1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Xilinx Axi Ethernet device driver
4 *
5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9 * Copyright (c) 2010 - 2011 PetaLogix
10 * Copyright (c) 2019 SED Systems, a division of Calian Ltd.
11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12 *
13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14 * and Spartan6.
15 *
16 * TODO:
17 * - Add Axi Fifo support.
18 * - Factor out Axi DMA code into separate driver.
19 * - Test and fix basic multicast filtering.
20 * - Add support for extended multicast filtering.
21 * - Test basic VLAN support.
22 * - Add support for extended VLAN support.
23 */
24
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/phy.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40
41 #include "xilinx_axienet.h"
42
43 /* Descriptors defines for Tx and Rx DMA */
44 #define TX_BD_NUM_DEFAULT 64
45 #define RX_BD_NUM_DEFAULT 1024
46 #define TX_BD_NUM_MAX 4096
47 #define RX_BD_NUM_MAX 4096
48
49 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
50 #define DRIVER_NAME "xaxienet"
51 #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
52 #define DRIVER_VERSION "1.00a"
53
54 #define AXIENET_REGS_N 40
55
56 /* Match table for of_platform binding */
57 static const struct of_device_id axienet_of_match[] = {
58 { .compatible = "xlnx,axi-ethernet-1.00.a", },
59 { .compatible = "xlnx,axi-ethernet-1.01.a", },
60 { .compatible = "xlnx,axi-ethernet-2.01.a", },
61 {},
62 };
63
64 MODULE_DEVICE_TABLE(of, axienet_of_match);
65
66 /* Option table for setting up Axi Ethernet hardware options */
67 static struct axienet_option axienet_options[] = {
68 /* Turn on jumbo packet support for both Rx and Tx */
69 {
70 .opt = XAE_OPTION_JUMBO,
71 .reg = XAE_TC_OFFSET,
72 .m_or = XAE_TC_JUM_MASK,
73 }, {
74 .opt = XAE_OPTION_JUMBO,
75 .reg = XAE_RCW1_OFFSET,
76 .m_or = XAE_RCW1_JUM_MASK,
77 }, { /* Turn on VLAN packet support for both Rx and Tx */
78 .opt = XAE_OPTION_VLAN,
79 .reg = XAE_TC_OFFSET,
80 .m_or = XAE_TC_VLAN_MASK,
81 }, {
82 .opt = XAE_OPTION_VLAN,
83 .reg = XAE_RCW1_OFFSET,
84 .m_or = XAE_RCW1_VLAN_MASK,
85 }, { /* Turn on FCS stripping on receive packets */
86 .opt = XAE_OPTION_FCS_STRIP,
87 .reg = XAE_RCW1_OFFSET,
88 .m_or = XAE_RCW1_FCS_MASK,
89 }, { /* Turn on FCS insertion on transmit packets */
90 .opt = XAE_OPTION_FCS_INSERT,
91 .reg = XAE_TC_OFFSET,
92 .m_or = XAE_TC_FCS_MASK,
93 }, { /* Turn off length/type field checking on receive packets */
94 .opt = XAE_OPTION_LENTYPE_ERR,
95 .reg = XAE_RCW1_OFFSET,
96 .m_or = XAE_RCW1_LT_DIS_MASK,
97 }, { /* Turn on Rx flow control */
98 .opt = XAE_OPTION_FLOW_CONTROL,
99 .reg = XAE_FCC_OFFSET,
100 .m_or = XAE_FCC_FCRX_MASK,
101 }, { /* Turn on Tx flow control */
102 .opt = XAE_OPTION_FLOW_CONTROL,
103 .reg = XAE_FCC_OFFSET,
104 .m_or = XAE_FCC_FCTX_MASK,
105 }, { /* Turn on promiscuous frame filtering */
106 .opt = XAE_OPTION_PROMISC,
107 .reg = XAE_FMI_OFFSET,
108 .m_or = XAE_FMI_PM_MASK,
109 }, { /* Enable transmitter */
110 .opt = XAE_OPTION_TXEN,
111 .reg = XAE_TC_OFFSET,
112 .m_or = XAE_TC_TX_MASK,
113 }, { /* Enable receiver */
114 .opt = XAE_OPTION_RXEN,
115 .reg = XAE_RCW1_OFFSET,
116 .m_or = XAE_RCW1_RX_MASK,
117 },
118 {}
119 };
120
121 /**
122 * axienet_dma_in32 - Memory mapped Axi DMA register read
123 * @lp: Pointer to axienet local structure
124 * @reg: Address offset from the base address of the Axi DMA core
125 *
126 * Return: The contents of the Axi DMA register
127 *
128 * This function returns the contents of the corresponding Axi DMA register.
129 */
axienet_dma_in32(struct axienet_local * lp,off_t reg)130 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
131 {
132 return ioread32(lp->dma_regs + reg);
133 }
134
135 /**
136 * axienet_dma_out32 - Memory mapped Axi DMA register write.
137 * @lp: Pointer to axienet local structure
138 * @reg: Address offset from the base address of the Axi DMA core
139 * @value: Value to be written into the Axi DMA register
140 *
141 * This function writes the desired value into the corresponding Axi DMA
142 * register.
143 */
axienet_dma_out32(struct axienet_local * lp,off_t reg,u32 value)144 static inline void axienet_dma_out32(struct axienet_local *lp,
145 off_t reg, u32 value)
146 {
147 iowrite32(value, lp->dma_regs + reg);
148 }
149
150 /**
151 * axienet_dma_bd_release - Release buffer descriptor rings
152 * @ndev: Pointer to the net_device structure
153 *
154 * This function is used to release the descriptors allocated in
155 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
156 * driver stop api is called.
157 */
axienet_dma_bd_release(struct net_device * ndev)158 static void axienet_dma_bd_release(struct net_device *ndev)
159 {
160 int i;
161 struct axienet_local *lp = netdev_priv(ndev);
162
163 for (i = 0; i < lp->rx_bd_num; i++) {
164 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
165 lp->max_frm_size, DMA_FROM_DEVICE);
166 dev_kfree_skb(lp->rx_bd_v[i].skb);
167 }
168
169 if (lp->rx_bd_v) {
170 dma_free_coherent(ndev->dev.parent,
171 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
172 lp->rx_bd_v,
173 lp->rx_bd_p);
174 }
175 if (lp->tx_bd_v) {
176 dma_free_coherent(ndev->dev.parent,
177 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
178 lp->tx_bd_v,
179 lp->tx_bd_p);
180 }
181 }
182
183 /**
184 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
185 * @ndev: Pointer to the net_device structure
186 *
187 * Return: 0, on success -ENOMEM, on failure
188 *
189 * This function is called to initialize the Rx and Tx DMA descriptor
190 * rings. This initializes the descriptors with required default values
191 * and is called when Axi Ethernet driver reset is called.
192 */
axienet_dma_bd_init(struct net_device * ndev)193 static int axienet_dma_bd_init(struct net_device *ndev)
194 {
195 u32 cr;
196 int i;
197 struct sk_buff *skb;
198 struct axienet_local *lp = netdev_priv(ndev);
199
200 /* Reset the indexes which are used for accessing the BDs */
201 lp->tx_bd_ci = 0;
202 lp->tx_bd_tail = 0;
203 lp->rx_bd_ci = 0;
204
205 /* Allocate the Tx and Rx buffer descriptors. */
206 lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
207 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
208 &lp->tx_bd_p, GFP_KERNEL);
209 if (!lp->tx_bd_v)
210 goto out;
211
212 lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
213 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
214 &lp->rx_bd_p, GFP_KERNEL);
215 if (!lp->rx_bd_v)
216 goto out;
217
218 for (i = 0; i < lp->tx_bd_num; i++) {
219 lp->tx_bd_v[i].next = lp->tx_bd_p +
220 sizeof(*lp->tx_bd_v) *
221 ((i + 1) % lp->tx_bd_num);
222 }
223
224 for (i = 0; i < lp->rx_bd_num; i++) {
225 lp->rx_bd_v[i].next = lp->rx_bd_p +
226 sizeof(*lp->rx_bd_v) *
227 ((i + 1) % lp->rx_bd_num);
228
229 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
230 if (!skb)
231 goto out;
232
233 lp->rx_bd_v[i].skb = skb;
234 lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
235 skb->data,
236 lp->max_frm_size,
237 DMA_FROM_DEVICE);
238 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
239 }
240
241 /* Start updating the Rx channel control register */
242 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
243 /* Update the interrupt coalesce count */
244 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
245 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
246 /* Update the delay timer count */
247 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
248 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
249 /* Enable coalesce, delay timer and error interrupts */
250 cr |= XAXIDMA_IRQ_ALL_MASK;
251 /* Write to the Rx channel control register */
252 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
253
254 /* Start updating the Tx channel control register */
255 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
256 /* Update the interrupt coalesce count */
257 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
258 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
259 /* Update the delay timer count */
260 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
261 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
262 /* Enable coalesce, delay timer and error interrupts */
263 cr |= XAXIDMA_IRQ_ALL_MASK;
264 /* Write to the Tx channel control register */
265 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
266
267 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
268 * halted state. This will make the Rx side ready for reception.
269 */
270 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
271 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
272 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
273 cr | XAXIDMA_CR_RUNSTOP_MASK);
274 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
275 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
276
277 /* Write to the RS (Run-stop) bit in the Tx channel control register.
278 * Tx channel is now ready to run. But only after we write to the
279 * tail pointer register that the Tx channel will start transmitting.
280 */
281 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
282 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
283 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
284 cr | XAXIDMA_CR_RUNSTOP_MASK);
285
286 return 0;
287 out:
288 axienet_dma_bd_release(ndev);
289 return -ENOMEM;
290 }
291
292 /**
293 * axienet_set_mac_address - Write the MAC address
294 * @ndev: Pointer to the net_device structure
295 * @address: 6 byte Address to be written as MAC address
296 *
297 * This function is called to initialize the MAC address of the Axi Ethernet
298 * core. It writes to the UAW0 and UAW1 registers of the core.
299 */
axienet_set_mac_address(struct net_device * ndev,const void * address)300 static void axienet_set_mac_address(struct net_device *ndev,
301 const void *address)
302 {
303 struct axienet_local *lp = netdev_priv(ndev);
304
305 if (address)
306 memcpy(ndev->dev_addr, address, ETH_ALEN);
307 if (!is_valid_ether_addr(ndev->dev_addr))
308 eth_hw_addr_random(ndev);
309
310 /* Set up unicast MAC address filter set its mac address */
311 axienet_iow(lp, XAE_UAW0_OFFSET,
312 (ndev->dev_addr[0]) |
313 (ndev->dev_addr[1] << 8) |
314 (ndev->dev_addr[2] << 16) |
315 (ndev->dev_addr[3] << 24));
316 axienet_iow(lp, XAE_UAW1_OFFSET,
317 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
318 ~XAE_UAW1_UNICASTADDR_MASK) |
319 (ndev->dev_addr[4] |
320 (ndev->dev_addr[5] << 8))));
321 }
322
323 /**
324 * netdev_set_mac_address - Write the MAC address (from outside the driver)
325 * @ndev: Pointer to the net_device structure
326 * @p: 6 byte Address to be written as MAC address
327 *
328 * Return: 0 for all conditions. Presently, there is no failure case.
329 *
330 * This function is called to initialize the MAC address of the Axi Ethernet
331 * core. It calls the core specific axienet_set_mac_address. This is the
332 * function that goes into net_device_ops structure entry ndo_set_mac_address.
333 */
netdev_set_mac_address(struct net_device * ndev,void * p)334 static int netdev_set_mac_address(struct net_device *ndev, void *p)
335 {
336 struct sockaddr *addr = p;
337 axienet_set_mac_address(ndev, addr->sa_data);
338 return 0;
339 }
340
341 /**
342 * axienet_set_multicast_list - Prepare the multicast table
343 * @ndev: Pointer to the net_device structure
344 *
345 * This function is called to initialize the multicast table during
346 * initialization. The Axi Ethernet basic multicast support has a four-entry
347 * multicast table which is initialized here. Additionally this function
348 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
349 * means whenever the multicast table entries need to be updated this
350 * function gets called.
351 */
axienet_set_multicast_list(struct net_device * ndev)352 static void axienet_set_multicast_list(struct net_device *ndev)
353 {
354 int i;
355 u32 reg, af0reg, af1reg;
356 struct axienet_local *lp = netdev_priv(ndev);
357
358 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
359 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
360 /* We must make the kernel realize we had to move into
361 * promiscuous mode. If it was a promiscuous mode request
362 * the flag is already set. If not we set it.
363 */
364 ndev->flags |= IFF_PROMISC;
365 reg = axienet_ior(lp, XAE_FMI_OFFSET);
366 reg |= XAE_FMI_PM_MASK;
367 axienet_iow(lp, XAE_FMI_OFFSET, reg);
368 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
369 } else if (!netdev_mc_empty(ndev)) {
370 struct netdev_hw_addr *ha;
371
372 i = 0;
373 netdev_for_each_mc_addr(ha, ndev) {
374 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
375 break;
376
377 af0reg = (ha->addr[0]);
378 af0reg |= (ha->addr[1] << 8);
379 af0reg |= (ha->addr[2] << 16);
380 af0reg |= (ha->addr[3] << 24);
381
382 af1reg = (ha->addr[4]);
383 af1reg |= (ha->addr[5] << 8);
384
385 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
386 reg |= i;
387
388 axienet_iow(lp, XAE_FMI_OFFSET, reg);
389 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
390 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
391 i++;
392 }
393 } else {
394 reg = axienet_ior(lp, XAE_FMI_OFFSET);
395 reg &= ~XAE_FMI_PM_MASK;
396
397 axienet_iow(lp, XAE_FMI_OFFSET, reg);
398
399 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
400 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
401 reg |= i;
402
403 axienet_iow(lp, XAE_FMI_OFFSET, reg);
404 axienet_iow(lp, XAE_AF0_OFFSET, 0);
405 axienet_iow(lp, XAE_AF1_OFFSET, 0);
406 }
407
408 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
409 }
410 }
411
412 /**
413 * axienet_setoptions - Set an Axi Ethernet option
414 * @ndev: Pointer to the net_device structure
415 * @options: Option to be enabled/disabled
416 *
417 * The Axi Ethernet core has multiple features which can be selectively turned
418 * on or off. The typical options could be jumbo frame option, basic VLAN
419 * option, promiscuous mode option etc. This function is used to set or clear
420 * these options in the Axi Ethernet hardware. This is done through
421 * axienet_option structure .
422 */
axienet_setoptions(struct net_device * ndev,u32 options)423 static void axienet_setoptions(struct net_device *ndev, u32 options)
424 {
425 int reg;
426 struct axienet_local *lp = netdev_priv(ndev);
427 struct axienet_option *tp = &axienet_options[0];
428
429 while (tp->opt) {
430 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
431 if (options & tp->opt)
432 reg |= tp->m_or;
433 axienet_iow(lp, tp->reg, reg);
434 tp++;
435 }
436
437 lp->options |= options;
438 }
439
__axienet_device_reset(struct axienet_local * lp)440 static void __axienet_device_reset(struct axienet_local *lp)
441 {
442 u32 timeout;
443 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
444 * process of Axi DMA takes a while to complete as all pending
445 * commands/transfers will be flushed or completed during this
446 * reset process.
447 * Note that even though both TX and RX have their own reset register,
448 * they both reset the entire DMA core, so only one needs to be used.
449 */
450 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
451 timeout = DELAY_OF_ONE_MILLISEC;
452 while (axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET) &
453 XAXIDMA_CR_RESET_MASK) {
454 udelay(1);
455 if (--timeout == 0) {
456 netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
457 __func__);
458 break;
459 }
460 }
461 }
462
463 /**
464 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
465 * @ndev: Pointer to the net_device structure
466 *
467 * This function is called to reset and initialize the Axi Ethernet core. This
468 * is typically called during initialization. It does a reset of the Axi DMA
469 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
470 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
471 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
472 * core.
473 */
axienet_device_reset(struct net_device * ndev)474 static void axienet_device_reset(struct net_device *ndev)
475 {
476 u32 axienet_status;
477 struct axienet_local *lp = netdev_priv(ndev);
478
479 __axienet_device_reset(lp);
480
481 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
482 lp->options |= XAE_OPTION_VLAN;
483 lp->options &= (~XAE_OPTION_JUMBO);
484
485 if ((ndev->mtu > XAE_MTU) &&
486 (ndev->mtu <= XAE_JUMBO_MTU)) {
487 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
488 XAE_TRL_SIZE;
489
490 if (lp->max_frm_size <= lp->rxmem)
491 lp->options |= XAE_OPTION_JUMBO;
492 }
493
494 if (axienet_dma_bd_init(ndev)) {
495 netdev_err(ndev, "%s: descriptor allocation failed\n",
496 __func__);
497 }
498
499 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
500 axienet_status &= ~XAE_RCW1_RX_MASK;
501 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
502
503 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
504 if (axienet_status & XAE_INT_RXRJECT_MASK)
505 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
506 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
507 XAE_INT_RECV_ERROR_MASK : 0);
508
509 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
510
511 /* Sync default options with HW but leave receiver and
512 * transmitter disabled.
513 */
514 axienet_setoptions(ndev, lp->options &
515 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
516 axienet_set_mac_address(ndev, NULL);
517 axienet_set_multicast_list(ndev);
518 axienet_setoptions(ndev, lp->options);
519
520 netif_trans_update(ndev);
521 }
522
523 /**
524 * axienet_start_xmit_done - Invoked once a transmit is completed by the
525 * Axi DMA Tx channel.
526 * @ndev: Pointer to the net_device structure
527 *
528 * This function is invoked from the Axi DMA Tx isr to notify the completion
529 * of transmit operation. It clears fields in the corresponding Tx BDs and
530 * unmaps the corresponding buffer so that CPU can regain ownership of the
531 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
532 * required.
533 */
axienet_start_xmit_done(struct net_device * ndev)534 static void axienet_start_xmit_done(struct net_device *ndev)
535 {
536 u32 size = 0;
537 u32 packets = 0;
538 struct axienet_local *lp = netdev_priv(ndev);
539 struct axidma_bd *cur_p;
540 unsigned int status = 0;
541
542 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
543 status = cur_p->status;
544 while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
545 dma_unmap_single(ndev->dev.parent, cur_p->phys,
546 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
547 DMA_TO_DEVICE);
548 if (cur_p->skb)
549 dev_consume_skb_irq(cur_p->skb);
550 /*cur_p->phys = 0;*/
551 cur_p->app0 = 0;
552 cur_p->app1 = 0;
553 cur_p->app2 = 0;
554 cur_p->app4 = 0;
555 cur_p->status = 0;
556 cur_p->skb = NULL;
557
558 size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
559 packets++;
560
561 if (++lp->tx_bd_ci >= lp->tx_bd_num)
562 lp->tx_bd_ci = 0;
563 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
564 status = cur_p->status;
565 }
566
567 ndev->stats.tx_packets += packets;
568 ndev->stats.tx_bytes += size;
569
570 /* Matches barrier in axienet_start_xmit */
571 smp_mb();
572
573 netif_wake_queue(ndev);
574 }
575
576 /**
577 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
578 * @lp: Pointer to the axienet_local structure
579 * @num_frag: The number of BDs to check for
580 *
581 * Return: 0, on success
582 * NETDEV_TX_BUSY, if any of the descriptors are not free
583 *
584 * This function is invoked before BDs are allocated and transmission starts.
585 * This function returns 0 if a BD or group of BDs can be allocated for
586 * transmission. If the BD or any of the BDs are not free the function
587 * returns a busy status. This is invoked from axienet_start_xmit.
588 */
axienet_check_tx_bd_space(struct axienet_local * lp,int num_frag)589 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
590 int num_frag)
591 {
592 struct axidma_bd *cur_p;
593 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % lp->tx_bd_num];
594 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
595 return NETDEV_TX_BUSY;
596 return 0;
597 }
598
599 /**
600 * axienet_start_xmit - Starts the transmission.
601 * @skb: sk_buff pointer that contains data to be Txed.
602 * @ndev: Pointer to net_device structure.
603 *
604 * Return: NETDEV_TX_OK, on success
605 * NETDEV_TX_BUSY, if any of the descriptors are not free
606 *
607 * This function is invoked from upper layers to initiate transmission. The
608 * function uses the next available free BDs and populates their fields to
609 * start the transmission. Additionally if checksum offloading is supported,
610 * it populates AXI Stream Control fields with appropriate values.
611 */
612 static netdev_tx_t
axienet_start_xmit(struct sk_buff * skb,struct net_device * ndev)613 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
614 {
615 u32 ii;
616 u32 num_frag;
617 u32 csum_start_off;
618 u32 csum_index_off;
619 skb_frag_t *frag;
620 dma_addr_t tail_p;
621 struct axienet_local *lp = netdev_priv(ndev);
622 struct axidma_bd *cur_p;
623
624 num_frag = skb_shinfo(skb)->nr_frags;
625 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
626
627 if (axienet_check_tx_bd_space(lp, num_frag)) {
628 if (netif_queue_stopped(ndev))
629 return NETDEV_TX_BUSY;
630
631 netif_stop_queue(ndev);
632
633 /* Matches barrier in axienet_start_xmit_done */
634 smp_mb();
635
636 /* Space might have just been freed - check again */
637 if (axienet_check_tx_bd_space(lp, num_frag))
638 return NETDEV_TX_BUSY;
639
640 netif_wake_queue(ndev);
641 }
642
643 if (skb->ip_summed == CHECKSUM_PARTIAL) {
644 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
645 /* Tx Full Checksum Offload Enabled */
646 cur_p->app0 |= 2;
647 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
648 csum_start_off = skb_transport_offset(skb);
649 csum_index_off = csum_start_off + skb->csum_offset;
650 /* Tx Partial Checksum Offload Enabled */
651 cur_p->app0 |= 1;
652 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
653 }
654 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
655 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
656 }
657
658 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
659 cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
660 skb_headlen(skb), DMA_TO_DEVICE);
661
662 for (ii = 0; ii < num_frag; ii++) {
663 if (++lp->tx_bd_tail >= lp->tx_bd_num)
664 lp->tx_bd_tail = 0;
665 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
666 frag = &skb_shinfo(skb)->frags[ii];
667 cur_p->phys = dma_map_single(ndev->dev.parent,
668 skb_frag_address(frag),
669 skb_frag_size(frag),
670 DMA_TO_DEVICE);
671 cur_p->cntrl = skb_frag_size(frag);
672 }
673
674 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
675 cur_p->skb = skb;
676
677 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
678 /* Start the transfer */
679 axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
680 if (++lp->tx_bd_tail >= lp->tx_bd_num)
681 lp->tx_bd_tail = 0;
682
683 return NETDEV_TX_OK;
684 }
685
686 /**
687 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
688 * BD processing.
689 * @ndev: Pointer to net_device structure.
690 *
691 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
692 * does minimal processing and invokes "netif_rx" to complete further
693 * processing.
694 */
axienet_recv(struct net_device * ndev)695 static void axienet_recv(struct net_device *ndev)
696 {
697 u32 length;
698 u32 csumstatus;
699 u32 size = 0;
700 u32 packets = 0;
701 dma_addr_t tail_p = 0;
702 struct axienet_local *lp = netdev_priv(ndev);
703 struct sk_buff *skb, *new_skb;
704 struct axidma_bd *cur_p;
705
706 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
707
708 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
709 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
710
711 dma_unmap_single(ndev->dev.parent, cur_p->phys,
712 lp->max_frm_size,
713 DMA_FROM_DEVICE);
714
715 skb = cur_p->skb;
716 cur_p->skb = NULL;
717 length = cur_p->app4 & 0x0000FFFF;
718
719 skb_put(skb, length);
720 skb->protocol = eth_type_trans(skb, ndev);
721 /*skb_checksum_none_assert(skb);*/
722 skb->ip_summed = CHECKSUM_NONE;
723
724 /* if we're doing Rx csum offload, set it up */
725 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
726 csumstatus = (cur_p->app2 &
727 XAE_FULL_CSUM_STATUS_MASK) >> 3;
728 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
729 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
730 skb->ip_summed = CHECKSUM_UNNECESSARY;
731 }
732 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
733 skb->protocol == htons(ETH_P_IP) &&
734 skb->len > 64) {
735 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
736 skb->ip_summed = CHECKSUM_COMPLETE;
737 }
738
739 netif_rx(skb);
740
741 size += length;
742 packets++;
743
744 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
745 if (!new_skb)
746 return;
747
748 cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
749 lp->max_frm_size,
750 DMA_FROM_DEVICE);
751 cur_p->cntrl = lp->max_frm_size;
752 cur_p->status = 0;
753 cur_p->skb = new_skb;
754
755 if (++lp->rx_bd_ci >= lp->rx_bd_num)
756 lp->rx_bd_ci = 0;
757 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
758 }
759
760 ndev->stats.rx_packets += packets;
761 ndev->stats.rx_bytes += size;
762
763 if (tail_p)
764 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
765 }
766
767 /**
768 * axienet_tx_irq - Tx Done Isr.
769 * @irq: irq number
770 * @_ndev: net_device pointer
771 *
772 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
773 *
774 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
775 * to complete the BD processing.
776 */
axienet_tx_irq(int irq,void * _ndev)777 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
778 {
779 u32 cr;
780 unsigned int status;
781 struct net_device *ndev = _ndev;
782 struct axienet_local *lp = netdev_priv(ndev);
783
784 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
785 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
786 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
787 axienet_start_xmit_done(lp->ndev);
788 goto out;
789 }
790 if (!(status & XAXIDMA_IRQ_ALL_MASK))
791 return IRQ_NONE;
792 if (status & XAXIDMA_IRQ_ERROR_MASK) {
793 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
794 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
795 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
796
797 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
798 /* Disable coalesce, delay timer and error interrupts */
799 cr &= (~XAXIDMA_IRQ_ALL_MASK);
800 /* Write to the Tx channel control register */
801 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
802
803 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
804 /* Disable coalesce, delay timer and error interrupts */
805 cr &= (~XAXIDMA_IRQ_ALL_MASK);
806 /* Write to the Rx channel control register */
807 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
808
809 tasklet_schedule(&lp->dma_err_tasklet);
810 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
811 }
812 out:
813 return IRQ_HANDLED;
814 }
815
816 /**
817 * axienet_rx_irq - Rx Isr.
818 * @irq: irq number
819 * @_ndev: net_device pointer
820 *
821 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
822 *
823 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
824 * processing.
825 */
axienet_rx_irq(int irq,void * _ndev)826 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
827 {
828 u32 cr;
829 unsigned int status;
830 struct net_device *ndev = _ndev;
831 struct axienet_local *lp = netdev_priv(ndev);
832
833 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
834 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
835 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
836 axienet_recv(lp->ndev);
837 goto out;
838 }
839 if (!(status & XAXIDMA_IRQ_ALL_MASK))
840 return IRQ_NONE;
841 if (status & XAXIDMA_IRQ_ERROR_MASK) {
842 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
843 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
844 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
845
846 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
847 /* Disable coalesce, delay timer and error interrupts */
848 cr &= (~XAXIDMA_IRQ_ALL_MASK);
849 /* Finally write to the Tx channel control register */
850 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
851
852 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
853 /* Disable coalesce, delay timer and error interrupts */
854 cr &= (~XAXIDMA_IRQ_ALL_MASK);
855 /* write to the Rx channel control register */
856 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
857
858 tasklet_schedule(&lp->dma_err_tasklet);
859 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
860 }
861 out:
862 return IRQ_HANDLED;
863 }
864
865 /**
866 * axienet_eth_irq - Ethernet core Isr.
867 * @irq: irq number
868 * @_ndev: net_device pointer
869 *
870 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
871 *
872 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
873 */
axienet_eth_irq(int irq,void * _ndev)874 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
875 {
876 struct net_device *ndev = _ndev;
877 struct axienet_local *lp = netdev_priv(ndev);
878 unsigned int pending;
879
880 pending = axienet_ior(lp, XAE_IP_OFFSET);
881 if (!pending)
882 return IRQ_NONE;
883
884 if (pending & XAE_INT_RXFIFOOVR_MASK)
885 ndev->stats.rx_missed_errors++;
886
887 if (pending & XAE_INT_RXRJECT_MASK)
888 ndev->stats.rx_frame_errors++;
889
890 axienet_iow(lp, XAE_IS_OFFSET, pending);
891 return IRQ_HANDLED;
892 }
893
894 static void axienet_dma_err_handler(unsigned long data);
895
896 /**
897 * axienet_open - Driver open routine.
898 * @ndev: Pointer to net_device structure
899 *
900 * Return: 0, on success.
901 * non-zero error value on failure
902 *
903 * This is the driver open routine. It calls phylink_start to start the
904 * PHY device.
905 * It also allocates interrupt service routines, enables the interrupt lines
906 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
907 * descriptors are initialized.
908 */
axienet_open(struct net_device * ndev)909 static int axienet_open(struct net_device *ndev)
910 {
911 int ret;
912 struct axienet_local *lp = netdev_priv(ndev);
913
914 dev_dbg(&ndev->dev, "axienet_open()\n");
915
916 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
917 * When we do an Axi Ethernet reset, it resets the complete core
918 * including the MDIO. MDIO must be disabled before resetting
919 * and re-enabled afterwards.
920 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
921 */
922 mutex_lock(&lp->mii_bus->mdio_lock);
923 axienet_mdio_disable(lp);
924 axienet_device_reset(ndev);
925 ret = axienet_mdio_enable(lp);
926 mutex_unlock(&lp->mii_bus->mdio_lock);
927 if (ret < 0)
928 return ret;
929
930 ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
931 if (ret) {
932 dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
933 return ret;
934 }
935
936 phylink_start(lp->phylink);
937
938 /* Enable tasklets for Axi DMA error handling */
939 tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
940 (unsigned long) lp);
941
942 /* Enable interrupts for Axi DMA Tx */
943 ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
944 ndev->name, ndev);
945 if (ret)
946 goto err_tx_irq;
947 /* Enable interrupts for Axi DMA Rx */
948 ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
949 ndev->name, ndev);
950 if (ret)
951 goto err_rx_irq;
952 /* Enable interrupts for Axi Ethernet core (if defined) */
953 if (lp->eth_irq > 0) {
954 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
955 ndev->name, ndev);
956 if (ret)
957 goto err_eth_irq;
958 }
959
960 return 0;
961
962 err_eth_irq:
963 free_irq(lp->rx_irq, ndev);
964 err_rx_irq:
965 free_irq(lp->tx_irq, ndev);
966 err_tx_irq:
967 phylink_stop(lp->phylink);
968 phylink_disconnect_phy(lp->phylink);
969 tasklet_kill(&lp->dma_err_tasklet);
970 dev_err(lp->dev, "request_irq() failed\n");
971 return ret;
972 }
973
974 /**
975 * axienet_stop - Driver stop routine.
976 * @ndev: Pointer to net_device structure
977 *
978 * Return: 0, on success.
979 *
980 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
981 * device. It also removes the interrupt handlers and disables the interrupts.
982 * The Axi DMA Tx/Rx BDs are released.
983 */
axienet_stop(struct net_device * ndev)984 static int axienet_stop(struct net_device *ndev)
985 {
986 u32 cr, sr;
987 int count;
988 struct axienet_local *lp = netdev_priv(ndev);
989
990 dev_dbg(&ndev->dev, "axienet_close()\n");
991
992 phylink_stop(lp->phylink);
993 phylink_disconnect_phy(lp->phylink);
994
995 axienet_setoptions(ndev, lp->options &
996 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
997
998 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
999 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1000 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1001
1002 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1003 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1004 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1005
1006 axienet_iow(lp, XAE_IE_OFFSET, 0);
1007
1008 /* Give DMAs a chance to halt gracefully */
1009 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1010 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1011 msleep(20);
1012 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1013 }
1014
1015 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1016 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1017 msleep(20);
1018 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1019 }
1020
1021 /* Do a reset to ensure DMA is really stopped */
1022 mutex_lock(&lp->mii_bus->mdio_lock);
1023 axienet_mdio_disable(lp);
1024 __axienet_device_reset(lp);
1025 axienet_mdio_enable(lp);
1026 mutex_unlock(&lp->mii_bus->mdio_lock);
1027
1028 tasklet_kill(&lp->dma_err_tasklet);
1029
1030 if (lp->eth_irq > 0)
1031 free_irq(lp->eth_irq, ndev);
1032 free_irq(lp->tx_irq, ndev);
1033 free_irq(lp->rx_irq, ndev);
1034
1035 axienet_dma_bd_release(ndev);
1036 return 0;
1037 }
1038
1039 /**
1040 * axienet_change_mtu - Driver change mtu routine.
1041 * @ndev: Pointer to net_device structure
1042 * @new_mtu: New mtu value to be applied
1043 *
1044 * Return: Always returns 0 (success).
1045 *
1046 * This is the change mtu driver routine. It checks if the Axi Ethernet
1047 * hardware supports jumbo frames before changing the mtu. This can be
1048 * called only when the device is not up.
1049 */
axienet_change_mtu(struct net_device * ndev,int new_mtu)1050 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1051 {
1052 struct axienet_local *lp = netdev_priv(ndev);
1053
1054 if (netif_running(ndev))
1055 return -EBUSY;
1056
1057 if ((new_mtu + VLAN_ETH_HLEN +
1058 XAE_TRL_SIZE) > lp->rxmem)
1059 return -EINVAL;
1060
1061 ndev->mtu = new_mtu;
1062
1063 return 0;
1064 }
1065
1066 #ifdef CONFIG_NET_POLL_CONTROLLER
1067 /**
1068 * axienet_poll_controller - Axi Ethernet poll mechanism.
1069 * @ndev: Pointer to net_device structure
1070 *
1071 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1072 * to polling the ISRs and are enabled back after the polling is done.
1073 */
axienet_poll_controller(struct net_device * ndev)1074 static void axienet_poll_controller(struct net_device *ndev)
1075 {
1076 struct axienet_local *lp = netdev_priv(ndev);
1077 disable_irq(lp->tx_irq);
1078 disable_irq(lp->rx_irq);
1079 axienet_rx_irq(lp->tx_irq, ndev);
1080 axienet_tx_irq(lp->rx_irq, ndev);
1081 enable_irq(lp->tx_irq);
1082 enable_irq(lp->rx_irq);
1083 }
1084 #endif
1085
1086 static const struct net_device_ops axienet_netdev_ops = {
1087 .ndo_open = axienet_open,
1088 .ndo_stop = axienet_stop,
1089 .ndo_start_xmit = axienet_start_xmit,
1090 .ndo_change_mtu = axienet_change_mtu,
1091 .ndo_set_mac_address = netdev_set_mac_address,
1092 .ndo_validate_addr = eth_validate_addr,
1093 .ndo_set_rx_mode = axienet_set_multicast_list,
1094 #ifdef CONFIG_NET_POLL_CONTROLLER
1095 .ndo_poll_controller = axienet_poll_controller,
1096 #endif
1097 };
1098
1099 /**
1100 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1101 * @ndev: Pointer to net_device structure
1102 * @ed: Pointer to ethtool_drvinfo structure
1103 *
1104 * This implements ethtool command for getting the driver information.
1105 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1106 */
axienet_ethtools_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * ed)1107 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1108 struct ethtool_drvinfo *ed)
1109 {
1110 strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1111 strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1112 }
1113
1114 /**
1115 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1116 * AxiEthernet core.
1117 * @ndev: Pointer to net_device structure
1118 *
1119 * This implements ethtool command for getting the total register length
1120 * information.
1121 *
1122 * Return: the total regs length
1123 */
axienet_ethtools_get_regs_len(struct net_device * ndev)1124 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1125 {
1126 return sizeof(u32) * AXIENET_REGS_N;
1127 }
1128
1129 /**
1130 * axienet_ethtools_get_regs - Dump the contents of all registers present
1131 * in AxiEthernet core.
1132 * @ndev: Pointer to net_device structure
1133 * @regs: Pointer to ethtool_regs structure
1134 * @ret: Void pointer used to return the contents of the registers.
1135 *
1136 * This implements ethtool command for getting the Axi Ethernet register dump.
1137 * Issue "ethtool -d ethX" to execute this function.
1138 */
axienet_ethtools_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * ret)1139 static void axienet_ethtools_get_regs(struct net_device *ndev,
1140 struct ethtool_regs *regs, void *ret)
1141 {
1142 u32 *data = (u32 *) ret;
1143 size_t len = sizeof(u32) * AXIENET_REGS_N;
1144 struct axienet_local *lp = netdev_priv(ndev);
1145
1146 regs->version = 0;
1147 regs->len = len;
1148
1149 memset(data, 0, len);
1150 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1151 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1152 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1153 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1154 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1155 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1156 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1157 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1158 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1159 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1160 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1161 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1162 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1163 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1164 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1165 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1166 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1167 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1168 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1169 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1170 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1171 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1172 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1173 data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1174 data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1175 data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1176 data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1177 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1178 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1179 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1180 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1181 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1182 data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1183 data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1184 data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1185 data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1186 data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1187 data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1188 data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1189 data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1190 }
1191
axienet_ethtools_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering)1192 static void axienet_ethtools_get_ringparam(struct net_device *ndev,
1193 struct ethtool_ringparam *ering)
1194 {
1195 struct axienet_local *lp = netdev_priv(ndev);
1196
1197 ering->rx_max_pending = RX_BD_NUM_MAX;
1198 ering->rx_mini_max_pending = 0;
1199 ering->rx_jumbo_max_pending = 0;
1200 ering->tx_max_pending = TX_BD_NUM_MAX;
1201 ering->rx_pending = lp->rx_bd_num;
1202 ering->rx_mini_pending = 0;
1203 ering->rx_jumbo_pending = 0;
1204 ering->tx_pending = lp->tx_bd_num;
1205 }
1206
axienet_ethtools_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering)1207 static int axienet_ethtools_set_ringparam(struct net_device *ndev,
1208 struct ethtool_ringparam *ering)
1209 {
1210 struct axienet_local *lp = netdev_priv(ndev);
1211
1212 if (ering->rx_pending > RX_BD_NUM_MAX ||
1213 ering->rx_mini_pending ||
1214 ering->rx_jumbo_pending ||
1215 ering->rx_pending > TX_BD_NUM_MAX)
1216 return -EINVAL;
1217
1218 if (netif_running(ndev))
1219 return -EBUSY;
1220
1221 lp->rx_bd_num = ering->rx_pending;
1222 lp->tx_bd_num = ering->tx_pending;
1223 return 0;
1224 }
1225
1226 /**
1227 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1228 * Tx and Rx paths.
1229 * @ndev: Pointer to net_device structure
1230 * @epauseparm: Pointer to ethtool_pauseparam structure.
1231 *
1232 * This implements ethtool command for getting axi ethernet pause frame
1233 * setting. Issue "ethtool -a ethX" to execute this function.
1234 */
1235 static void
axienet_ethtools_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * epauseparm)1236 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1237 struct ethtool_pauseparam *epauseparm)
1238 {
1239 struct axienet_local *lp = netdev_priv(ndev);
1240
1241 phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1242 }
1243
1244 /**
1245 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1246 * settings.
1247 * @ndev: Pointer to net_device structure
1248 * @epauseparm:Pointer to ethtool_pauseparam structure
1249 *
1250 * This implements ethtool command for enabling flow control on Rx and Tx
1251 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1252 * function.
1253 *
1254 * Return: 0 on success, -EFAULT if device is running
1255 */
1256 static int
axienet_ethtools_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * epauseparm)1257 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1258 struct ethtool_pauseparam *epauseparm)
1259 {
1260 struct axienet_local *lp = netdev_priv(ndev);
1261
1262 return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1263 }
1264
1265 /**
1266 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1267 * @ndev: Pointer to net_device structure
1268 * @ecoalesce: Pointer to ethtool_coalesce structure
1269 *
1270 * This implements ethtool command for getting the DMA interrupt coalescing
1271 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1272 * execute this function.
1273 *
1274 * Return: 0 always
1275 */
axienet_ethtools_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ecoalesce)1276 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1277 struct ethtool_coalesce *ecoalesce)
1278 {
1279 u32 regval = 0;
1280 struct axienet_local *lp = netdev_priv(ndev);
1281 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1282 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1283 >> XAXIDMA_COALESCE_SHIFT;
1284 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1285 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1286 >> XAXIDMA_COALESCE_SHIFT;
1287 return 0;
1288 }
1289
1290 /**
1291 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1292 * @ndev: Pointer to net_device structure
1293 * @ecoalesce: Pointer to ethtool_coalesce structure
1294 *
1295 * This implements ethtool command for setting the DMA interrupt coalescing
1296 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1297 * prompt to execute this function.
1298 *
1299 * Return: 0, on success, Non-zero error value on failure.
1300 */
axienet_ethtools_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ecoalesce)1301 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1302 struct ethtool_coalesce *ecoalesce)
1303 {
1304 struct axienet_local *lp = netdev_priv(ndev);
1305
1306 if (netif_running(ndev)) {
1307 netdev_err(ndev,
1308 "Please stop netif before applying configuration\n");
1309 return -EFAULT;
1310 }
1311
1312 if ((ecoalesce->rx_coalesce_usecs) ||
1313 (ecoalesce->rx_coalesce_usecs_irq) ||
1314 (ecoalesce->rx_max_coalesced_frames_irq) ||
1315 (ecoalesce->tx_coalesce_usecs) ||
1316 (ecoalesce->tx_coalesce_usecs_irq) ||
1317 (ecoalesce->tx_max_coalesced_frames_irq) ||
1318 (ecoalesce->stats_block_coalesce_usecs) ||
1319 (ecoalesce->use_adaptive_rx_coalesce) ||
1320 (ecoalesce->use_adaptive_tx_coalesce) ||
1321 (ecoalesce->pkt_rate_low) ||
1322 (ecoalesce->rx_coalesce_usecs_low) ||
1323 (ecoalesce->rx_max_coalesced_frames_low) ||
1324 (ecoalesce->tx_coalesce_usecs_low) ||
1325 (ecoalesce->tx_max_coalesced_frames_low) ||
1326 (ecoalesce->pkt_rate_high) ||
1327 (ecoalesce->rx_coalesce_usecs_high) ||
1328 (ecoalesce->rx_max_coalesced_frames_high) ||
1329 (ecoalesce->tx_coalesce_usecs_high) ||
1330 (ecoalesce->tx_max_coalesced_frames_high) ||
1331 (ecoalesce->rate_sample_interval))
1332 return -EOPNOTSUPP;
1333 if (ecoalesce->rx_max_coalesced_frames)
1334 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1335 if (ecoalesce->tx_max_coalesced_frames)
1336 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1337
1338 return 0;
1339 }
1340
1341 static int
axienet_ethtools_get_link_ksettings(struct net_device * ndev,struct ethtool_link_ksettings * cmd)1342 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1343 struct ethtool_link_ksettings *cmd)
1344 {
1345 struct axienet_local *lp = netdev_priv(ndev);
1346
1347 return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1348 }
1349
1350 static int
axienet_ethtools_set_link_ksettings(struct net_device * ndev,const struct ethtool_link_ksettings * cmd)1351 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1352 const struct ethtool_link_ksettings *cmd)
1353 {
1354 struct axienet_local *lp = netdev_priv(ndev);
1355
1356 return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1357 }
1358
1359 static const struct ethtool_ops axienet_ethtool_ops = {
1360 .get_drvinfo = axienet_ethtools_get_drvinfo,
1361 .get_regs_len = axienet_ethtools_get_regs_len,
1362 .get_regs = axienet_ethtools_get_regs,
1363 .get_link = ethtool_op_get_link,
1364 .get_ringparam = axienet_ethtools_get_ringparam,
1365 .set_ringparam = axienet_ethtools_set_ringparam,
1366 .get_pauseparam = axienet_ethtools_get_pauseparam,
1367 .set_pauseparam = axienet_ethtools_set_pauseparam,
1368 .get_coalesce = axienet_ethtools_get_coalesce,
1369 .set_coalesce = axienet_ethtools_set_coalesce,
1370 .get_link_ksettings = axienet_ethtools_get_link_ksettings,
1371 .set_link_ksettings = axienet_ethtools_set_link_ksettings,
1372 };
1373
axienet_validate(struct phylink_config * config,unsigned long * supported,struct phylink_link_state * state)1374 static void axienet_validate(struct phylink_config *config,
1375 unsigned long *supported,
1376 struct phylink_link_state *state)
1377 {
1378 struct net_device *ndev = to_net_dev(config->dev);
1379 struct axienet_local *lp = netdev_priv(ndev);
1380 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1381
1382 /* Only support the mode we are configured for */
1383 if (state->interface != PHY_INTERFACE_MODE_NA &&
1384 state->interface != lp->phy_mode) {
1385 netdev_warn(ndev, "Cannot use PHY mode %s, supported: %s\n",
1386 phy_modes(state->interface),
1387 phy_modes(lp->phy_mode));
1388 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1389 return;
1390 }
1391
1392 phylink_set(mask, Autoneg);
1393 phylink_set_port_modes(mask);
1394
1395 phylink_set(mask, Asym_Pause);
1396 phylink_set(mask, Pause);
1397 phylink_set(mask, 1000baseX_Full);
1398 phylink_set(mask, 10baseT_Full);
1399 phylink_set(mask, 100baseT_Full);
1400 phylink_set(mask, 1000baseT_Full);
1401
1402 bitmap_and(supported, supported, mask,
1403 __ETHTOOL_LINK_MODE_MASK_NBITS);
1404 bitmap_and(state->advertising, state->advertising, mask,
1405 __ETHTOOL_LINK_MODE_MASK_NBITS);
1406 }
1407
axienet_mac_link_state(struct phylink_config * config,struct phylink_link_state * state)1408 static int axienet_mac_link_state(struct phylink_config *config,
1409 struct phylink_link_state *state)
1410 {
1411 struct net_device *ndev = to_net_dev(config->dev);
1412 struct axienet_local *lp = netdev_priv(ndev);
1413 u32 emmc_reg, fcc_reg;
1414
1415 state->interface = lp->phy_mode;
1416
1417 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1418 if (emmc_reg & XAE_EMMC_LINKSPD_1000)
1419 state->speed = SPEED_1000;
1420 else if (emmc_reg & XAE_EMMC_LINKSPD_100)
1421 state->speed = SPEED_100;
1422 else
1423 state->speed = SPEED_10;
1424
1425 state->pause = 0;
1426 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1427 if (fcc_reg & XAE_FCC_FCTX_MASK)
1428 state->pause |= MLO_PAUSE_TX;
1429 if (fcc_reg & XAE_FCC_FCRX_MASK)
1430 state->pause |= MLO_PAUSE_RX;
1431
1432 state->an_complete = 0;
1433 state->duplex = 1;
1434
1435 return 1;
1436 }
1437
axienet_mac_an_restart(struct phylink_config * config)1438 static void axienet_mac_an_restart(struct phylink_config *config)
1439 {
1440 /* Unsupported, do nothing */
1441 }
1442
axienet_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)1443 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1444 const struct phylink_link_state *state)
1445 {
1446 struct net_device *ndev = to_net_dev(config->dev);
1447 struct axienet_local *lp = netdev_priv(ndev);
1448 u32 emmc_reg, fcc_reg;
1449
1450 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1451 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1452
1453 switch (state->speed) {
1454 case SPEED_1000:
1455 emmc_reg |= XAE_EMMC_LINKSPD_1000;
1456 break;
1457 case SPEED_100:
1458 emmc_reg |= XAE_EMMC_LINKSPD_100;
1459 break;
1460 case SPEED_10:
1461 emmc_reg |= XAE_EMMC_LINKSPD_10;
1462 break;
1463 default:
1464 dev_err(&ndev->dev,
1465 "Speed other than 10, 100 or 1Gbps is not supported\n");
1466 break;
1467 }
1468
1469 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1470
1471 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1472 if (state->pause & MLO_PAUSE_TX)
1473 fcc_reg |= XAE_FCC_FCTX_MASK;
1474 else
1475 fcc_reg &= ~XAE_FCC_FCTX_MASK;
1476 if (state->pause & MLO_PAUSE_RX)
1477 fcc_reg |= XAE_FCC_FCRX_MASK;
1478 else
1479 fcc_reg &= ~XAE_FCC_FCRX_MASK;
1480 axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1481 }
1482
axienet_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)1483 static void axienet_mac_link_down(struct phylink_config *config,
1484 unsigned int mode,
1485 phy_interface_t interface)
1486 {
1487 /* nothing meaningful to do */
1488 }
1489
axienet_mac_link_up(struct phylink_config * config,unsigned int mode,phy_interface_t interface,struct phy_device * phy)1490 static void axienet_mac_link_up(struct phylink_config *config,
1491 unsigned int mode,
1492 phy_interface_t interface,
1493 struct phy_device *phy)
1494 {
1495 /* nothing meaningful to do */
1496 }
1497
1498 static const struct phylink_mac_ops axienet_phylink_ops = {
1499 .validate = axienet_validate,
1500 .mac_link_state = axienet_mac_link_state,
1501 .mac_an_restart = axienet_mac_an_restart,
1502 .mac_config = axienet_mac_config,
1503 .mac_link_down = axienet_mac_link_down,
1504 .mac_link_up = axienet_mac_link_up,
1505 };
1506
1507 /**
1508 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1509 * @data: Data passed
1510 *
1511 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1512 * Tx/Rx BDs.
1513 */
axienet_dma_err_handler(unsigned long data)1514 static void axienet_dma_err_handler(unsigned long data)
1515 {
1516 u32 axienet_status;
1517 u32 cr, i;
1518 struct axienet_local *lp = (struct axienet_local *) data;
1519 struct net_device *ndev = lp->ndev;
1520 struct axidma_bd *cur_p;
1521
1522 axienet_setoptions(ndev, lp->options &
1523 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1524 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1525 * When we do an Axi Ethernet reset, it resets the complete core
1526 * including the MDIO. MDIO must be disabled before resetting
1527 * and re-enabled afterwards.
1528 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1529 */
1530 mutex_lock(&lp->mii_bus->mdio_lock);
1531 axienet_mdio_disable(lp);
1532 __axienet_device_reset(lp);
1533 axienet_mdio_enable(lp);
1534 mutex_unlock(&lp->mii_bus->mdio_lock);
1535
1536 for (i = 0; i < lp->tx_bd_num; i++) {
1537 cur_p = &lp->tx_bd_v[i];
1538 if (cur_p->phys)
1539 dma_unmap_single(ndev->dev.parent, cur_p->phys,
1540 (cur_p->cntrl &
1541 XAXIDMA_BD_CTRL_LENGTH_MASK),
1542 DMA_TO_DEVICE);
1543 if (cur_p->skb)
1544 dev_kfree_skb_irq(cur_p->skb);
1545 cur_p->phys = 0;
1546 cur_p->cntrl = 0;
1547 cur_p->status = 0;
1548 cur_p->app0 = 0;
1549 cur_p->app1 = 0;
1550 cur_p->app2 = 0;
1551 cur_p->app3 = 0;
1552 cur_p->app4 = 0;
1553 cur_p->skb = NULL;
1554 }
1555
1556 for (i = 0; i < lp->rx_bd_num; i++) {
1557 cur_p = &lp->rx_bd_v[i];
1558 cur_p->status = 0;
1559 cur_p->app0 = 0;
1560 cur_p->app1 = 0;
1561 cur_p->app2 = 0;
1562 cur_p->app3 = 0;
1563 cur_p->app4 = 0;
1564 }
1565
1566 lp->tx_bd_ci = 0;
1567 lp->tx_bd_tail = 0;
1568 lp->rx_bd_ci = 0;
1569
1570 /* Start updating the Rx channel control register */
1571 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1572 /* Update the interrupt coalesce count */
1573 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1574 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1575 /* Update the delay timer count */
1576 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1577 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1578 /* Enable coalesce, delay timer and error interrupts */
1579 cr |= XAXIDMA_IRQ_ALL_MASK;
1580 /* Finally write to the Rx channel control register */
1581 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1582
1583 /* Start updating the Tx channel control register */
1584 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1585 /* Update the interrupt coalesce count */
1586 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1587 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1588 /* Update the delay timer count */
1589 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1590 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1591 /* Enable coalesce, delay timer and error interrupts */
1592 cr |= XAXIDMA_IRQ_ALL_MASK;
1593 /* Finally write to the Tx channel control register */
1594 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1595
1596 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1597 * halted state. This will make the Rx side ready for reception.
1598 */
1599 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1600 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1601 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1602 cr | XAXIDMA_CR_RUNSTOP_MASK);
1603 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1604 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
1605
1606 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1607 * Tx channel is now ready to run. But only after we write to the
1608 * tail pointer register that the Tx channel will start transmitting
1609 */
1610 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1611 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1612 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1613 cr | XAXIDMA_CR_RUNSTOP_MASK);
1614
1615 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1616 axienet_status &= ~XAE_RCW1_RX_MASK;
1617 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1618
1619 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1620 if (axienet_status & XAE_INT_RXRJECT_MASK)
1621 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1622 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1623 XAE_INT_RECV_ERROR_MASK : 0);
1624 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1625
1626 /* Sync default options with HW but leave receiver and
1627 * transmitter disabled.
1628 */
1629 axienet_setoptions(ndev, lp->options &
1630 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1631 axienet_set_mac_address(ndev, NULL);
1632 axienet_set_multicast_list(ndev);
1633 axienet_setoptions(ndev, lp->options);
1634 }
1635
1636 /**
1637 * axienet_probe - Axi Ethernet probe function.
1638 * @pdev: Pointer to platform device structure.
1639 *
1640 * Return: 0, on success
1641 * Non-zero error value on failure.
1642 *
1643 * This is the probe routine for Axi Ethernet driver. This is called before
1644 * any other driver routines are invoked. It allocates and sets up the Ethernet
1645 * device. Parses through device tree and populates fields of
1646 * axienet_local. It registers the Ethernet device.
1647 */
axienet_probe(struct platform_device * pdev)1648 static int axienet_probe(struct platform_device *pdev)
1649 {
1650 int ret;
1651 struct device_node *np;
1652 struct axienet_local *lp;
1653 struct net_device *ndev;
1654 const void *mac_addr;
1655 struct resource *ethres;
1656 u32 value;
1657
1658 ndev = alloc_etherdev(sizeof(*lp));
1659 if (!ndev)
1660 return -ENOMEM;
1661
1662 platform_set_drvdata(pdev, ndev);
1663
1664 SET_NETDEV_DEV(ndev, &pdev->dev);
1665 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
1666 ndev->features = NETIF_F_SG;
1667 ndev->netdev_ops = &axienet_netdev_ops;
1668 ndev->ethtool_ops = &axienet_ethtool_ops;
1669
1670 /* MTU range: 64 - 9000 */
1671 ndev->min_mtu = 64;
1672 ndev->max_mtu = XAE_JUMBO_MTU;
1673
1674 lp = netdev_priv(ndev);
1675 lp->ndev = ndev;
1676 lp->dev = &pdev->dev;
1677 lp->options = XAE_OPTION_DEFAULTS;
1678 lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1679 lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1680 /* Map device registers */
1681 ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1682 lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1683 if (IS_ERR(lp->regs)) {
1684 dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1685 ret = PTR_ERR(lp->regs);
1686 goto free_netdev;
1687 }
1688 lp->regs_start = ethres->start;
1689
1690 /* Setup checksum offload, but default to off if not specified */
1691 lp->features = 0;
1692
1693 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1694 if (!ret) {
1695 switch (value) {
1696 case 1:
1697 lp->csum_offload_on_tx_path =
1698 XAE_FEATURE_PARTIAL_TX_CSUM;
1699 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1700 /* Can checksum TCP/UDP over IPv4. */
1701 ndev->features |= NETIF_F_IP_CSUM;
1702 break;
1703 case 2:
1704 lp->csum_offload_on_tx_path =
1705 XAE_FEATURE_FULL_TX_CSUM;
1706 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1707 /* Can checksum TCP/UDP over IPv4. */
1708 ndev->features |= NETIF_F_IP_CSUM;
1709 break;
1710 default:
1711 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1712 }
1713 }
1714 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1715 if (!ret) {
1716 switch (value) {
1717 case 1:
1718 lp->csum_offload_on_rx_path =
1719 XAE_FEATURE_PARTIAL_RX_CSUM;
1720 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1721 break;
1722 case 2:
1723 lp->csum_offload_on_rx_path =
1724 XAE_FEATURE_FULL_RX_CSUM;
1725 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1726 break;
1727 default:
1728 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1729 }
1730 }
1731 /* For supporting jumbo frames, the Axi Ethernet hardware must have
1732 * a larger Rx/Tx Memory. Typically, the size must be large so that
1733 * we can enable jumbo option and start supporting jumbo frames.
1734 * Here we check for memory allocated for Rx/Tx in the hardware from
1735 * the device-tree and accordingly set flags.
1736 */
1737 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1738
1739 /* Start with the proprietary, and broken phy_type */
1740 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1741 if (!ret) {
1742 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1743 switch (value) {
1744 case XAE_PHY_TYPE_MII:
1745 lp->phy_mode = PHY_INTERFACE_MODE_MII;
1746 break;
1747 case XAE_PHY_TYPE_GMII:
1748 lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1749 break;
1750 case XAE_PHY_TYPE_RGMII_2_0:
1751 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1752 break;
1753 case XAE_PHY_TYPE_SGMII:
1754 lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1755 break;
1756 case XAE_PHY_TYPE_1000BASE_X:
1757 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1758 break;
1759 default:
1760 ret = -EINVAL;
1761 goto free_netdev;
1762 }
1763 } else {
1764 lp->phy_mode = of_get_phy_mode(pdev->dev.of_node);
1765 if ((int)lp->phy_mode < 0) {
1766 ret = -EINVAL;
1767 goto free_netdev;
1768 }
1769 }
1770
1771 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1772 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1773 if (np) {
1774 struct resource dmares;
1775
1776 ret = of_address_to_resource(np, 0, &dmares);
1777 if (ret) {
1778 dev_err(&pdev->dev,
1779 "unable to get DMA resource\n");
1780 of_node_put(np);
1781 goto free_netdev;
1782 }
1783 lp->dma_regs = devm_ioremap_resource(&pdev->dev,
1784 &dmares);
1785 lp->rx_irq = irq_of_parse_and_map(np, 1);
1786 lp->tx_irq = irq_of_parse_and_map(np, 0);
1787 of_node_put(np);
1788 lp->eth_irq = platform_get_irq(pdev, 0);
1789 } else {
1790 /* Check for these resources directly on the Ethernet node. */
1791 struct resource *res = platform_get_resource(pdev,
1792 IORESOURCE_MEM, 1);
1793 if (!res) {
1794 dev_err(&pdev->dev, "unable to get DMA memory resource\n");
1795 goto free_netdev;
1796 }
1797 lp->dma_regs = devm_ioremap_resource(&pdev->dev, res);
1798 lp->rx_irq = platform_get_irq(pdev, 1);
1799 lp->tx_irq = platform_get_irq(pdev, 0);
1800 lp->eth_irq = platform_get_irq(pdev, 2);
1801 }
1802 if (IS_ERR(lp->dma_regs)) {
1803 dev_err(&pdev->dev, "could not map DMA regs\n");
1804 ret = PTR_ERR(lp->dma_regs);
1805 goto free_netdev;
1806 }
1807 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1808 dev_err(&pdev->dev, "could not determine irqs\n");
1809 ret = -ENOMEM;
1810 goto free_netdev;
1811 }
1812
1813 /* Check for Ethernet core IRQ (optional) */
1814 if (lp->eth_irq <= 0)
1815 dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
1816
1817 /* Retrieve the MAC address */
1818 mac_addr = of_get_mac_address(pdev->dev.of_node);
1819 if (IS_ERR(mac_addr)) {
1820 dev_warn(&pdev->dev, "could not find MAC address property: %ld\n",
1821 PTR_ERR(mac_addr));
1822 mac_addr = NULL;
1823 }
1824 axienet_set_mac_address(ndev, mac_addr);
1825
1826 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1827 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1828
1829 lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1830 if (lp->phy_node) {
1831 lp->clk = devm_clk_get(&pdev->dev, NULL);
1832 if (IS_ERR(lp->clk)) {
1833 dev_warn(&pdev->dev, "Failed to get clock: %ld\n",
1834 PTR_ERR(lp->clk));
1835 lp->clk = NULL;
1836 } else {
1837 ret = clk_prepare_enable(lp->clk);
1838 if (ret) {
1839 dev_err(&pdev->dev, "Unable to enable clock: %d\n",
1840 ret);
1841 goto free_netdev;
1842 }
1843 }
1844
1845 ret = axienet_mdio_setup(lp);
1846 if (ret)
1847 dev_warn(&pdev->dev,
1848 "error registering MDIO bus: %d\n", ret);
1849 }
1850
1851 lp->phylink_config.dev = &ndev->dev;
1852 lp->phylink_config.type = PHYLINK_NETDEV;
1853
1854 lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
1855 lp->phy_mode,
1856 &axienet_phylink_ops);
1857 if (IS_ERR(lp->phylink)) {
1858 ret = PTR_ERR(lp->phylink);
1859 dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
1860 goto free_netdev;
1861 }
1862
1863 ret = register_netdev(lp->ndev);
1864 if (ret) {
1865 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1866 goto free_netdev;
1867 }
1868
1869 return 0;
1870
1871 free_netdev:
1872 free_netdev(ndev);
1873
1874 return ret;
1875 }
1876
axienet_remove(struct platform_device * pdev)1877 static int axienet_remove(struct platform_device *pdev)
1878 {
1879 struct net_device *ndev = platform_get_drvdata(pdev);
1880 struct axienet_local *lp = netdev_priv(ndev);
1881
1882 unregister_netdev(ndev);
1883
1884 if (lp->phylink)
1885 phylink_destroy(lp->phylink);
1886
1887 axienet_mdio_teardown(lp);
1888
1889 if (lp->clk)
1890 clk_disable_unprepare(lp->clk);
1891
1892 of_node_put(lp->phy_node);
1893 lp->phy_node = NULL;
1894
1895 free_netdev(ndev);
1896
1897 return 0;
1898 }
1899
axienet_shutdown(struct platform_device * pdev)1900 static void axienet_shutdown(struct platform_device *pdev)
1901 {
1902 struct net_device *ndev = platform_get_drvdata(pdev);
1903
1904 rtnl_lock();
1905 netif_device_detach(ndev);
1906
1907 if (netif_running(ndev))
1908 dev_close(ndev);
1909
1910 rtnl_unlock();
1911 }
1912
1913 static struct platform_driver axienet_driver = {
1914 .probe = axienet_probe,
1915 .remove = axienet_remove,
1916 .shutdown = axienet_shutdown,
1917 .driver = {
1918 .name = "xilinx_axienet",
1919 .of_match_table = axienet_of_match,
1920 },
1921 };
1922
1923 module_platform_driver(axienet_driver);
1924
1925 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1926 MODULE_AUTHOR("Xilinx");
1927 MODULE_LICENSE("GPL");
1928