1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
7
8 #ifndef EFX_IO_H
9 #define EFX_IO_H
10
11 #include <linux/io.h>
12 #include <linux/spinlock.h>
13
14 /**************************************************************************
15 *
16 * NIC register I/O
17 *
18 **************************************************************************
19 *
20 * Notes on locking strategy for the Falcon architecture:
21 *
22 * Many CSRs are very wide and cannot be read or written atomically.
23 * Writes from the host are buffered by the Bus Interface Unit (BIU)
24 * up to 128 bits. Whenever the host writes part of such a register,
25 * the BIU collects the written value and does not write to the
26 * underlying register until all 4 dwords have been written. A
27 * similar buffering scheme applies to host access to the NIC's 64-bit
28 * SRAM.
29 *
30 * Writes to different CSRs and 64-bit SRAM words must be serialised,
31 * since interleaved access can result in lost writes. We use
32 * efx_nic::biu_lock for this.
33 *
34 * We also serialise reads from 128-bit CSRs and SRAM with the same
35 * spinlock. This may not be necessary, but it doesn't really matter
36 * as there are no such reads on the fast path.
37 *
38 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
39 * 128-bit but are special-cased in the BIU to avoid the need for
40 * locking in the host:
41 *
42 * - They are write-only.
43 * - The semantics of writing to these registers are such that
44 * replacing the low 96 bits with zero does not affect functionality.
45 * - If the host writes to the last dword address of such a register
46 * (i.e. the high 32 bits) the underlying register will always be
47 * written. If the collector and the current write together do not
48 * provide values for all 128 bits of the register, the low 96 bits
49 * will be written as zero.
50 * - If the host writes to the address of any other part of such a
51 * register while the collector already holds values for some other
52 * register, the write is discarded and the collector maintains its
53 * current state.
54 *
55 * The EF10 architecture exposes very few registers to the host and
56 * most of them are only 32 bits wide. The only exceptions are the MC
57 * doorbell register pair, which has its own latching, and
58 * TX_DESC_UPD, which works in a similar way to the Falcon
59 * architecture.
60 */
61
62 #if BITS_PER_LONG == 64
63 #define EFX_USE_QWORD_IO 1
64 #endif
65
66 /* Hardware issue requires that only 64-bit naturally aligned writes
67 * are seen by hardware. Its not strictly necessary to restrict to
68 * x86_64 arch, but done for safety since unusual write combining behaviour
69 * can break PIO.
70 */
71 #ifdef CONFIG_X86_64
72 /* PIO is a win only if write-combining is possible */
73 #ifdef ARCH_HAS_IOREMAP_WC
74 #define EFX_USE_PIO 1
75 #endif
76 #endif
77
78 #ifdef EFX_USE_QWORD_IO
_efx_writeq(struct efx_nic * efx,__le64 value,unsigned int reg)79 static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
80 unsigned int reg)
81 {
82 __raw_writeq((__force u64)value, efx->membase + reg);
83 }
_efx_readq(struct efx_nic * efx,unsigned int reg)84 static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
85 {
86 return (__force __le64)__raw_readq(efx->membase + reg);
87 }
88 #endif
89
_efx_writed(struct efx_nic * efx,__le32 value,unsigned int reg)90 static inline void _efx_writed(struct efx_nic *efx, __le32 value,
91 unsigned int reg)
92 {
93 __raw_writel((__force u32)value, efx->membase + reg);
94 }
_efx_readd(struct efx_nic * efx,unsigned int reg)95 static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
96 {
97 return (__force __le32)__raw_readl(efx->membase + reg);
98 }
99
100 /* Write a normal 128-bit CSR, locking as appropriate. */
efx_writeo(struct efx_nic * efx,const efx_oword_t * value,unsigned int reg)101 static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
102 unsigned int reg)
103 {
104 unsigned long flags __attribute__ ((unused));
105
106 netif_vdbg(efx, hw, efx->net_dev,
107 "writing register %x with " EFX_OWORD_FMT "\n", reg,
108 EFX_OWORD_VAL(*value));
109
110 spin_lock_irqsave(&efx->biu_lock, flags);
111 #ifdef EFX_USE_QWORD_IO
112 _efx_writeq(efx, value->u64[0], reg + 0);
113 _efx_writeq(efx, value->u64[1], reg + 8);
114 #else
115 _efx_writed(efx, value->u32[0], reg + 0);
116 _efx_writed(efx, value->u32[1], reg + 4);
117 _efx_writed(efx, value->u32[2], reg + 8);
118 _efx_writed(efx, value->u32[3], reg + 12);
119 #endif
120 spin_unlock_irqrestore(&efx->biu_lock, flags);
121 }
122
123 /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
efx_sram_writeq(struct efx_nic * efx,void __iomem * membase,const efx_qword_t * value,unsigned int index)124 static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
125 const efx_qword_t *value, unsigned int index)
126 {
127 unsigned int addr = index * sizeof(*value);
128 unsigned long flags __attribute__ ((unused));
129
130 netif_vdbg(efx, hw, efx->net_dev,
131 "writing SRAM address %x with " EFX_QWORD_FMT "\n",
132 addr, EFX_QWORD_VAL(*value));
133
134 spin_lock_irqsave(&efx->biu_lock, flags);
135 #ifdef EFX_USE_QWORD_IO
136 __raw_writeq((__force u64)value->u64[0], membase + addr);
137 #else
138 __raw_writel((__force u32)value->u32[0], membase + addr);
139 __raw_writel((__force u32)value->u32[1], membase + addr + 4);
140 #endif
141 spin_unlock_irqrestore(&efx->biu_lock, flags);
142 }
143
144 /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
efx_writed(struct efx_nic * efx,const efx_dword_t * value,unsigned int reg)145 static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
146 unsigned int reg)
147 {
148 netif_vdbg(efx, hw, efx->net_dev,
149 "writing register %x with "EFX_DWORD_FMT"\n",
150 reg, EFX_DWORD_VAL(*value));
151
152 /* No lock required */
153 _efx_writed(efx, value->u32[0], reg);
154 }
155
156 /* Read a 128-bit CSR, locking as appropriate. */
efx_reado(struct efx_nic * efx,efx_oword_t * value,unsigned int reg)157 static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
158 unsigned int reg)
159 {
160 unsigned long flags __attribute__ ((unused));
161
162 spin_lock_irqsave(&efx->biu_lock, flags);
163 value->u32[0] = _efx_readd(efx, reg + 0);
164 value->u32[1] = _efx_readd(efx, reg + 4);
165 value->u32[2] = _efx_readd(efx, reg + 8);
166 value->u32[3] = _efx_readd(efx, reg + 12);
167 spin_unlock_irqrestore(&efx->biu_lock, flags);
168
169 netif_vdbg(efx, hw, efx->net_dev,
170 "read from register %x, got " EFX_OWORD_FMT "\n", reg,
171 EFX_OWORD_VAL(*value));
172 }
173
174 /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
efx_sram_readq(struct efx_nic * efx,void __iomem * membase,efx_qword_t * value,unsigned int index)175 static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
176 efx_qword_t *value, unsigned int index)
177 {
178 unsigned int addr = index * sizeof(*value);
179 unsigned long flags __attribute__ ((unused));
180
181 spin_lock_irqsave(&efx->biu_lock, flags);
182 #ifdef EFX_USE_QWORD_IO
183 value->u64[0] = (__force __le64)__raw_readq(membase + addr);
184 #else
185 value->u32[0] = (__force __le32)__raw_readl(membase + addr);
186 value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
187 #endif
188 spin_unlock_irqrestore(&efx->biu_lock, flags);
189
190 netif_vdbg(efx, hw, efx->net_dev,
191 "read from SRAM address %x, got "EFX_QWORD_FMT"\n",
192 addr, EFX_QWORD_VAL(*value));
193 }
194
195 /* Read a 32-bit CSR or SRAM */
efx_readd(struct efx_nic * efx,efx_dword_t * value,unsigned int reg)196 static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
197 unsigned int reg)
198 {
199 value->u32[0] = _efx_readd(efx, reg);
200 netif_vdbg(efx, hw, efx->net_dev,
201 "read from register %x, got "EFX_DWORD_FMT"\n",
202 reg, EFX_DWORD_VAL(*value));
203 }
204
205 /* Write a 128-bit CSR forming part of a table */
206 static inline void
efx_writeo_table(struct efx_nic * efx,const efx_oword_t * value,unsigned int reg,unsigned int index)207 efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
208 unsigned int reg, unsigned int index)
209 {
210 efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
211 }
212
213 /* Read a 128-bit CSR forming part of a table */
efx_reado_table(struct efx_nic * efx,efx_oword_t * value,unsigned int reg,unsigned int index)214 static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
215 unsigned int reg, unsigned int index)
216 {
217 efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
218 }
219
220 /* default VI stride (step between per-VI registers) is 8K */
221 #define EFX_DEFAULT_VI_STRIDE 0x2000
222
223 /* Calculate offset to page-mapped register */
efx_paged_reg(struct efx_nic * efx,unsigned int page,unsigned int reg)224 static inline unsigned int efx_paged_reg(struct efx_nic *efx, unsigned int page,
225 unsigned int reg)
226 {
227 return page * efx->vi_stride + reg;
228 }
229
230 /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
_efx_writeo_page(struct efx_nic * efx,efx_oword_t * value,unsigned int reg,unsigned int page)231 static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
232 unsigned int reg, unsigned int page)
233 {
234 reg = efx_paged_reg(efx, page, reg);
235
236 netif_vdbg(efx, hw, efx->net_dev,
237 "writing register %x with " EFX_OWORD_FMT "\n", reg,
238 EFX_OWORD_VAL(*value));
239
240 #ifdef EFX_USE_QWORD_IO
241 _efx_writeq(efx, value->u64[0], reg + 0);
242 _efx_writeq(efx, value->u64[1], reg + 8);
243 #else
244 _efx_writed(efx, value->u32[0], reg + 0);
245 _efx_writed(efx, value->u32[1], reg + 4);
246 _efx_writed(efx, value->u32[2], reg + 8);
247 _efx_writed(efx, value->u32[3], reg + 12);
248 #endif
249 }
250 #define efx_writeo_page(efx, value, reg, page) \
251 _efx_writeo_page(efx, value, \
252 reg + \
253 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
254 page)
255
256 /* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
257 * high bits of RX_DESC_UPD or TX_DESC_UPD)
258 */
259 static inline void
_efx_writed_page(struct efx_nic * efx,const efx_dword_t * value,unsigned int reg,unsigned int page)260 _efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
261 unsigned int reg, unsigned int page)
262 {
263 efx_writed(efx, value, efx_paged_reg(efx, page, reg));
264 }
265 #define efx_writed_page(efx, value, reg, page) \
266 _efx_writed_page(efx, value, \
267 reg + \
268 BUILD_BUG_ON_ZERO((reg) != 0x400 && \
269 (reg) != 0x420 && \
270 (reg) != 0x830 && \
271 (reg) != 0x83c && \
272 (reg) != 0xa18 && \
273 (reg) != 0xa1c), \
274 page)
275
276 /* Write TIMER_COMMAND. This is a page-mapped 32-bit CSR, but a bug
277 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
278 * collector register.
279 */
_efx_writed_page_locked(struct efx_nic * efx,const efx_dword_t * value,unsigned int reg,unsigned int page)280 static inline void _efx_writed_page_locked(struct efx_nic *efx,
281 const efx_dword_t *value,
282 unsigned int reg,
283 unsigned int page)
284 {
285 unsigned long flags __attribute__ ((unused));
286
287 if (page == 0) {
288 spin_lock_irqsave(&efx->biu_lock, flags);
289 efx_writed(efx, value, efx_paged_reg(efx, page, reg));
290 spin_unlock_irqrestore(&efx->biu_lock, flags);
291 } else {
292 efx_writed(efx, value, efx_paged_reg(efx, page, reg));
293 }
294 }
295 #define efx_writed_page_locked(efx, value, reg, page) \
296 _efx_writed_page_locked(efx, value, \
297 reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
298 page)
299
300 #endif /* EFX_IO_H */
301