1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx Axi Ethernet device driver
4  *
5  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
6  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
7  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9  * Copyright (c) 2010 - 2011 PetaLogix
10  * Copyright (c) 2019 SED Systems, a division of Calian Ltd.
11  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12  *
13  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14  * and Spartan6.
15  *
16  * TODO:
17  *  - Add Axi Fifo support.
18  *  - Factor out Axi DMA code into separate driver.
19  *  - Test and fix basic multicast filtering.
20  *  - Add support for extended multicast filtering.
21  *  - Test basic VLAN support.
22  *  - Add support for extended VLAN support.
23  */
24 
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/phy.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 
41 #include "xilinx_axienet.h"
42 
43 /* Descriptors defines for Tx and Rx DMA */
44 #define TX_BD_NUM_DEFAULT		64
45 #define RX_BD_NUM_DEFAULT		1024
46 #define TX_BD_NUM_MAX			4096
47 #define RX_BD_NUM_MAX			4096
48 
49 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
50 #define DRIVER_NAME		"xaxienet"
51 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
52 #define DRIVER_VERSION		"1.00a"
53 
54 #define AXIENET_REGS_N		40
55 
56 /* Match table for of_platform binding */
57 static const struct of_device_id axienet_of_match[] = {
58 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
59 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
60 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
61 	{},
62 };
63 
64 MODULE_DEVICE_TABLE(of, axienet_of_match);
65 
66 /* Option table for setting up Axi Ethernet hardware options */
67 static struct axienet_option axienet_options[] = {
68 	/* Turn on jumbo packet support for both Rx and Tx */
69 	{
70 		.opt = XAE_OPTION_JUMBO,
71 		.reg = XAE_TC_OFFSET,
72 		.m_or = XAE_TC_JUM_MASK,
73 	}, {
74 		.opt = XAE_OPTION_JUMBO,
75 		.reg = XAE_RCW1_OFFSET,
76 		.m_or = XAE_RCW1_JUM_MASK,
77 	}, { /* Turn on VLAN packet support for both Rx and Tx */
78 		.opt = XAE_OPTION_VLAN,
79 		.reg = XAE_TC_OFFSET,
80 		.m_or = XAE_TC_VLAN_MASK,
81 	}, {
82 		.opt = XAE_OPTION_VLAN,
83 		.reg = XAE_RCW1_OFFSET,
84 		.m_or = XAE_RCW1_VLAN_MASK,
85 	}, { /* Turn on FCS stripping on receive packets */
86 		.opt = XAE_OPTION_FCS_STRIP,
87 		.reg = XAE_RCW1_OFFSET,
88 		.m_or = XAE_RCW1_FCS_MASK,
89 	}, { /* Turn on FCS insertion on transmit packets */
90 		.opt = XAE_OPTION_FCS_INSERT,
91 		.reg = XAE_TC_OFFSET,
92 		.m_or = XAE_TC_FCS_MASK,
93 	}, { /* Turn off length/type field checking on receive packets */
94 		.opt = XAE_OPTION_LENTYPE_ERR,
95 		.reg = XAE_RCW1_OFFSET,
96 		.m_or = XAE_RCW1_LT_DIS_MASK,
97 	}, { /* Turn on Rx flow control */
98 		.opt = XAE_OPTION_FLOW_CONTROL,
99 		.reg = XAE_FCC_OFFSET,
100 		.m_or = XAE_FCC_FCRX_MASK,
101 	}, { /* Turn on Tx flow control */
102 		.opt = XAE_OPTION_FLOW_CONTROL,
103 		.reg = XAE_FCC_OFFSET,
104 		.m_or = XAE_FCC_FCTX_MASK,
105 	}, { /* Turn on promiscuous frame filtering */
106 		.opt = XAE_OPTION_PROMISC,
107 		.reg = XAE_FMI_OFFSET,
108 		.m_or = XAE_FMI_PM_MASK,
109 	}, { /* Enable transmitter */
110 		.opt = XAE_OPTION_TXEN,
111 		.reg = XAE_TC_OFFSET,
112 		.m_or = XAE_TC_TX_MASK,
113 	}, { /* Enable receiver */
114 		.opt = XAE_OPTION_RXEN,
115 		.reg = XAE_RCW1_OFFSET,
116 		.m_or = XAE_RCW1_RX_MASK,
117 	},
118 	{}
119 };
120 
121 /**
122  * axienet_dma_in32 - Memory mapped Axi DMA register read
123  * @lp:		Pointer to axienet local structure
124  * @reg:	Address offset from the base address of the Axi DMA core
125  *
126  * Return: The contents of the Axi DMA register
127  *
128  * This function returns the contents of the corresponding Axi DMA register.
129  */
axienet_dma_in32(struct axienet_local * lp,off_t reg)130 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
131 {
132 	return ioread32(lp->dma_regs + reg);
133 }
134 
135 /**
136  * axienet_dma_out32 - Memory mapped Axi DMA register write.
137  * @lp:		Pointer to axienet local structure
138  * @reg:	Address offset from the base address of the Axi DMA core
139  * @value:	Value to be written into the Axi DMA register
140  *
141  * This function writes the desired value into the corresponding Axi DMA
142  * register.
143  */
axienet_dma_out32(struct axienet_local * lp,off_t reg,u32 value)144 static inline void axienet_dma_out32(struct axienet_local *lp,
145 				     off_t reg, u32 value)
146 {
147 	iowrite32(value, lp->dma_regs + reg);
148 }
149 
150 /**
151  * axienet_dma_bd_release - Release buffer descriptor rings
152  * @ndev:	Pointer to the net_device structure
153  *
154  * This function is used to release the descriptors allocated in
155  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
156  * driver stop api is called.
157  */
axienet_dma_bd_release(struct net_device * ndev)158 static void axienet_dma_bd_release(struct net_device *ndev)
159 {
160 	int i;
161 	struct axienet_local *lp = netdev_priv(ndev);
162 
163 	for (i = 0; i < lp->rx_bd_num; i++) {
164 		dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
165 				 lp->max_frm_size, DMA_FROM_DEVICE);
166 		dev_kfree_skb(lp->rx_bd_v[i].skb);
167 	}
168 
169 	if (lp->rx_bd_v) {
170 		dma_free_coherent(ndev->dev.parent,
171 				  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
172 				  lp->rx_bd_v,
173 				  lp->rx_bd_p);
174 	}
175 	if (lp->tx_bd_v) {
176 		dma_free_coherent(ndev->dev.parent,
177 				  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
178 				  lp->tx_bd_v,
179 				  lp->tx_bd_p);
180 	}
181 }
182 
183 /**
184  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
185  * @ndev:	Pointer to the net_device structure
186  *
187  * Return: 0, on success -ENOMEM, on failure
188  *
189  * This function is called to initialize the Rx and Tx DMA descriptor
190  * rings. This initializes the descriptors with required default values
191  * and is called when Axi Ethernet driver reset is called.
192  */
axienet_dma_bd_init(struct net_device * ndev)193 static int axienet_dma_bd_init(struct net_device *ndev)
194 {
195 	u32 cr;
196 	int i;
197 	struct sk_buff *skb;
198 	struct axienet_local *lp = netdev_priv(ndev);
199 
200 	/* Reset the indexes which are used for accessing the BDs */
201 	lp->tx_bd_ci = 0;
202 	lp->tx_bd_tail = 0;
203 	lp->rx_bd_ci = 0;
204 
205 	/* Allocate the Tx and Rx buffer descriptors. */
206 	lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
207 					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
208 					 &lp->tx_bd_p, GFP_KERNEL);
209 	if (!lp->tx_bd_v)
210 		goto out;
211 
212 	lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
213 					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
214 					 &lp->rx_bd_p, GFP_KERNEL);
215 	if (!lp->rx_bd_v)
216 		goto out;
217 
218 	for (i = 0; i < lp->tx_bd_num; i++) {
219 		lp->tx_bd_v[i].next = lp->tx_bd_p +
220 				      sizeof(*lp->tx_bd_v) *
221 				      ((i + 1) % lp->tx_bd_num);
222 	}
223 
224 	for (i = 0; i < lp->rx_bd_num; i++) {
225 		lp->rx_bd_v[i].next = lp->rx_bd_p +
226 				      sizeof(*lp->rx_bd_v) *
227 				      ((i + 1) % lp->rx_bd_num);
228 
229 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
230 		if (!skb)
231 			goto out;
232 
233 		lp->rx_bd_v[i].skb = skb;
234 		lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
235 						     skb->data,
236 						     lp->max_frm_size,
237 						     DMA_FROM_DEVICE);
238 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
239 	}
240 
241 	/* Start updating the Rx channel control register */
242 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
243 	/* Update the interrupt coalesce count */
244 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
245 	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
246 	/* Update the delay timer count */
247 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
248 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
249 	/* Enable coalesce, delay timer and error interrupts */
250 	cr |= XAXIDMA_IRQ_ALL_MASK;
251 	/* Write to the Rx channel control register */
252 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
253 
254 	/* Start updating the Tx channel control register */
255 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
256 	/* Update the interrupt coalesce count */
257 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
258 	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
259 	/* Update the delay timer count */
260 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
261 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
262 	/* Enable coalesce, delay timer and error interrupts */
263 	cr |= XAXIDMA_IRQ_ALL_MASK;
264 	/* Write to the Tx channel control register */
265 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
266 
267 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
268 	 * halted state. This will make the Rx side ready for reception.
269 	 */
270 	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
271 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
272 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
273 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
274 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
275 			  (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
276 
277 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
278 	 * Tx channel is now ready to run. But only after we write to the
279 	 * tail pointer register that the Tx channel will start transmitting.
280 	 */
281 	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
282 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
283 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
284 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
285 
286 	return 0;
287 out:
288 	axienet_dma_bd_release(ndev);
289 	return -ENOMEM;
290 }
291 
292 /**
293  * axienet_set_mac_address - Write the MAC address
294  * @ndev:	Pointer to the net_device structure
295  * @address:	6 byte Address to be written as MAC address
296  *
297  * This function is called to initialize the MAC address of the Axi Ethernet
298  * core. It writes to the UAW0 and UAW1 registers of the core.
299  */
axienet_set_mac_address(struct net_device * ndev,const void * address)300 static void axienet_set_mac_address(struct net_device *ndev,
301 				    const void *address)
302 {
303 	struct axienet_local *lp = netdev_priv(ndev);
304 
305 	if (address)
306 		memcpy(ndev->dev_addr, address, ETH_ALEN);
307 	if (!is_valid_ether_addr(ndev->dev_addr))
308 		eth_hw_addr_random(ndev);
309 
310 	/* Set up unicast MAC address filter set its mac address */
311 	axienet_iow(lp, XAE_UAW0_OFFSET,
312 		    (ndev->dev_addr[0]) |
313 		    (ndev->dev_addr[1] << 8) |
314 		    (ndev->dev_addr[2] << 16) |
315 		    (ndev->dev_addr[3] << 24));
316 	axienet_iow(lp, XAE_UAW1_OFFSET,
317 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
318 		      ~XAE_UAW1_UNICASTADDR_MASK) |
319 		     (ndev->dev_addr[4] |
320 		     (ndev->dev_addr[5] << 8))));
321 }
322 
323 /**
324  * netdev_set_mac_address - Write the MAC address (from outside the driver)
325  * @ndev:	Pointer to the net_device structure
326  * @p:		6 byte Address to be written as MAC address
327  *
328  * Return: 0 for all conditions. Presently, there is no failure case.
329  *
330  * This function is called to initialize the MAC address of the Axi Ethernet
331  * core. It calls the core specific axienet_set_mac_address. This is the
332  * function that goes into net_device_ops structure entry ndo_set_mac_address.
333  */
netdev_set_mac_address(struct net_device * ndev,void * p)334 static int netdev_set_mac_address(struct net_device *ndev, void *p)
335 {
336 	struct sockaddr *addr = p;
337 	axienet_set_mac_address(ndev, addr->sa_data);
338 	return 0;
339 }
340 
341 /**
342  * axienet_set_multicast_list - Prepare the multicast table
343  * @ndev:	Pointer to the net_device structure
344  *
345  * This function is called to initialize the multicast table during
346  * initialization. The Axi Ethernet basic multicast support has a four-entry
347  * multicast table which is initialized here. Additionally this function
348  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
349  * means whenever the multicast table entries need to be updated this
350  * function gets called.
351  */
axienet_set_multicast_list(struct net_device * ndev)352 static void axienet_set_multicast_list(struct net_device *ndev)
353 {
354 	int i;
355 	u32 reg, af0reg, af1reg;
356 	struct axienet_local *lp = netdev_priv(ndev);
357 
358 	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
359 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
360 		/* We must make the kernel realize we had to move into
361 		 * promiscuous mode. If it was a promiscuous mode request
362 		 * the flag is already set. If not we set it.
363 		 */
364 		ndev->flags |= IFF_PROMISC;
365 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
366 		reg |= XAE_FMI_PM_MASK;
367 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
368 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
369 	} else if (!netdev_mc_empty(ndev)) {
370 		struct netdev_hw_addr *ha;
371 
372 		i = 0;
373 		netdev_for_each_mc_addr(ha, ndev) {
374 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
375 				break;
376 
377 			af0reg = (ha->addr[0]);
378 			af0reg |= (ha->addr[1] << 8);
379 			af0reg |= (ha->addr[2] << 16);
380 			af0reg |= (ha->addr[3] << 24);
381 
382 			af1reg = (ha->addr[4]);
383 			af1reg |= (ha->addr[5] << 8);
384 
385 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
386 			reg |= i;
387 
388 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
389 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
390 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
391 			i++;
392 		}
393 	} else {
394 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
395 		reg &= ~XAE_FMI_PM_MASK;
396 
397 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
398 
399 		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
400 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
401 			reg |= i;
402 
403 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
404 			axienet_iow(lp, XAE_AF0_OFFSET, 0);
405 			axienet_iow(lp, XAE_AF1_OFFSET, 0);
406 		}
407 
408 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
409 	}
410 }
411 
412 /**
413  * axienet_setoptions - Set an Axi Ethernet option
414  * @ndev:	Pointer to the net_device structure
415  * @options:	Option to be enabled/disabled
416  *
417  * The Axi Ethernet core has multiple features which can be selectively turned
418  * on or off. The typical options could be jumbo frame option, basic VLAN
419  * option, promiscuous mode option etc. This function is used to set or clear
420  * these options in the Axi Ethernet hardware. This is done through
421  * axienet_option structure .
422  */
axienet_setoptions(struct net_device * ndev,u32 options)423 static void axienet_setoptions(struct net_device *ndev, u32 options)
424 {
425 	int reg;
426 	struct axienet_local *lp = netdev_priv(ndev);
427 	struct axienet_option *tp = &axienet_options[0];
428 
429 	while (tp->opt) {
430 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
431 		if (options & tp->opt)
432 			reg |= tp->m_or;
433 		axienet_iow(lp, tp->reg, reg);
434 		tp++;
435 	}
436 
437 	lp->options |= options;
438 }
439 
__axienet_device_reset(struct axienet_local * lp)440 static void __axienet_device_reset(struct axienet_local *lp)
441 {
442 	u32 timeout;
443 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
444 	 * process of Axi DMA takes a while to complete as all pending
445 	 * commands/transfers will be flushed or completed during this
446 	 * reset process.
447 	 * Note that even though both TX and RX have their own reset register,
448 	 * they both reset the entire DMA core, so only one needs to be used.
449 	 */
450 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
451 	timeout = DELAY_OF_ONE_MILLISEC;
452 	while (axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET) &
453 				XAXIDMA_CR_RESET_MASK) {
454 		udelay(1);
455 		if (--timeout == 0) {
456 			netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
457 				   __func__);
458 			break;
459 		}
460 	}
461 }
462 
463 /**
464  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
465  * @ndev:	Pointer to the net_device structure
466  *
467  * This function is called to reset and initialize the Axi Ethernet core. This
468  * is typically called during initialization. It does a reset of the Axi DMA
469  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
470  * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
471  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
472  * core.
473  */
axienet_device_reset(struct net_device * ndev)474 static void axienet_device_reset(struct net_device *ndev)
475 {
476 	u32 axienet_status;
477 	struct axienet_local *lp = netdev_priv(ndev);
478 
479 	__axienet_device_reset(lp);
480 
481 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
482 	lp->options |= XAE_OPTION_VLAN;
483 	lp->options &= (~XAE_OPTION_JUMBO);
484 
485 	if ((ndev->mtu > XAE_MTU) &&
486 		(ndev->mtu <= XAE_JUMBO_MTU)) {
487 		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
488 					XAE_TRL_SIZE;
489 
490 		if (lp->max_frm_size <= lp->rxmem)
491 			lp->options |= XAE_OPTION_JUMBO;
492 	}
493 
494 	if (axienet_dma_bd_init(ndev)) {
495 		netdev_err(ndev, "%s: descriptor allocation failed\n",
496 			   __func__);
497 	}
498 
499 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
500 	axienet_status &= ~XAE_RCW1_RX_MASK;
501 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
502 
503 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
504 	if (axienet_status & XAE_INT_RXRJECT_MASK)
505 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
506 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
507 		    XAE_INT_RECV_ERROR_MASK : 0);
508 
509 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
510 
511 	/* Sync default options with HW but leave receiver and
512 	 * transmitter disabled.
513 	 */
514 	axienet_setoptions(ndev, lp->options &
515 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
516 	axienet_set_mac_address(ndev, NULL);
517 	axienet_set_multicast_list(ndev);
518 	axienet_setoptions(ndev, lp->options);
519 
520 	netif_trans_update(ndev);
521 }
522 
523 /**
524  * axienet_start_xmit_done - Invoked once a transmit is completed by the
525  * Axi DMA Tx channel.
526  * @ndev:	Pointer to the net_device structure
527  *
528  * This function is invoked from the Axi DMA Tx isr to notify the completion
529  * of transmit operation. It clears fields in the corresponding Tx BDs and
530  * unmaps the corresponding buffer so that CPU can regain ownership of the
531  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
532  * required.
533  */
axienet_start_xmit_done(struct net_device * ndev)534 static void axienet_start_xmit_done(struct net_device *ndev)
535 {
536 	u32 size = 0;
537 	u32 packets = 0;
538 	struct axienet_local *lp = netdev_priv(ndev);
539 	struct axidma_bd *cur_p;
540 	unsigned int status = 0;
541 
542 	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
543 	status = cur_p->status;
544 	while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
545 		dma_unmap_single(ndev->dev.parent, cur_p->phys,
546 				(cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
547 				DMA_TO_DEVICE);
548 		if (cur_p->skb)
549 			dev_consume_skb_irq(cur_p->skb);
550 		/*cur_p->phys = 0;*/
551 		cur_p->app0 = 0;
552 		cur_p->app1 = 0;
553 		cur_p->app2 = 0;
554 		cur_p->app4 = 0;
555 		cur_p->status = 0;
556 		cur_p->skb = NULL;
557 
558 		size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
559 		packets++;
560 
561 		if (++lp->tx_bd_ci >= lp->tx_bd_num)
562 			lp->tx_bd_ci = 0;
563 		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
564 		status = cur_p->status;
565 	}
566 
567 	ndev->stats.tx_packets += packets;
568 	ndev->stats.tx_bytes += size;
569 
570 	/* Matches barrier in axienet_start_xmit */
571 	smp_mb();
572 
573 	netif_wake_queue(ndev);
574 }
575 
576 /**
577  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
578  * @lp:		Pointer to the axienet_local structure
579  * @num_frag:	The number of BDs to check for
580  *
581  * Return: 0, on success
582  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
583  *
584  * This function is invoked before BDs are allocated and transmission starts.
585  * This function returns 0 if a BD or group of BDs can be allocated for
586  * transmission. If the BD or any of the BDs are not free the function
587  * returns a busy status. This is invoked from axienet_start_xmit.
588  */
axienet_check_tx_bd_space(struct axienet_local * lp,int num_frag)589 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
590 					    int num_frag)
591 {
592 	struct axidma_bd *cur_p;
593 	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % lp->tx_bd_num];
594 	if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
595 		return NETDEV_TX_BUSY;
596 	return 0;
597 }
598 
599 /**
600  * axienet_start_xmit - Starts the transmission.
601  * @skb:	sk_buff pointer that contains data to be Txed.
602  * @ndev:	Pointer to net_device structure.
603  *
604  * Return: NETDEV_TX_OK, on success
605  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
606  *
607  * This function is invoked from upper layers to initiate transmission. The
608  * function uses the next available free BDs and populates their fields to
609  * start the transmission. Additionally if checksum offloading is supported,
610  * it populates AXI Stream Control fields with appropriate values.
611  */
612 static netdev_tx_t
axienet_start_xmit(struct sk_buff * skb,struct net_device * ndev)613 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
614 {
615 	u32 ii;
616 	u32 num_frag;
617 	u32 csum_start_off;
618 	u32 csum_index_off;
619 	skb_frag_t *frag;
620 	dma_addr_t tail_p;
621 	struct axienet_local *lp = netdev_priv(ndev);
622 	struct axidma_bd *cur_p;
623 
624 	num_frag = skb_shinfo(skb)->nr_frags;
625 	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
626 
627 	if (axienet_check_tx_bd_space(lp, num_frag)) {
628 		if (netif_queue_stopped(ndev))
629 			return NETDEV_TX_BUSY;
630 
631 		netif_stop_queue(ndev);
632 
633 		/* Matches barrier in axienet_start_xmit_done */
634 		smp_mb();
635 
636 		/* Space might have just been freed - check again */
637 		if (axienet_check_tx_bd_space(lp, num_frag))
638 			return NETDEV_TX_BUSY;
639 
640 		netif_wake_queue(ndev);
641 	}
642 
643 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
644 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
645 			/* Tx Full Checksum Offload Enabled */
646 			cur_p->app0 |= 2;
647 		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
648 			csum_start_off = skb_transport_offset(skb);
649 			csum_index_off = csum_start_off + skb->csum_offset;
650 			/* Tx Partial Checksum Offload Enabled */
651 			cur_p->app0 |= 1;
652 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
653 		}
654 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
655 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
656 	}
657 
658 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
659 	cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
660 				     skb_headlen(skb), DMA_TO_DEVICE);
661 
662 	for (ii = 0; ii < num_frag; ii++) {
663 		if (++lp->tx_bd_tail >= lp->tx_bd_num)
664 			lp->tx_bd_tail = 0;
665 		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
666 		frag = &skb_shinfo(skb)->frags[ii];
667 		cur_p->phys = dma_map_single(ndev->dev.parent,
668 					     skb_frag_address(frag),
669 					     skb_frag_size(frag),
670 					     DMA_TO_DEVICE);
671 		cur_p->cntrl = skb_frag_size(frag);
672 	}
673 
674 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
675 	cur_p->skb = skb;
676 
677 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
678 	/* Start the transfer */
679 	axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
680 	if (++lp->tx_bd_tail >= lp->tx_bd_num)
681 		lp->tx_bd_tail = 0;
682 
683 	return NETDEV_TX_OK;
684 }
685 
686 /**
687  * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
688  *		  BD processing.
689  * @ndev:	Pointer to net_device structure.
690  *
691  * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
692  * does minimal processing and invokes "netif_rx" to complete further
693  * processing.
694  */
axienet_recv(struct net_device * ndev)695 static void axienet_recv(struct net_device *ndev)
696 {
697 	u32 length;
698 	u32 csumstatus;
699 	u32 size = 0;
700 	u32 packets = 0;
701 	dma_addr_t tail_p = 0;
702 	struct axienet_local *lp = netdev_priv(ndev);
703 	struct sk_buff *skb, *new_skb;
704 	struct axidma_bd *cur_p;
705 
706 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
707 
708 	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
709 		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
710 
711 		dma_unmap_single(ndev->dev.parent, cur_p->phys,
712 				 lp->max_frm_size,
713 				 DMA_FROM_DEVICE);
714 
715 		skb = cur_p->skb;
716 		cur_p->skb = NULL;
717 		length = cur_p->app4 & 0x0000FFFF;
718 
719 		skb_put(skb, length);
720 		skb->protocol = eth_type_trans(skb, ndev);
721 		/*skb_checksum_none_assert(skb);*/
722 		skb->ip_summed = CHECKSUM_NONE;
723 
724 		/* if we're doing Rx csum offload, set it up */
725 		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
726 			csumstatus = (cur_p->app2 &
727 				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
728 			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
729 			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
730 				skb->ip_summed = CHECKSUM_UNNECESSARY;
731 			}
732 		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
733 			   skb->protocol == htons(ETH_P_IP) &&
734 			   skb->len > 64) {
735 			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
736 			skb->ip_summed = CHECKSUM_COMPLETE;
737 		}
738 
739 		netif_rx(skb);
740 
741 		size += length;
742 		packets++;
743 
744 		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
745 		if (!new_skb)
746 			return;
747 
748 		cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
749 					     lp->max_frm_size,
750 					     DMA_FROM_DEVICE);
751 		cur_p->cntrl = lp->max_frm_size;
752 		cur_p->status = 0;
753 		cur_p->skb = new_skb;
754 
755 		if (++lp->rx_bd_ci >= lp->rx_bd_num)
756 			lp->rx_bd_ci = 0;
757 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
758 	}
759 
760 	ndev->stats.rx_packets += packets;
761 	ndev->stats.rx_bytes += size;
762 
763 	if (tail_p)
764 		axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
765 }
766 
767 /**
768  * axienet_tx_irq - Tx Done Isr.
769  * @irq:	irq number
770  * @_ndev:	net_device pointer
771  *
772  * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
773  *
774  * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
775  * to complete the BD processing.
776  */
axienet_tx_irq(int irq,void * _ndev)777 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
778 {
779 	u32 cr;
780 	unsigned int status;
781 	struct net_device *ndev = _ndev;
782 	struct axienet_local *lp = netdev_priv(ndev);
783 
784 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
785 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
786 		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
787 		axienet_start_xmit_done(lp->ndev);
788 		goto out;
789 	}
790 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
791 		return IRQ_NONE;
792 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
793 		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
794 		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
795 			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
796 
797 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
798 		/* Disable coalesce, delay timer and error interrupts */
799 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
800 		/* Write to the Tx channel control register */
801 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
802 
803 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
804 		/* Disable coalesce, delay timer and error interrupts */
805 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
806 		/* Write to the Rx channel control register */
807 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
808 
809 		tasklet_schedule(&lp->dma_err_tasklet);
810 		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
811 	}
812 out:
813 	return IRQ_HANDLED;
814 }
815 
816 /**
817  * axienet_rx_irq - Rx Isr.
818  * @irq:	irq number
819  * @_ndev:	net_device pointer
820  *
821  * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
822  *
823  * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
824  * processing.
825  */
axienet_rx_irq(int irq,void * _ndev)826 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
827 {
828 	u32 cr;
829 	unsigned int status;
830 	struct net_device *ndev = _ndev;
831 	struct axienet_local *lp = netdev_priv(ndev);
832 
833 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
834 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
835 		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
836 		axienet_recv(lp->ndev);
837 		goto out;
838 	}
839 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
840 		return IRQ_NONE;
841 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
842 		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
843 		dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
844 			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
845 
846 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
847 		/* Disable coalesce, delay timer and error interrupts */
848 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
849 		/* Finally write to the Tx channel control register */
850 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
851 
852 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
853 		/* Disable coalesce, delay timer and error interrupts */
854 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
855 		/* write to the Rx channel control register */
856 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
857 
858 		tasklet_schedule(&lp->dma_err_tasklet);
859 		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
860 	}
861 out:
862 	return IRQ_HANDLED;
863 }
864 
865 /**
866  * axienet_eth_irq - Ethernet core Isr.
867  * @irq:	irq number
868  * @_ndev:	net_device pointer
869  *
870  * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
871  *
872  * Handle miscellaneous conditions indicated by Ethernet core IRQ.
873  */
axienet_eth_irq(int irq,void * _ndev)874 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
875 {
876 	struct net_device *ndev = _ndev;
877 	struct axienet_local *lp = netdev_priv(ndev);
878 	unsigned int pending;
879 
880 	pending = axienet_ior(lp, XAE_IP_OFFSET);
881 	if (!pending)
882 		return IRQ_NONE;
883 
884 	if (pending & XAE_INT_RXFIFOOVR_MASK)
885 		ndev->stats.rx_missed_errors++;
886 
887 	if (pending & XAE_INT_RXRJECT_MASK)
888 		ndev->stats.rx_frame_errors++;
889 
890 	axienet_iow(lp, XAE_IS_OFFSET, pending);
891 	return IRQ_HANDLED;
892 }
893 
894 static void axienet_dma_err_handler(unsigned long data);
895 
896 /**
897  * axienet_open - Driver open routine.
898  * @ndev:	Pointer to net_device structure
899  *
900  * Return: 0, on success.
901  *	    non-zero error value on failure
902  *
903  * This is the driver open routine. It calls phylink_start to start the
904  * PHY device.
905  * It also allocates interrupt service routines, enables the interrupt lines
906  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
907  * descriptors are initialized.
908  */
axienet_open(struct net_device * ndev)909 static int axienet_open(struct net_device *ndev)
910 {
911 	int ret;
912 	struct axienet_local *lp = netdev_priv(ndev);
913 
914 	dev_dbg(&ndev->dev, "axienet_open()\n");
915 
916 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
917 	 * When we do an Axi Ethernet reset, it resets the complete core
918 	 * including the MDIO. MDIO must be disabled before resetting
919 	 * and re-enabled afterwards.
920 	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
921 	 */
922 	mutex_lock(&lp->mii_bus->mdio_lock);
923 	axienet_mdio_disable(lp);
924 	axienet_device_reset(ndev);
925 	ret = axienet_mdio_enable(lp);
926 	mutex_unlock(&lp->mii_bus->mdio_lock);
927 	if (ret < 0)
928 		return ret;
929 
930 	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
931 	if (ret) {
932 		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
933 		return ret;
934 	}
935 
936 	phylink_start(lp->phylink);
937 
938 	/* Enable tasklets for Axi DMA error handling */
939 	tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
940 		     (unsigned long) lp);
941 
942 	/* Enable interrupts for Axi DMA Tx */
943 	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
944 			  ndev->name, ndev);
945 	if (ret)
946 		goto err_tx_irq;
947 	/* Enable interrupts for Axi DMA Rx */
948 	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
949 			  ndev->name, ndev);
950 	if (ret)
951 		goto err_rx_irq;
952 	/* Enable interrupts for Axi Ethernet core (if defined) */
953 	if (lp->eth_irq > 0) {
954 		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
955 				  ndev->name, ndev);
956 		if (ret)
957 			goto err_eth_irq;
958 	}
959 
960 	return 0;
961 
962 err_eth_irq:
963 	free_irq(lp->rx_irq, ndev);
964 err_rx_irq:
965 	free_irq(lp->tx_irq, ndev);
966 err_tx_irq:
967 	phylink_stop(lp->phylink);
968 	phylink_disconnect_phy(lp->phylink);
969 	tasklet_kill(&lp->dma_err_tasklet);
970 	dev_err(lp->dev, "request_irq() failed\n");
971 	return ret;
972 }
973 
974 /**
975  * axienet_stop - Driver stop routine.
976  * @ndev:	Pointer to net_device structure
977  *
978  * Return: 0, on success.
979  *
980  * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
981  * device. It also removes the interrupt handlers and disables the interrupts.
982  * The Axi DMA Tx/Rx BDs are released.
983  */
axienet_stop(struct net_device * ndev)984 static int axienet_stop(struct net_device *ndev)
985 {
986 	u32 cr, sr;
987 	int count;
988 	struct axienet_local *lp = netdev_priv(ndev);
989 
990 	dev_dbg(&ndev->dev, "axienet_close()\n");
991 
992 	phylink_stop(lp->phylink);
993 	phylink_disconnect_phy(lp->phylink);
994 
995 	axienet_setoptions(ndev, lp->options &
996 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
997 
998 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
999 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1000 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1001 
1002 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1003 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1004 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1005 
1006 	axienet_iow(lp, XAE_IE_OFFSET, 0);
1007 
1008 	/* Give DMAs a chance to halt gracefully */
1009 	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1010 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1011 		msleep(20);
1012 		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1013 	}
1014 
1015 	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1016 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1017 		msleep(20);
1018 		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1019 	}
1020 
1021 	/* Do a reset to ensure DMA is really stopped */
1022 	mutex_lock(&lp->mii_bus->mdio_lock);
1023 	axienet_mdio_disable(lp);
1024 	__axienet_device_reset(lp);
1025 	axienet_mdio_enable(lp);
1026 	mutex_unlock(&lp->mii_bus->mdio_lock);
1027 
1028 	tasklet_kill(&lp->dma_err_tasklet);
1029 
1030 	if (lp->eth_irq > 0)
1031 		free_irq(lp->eth_irq, ndev);
1032 	free_irq(lp->tx_irq, ndev);
1033 	free_irq(lp->rx_irq, ndev);
1034 
1035 	axienet_dma_bd_release(ndev);
1036 	return 0;
1037 }
1038 
1039 /**
1040  * axienet_change_mtu - Driver change mtu routine.
1041  * @ndev:	Pointer to net_device structure
1042  * @new_mtu:	New mtu value to be applied
1043  *
1044  * Return: Always returns 0 (success).
1045  *
1046  * This is the change mtu driver routine. It checks if the Axi Ethernet
1047  * hardware supports jumbo frames before changing the mtu. This can be
1048  * called only when the device is not up.
1049  */
axienet_change_mtu(struct net_device * ndev,int new_mtu)1050 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1051 {
1052 	struct axienet_local *lp = netdev_priv(ndev);
1053 
1054 	if (netif_running(ndev))
1055 		return -EBUSY;
1056 
1057 	if ((new_mtu + VLAN_ETH_HLEN +
1058 		XAE_TRL_SIZE) > lp->rxmem)
1059 		return -EINVAL;
1060 
1061 	ndev->mtu = new_mtu;
1062 
1063 	return 0;
1064 }
1065 
1066 #ifdef CONFIG_NET_POLL_CONTROLLER
1067 /**
1068  * axienet_poll_controller - Axi Ethernet poll mechanism.
1069  * @ndev:	Pointer to net_device structure
1070  *
1071  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1072  * to polling the ISRs and are enabled back after the polling is done.
1073  */
axienet_poll_controller(struct net_device * ndev)1074 static void axienet_poll_controller(struct net_device *ndev)
1075 {
1076 	struct axienet_local *lp = netdev_priv(ndev);
1077 	disable_irq(lp->tx_irq);
1078 	disable_irq(lp->rx_irq);
1079 	axienet_rx_irq(lp->tx_irq, ndev);
1080 	axienet_tx_irq(lp->rx_irq, ndev);
1081 	enable_irq(lp->tx_irq);
1082 	enable_irq(lp->rx_irq);
1083 }
1084 #endif
1085 
1086 static const struct net_device_ops axienet_netdev_ops = {
1087 	.ndo_open = axienet_open,
1088 	.ndo_stop = axienet_stop,
1089 	.ndo_start_xmit = axienet_start_xmit,
1090 	.ndo_change_mtu	= axienet_change_mtu,
1091 	.ndo_set_mac_address = netdev_set_mac_address,
1092 	.ndo_validate_addr = eth_validate_addr,
1093 	.ndo_set_rx_mode = axienet_set_multicast_list,
1094 #ifdef CONFIG_NET_POLL_CONTROLLER
1095 	.ndo_poll_controller = axienet_poll_controller,
1096 #endif
1097 };
1098 
1099 /**
1100  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1101  * @ndev:	Pointer to net_device structure
1102  * @ed:		Pointer to ethtool_drvinfo structure
1103  *
1104  * This implements ethtool command for getting the driver information.
1105  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1106  */
axienet_ethtools_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * ed)1107 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1108 					 struct ethtool_drvinfo *ed)
1109 {
1110 	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1111 	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1112 }
1113 
1114 /**
1115  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1116  *				   AxiEthernet core.
1117  * @ndev:	Pointer to net_device structure
1118  *
1119  * This implements ethtool command for getting the total register length
1120  * information.
1121  *
1122  * Return: the total regs length
1123  */
axienet_ethtools_get_regs_len(struct net_device * ndev)1124 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1125 {
1126 	return sizeof(u32) * AXIENET_REGS_N;
1127 }
1128 
1129 /**
1130  * axienet_ethtools_get_regs - Dump the contents of all registers present
1131  *			       in AxiEthernet core.
1132  * @ndev:	Pointer to net_device structure
1133  * @regs:	Pointer to ethtool_regs structure
1134  * @ret:	Void pointer used to return the contents of the registers.
1135  *
1136  * This implements ethtool command for getting the Axi Ethernet register dump.
1137  * Issue "ethtool -d ethX" to execute this function.
1138  */
axienet_ethtools_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * ret)1139 static void axienet_ethtools_get_regs(struct net_device *ndev,
1140 				      struct ethtool_regs *regs, void *ret)
1141 {
1142 	u32 *data = (u32 *) ret;
1143 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1144 	struct axienet_local *lp = netdev_priv(ndev);
1145 
1146 	regs->version = 0;
1147 	regs->len = len;
1148 
1149 	memset(data, 0, len);
1150 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1151 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1152 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1153 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1154 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1155 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1156 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1157 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1158 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1159 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1160 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1161 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1162 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1163 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1164 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1165 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1166 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1167 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1168 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1169 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1170 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1171 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1172 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1173 	data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1174 	data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1175 	data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1176 	data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1177 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1178 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1179 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1180 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1181 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1182 	data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1183 	data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1184 	data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1185 	data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1186 	data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1187 	data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1188 	data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1189 	data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1190 }
1191 
axienet_ethtools_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering)1192 static void axienet_ethtools_get_ringparam(struct net_device *ndev,
1193 					   struct ethtool_ringparam *ering)
1194 {
1195 	struct axienet_local *lp = netdev_priv(ndev);
1196 
1197 	ering->rx_max_pending = RX_BD_NUM_MAX;
1198 	ering->rx_mini_max_pending = 0;
1199 	ering->rx_jumbo_max_pending = 0;
1200 	ering->tx_max_pending = TX_BD_NUM_MAX;
1201 	ering->rx_pending = lp->rx_bd_num;
1202 	ering->rx_mini_pending = 0;
1203 	ering->rx_jumbo_pending = 0;
1204 	ering->tx_pending = lp->tx_bd_num;
1205 }
1206 
axienet_ethtools_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering)1207 static int axienet_ethtools_set_ringparam(struct net_device *ndev,
1208 					  struct ethtool_ringparam *ering)
1209 {
1210 	struct axienet_local *lp = netdev_priv(ndev);
1211 
1212 	if (ering->rx_pending > RX_BD_NUM_MAX ||
1213 	    ering->rx_mini_pending ||
1214 	    ering->rx_jumbo_pending ||
1215 	    ering->rx_pending > TX_BD_NUM_MAX)
1216 		return -EINVAL;
1217 
1218 	if (netif_running(ndev))
1219 		return -EBUSY;
1220 
1221 	lp->rx_bd_num = ering->rx_pending;
1222 	lp->tx_bd_num = ering->tx_pending;
1223 	return 0;
1224 }
1225 
1226 /**
1227  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1228  *				     Tx and Rx paths.
1229  * @ndev:	Pointer to net_device structure
1230  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1231  *
1232  * This implements ethtool command for getting axi ethernet pause frame
1233  * setting. Issue "ethtool -a ethX" to execute this function.
1234  */
1235 static void
axienet_ethtools_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * epauseparm)1236 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1237 				struct ethtool_pauseparam *epauseparm)
1238 {
1239 	struct axienet_local *lp = netdev_priv(ndev);
1240 
1241 	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1242 }
1243 
1244 /**
1245  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1246  *				     settings.
1247  * @ndev:	Pointer to net_device structure
1248  * @epauseparm:Pointer to ethtool_pauseparam structure
1249  *
1250  * This implements ethtool command for enabling flow control on Rx and Tx
1251  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1252  * function.
1253  *
1254  * Return: 0 on success, -EFAULT if device is running
1255  */
1256 static int
axienet_ethtools_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * epauseparm)1257 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1258 				struct ethtool_pauseparam *epauseparm)
1259 {
1260 	struct axienet_local *lp = netdev_priv(ndev);
1261 
1262 	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1263 }
1264 
1265 /**
1266  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1267  * @ndev:	Pointer to net_device structure
1268  * @ecoalesce:	Pointer to ethtool_coalesce structure
1269  *
1270  * This implements ethtool command for getting the DMA interrupt coalescing
1271  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1272  * execute this function.
1273  *
1274  * Return: 0 always
1275  */
axienet_ethtools_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ecoalesce)1276 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1277 					 struct ethtool_coalesce *ecoalesce)
1278 {
1279 	u32 regval = 0;
1280 	struct axienet_local *lp = netdev_priv(ndev);
1281 	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1282 	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1283 					     >> XAXIDMA_COALESCE_SHIFT;
1284 	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1285 	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1286 					     >> XAXIDMA_COALESCE_SHIFT;
1287 	return 0;
1288 }
1289 
1290 /**
1291  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1292  * @ndev:	Pointer to net_device structure
1293  * @ecoalesce:	Pointer to ethtool_coalesce structure
1294  *
1295  * This implements ethtool command for setting the DMA interrupt coalescing
1296  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1297  * prompt to execute this function.
1298  *
1299  * Return: 0, on success, Non-zero error value on failure.
1300  */
axienet_ethtools_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ecoalesce)1301 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1302 					 struct ethtool_coalesce *ecoalesce)
1303 {
1304 	struct axienet_local *lp = netdev_priv(ndev);
1305 
1306 	if (netif_running(ndev)) {
1307 		netdev_err(ndev,
1308 			   "Please stop netif before applying configuration\n");
1309 		return -EFAULT;
1310 	}
1311 
1312 	if ((ecoalesce->rx_coalesce_usecs) ||
1313 	    (ecoalesce->rx_coalesce_usecs_irq) ||
1314 	    (ecoalesce->rx_max_coalesced_frames_irq) ||
1315 	    (ecoalesce->tx_coalesce_usecs) ||
1316 	    (ecoalesce->tx_coalesce_usecs_irq) ||
1317 	    (ecoalesce->tx_max_coalesced_frames_irq) ||
1318 	    (ecoalesce->stats_block_coalesce_usecs) ||
1319 	    (ecoalesce->use_adaptive_rx_coalesce) ||
1320 	    (ecoalesce->use_adaptive_tx_coalesce) ||
1321 	    (ecoalesce->pkt_rate_low) ||
1322 	    (ecoalesce->rx_coalesce_usecs_low) ||
1323 	    (ecoalesce->rx_max_coalesced_frames_low) ||
1324 	    (ecoalesce->tx_coalesce_usecs_low) ||
1325 	    (ecoalesce->tx_max_coalesced_frames_low) ||
1326 	    (ecoalesce->pkt_rate_high) ||
1327 	    (ecoalesce->rx_coalesce_usecs_high) ||
1328 	    (ecoalesce->rx_max_coalesced_frames_high) ||
1329 	    (ecoalesce->tx_coalesce_usecs_high) ||
1330 	    (ecoalesce->tx_max_coalesced_frames_high) ||
1331 	    (ecoalesce->rate_sample_interval))
1332 		return -EOPNOTSUPP;
1333 	if (ecoalesce->rx_max_coalesced_frames)
1334 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1335 	if (ecoalesce->tx_max_coalesced_frames)
1336 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1337 
1338 	return 0;
1339 }
1340 
1341 static int
axienet_ethtools_get_link_ksettings(struct net_device * ndev,struct ethtool_link_ksettings * cmd)1342 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1343 				    struct ethtool_link_ksettings *cmd)
1344 {
1345 	struct axienet_local *lp = netdev_priv(ndev);
1346 
1347 	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1348 }
1349 
1350 static int
axienet_ethtools_set_link_ksettings(struct net_device * ndev,const struct ethtool_link_ksettings * cmd)1351 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1352 				    const struct ethtool_link_ksettings *cmd)
1353 {
1354 	struct axienet_local *lp = netdev_priv(ndev);
1355 
1356 	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1357 }
1358 
1359 static const struct ethtool_ops axienet_ethtool_ops = {
1360 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1361 	.get_regs_len   = axienet_ethtools_get_regs_len,
1362 	.get_regs       = axienet_ethtools_get_regs,
1363 	.get_link       = ethtool_op_get_link,
1364 	.get_ringparam	= axienet_ethtools_get_ringparam,
1365 	.set_ringparam	= axienet_ethtools_set_ringparam,
1366 	.get_pauseparam = axienet_ethtools_get_pauseparam,
1367 	.set_pauseparam = axienet_ethtools_set_pauseparam,
1368 	.get_coalesce   = axienet_ethtools_get_coalesce,
1369 	.set_coalesce   = axienet_ethtools_set_coalesce,
1370 	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
1371 	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
1372 };
1373 
axienet_validate(struct phylink_config * config,unsigned long * supported,struct phylink_link_state * state)1374 static void axienet_validate(struct phylink_config *config,
1375 			     unsigned long *supported,
1376 			     struct phylink_link_state *state)
1377 {
1378 	struct net_device *ndev = to_net_dev(config->dev);
1379 	struct axienet_local *lp = netdev_priv(ndev);
1380 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1381 
1382 	/* Only support the mode we are configured for */
1383 	if (state->interface != PHY_INTERFACE_MODE_NA &&
1384 	    state->interface != lp->phy_mode) {
1385 		netdev_warn(ndev, "Cannot use PHY mode %s, supported: %s\n",
1386 			    phy_modes(state->interface),
1387 			    phy_modes(lp->phy_mode));
1388 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1389 		return;
1390 	}
1391 
1392 	phylink_set(mask, Autoneg);
1393 	phylink_set_port_modes(mask);
1394 
1395 	phylink_set(mask, Asym_Pause);
1396 	phylink_set(mask, Pause);
1397 	phylink_set(mask, 1000baseX_Full);
1398 	phylink_set(mask, 10baseT_Full);
1399 	phylink_set(mask, 100baseT_Full);
1400 	phylink_set(mask, 1000baseT_Full);
1401 
1402 	bitmap_and(supported, supported, mask,
1403 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1404 	bitmap_and(state->advertising, state->advertising, mask,
1405 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1406 }
1407 
axienet_mac_link_state(struct phylink_config * config,struct phylink_link_state * state)1408 static int axienet_mac_link_state(struct phylink_config *config,
1409 				  struct phylink_link_state *state)
1410 {
1411 	struct net_device *ndev = to_net_dev(config->dev);
1412 	struct axienet_local *lp = netdev_priv(ndev);
1413 	u32 emmc_reg, fcc_reg;
1414 
1415 	state->interface = lp->phy_mode;
1416 
1417 	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1418 	if (emmc_reg & XAE_EMMC_LINKSPD_1000)
1419 		state->speed = SPEED_1000;
1420 	else if (emmc_reg & XAE_EMMC_LINKSPD_100)
1421 		state->speed = SPEED_100;
1422 	else
1423 		state->speed = SPEED_10;
1424 
1425 	state->pause = 0;
1426 	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1427 	if (fcc_reg & XAE_FCC_FCTX_MASK)
1428 		state->pause |= MLO_PAUSE_TX;
1429 	if (fcc_reg & XAE_FCC_FCRX_MASK)
1430 		state->pause |= MLO_PAUSE_RX;
1431 
1432 	state->an_complete = 0;
1433 	state->duplex = 1;
1434 
1435 	return 1;
1436 }
1437 
axienet_mac_an_restart(struct phylink_config * config)1438 static void axienet_mac_an_restart(struct phylink_config *config)
1439 {
1440 	/* Unsupported, do nothing */
1441 }
1442 
axienet_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)1443 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1444 			       const struct phylink_link_state *state)
1445 {
1446 	struct net_device *ndev = to_net_dev(config->dev);
1447 	struct axienet_local *lp = netdev_priv(ndev);
1448 	u32 emmc_reg, fcc_reg;
1449 
1450 	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1451 	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1452 
1453 	switch (state->speed) {
1454 	case SPEED_1000:
1455 		emmc_reg |= XAE_EMMC_LINKSPD_1000;
1456 		break;
1457 	case SPEED_100:
1458 		emmc_reg |= XAE_EMMC_LINKSPD_100;
1459 		break;
1460 	case SPEED_10:
1461 		emmc_reg |= XAE_EMMC_LINKSPD_10;
1462 		break;
1463 	default:
1464 		dev_err(&ndev->dev,
1465 			"Speed other than 10, 100 or 1Gbps is not supported\n");
1466 		break;
1467 	}
1468 
1469 	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1470 
1471 	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1472 	if (state->pause & MLO_PAUSE_TX)
1473 		fcc_reg |= XAE_FCC_FCTX_MASK;
1474 	else
1475 		fcc_reg &= ~XAE_FCC_FCTX_MASK;
1476 	if (state->pause & MLO_PAUSE_RX)
1477 		fcc_reg |= XAE_FCC_FCRX_MASK;
1478 	else
1479 		fcc_reg &= ~XAE_FCC_FCRX_MASK;
1480 	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1481 }
1482 
axienet_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)1483 static void axienet_mac_link_down(struct phylink_config *config,
1484 				  unsigned int mode,
1485 				  phy_interface_t interface)
1486 {
1487 	/* nothing meaningful to do */
1488 }
1489 
axienet_mac_link_up(struct phylink_config * config,unsigned int mode,phy_interface_t interface,struct phy_device * phy)1490 static void axienet_mac_link_up(struct phylink_config *config,
1491 				unsigned int mode,
1492 				phy_interface_t interface,
1493 				struct phy_device *phy)
1494 {
1495 	/* nothing meaningful to do */
1496 }
1497 
1498 static const struct phylink_mac_ops axienet_phylink_ops = {
1499 	.validate = axienet_validate,
1500 	.mac_link_state = axienet_mac_link_state,
1501 	.mac_an_restart = axienet_mac_an_restart,
1502 	.mac_config = axienet_mac_config,
1503 	.mac_link_down = axienet_mac_link_down,
1504 	.mac_link_up = axienet_mac_link_up,
1505 };
1506 
1507 /**
1508  * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1509  * @data:	Data passed
1510  *
1511  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1512  * Tx/Rx BDs.
1513  */
axienet_dma_err_handler(unsigned long data)1514 static void axienet_dma_err_handler(unsigned long data)
1515 {
1516 	u32 axienet_status;
1517 	u32 cr, i;
1518 	struct axienet_local *lp = (struct axienet_local *) data;
1519 	struct net_device *ndev = lp->ndev;
1520 	struct axidma_bd *cur_p;
1521 
1522 	axienet_setoptions(ndev, lp->options &
1523 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1524 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1525 	 * When we do an Axi Ethernet reset, it resets the complete core
1526 	 * including the MDIO. MDIO must be disabled before resetting
1527 	 * and re-enabled afterwards.
1528 	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1529 	 */
1530 	mutex_lock(&lp->mii_bus->mdio_lock);
1531 	axienet_mdio_disable(lp);
1532 	__axienet_device_reset(lp);
1533 	axienet_mdio_enable(lp);
1534 	mutex_unlock(&lp->mii_bus->mdio_lock);
1535 
1536 	for (i = 0; i < lp->tx_bd_num; i++) {
1537 		cur_p = &lp->tx_bd_v[i];
1538 		if (cur_p->phys)
1539 			dma_unmap_single(ndev->dev.parent, cur_p->phys,
1540 					 (cur_p->cntrl &
1541 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1542 					 DMA_TO_DEVICE);
1543 		if (cur_p->skb)
1544 			dev_kfree_skb_irq(cur_p->skb);
1545 		cur_p->phys = 0;
1546 		cur_p->cntrl = 0;
1547 		cur_p->status = 0;
1548 		cur_p->app0 = 0;
1549 		cur_p->app1 = 0;
1550 		cur_p->app2 = 0;
1551 		cur_p->app3 = 0;
1552 		cur_p->app4 = 0;
1553 		cur_p->skb = NULL;
1554 	}
1555 
1556 	for (i = 0; i < lp->rx_bd_num; i++) {
1557 		cur_p = &lp->rx_bd_v[i];
1558 		cur_p->status = 0;
1559 		cur_p->app0 = 0;
1560 		cur_p->app1 = 0;
1561 		cur_p->app2 = 0;
1562 		cur_p->app3 = 0;
1563 		cur_p->app4 = 0;
1564 	}
1565 
1566 	lp->tx_bd_ci = 0;
1567 	lp->tx_bd_tail = 0;
1568 	lp->rx_bd_ci = 0;
1569 
1570 	/* Start updating the Rx channel control register */
1571 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1572 	/* Update the interrupt coalesce count */
1573 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1574 	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1575 	/* Update the delay timer count */
1576 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1577 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1578 	/* Enable coalesce, delay timer and error interrupts */
1579 	cr |= XAXIDMA_IRQ_ALL_MASK;
1580 	/* Finally write to the Rx channel control register */
1581 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1582 
1583 	/* Start updating the Tx channel control register */
1584 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1585 	/* Update the interrupt coalesce count */
1586 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1587 	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1588 	/* Update the delay timer count */
1589 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1590 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1591 	/* Enable coalesce, delay timer and error interrupts */
1592 	cr |= XAXIDMA_IRQ_ALL_MASK;
1593 	/* Finally write to the Tx channel control register */
1594 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1595 
1596 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1597 	 * halted state. This will make the Rx side ready for reception.
1598 	 */
1599 	axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1600 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1601 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1602 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1603 	axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1604 			  (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
1605 
1606 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1607 	 * Tx channel is now ready to run. But only after we write to the
1608 	 * tail pointer register that the Tx channel will start transmitting
1609 	 */
1610 	axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1611 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1612 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1613 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1614 
1615 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1616 	axienet_status &= ~XAE_RCW1_RX_MASK;
1617 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1618 
1619 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1620 	if (axienet_status & XAE_INT_RXRJECT_MASK)
1621 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1622 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1623 		    XAE_INT_RECV_ERROR_MASK : 0);
1624 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1625 
1626 	/* Sync default options with HW but leave receiver and
1627 	 * transmitter disabled.
1628 	 */
1629 	axienet_setoptions(ndev, lp->options &
1630 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1631 	axienet_set_mac_address(ndev, NULL);
1632 	axienet_set_multicast_list(ndev);
1633 	axienet_setoptions(ndev, lp->options);
1634 }
1635 
1636 /**
1637  * axienet_probe - Axi Ethernet probe function.
1638  * @pdev:	Pointer to platform device structure.
1639  *
1640  * Return: 0, on success
1641  *	    Non-zero error value on failure.
1642  *
1643  * This is the probe routine for Axi Ethernet driver. This is called before
1644  * any other driver routines are invoked. It allocates and sets up the Ethernet
1645  * device. Parses through device tree and populates fields of
1646  * axienet_local. It registers the Ethernet device.
1647  */
axienet_probe(struct platform_device * pdev)1648 static int axienet_probe(struct platform_device *pdev)
1649 {
1650 	int ret;
1651 	struct device_node *np;
1652 	struct axienet_local *lp;
1653 	struct net_device *ndev;
1654 	const void *mac_addr;
1655 	struct resource *ethres;
1656 	u32 value;
1657 
1658 	ndev = alloc_etherdev(sizeof(*lp));
1659 	if (!ndev)
1660 		return -ENOMEM;
1661 
1662 	platform_set_drvdata(pdev, ndev);
1663 
1664 	SET_NETDEV_DEV(ndev, &pdev->dev);
1665 	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1666 	ndev->features = NETIF_F_SG;
1667 	ndev->netdev_ops = &axienet_netdev_ops;
1668 	ndev->ethtool_ops = &axienet_ethtool_ops;
1669 
1670 	/* MTU range: 64 - 9000 */
1671 	ndev->min_mtu = 64;
1672 	ndev->max_mtu = XAE_JUMBO_MTU;
1673 
1674 	lp = netdev_priv(ndev);
1675 	lp->ndev = ndev;
1676 	lp->dev = &pdev->dev;
1677 	lp->options = XAE_OPTION_DEFAULTS;
1678 	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1679 	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1680 	/* Map device registers */
1681 	ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1682 	lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1683 	if (IS_ERR(lp->regs)) {
1684 		dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1685 		ret = PTR_ERR(lp->regs);
1686 		goto free_netdev;
1687 	}
1688 	lp->regs_start = ethres->start;
1689 
1690 	/* Setup checksum offload, but default to off if not specified */
1691 	lp->features = 0;
1692 
1693 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1694 	if (!ret) {
1695 		switch (value) {
1696 		case 1:
1697 			lp->csum_offload_on_tx_path =
1698 				XAE_FEATURE_PARTIAL_TX_CSUM;
1699 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1700 			/* Can checksum TCP/UDP over IPv4. */
1701 			ndev->features |= NETIF_F_IP_CSUM;
1702 			break;
1703 		case 2:
1704 			lp->csum_offload_on_tx_path =
1705 				XAE_FEATURE_FULL_TX_CSUM;
1706 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1707 			/* Can checksum TCP/UDP over IPv4. */
1708 			ndev->features |= NETIF_F_IP_CSUM;
1709 			break;
1710 		default:
1711 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1712 		}
1713 	}
1714 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1715 	if (!ret) {
1716 		switch (value) {
1717 		case 1:
1718 			lp->csum_offload_on_rx_path =
1719 				XAE_FEATURE_PARTIAL_RX_CSUM;
1720 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1721 			break;
1722 		case 2:
1723 			lp->csum_offload_on_rx_path =
1724 				XAE_FEATURE_FULL_RX_CSUM;
1725 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1726 			break;
1727 		default:
1728 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1729 		}
1730 	}
1731 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1732 	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1733 	 * we can enable jumbo option and start supporting jumbo frames.
1734 	 * Here we check for memory allocated for Rx/Tx in the hardware from
1735 	 * the device-tree and accordingly set flags.
1736 	 */
1737 	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1738 
1739 	/* Start with the proprietary, and broken phy_type */
1740 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1741 	if (!ret) {
1742 		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1743 		switch (value) {
1744 		case XAE_PHY_TYPE_MII:
1745 			lp->phy_mode = PHY_INTERFACE_MODE_MII;
1746 			break;
1747 		case XAE_PHY_TYPE_GMII:
1748 			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1749 			break;
1750 		case XAE_PHY_TYPE_RGMII_2_0:
1751 			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1752 			break;
1753 		case XAE_PHY_TYPE_SGMII:
1754 			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1755 			break;
1756 		case XAE_PHY_TYPE_1000BASE_X:
1757 			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1758 			break;
1759 		default:
1760 			ret = -EINVAL;
1761 			goto free_netdev;
1762 		}
1763 	} else {
1764 		lp->phy_mode = of_get_phy_mode(pdev->dev.of_node);
1765 		if ((int)lp->phy_mode < 0) {
1766 			ret = -EINVAL;
1767 			goto free_netdev;
1768 		}
1769 	}
1770 
1771 	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1772 	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1773 	if (np) {
1774 		struct resource dmares;
1775 
1776 		ret = of_address_to_resource(np, 0, &dmares);
1777 		if (ret) {
1778 			dev_err(&pdev->dev,
1779 				"unable to get DMA resource\n");
1780 			of_node_put(np);
1781 			goto free_netdev;
1782 		}
1783 		lp->dma_regs = devm_ioremap_resource(&pdev->dev,
1784 						     &dmares);
1785 		lp->rx_irq = irq_of_parse_and_map(np, 1);
1786 		lp->tx_irq = irq_of_parse_and_map(np, 0);
1787 		of_node_put(np);
1788 		lp->eth_irq = platform_get_irq(pdev, 0);
1789 	} else {
1790 		/* Check for these resources directly on the Ethernet node. */
1791 		struct resource *res = platform_get_resource(pdev,
1792 							     IORESOURCE_MEM, 1);
1793 		if (!res) {
1794 			dev_err(&pdev->dev, "unable to get DMA memory resource\n");
1795 			goto free_netdev;
1796 		}
1797 		lp->dma_regs = devm_ioremap_resource(&pdev->dev, res);
1798 		lp->rx_irq = platform_get_irq(pdev, 1);
1799 		lp->tx_irq = platform_get_irq(pdev, 0);
1800 		lp->eth_irq = platform_get_irq(pdev, 2);
1801 	}
1802 	if (IS_ERR(lp->dma_regs)) {
1803 		dev_err(&pdev->dev, "could not map DMA regs\n");
1804 		ret = PTR_ERR(lp->dma_regs);
1805 		goto free_netdev;
1806 	}
1807 	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1808 		dev_err(&pdev->dev, "could not determine irqs\n");
1809 		ret = -ENOMEM;
1810 		goto free_netdev;
1811 	}
1812 
1813 	/* Check for Ethernet core IRQ (optional) */
1814 	if (lp->eth_irq <= 0)
1815 		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
1816 
1817 	/* Retrieve the MAC address */
1818 	mac_addr = of_get_mac_address(pdev->dev.of_node);
1819 	if (IS_ERR(mac_addr)) {
1820 		dev_warn(&pdev->dev, "could not find MAC address property: %ld\n",
1821 			 PTR_ERR(mac_addr));
1822 		mac_addr = NULL;
1823 	}
1824 	axienet_set_mac_address(ndev, mac_addr);
1825 
1826 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1827 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1828 
1829 	lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1830 	if (lp->phy_node) {
1831 		lp->clk = devm_clk_get(&pdev->dev, NULL);
1832 		if (IS_ERR(lp->clk)) {
1833 			dev_warn(&pdev->dev, "Failed to get clock: %ld\n",
1834 				 PTR_ERR(lp->clk));
1835 			lp->clk = NULL;
1836 		} else {
1837 			ret = clk_prepare_enable(lp->clk);
1838 			if (ret) {
1839 				dev_err(&pdev->dev, "Unable to enable clock: %d\n",
1840 					ret);
1841 				goto free_netdev;
1842 			}
1843 		}
1844 
1845 		ret = axienet_mdio_setup(lp);
1846 		if (ret)
1847 			dev_warn(&pdev->dev,
1848 				 "error registering MDIO bus: %d\n", ret);
1849 	}
1850 
1851 	lp->phylink_config.dev = &ndev->dev;
1852 	lp->phylink_config.type = PHYLINK_NETDEV;
1853 
1854 	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
1855 				     lp->phy_mode,
1856 				     &axienet_phylink_ops);
1857 	if (IS_ERR(lp->phylink)) {
1858 		ret = PTR_ERR(lp->phylink);
1859 		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
1860 		goto free_netdev;
1861 	}
1862 
1863 	ret = register_netdev(lp->ndev);
1864 	if (ret) {
1865 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1866 		goto free_netdev;
1867 	}
1868 
1869 	return 0;
1870 
1871 free_netdev:
1872 	free_netdev(ndev);
1873 
1874 	return ret;
1875 }
1876 
axienet_remove(struct platform_device * pdev)1877 static int axienet_remove(struct platform_device *pdev)
1878 {
1879 	struct net_device *ndev = platform_get_drvdata(pdev);
1880 	struct axienet_local *lp = netdev_priv(ndev);
1881 
1882 	unregister_netdev(ndev);
1883 
1884 	if (lp->phylink)
1885 		phylink_destroy(lp->phylink);
1886 
1887 	axienet_mdio_teardown(lp);
1888 
1889 	if (lp->clk)
1890 		clk_disable_unprepare(lp->clk);
1891 
1892 	of_node_put(lp->phy_node);
1893 	lp->phy_node = NULL;
1894 
1895 	free_netdev(ndev);
1896 
1897 	return 0;
1898 }
1899 
axienet_shutdown(struct platform_device * pdev)1900 static void axienet_shutdown(struct platform_device *pdev)
1901 {
1902 	struct net_device *ndev = platform_get_drvdata(pdev);
1903 
1904 	rtnl_lock();
1905 	netif_device_detach(ndev);
1906 
1907 	if (netif_running(ndev))
1908 		dev_close(ndev);
1909 
1910 	rtnl_unlock();
1911 }
1912 
1913 static struct platform_driver axienet_driver = {
1914 	.probe = axienet_probe,
1915 	.remove = axienet_remove,
1916 	.shutdown = axienet_shutdown,
1917 	.driver = {
1918 		 .name = "xilinx_axienet",
1919 		 .of_match_table = axienet_of_match,
1920 	},
1921 };
1922 
1923 module_platform_driver(axienet_driver);
1924 
1925 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1926 MODULE_AUTHOR("Xilinx");
1927 MODULE_LICENSE("GPL");
1928