
11464 &dev_attr_eeprom_delay.attr,
11465 &dev_attr_ucode_version.attr,
11466 &dev_attr_rtc.attr,
11467 &dev_attr_scan_age.attr,
11468 &dev_attr_led.attr,
11469 &dev_attr_speed_scan.attr,
11470 &dev_attr_net_stats.attr,
11471 &dev_attr_channels.attr,
11472 #ifdef CONFIG_IPW2200_PROMISCUOUS
11473 &dev_attr_rtap_iface.attr,
11474 &dev_attr_rtap_filter.attr,
11475 #endif
11476 NULL
11477 };
11478
11479 static const struct attribute_group ipw_attribute_group = {
11480 .name = NULL, /* put in device directory */
11481 .attrs = ipw_sysfs_entries,
11482 };
11483
11484 #ifdef CONFIG_IPW2200_PROMISCUOUS
ipw_prom_open(struct net_device * dev)11485 static int ipw_prom_open(struct net_device *dev)
11486 {
11487 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11488 struct ipw_priv *priv = prom_priv->priv;
11489
11490 IPW_DEBUG_INFO("prom dev->open\n");
11491 netif_carrier_off(dev);
11492
11493 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11494 priv->sys_config.accept_all_data_frames = 1;
11495 priv->sys_config.accept_non_directed_frames = 1;
11496 priv->sys_config.accept_all_mgmt_bcpr = 1;
11497 priv->sys_config.accept_all_mgmt_frames = 1;
11498
11499 ipw_send_system_config(priv);
11500 }
11501
11502 return 0;
11503 }
11504
ipw_prom_stop(struct net_device * dev)11505 static int ipw_prom_stop(struct net_device *dev)
11506 {
11507 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11508 struct ipw_priv *priv = prom_priv->priv;
11509
11510 IPW_DEBUG_INFO("prom dev->stop\n");
11511
11512 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11513 priv->sys_config.accept_all_data_frames = 0;
11514 priv->sys_config.accept_non_directed_frames = 0;
11515 priv->sys_config.accept_all_mgmt_bcpr = 0;
11516 priv->sys_config.accept_all_mgmt_frames = 0;
11517
11518 ipw_send_system_config(priv);
11519 }
11520
11521 return 0;
11522 }
11523
ipw_prom_hard_start_xmit(struct sk_buff * skb,struct net_device * dev)11524 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11525 struct net_device *dev)
11526 {
11527 IPW_DEBUG_INFO("prom dev->xmit\n");
11528 dev_kfree_skb(skb);
11529 return NETDEV_TX_OK;
11530 }
11531
11532 static const struct net_device_ops ipw_prom_netdev_ops = {
11533 .ndo_open = ipw_prom_open,
11534 .ndo_stop = ipw_prom_stop,
11535 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11536 .ndo_set_mac_address = eth_mac_addr,
11537 .ndo_validate_addr = eth_validate_addr,
11538 };
11539
ipw_prom_alloc(struct ipw_priv * priv)11540 static int ipw_prom_alloc(struct ipw_priv *priv)
11541 {
11542 int rc = 0;
11543
11544 if (priv->prom_net_dev)
11545 return -EPERM;
11546
11547 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11548 if (priv->prom_net_dev == NULL)
11549 return -ENOMEM;
11550
11551 priv->prom_priv = libipw_priv(priv->prom_net_dev);
11552 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11553 priv->prom_priv->priv = priv;
11554
11555 strcpy(priv->prom_net_dev->name, "rtap%d");
11556 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11557
11558 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11559 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11560
11561 priv->prom_net_dev->min_mtu = 68;
11562 priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11563
11564 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11565 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11566
11567 rc = register_netdev(priv->prom_net_dev);
11568 if (rc) {
11569 free_libipw(priv->prom_net_dev, 1);
11570 priv->prom_net_dev = NULL;
11571 return rc;
11572 }
11573
11574 return 0;
11575 }
11576
ipw_prom_free(struct ipw_priv * priv)11577 static void ipw_prom_free(struct ipw_priv *priv)
11578 {
11579 if (!priv->prom_net_dev)
11580 return;
11581
11582 unregister_netdev(priv->prom_net_dev);
11583 free_libipw(priv->prom_net_dev, 1);
11584
11585 priv->prom_net_dev = NULL;
11586 }
11587
11588 #endif
11589
11590 static const struct net_device_ops ipw_netdev_ops = {
11591 .ndo_open = ipw_net_open,
11592 .ndo_stop = ipw_net_stop,
11593 .ndo_set_rx_mode = ipw_net_set_multicast_list,
11594 .ndo_set_mac_address = ipw_net_set_mac_address,
11595 .ndo_start_xmit = libipw_xmit,
11596 .ndo_validate_addr = eth_validate_addr,
11597 };
11598
ipw_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)11599 static int ipw_pci_probe(struct pci_dev *pdev,
11600 const struct pci_device_id *ent)
11601 {
11602 int err = 0;
11603 struct net_device *net_dev;
11604 void __iomem *base;
11605 u32 length, val;
11606 struct ipw_priv *priv;
11607 int i;
11608
11609 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11610 if (net_dev == NULL) {
11611 err = -ENOMEM;
11612 goto out;
11613 }
11614
11615 priv = libipw_priv(net_dev);
11616 priv->ieee = netdev_priv(net_dev);
11617
11618 priv->net_dev = net_dev;
11619 priv->pci_dev = pdev;
11620 ipw_debug_level = debug;
11621 spin_lock_init(&priv->irq_lock);
11622 spin_lock_init(&priv->lock);
11623 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11624 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11625
11626 mutex_init(&priv->mutex);
11627 if (pci_enable_device(pdev)) {
11628 err = -ENODEV;
11629 goto out_free_libipw;
11630 }
11631
11632 pci_set_master(pdev);
11633
11634 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11635 if (!err)
11636 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11637 if (err) {
11638 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11639 goto out_pci_disable_device;
11640 }
11641
11642 pci_set_drvdata(pdev, priv);
11643
11644 err = pci_request_regions(pdev, DRV_NAME);
11645 if (err)
11646 goto out_pci_disable_device;
11647
11648 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11649 * PCI Tx retries from interfering with C3 CPU state */
11650 pci_read_config_dword(pdev, 0x40, &val);
11651 if ((val & 0x0000ff00) != 0)
11652 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11653
11654 length = pci_resource_len(pdev, 0);
11655 priv->hw_len = length;
11656
11657 base = pci_ioremap_bar(pdev, 0);
11658 if (!base) {
11659 err = -ENODEV;
11660 goto out_pci_release_regions;
11661 }
11662
11663 priv->hw_base = base;
11664 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11665 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11666
11667 err = ipw_setup_deferred_work(priv);
11668 if (err) {
11669 IPW_ERROR("Unable to setup deferred work\n");
11670 goto out_iounmap;
11671 }
11672
11673 ipw_sw_reset(priv, 1);
11674
11675 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11676 if (err) {
11677 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11678 goto out_iounmap;
11679 }
11680
11681 SET_NETDEV_DEV(net_dev, &pdev->dev);
11682
11683 mutex_lock(&priv->mutex);
11684
11685 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11686 priv->ieee->set_security = shim__set_security;
11687 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11688
11689 #ifdef CONFIG_IPW2200_QOS
11690 priv->ieee->is_qos_active = ipw_is_qos_active;
11691 priv->ieee->handle_probe_response = ipw_handle_beacon;
11692 priv->ieee->handle_beacon = ipw_handle_probe_response;
11693 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11694 #endif /* CONFIG_IPW2200_QOS */
11695
11696 priv->ieee->perfect_rssi = -20;
11697 priv->ieee->worst_rssi = -85;
11698
11699 net_dev->netdev_ops = &ipw_netdev_ops;
11700 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11701 net_dev->wireless_data = &priv->wireless_data;
11702 net_dev->wireless_handlers = &ipw_wx_handler_def;
11703 net_dev->ethtool_ops = &ipw_ethtool_ops;
11704
11705 net_dev->min_mtu = 68;
11706 net_dev->max_mtu = LIBIPW_DATA_LEN;
11707
11708 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11709 if (err) {
11710 IPW_ERROR("failed to create sysfs device attributes\n");
11711 mutex_unlock(&priv->mutex);
11712 goto out_release_irq;
11713 }
11714
11715 if (ipw_up(priv)) {
11716 mutex_unlock(&priv->mutex);
11717 err = -EIO;
11718 goto out_remove_sysfs;
11719 }
11720
11721 mutex_unlock(&priv->mutex);
11722
11723 err = ipw_wdev_init(net_dev);
11724 if (err) {
11725 IPW_ERROR("failed to register wireless device\n");
11726 goto out_remove_sysfs;
11727 }
11728
11729 err = register_netdev(net_dev);
11730 if (err) {
11731 IPW_ERROR("failed to register network device\n");
11732 goto out_unregister_wiphy;
11733 }
11734
11735 #ifdef CONFIG_IPW2200_PROMISCUOUS
11736 if (rtap_iface) {
11737 err = ipw_prom_alloc(priv);
11738 if (err) {
11739 IPW_ERROR("Failed to register promiscuous network "
11740 "device (error %d).\n", err);
11741 unregister_netdev(priv->net_dev);
11742 goto out_unregister_wiphy;
11743 }
11744 }
11745 #endif
11746
11747 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11748 "channels, %d 802.11a channels)\n",
11749 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11750 priv->ieee->geo.a_channels);
11751
11752 return 0;
11753
11754 out_unregister_wiphy:
11755 wiphy_unregister(priv->ieee->wdev.wiphy);
11756 kfree(priv->ieee->a_band.channels);
11757 kfree(priv->ieee->bg_band.channels);
11758 out_remove_sysfs:
11759 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11760 out_release_irq:
11761 free_irq(pdev->irq, priv);
11762 out_iounmap:
11763 iounmap(priv->hw_base);
11764 out_pci_release_regions:
11765 pci_release_regions(pdev);
11766 out_pci_disable_device:
11767 pci_disable_device(pdev);
11768 out_free_libipw:
11769 free_libipw(priv->net_dev, 0);
11770 out:
11771 return err;
11772 }
11773
ipw_pci_remove(struct pci_dev * pdev)11774 static void ipw_pci_remove(struct pci_dev *pdev)
11775 {
11776 struct ipw_priv *priv = pci_get_drvdata(pdev);
11777 struct list_head *p, *q;
11778 int i;
11779
11780 if (!priv)
11781 return;
11782
11783 mutex_lock(&priv->mutex);
11784
11785 priv->status |= STATUS_EXIT_PENDING;
11786 ipw_down(priv);
11787 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11788
11789 mutex_unlock(&priv->mutex);
11790
11791 unregister_netdev(priv->net_dev);
11792
11793 if (priv->rxq) {
11794 ipw_rx_queue_free(priv, priv->rxq);
11795 priv->rxq = NULL;
11796 }
11797 ipw_tx_queue_free(priv);
11798
11799 if (priv->cmdlog) {
11800 kfree(priv->cmdlog);
11801 priv->cmdlog = NULL;
11802 }
11803
11804 /* make sure all works are inactive */
11805 cancel_delayed_work_sync(&priv->adhoc_check);
11806 cancel_work_sync(&priv->associate);
11807 cancel_work_sync(&priv->disassociate);
11808 cancel_work_sync(&priv->system_config);
11809 cancel_work_sync(&priv->rx_replenish);
11810 cancel_work_sync(&priv->adapter_restart);
11811 cancel_delayed_work_sync(&priv->rf_kill);
11812 cancel_work_sync(&priv->up);
11813 cancel_work_sync(&priv->down);
11814 cancel_delayed_work_sync(&priv->request_scan);
11815 cancel_delayed_work_sync(&priv->request_direct_scan);
11816 cancel_delayed_work_sync(&priv->request_passive_scan);
11817 cancel_delayed_work_sync(&priv->scan_event);
11818 cancel_delayed_work_sync(&priv->gather_stats);
11819 cancel_work_sync(&priv->abort_scan);
11820 cancel_work_sync(&priv->roam);
11821 cancel_delayed_work_sync(&priv->scan_check);
11822 cancel_work_sync(&priv->link_up);
11823 cancel_work_sync(&priv->link_down);
11824 cancel_delayed_work_sync(&priv->led_link_on);
11825 cancel_delayed_work_sync(&priv->led_link_off);
11826 cancel_delayed_work_sync(&priv->led_act_off);
11827 cancel_work_sync(&priv->merge_networks);
11828
11829 /* Free MAC hash list for ADHOC */
11830 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11831 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11832 list_del(p);
11833 kfree(list_entry(p, struct ipw_ibss_seq, list));
11834 }
11835 }
11836
11837 kfree(priv->error);
11838 priv->error = NULL;
11839
11840 #ifdef CONFIG_IPW2200_PROMISCUOUS
11841 ipw_prom_free(priv);
11842 #endif
11843
11844 free_irq(pdev->irq, priv);
11845 iounmap(priv->hw_base);
11846 pci_release_regions(pdev);
11847 pci_disable_device(pdev);
11848 /* wiphy_unregister needs to be here, before free_libipw */
11849 wiphy_unregister(priv->ieee->wdev.wiphy);
11850 kfree(priv->ieee->a_band.channels);
11851 kfree(priv->ieee->bg_band.channels);
11852 free_libipw(priv->net_dev, 0);
11853 free_firmware();
11854 }
11855
11856 #ifdef CONFIG_PM
ipw_pci_suspend(struct pci_dev * pdev,pm_message_t state)11857 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11858 {
11859 struct ipw_priv *priv = pci_get_drvdata(pdev);
11860 struct net_device *dev = priv->net_dev;
11861
11862 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11863
11864 /* Take down the device; powers it off, etc. */
11865 ipw_down(priv);
11866
11867 /* Remove the PRESENT state of the device */
11868 netif_device_detach(dev);
11869
11870 pci_save_state(pdev);
11871 pci_disable_device(pdev);
11872 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11873
11874 priv->suspend_at = ktime_get_boottime_seconds();
11875
11876 return 0;
11877 }
11878
ipw_pci_resume(struct pci_dev * pdev)11879 static int ipw_pci_resume(struct pci_dev *pdev)
11880 {
11881 struct ipw_priv *priv = pci_get_drvdata(pdev);
11882 struct net_device *dev = priv->net_dev;
11883 int err;
11884 u32 val;
11885
11886 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11887
11888 pci_set_power_state(pdev, PCI_D0);
11889 err = pci_enable_device(pdev);
11890 if (err) {
11891 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11892 dev->name);
11893 return err;
11894 }
11895 pci_restore_state(pdev);
11896
11897 /*
11898 * Suspend/Resume resets the PCI configuration space, so we have to
11899 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11900 * from interfering with C3 CPU state. pci_restore_state won't help
11901 * here since it only restores the first 64 bytes pci config header.
11902 */
11903 pci_read_config_dword(pdev, 0x40, &val);
11904 if ((val & 0x0000ff00) != 0)
11905 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11906
11907 /* Set the device back into the PRESENT state; this will also wake
11908 * the queue of needed */
11909 netif_device_attach(dev);
11910
11911 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11912
11913 /* Bring the device back up */
11914 schedule_work(&priv->up);
11915
11916 return 0;
11917 }
11918 #endif
11919
ipw_pci_shutdown(struct pci_dev * pdev)11920 static void ipw_pci_shutdown(struct pci_dev *pdev)
11921 {
11922 struct ipw_priv *priv = pci_get_drvdata(pdev);
11923
11924 /* Take down the device; powers it off, etc. */
11925 ipw_down(priv);
11926
11927 pci_disable_device(pdev);
11928 }
11929
11930 /* driver initialization stuff */
11931 static struct pci_driver ipw_driver = {
11932 .name = DRV_NAME,
11933 .id_table = card_ids,
11934 .probe = ipw_pci_probe,
11935 .remove = ipw_pci_remove,
11936 #ifdef CONFIG_PM
11937 .suspend = ipw_pci_suspend,
11938 .resume = ipw_pci_resume,
11939 #endif
11940 .shutdown = ipw_pci_shutdown,
11941 };
11942
ipw_init(void)11943 static int __init ipw_init(void)
11944 {
11945 int ret;
11946
11947 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11948 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11949
11950 ret = pci_register_driver(&ipw_driver);
11951 if (ret) {
11952 IPW_ERROR("Unable to initialize PCI module\n");
11953 return ret;
11954 }
11955
11956 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11957 if (ret) {
11958 IPW_ERROR("Unable to create driver sysfs file\n");
11959 pci_unregister_driver(&ipw_driver);
11960 return ret;
11961 }
11962
11963 return ret;
11964 }
11965
ipw_exit(void)11966 static void __exit ipw_exit(void)
11967 {
11968 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11969 pci_unregister_driver(&ipw_driver);
11970 }
11971
11972 module_param(disable, int, 0444);
11973 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11974
11975 module_param(associate, int, 0444);
11976 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11977
11978 module_param(auto_create, int, 0444);
11979 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11980
11981 module_param_named(led, led_support, int, 0444);
11982 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11983
11984 module_param(debug, int, 0444);
11985 MODULE_PARM_DESC(debug, "debug output mask");
11986
11987 module_param_named(channel, default_channel, int, 0444);
11988 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11989
11990 #ifdef CONFIG_IPW2200_PROMISCUOUS
11991 module_param(rtap_iface, int, 0444);
11992 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11993 #endif
11994
11995 #ifdef CONFIG_IPW2200_QOS
11996 module_param(qos_enable, int, 0444);
11997 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11998
11999 module_param(qos_burst_enable, int, 0444);
12000 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12001
12002 module_param(qos_no_ack_mask, int, 0444);
12003 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12004
12005 module_param(burst_duration_CCK, int, 0444);
12006 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12007
12008 module_param(burst_duration_OFDM, int, 0444);
12009 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12010 #endif /* CONFIG_IPW2200_QOS */
12011
12012 #ifdef CONFIG_IPW2200_MONITOR
12013 module_param_named(mode, network_mode, int, 0444);
12014 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12015 #else
12016 module_param_named(mode, network_mode, int, 0444);
12017 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12018 #endif
12019
12020 module_param(bt_coexist, int, 0444);
12021 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12022
12023 module_param(hwcrypto, int, 0444);
12024 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12025
12026 module_param(cmdlog, int, 0444);
12027 MODULE_PARM_DESC(cmdlog,
12028 "allocate a ring buffer for logging firmware commands");
12029
12030 module_param(roaming, int, 0444);
12031 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12032
12033 module_param(antenna, int, 0444);
12034 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12035
12036 module_exit(ipw_exit);
12037 module_init(ipw_init);
12038