1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11
12 #include <net/ipv6.h>
13
14 #include "igc.h"
15 #include "igc_hw.h"
16
17 #define DRV_VERSION "0.0.1-k"
18 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
19
20 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
21
22 static int debug = -1;
23
24 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
25 MODULE_DESCRIPTION(DRV_SUMMARY);
26 MODULE_LICENSE("GPL v2");
27 MODULE_VERSION(DRV_VERSION);
28 module_param(debug, int, 0);
29 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
30
31 char igc_driver_name[] = "igc";
32 char igc_driver_version[] = DRV_VERSION;
33 static const char igc_driver_string[] = DRV_SUMMARY;
34 static const char igc_copyright[] =
35 "Copyright(c) 2018 Intel Corporation.";
36
37 static const struct igc_info *igc_info_tbl[] = {
38 [board_base] = &igc_base_info,
39 };
40
41 static const struct pci_device_id igc_pci_tbl[] = {
42 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
43 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
44 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
45 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
46 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
47 /* required last entry */
48 {0, }
49 };
50
51 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
52
53 /* forward declaration */
54 static void igc_clean_tx_ring(struct igc_ring *tx_ring);
55 static int igc_sw_init(struct igc_adapter *);
56 static void igc_configure(struct igc_adapter *adapter);
57 static void igc_power_down_link(struct igc_adapter *adapter);
58 static void igc_set_default_mac_filter(struct igc_adapter *adapter);
59 static void igc_set_rx_mode(struct net_device *netdev);
60 static void igc_write_itr(struct igc_q_vector *q_vector);
61 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector);
62 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx);
63 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
64 bool msix);
65 static void igc_free_q_vectors(struct igc_adapter *adapter);
66 static void igc_irq_disable(struct igc_adapter *adapter);
67 static void igc_irq_enable(struct igc_adapter *adapter);
68 static void igc_configure_msix(struct igc_adapter *adapter);
69 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
70 struct igc_rx_buffer *bi);
71
72 enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77 };
78
igc_reset(struct igc_adapter * adapter)79 void igc_reset(struct igc_adapter *adapter)
80 {
81 struct pci_dev *pdev = adapter->pdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 dev_err(&pdev->dev, "Hardware Error\n");
109
110 if (!netif_running(adapter->netdev))
111 igc_power_down_link(adapter);
112
113 igc_get_phy_info(hw);
114 }
115
116 /**
117 * igc_power_up_link - Power up the phy/serdes link
118 * @adapter: address of board private structure
119 */
igc_power_up_link(struct igc_adapter * adapter)120 static void igc_power_up_link(struct igc_adapter *adapter)
121 {
122 igc_reset_phy(&adapter->hw);
123
124 if (adapter->hw.phy.media_type == igc_media_type_copper)
125 igc_power_up_phy_copper(&adapter->hw);
126
127 igc_setup_link(&adapter->hw);
128 }
129
130 /**
131 * igc_power_down_link - Power down the phy/serdes link
132 * @adapter: address of board private structure
133 */
igc_power_down_link(struct igc_adapter * adapter)134 static void igc_power_down_link(struct igc_adapter *adapter)
135 {
136 if (adapter->hw.phy.media_type == igc_media_type_copper)
137 igc_power_down_phy_copper_base(&adapter->hw);
138 }
139
140 /**
141 * igc_release_hw_control - release control of the h/w to f/w
142 * @adapter: address of board private structure
143 *
144 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
145 * For ASF and Pass Through versions of f/w this means that the
146 * driver is no longer loaded.
147 */
igc_release_hw_control(struct igc_adapter * adapter)148 static void igc_release_hw_control(struct igc_adapter *adapter)
149 {
150 struct igc_hw *hw = &adapter->hw;
151 u32 ctrl_ext;
152
153 /* Let firmware take over control of h/w */
154 ctrl_ext = rd32(IGC_CTRL_EXT);
155 wr32(IGC_CTRL_EXT,
156 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
157 }
158
159 /**
160 * igc_get_hw_control - get control of the h/w from f/w
161 * @adapter: address of board private structure
162 *
163 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
164 * For ASF and Pass Through versions of f/w this means that
165 * the driver is loaded.
166 */
igc_get_hw_control(struct igc_adapter * adapter)167 static void igc_get_hw_control(struct igc_adapter *adapter)
168 {
169 struct igc_hw *hw = &adapter->hw;
170 u32 ctrl_ext;
171
172 /* Let firmware know the driver has taken over */
173 ctrl_ext = rd32(IGC_CTRL_EXT);
174 wr32(IGC_CTRL_EXT,
175 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
176 }
177
178 /**
179 * igc_free_tx_resources - Free Tx Resources per Queue
180 * @tx_ring: Tx descriptor ring for a specific queue
181 *
182 * Free all transmit software resources
183 */
igc_free_tx_resources(struct igc_ring * tx_ring)184 void igc_free_tx_resources(struct igc_ring *tx_ring)
185 {
186 igc_clean_tx_ring(tx_ring);
187
188 vfree(tx_ring->tx_buffer_info);
189 tx_ring->tx_buffer_info = NULL;
190
191 /* if not set, then don't free */
192 if (!tx_ring->desc)
193 return;
194
195 dma_free_coherent(tx_ring->dev, tx_ring->size,
196 tx_ring->desc, tx_ring->dma);
197
198 tx_ring->desc = NULL;
199 }
200
201 /**
202 * igc_free_all_tx_resources - Free Tx Resources for All Queues
203 * @adapter: board private structure
204 *
205 * Free all transmit software resources
206 */
igc_free_all_tx_resources(struct igc_adapter * adapter)207 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
208 {
209 int i;
210
211 for (i = 0; i < adapter->num_tx_queues; i++)
212 igc_free_tx_resources(adapter->tx_ring[i]);
213 }
214
215 /**
216 * igc_clean_tx_ring - Free Tx Buffers
217 * @tx_ring: ring to be cleaned
218 */
igc_clean_tx_ring(struct igc_ring * tx_ring)219 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
220 {
221 u16 i = tx_ring->next_to_clean;
222 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
223
224 while (i != tx_ring->next_to_use) {
225 union igc_adv_tx_desc *eop_desc, *tx_desc;
226
227 /* Free all the Tx ring sk_buffs */
228 dev_kfree_skb_any(tx_buffer->skb);
229
230 /* unmap skb header data */
231 dma_unmap_single(tx_ring->dev,
232 dma_unmap_addr(tx_buffer, dma),
233 dma_unmap_len(tx_buffer, len),
234 DMA_TO_DEVICE);
235
236 /* check for eop_desc to determine the end of the packet */
237 eop_desc = tx_buffer->next_to_watch;
238 tx_desc = IGC_TX_DESC(tx_ring, i);
239
240 /* unmap remaining buffers */
241 while (tx_desc != eop_desc) {
242 tx_buffer++;
243 tx_desc++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 tx_desc = IGC_TX_DESC(tx_ring, 0);
249 }
250
251 /* unmap any remaining paged data */
252 if (dma_unmap_len(tx_buffer, len))
253 dma_unmap_page(tx_ring->dev,
254 dma_unmap_addr(tx_buffer, dma),
255 dma_unmap_len(tx_buffer, len),
256 DMA_TO_DEVICE);
257 }
258
259 /* move us one more past the eop_desc for start of next pkt */
260 tx_buffer++;
261 i++;
262 if (unlikely(i == tx_ring->count)) {
263 i = 0;
264 tx_buffer = tx_ring->tx_buffer_info;
265 }
266 }
267
268 /* reset BQL for queue */
269 netdev_tx_reset_queue(txring_txq(tx_ring));
270
271 /* reset next_to_use and next_to_clean */
272 tx_ring->next_to_use = 0;
273 tx_ring->next_to_clean = 0;
274 }
275
276 /**
277 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
278 * @adapter: board private structure
279 */
igc_clean_all_tx_rings(struct igc_adapter * adapter)280 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
281 {
282 int i;
283
284 for (i = 0; i < adapter->num_tx_queues; i++)
285 if (adapter->tx_ring[i])
286 igc_clean_tx_ring(adapter->tx_ring[i]);
287 }
288
289 /**
290 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
291 * @tx_ring: tx descriptor ring (for a specific queue) to setup
292 *
293 * Return 0 on success, negative on failure
294 */
igc_setup_tx_resources(struct igc_ring * tx_ring)295 int igc_setup_tx_resources(struct igc_ring *tx_ring)
296 {
297 struct device *dev = tx_ring->dev;
298 int size = 0;
299
300 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
301 tx_ring->tx_buffer_info = vzalloc(size);
302 if (!tx_ring->tx_buffer_info)
303 goto err;
304
305 /* round up to nearest 4K */
306 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
307 tx_ring->size = ALIGN(tx_ring->size, 4096);
308
309 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
310 &tx_ring->dma, GFP_KERNEL);
311
312 if (!tx_ring->desc)
313 goto err;
314
315 tx_ring->next_to_use = 0;
316 tx_ring->next_to_clean = 0;
317
318 return 0;
319
320 err:
321 vfree(tx_ring->tx_buffer_info);
322 dev_err(dev,
323 "Unable to allocate memory for the transmit descriptor ring\n");
324 return -ENOMEM;
325 }
326
327 /**
328 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
329 * @adapter: board private structure
330 *
331 * Return 0 on success, negative on failure
332 */
igc_setup_all_tx_resources(struct igc_adapter * adapter)333 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
334 {
335 struct pci_dev *pdev = adapter->pdev;
336 int i, err = 0;
337
338 for (i = 0; i < adapter->num_tx_queues; i++) {
339 err = igc_setup_tx_resources(adapter->tx_ring[i]);
340 if (err) {
341 dev_err(&pdev->dev,
342 "Allocation for Tx Queue %u failed\n", i);
343 for (i--; i >= 0; i--)
344 igc_free_tx_resources(adapter->tx_ring[i]);
345 break;
346 }
347 }
348
349 return err;
350 }
351
352 /**
353 * igc_clean_rx_ring - Free Rx Buffers per Queue
354 * @rx_ring: ring to free buffers from
355 */
igc_clean_rx_ring(struct igc_ring * rx_ring)356 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
357 {
358 u16 i = rx_ring->next_to_clean;
359
360 dev_kfree_skb(rx_ring->skb);
361 rx_ring->skb = NULL;
362
363 /* Free all the Rx ring sk_buffs */
364 while (i != rx_ring->next_to_alloc) {
365 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
366
367 /* Invalidate cache lines that may have been written to by
368 * device so that we avoid corrupting memory.
369 */
370 dma_sync_single_range_for_cpu(rx_ring->dev,
371 buffer_info->dma,
372 buffer_info->page_offset,
373 igc_rx_bufsz(rx_ring),
374 DMA_FROM_DEVICE);
375
376 /* free resources associated with mapping */
377 dma_unmap_page_attrs(rx_ring->dev,
378 buffer_info->dma,
379 igc_rx_pg_size(rx_ring),
380 DMA_FROM_DEVICE,
381 IGC_RX_DMA_ATTR);
382 __page_frag_cache_drain(buffer_info->page,
383 buffer_info->pagecnt_bias);
384
385 i++;
386 if (i == rx_ring->count)
387 i = 0;
388 }
389
390 rx_ring->next_to_alloc = 0;
391 rx_ring->next_to_clean = 0;
392 rx_ring->next_to_use = 0;
393 }
394
395 /**
396 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
397 * @adapter: board private structure
398 */
igc_clean_all_rx_rings(struct igc_adapter * adapter)399 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
400 {
401 int i;
402
403 for (i = 0; i < adapter->num_rx_queues; i++)
404 if (adapter->rx_ring[i])
405 igc_clean_rx_ring(adapter->rx_ring[i]);
406 }
407
408 /**
409 * igc_free_rx_resources - Free Rx Resources
410 * @rx_ring: ring to clean the resources from
411 *
412 * Free all receive software resources
413 */
igc_free_rx_resources(struct igc_ring * rx_ring)414 void igc_free_rx_resources(struct igc_ring *rx_ring)
415 {
416 igc_clean_rx_ring(rx_ring);
417
418 vfree(rx_ring->rx_buffer_info);
419 rx_ring->rx_buffer_info = NULL;
420
421 /* if not set, then don't free */
422 if (!rx_ring->desc)
423 return;
424
425 dma_free_coherent(rx_ring->dev, rx_ring->size,
426 rx_ring->desc, rx_ring->dma);
427
428 rx_ring->desc = NULL;
429 }
430
431 /**
432 * igc_free_all_rx_resources - Free Rx Resources for All Queues
433 * @adapter: board private structure
434 *
435 * Free all receive software resources
436 */
igc_free_all_rx_resources(struct igc_adapter * adapter)437 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
438 {
439 int i;
440
441 for (i = 0; i < adapter->num_rx_queues; i++)
442 igc_free_rx_resources(adapter->rx_ring[i]);
443 }
444
445 /**
446 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
447 * @rx_ring: rx descriptor ring (for a specific queue) to setup
448 *
449 * Returns 0 on success, negative on failure
450 */
igc_setup_rx_resources(struct igc_ring * rx_ring)451 int igc_setup_rx_resources(struct igc_ring *rx_ring)
452 {
453 struct device *dev = rx_ring->dev;
454 int size, desc_len;
455
456 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
457 rx_ring->rx_buffer_info = vzalloc(size);
458 if (!rx_ring->rx_buffer_info)
459 goto err;
460
461 desc_len = sizeof(union igc_adv_rx_desc);
462
463 /* Round up to nearest 4K */
464 rx_ring->size = rx_ring->count * desc_len;
465 rx_ring->size = ALIGN(rx_ring->size, 4096);
466
467 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
468 &rx_ring->dma, GFP_KERNEL);
469
470 if (!rx_ring->desc)
471 goto err;
472
473 rx_ring->next_to_alloc = 0;
474 rx_ring->next_to_clean = 0;
475 rx_ring->next_to_use = 0;
476
477 return 0;
478
479 err:
480 vfree(rx_ring->rx_buffer_info);
481 rx_ring->rx_buffer_info = NULL;
482 dev_err(dev,
483 "Unable to allocate memory for the receive descriptor ring\n");
484 return -ENOMEM;
485 }
486
487 /**
488 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
489 * (Descriptors) for all queues
490 * @adapter: board private structure
491 *
492 * Return 0 on success, negative on failure
493 */
igc_setup_all_rx_resources(struct igc_adapter * adapter)494 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
495 {
496 struct pci_dev *pdev = adapter->pdev;
497 int i, err = 0;
498
499 for (i = 0; i < adapter->num_rx_queues; i++) {
500 err = igc_setup_rx_resources(adapter->rx_ring[i]);
501 if (err) {
502 dev_err(&pdev->dev,
503 "Allocation for Rx Queue %u failed\n", i);
504 for (i--; i >= 0; i--)
505 igc_free_rx_resources(adapter->rx_ring[i]);
506 break;
507 }
508 }
509
510 return err;
511 }
512
513 /**
514 * igc_configure_rx_ring - Configure a receive ring after Reset
515 * @adapter: board private structure
516 * @ring: receive ring to be configured
517 *
518 * Configure the Rx unit of the MAC after a reset.
519 */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)520 static void igc_configure_rx_ring(struct igc_adapter *adapter,
521 struct igc_ring *ring)
522 {
523 struct igc_hw *hw = &adapter->hw;
524 union igc_adv_rx_desc *rx_desc;
525 int reg_idx = ring->reg_idx;
526 u32 srrctl = 0, rxdctl = 0;
527 u64 rdba = ring->dma;
528
529 /* disable the queue */
530 wr32(IGC_RXDCTL(reg_idx), 0);
531
532 /* Set DMA base address registers */
533 wr32(IGC_RDBAL(reg_idx),
534 rdba & 0x00000000ffffffffULL);
535 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
536 wr32(IGC_RDLEN(reg_idx),
537 ring->count * sizeof(union igc_adv_rx_desc));
538
539 /* initialize head and tail */
540 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
541 wr32(IGC_RDH(reg_idx), 0);
542 writel(0, ring->tail);
543
544 /* reset next-to- use/clean to place SW in sync with hardware */
545 ring->next_to_clean = 0;
546 ring->next_to_use = 0;
547
548 /* set descriptor configuration */
549 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
550 if (ring_uses_large_buffer(ring))
551 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
552 else
553 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
554 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
555
556 wr32(IGC_SRRCTL(reg_idx), srrctl);
557
558 rxdctl |= IGC_RX_PTHRESH;
559 rxdctl |= IGC_RX_HTHRESH << 8;
560 rxdctl |= IGC_RX_WTHRESH << 16;
561
562 /* initialize rx_buffer_info */
563 memset(ring->rx_buffer_info, 0,
564 sizeof(struct igc_rx_buffer) * ring->count);
565
566 /* initialize Rx descriptor 0 */
567 rx_desc = IGC_RX_DESC(ring, 0);
568 rx_desc->wb.upper.length = 0;
569
570 /* enable receive descriptor fetching */
571 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
572
573 wr32(IGC_RXDCTL(reg_idx), rxdctl);
574 }
575
576 /**
577 * igc_configure_rx - Configure receive Unit after Reset
578 * @adapter: board private structure
579 *
580 * Configure the Rx unit of the MAC after a reset.
581 */
igc_configure_rx(struct igc_adapter * adapter)582 static void igc_configure_rx(struct igc_adapter *adapter)
583 {
584 int i;
585
586 /* Setup the HW Rx Head and Tail Descriptor Pointers and
587 * the Base and Length of the Rx Descriptor Ring
588 */
589 for (i = 0; i < adapter->num_rx_queues; i++)
590 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
591 }
592
593 /**
594 * igc_configure_tx_ring - Configure transmit ring after Reset
595 * @adapter: board private structure
596 * @ring: tx ring to configure
597 *
598 * Configure a transmit ring after a reset.
599 */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)600 static void igc_configure_tx_ring(struct igc_adapter *adapter,
601 struct igc_ring *ring)
602 {
603 struct igc_hw *hw = &adapter->hw;
604 int reg_idx = ring->reg_idx;
605 u64 tdba = ring->dma;
606 u32 txdctl = 0;
607
608 /* disable the queue */
609 wr32(IGC_TXDCTL(reg_idx), 0);
610 wrfl();
611 mdelay(10);
612
613 wr32(IGC_TDLEN(reg_idx),
614 ring->count * sizeof(union igc_adv_tx_desc));
615 wr32(IGC_TDBAL(reg_idx),
616 tdba & 0x00000000ffffffffULL);
617 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
618
619 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
620 wr32(IGC_TDH(reg_idx), 0);
621 writel(0, ring->tail);
622
623 txdctl |= IGC_TX_PTHRESH;
624 txdctl |= IGC_TX_HTHRESH << 8;
625 txdctl |= IGC_TX_WTHRESH << 16;
626
627 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
628 wr32(IGC_TXDCTL(reg_idx), txdctl);
629 }
630
631 /**
632 * igc_configure_tx - Configure transmit Unit after Reset
633 * @adapter: board private structure
634 *
635 * Configure the Tx unit of the MAC after a reset.
636 */
igc_configure_tx(struct igc_adapter * adapter)637 static void igc_configure_tx(struct igc_adapter *adapter)
638 {
639 int i;
640
641 for (i = 0; i < adapter->num_tx_queues; i++)
642 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
643 }
644
645 /**
646 * igc_setup_mrqc - configure the multiple receive queue control registers
647 * @adapter: Board private structure
648 */
igc_setup_mrqc(struct igc_adapter * adapter)649 static void igc_setup_mrqc(struct igc_adapter *adapter)
650 {
651 struct igc_hw *hw = &adapter->hw;
652 u32 j, num_rx_queues;
653 u32 mrqc, rxcsum;
654 u32 rss_key[10];
655
656 netdev_rss_key_fill(rss_key, sizeof(rss_key));
657 for (j = 0; j < 10; j++)
658 wr32(IGC_RSSRK(j), rss_key[j]);
659
660 num_rx_queues = adapter->rss_queues;
661
662 if (adapter->rss_indir_tbl_init != num_rx_queues) {
663 for (j = 0; j < IGC_RETA_SIZE; j++)
664 adapter->rss_indir_tbl[j] =
665 (j * num_rx_queues) / IGC_RETA_SIZE;
666 adapter->rss_indir_tbl_init = num_rx_queues;
667 }
668 igc_write_rss_indir_tbl(adapter);
669
670 /* Disable raw packet checksumming so that RSS hash is placed in
671 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
672 * offloads as they are enabled by default
673 */
674 rxcsum = rd32(IGC_RXCSUM);
675 rxcsum |= IGC_RXCSUM_PCSD;
676
677 /* Enable Receive Checksum Offload for SCTP */
678 rxcsum |= IGC_RXCSUM_CRCOFL;
679
680 /* Don't need to set TUOFL or IPOFL, they default to 1 */
681 wr32(IGC_RXCSUM, rxcsum);
682
683 /* Generate RSS hash based on packet types, TCP/UDP
684 * port numbers and/or IPv4/v6 src and dst addresses
685 */
686 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
687 IGC_MRQC_RSS_FIELD_IPV4_TCP |
688 IGC_MRQC_RSS_FIELD_IPV6 |
689 IGC_MRQC_RSS_FIELD_IPV6_TCP |
690 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
691
692 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
693 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
694 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
695 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
696
697 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
698
699 wr32(IGC_MRQC, mrqc);
700 }
701
702 /**
703 * igc_setup_rctl - configure the receive control registers
704 * @adapter: Board private structure
705 */
igc_setup_rctl(struct igc_adapter * adapter)706 static void igc_setup_rctl(struct igc_adapter *adapter)
707 {
708 struct igc_hw *hw = &adapter->hw;
709 u32 rctl;
710
711 rctl = rd32(IGC_RCTL);
712
713 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
714 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
715
716 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
717 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
718
719 /* enable stripping of CRC. Newer features require
720 * that the HW strips the CRC.
721 */
722 rctl |= IGC_RCTL_SECRC;
723
724 /* disable store bad packets and clear size bits. */
725 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
726
727 /* enable LPE to allow for reception of jumbo frames */
728 rctl |= IGC_RCTL_LPE;
729
730 /* disable queue 0 to prevent tail write w/o re-config */
731 wr32(IGC_RXDCTL(0), 0);
732
733 /* This is useful for sniffing bad packets. */
734 if (adapter->netdev->features & NETIF_F_RXALL) {
735 /* UPE and MPE will be handled by normal PROMISC logic
736 * in set_rx_mode
737 */
738 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
739 IGC_RCTL_BAM | /* RX All Bcast Pkts */
740 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
741
742 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
743 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
744 }
745
746 wr32(IGC_RCTL, rctl);
747 }
748
749 /**
750 * igc_setup_tctl - configure the transmit control registers
751 * @adapter: Board private structure
752 */
igc_setup_tctl(struct igc_adapter * adapter)753 static void igc_setup_tctl(struct igc_adapter *adapter)
754 {
755 struct igc_hw *hw = &adapter->hw;
756 u32 tctl;
757
758 /* disable queue 0 which icould be enabled by default */
759 wr32(IGC_TXDCTL(0), 0);
760
761 /* Program the Transmit Control Register */
762 tctl = rd32(IGC_TCTL);
763 tctl &= ~IGC_TCTL_CT;
764 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
765 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
766
767 /* Enable transmits */
768 tctl |= IGC_TCTL_EN;
769
770 wr32(IGC_TCTL, tctl);
771 }
772
773 /**
774 * igc_set_mac - Change the Ethernet Address of the NIC
775 * @netdev: network interface device structure
776 * @p: pointer to an address structure
777 *
778 * Returns 0 on success, negative on failure
779 */
igc_set_mac(struct net_device * netdev,void * p)780 static int igc_set_mac(struct net_device *netdev, void *p)
781 {
782 struct igc_adapter *adapter = netdev_priv(netdev);
783 struct igc_hw *hw = &adapter->hw;
784 struct sockaddr *addr = p;
785
786 if (!is_valid_ether_addr(addr->sa_data))
787 return -EADDRNOTAVAIL;
788
789 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
790 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
791
792 /* set the correct pool for the new PF MAC address in entry 0 */
793 igc_set_default_mac_filter(adapter);
794
795 return 0;
796 }
797
igc_tx_ctxtdesc(struct igc_ring * tx_ring,struct igc_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)798 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
799 struct igc_tx_buffer *first,
800 u32 vlan_macip_lens, u32 type_tucmd,
801 u32 mss_l4len_idx)
802 {
803 struct igc_adv_tx_context_desc *context_desc;
804 u16 i = tx_ring->next_to_use;
805 struct timespec64 ts;
806
807 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
808
809 i++;
810 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
811
812 /* set bits to identify this as an advanced context descriptor */
813 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
814
815 /* For 82575, context index must be unique per ring. */
816 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
817 mss_l4len_idx |= tx_ring->reg_idx << 4;
818
819 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
820 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
821 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
822
823 /* We assume there is always a valid Tx time available. Invalid times
824 * should have been handled by the upper layers.
825 */
826 if (tx_ring->launchtime_enable) {
827 ts = ktime_to_timespec64(first->skb->tstamp);
828 first->skb->tstamp = ktime_set(0, 0);
829 context_desc->launch_time = cpu_to_le32(ts.tv_nsec / 32);
830 } else {
831 context_desc->launch_time = 0;
832 }
833 }
834
igc_ipv6_csum_is_sctp(struct sk_buff * skb)835 static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
836 {
837 unsigned int offset = 0;
838
839 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
840
841 return offset == skb_checksum_start_offset(skb);
842 }
843
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first)844 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
845 {
846 struct sk_buff *skb = first->skb;
847 u32 vlan_macip_lens = 0;
848 u32 type_tucmd = 0;
849
850 if (skb->ip_summed != CHECKSUM_PARTIAL) {
851 csum_failed:
852 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
853 !tx_ring->launchtime_enable)
854 return;
855 goto no_csum;
856 }
857
858 switch (skb->csum_offset) {
859 case offsetof(struct tcphdr, check):
860 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
861 /* fall through */
862 case offsetof(struct udphdr, check):
863 break;
864 case offsetof(struct sctphdr, checksum):
865 /* validate that this is actually an SCTP request */
866 if ((first->protocol == htons(ETH_P_IP) &&
867 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
868 (first->protocol == htons(ETH_P_IPV6) &&
869 igc_ipv6_csum_is_sctp(skb))) {
870 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
871 break;
872 }
873 /* fall through */
874 default:
875 skb_checksum_help(skb);
876 goto csum_failed;
877 }
878
879 /* update TX checksum flag */
880 first->tx_flags |= IGC_TX_FLAGS_CSUM;
881 vlan_macip_lens = skb_checksum_start_offset(skb) -
882 skb_network_offset(skb);
883 no_csum:
884 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
885 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
886
887 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
888 }
889
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)890 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
891 {
892 struct net_device *netdev = tx_ring->netdev;
893
894 netif_stop_subqueue(netdev, tx_ring->queue_index);
895
896 /* memory barriier comment */
897 smp_mb();
898
899 /* We need to check again in a case another CPU has just
900 * made room available.
901 */
902 if (igc_desc_unused(tx_ring) < size)
903 return -EBUSY;
904
905 /* A reprieve! */
906 netif_wake_subqueue(netdev, tx_ring->queue_index);
907
908 u64_stats_update_begin(&tx_ring->tx_syncp2);
909 tx_ring->tx_stats.restart_queue2++;
910 u64_stats_update_end(&tx_ring->tx_syncp2);
911
912 return 0;
913 }
914
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)915 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
916 {
917 if (igc_desc_unused(tx_ring) >= size)
918 return 0;
919 return __igc_maybe_stop_tx(tx_ring, size);
920 }
921
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)922 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
923 {
924 /* set type for advanced descriptor with frame checksum insertion */
925 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
926 IGC_ADVTXD_DCMD_DEXT |
927 IGC_ADVTXD_DCMD_IFCS;
928
929 return cmd_type;
930 }
931
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)932 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
933 union igc_adv_tx_desc *tx_desc,
934 u32 tx_flags, unsigned int paylen)
935 {
936 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
937
938 /* insert L4 checksum */
939 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
940 ((IGC_TXD_POPTS_TXSM << 8) /
941 IGC_TX_FLAGS_CSUM);
942
943 /* insert IPv4 checksum */
944 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
945 (((IGC_TXD_POPTS_IXSM << 8)) /
946 IGC_TX_FLAGS_IPV4);
947
948 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
949 }
950
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)951 static int igc_tx_map(struct igc_ring *tx_ring,
952 struct igc_tx_buffer *first,
953 const u8 hdr_len)
954 {
955 struct sk_buff *skb = first->skb;
956 struct igc_tx_buffer *tx_buffer;
957 union igc_adv_tx_desc *tx_desc;
958 u32 tx_flags = first->tx_flags;
959 skb_frag_t *frag;
960 u16 i = tx_ring->next_to_use;
961 unsigned int data_len, size;
962 dma_addr_t dma;
963 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
964
965 tx_desc = IGC_TX_DESC(tx_ring, i);
966
967 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
968
969 size = skb_headlen(skb);
970 data_len = skb->data_len;
971
972 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
973
974 tx_buffer = first;
975
976 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
977 if (dma_mapping_error(tx_ring->dev, dma))
978 goto dma_error;
979
980 /* record length, and DMA address */
981 dma_unmap_len_set(tx_buffer, len, size);
982 dma_unmap_addr_set(tx_buffer, dma, dma);
983
984 tx_desc->read.buffer_addr = cpu_to_le64(dma);
985
986 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
987 tx_desc->read.cmd_type_len =
988 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
989
990 i++;
991 tx_desc++;
992 if (i == tx_ring->count) {
993 tx_desc = IGC_TX_DESC(tx_ring, 0);
994 i = 0;
995 }
996 tx_desc->read.olinfo_status = 0;
997
998 dma += IGC_MAX_DATA_PER_TXD;
999 size -= IGC_MAX_DATA_PER_TXD;
1000
1001 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1002 }
1003
1004 if (likely(!data_len))
1005 break;
1006
1007 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1008
1009 i++;
1010 tx_desc++;
1011 if (i == tx_ring->count) {
1012 tx_desc = IGC_TX_DESC(tx_ring, 0);
1013 i = 0;
1014 }
1015 tx_desc->read.olinfo_status = 0;
1016
1017 size = skb_frag_size(frag);
1018 data_len -= size;
1019
1020 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1021 size, DMA_TO_DEVICE);
1022
1023 tx_buffer = &tx_ring->tx_buffer_info[i];
1024 }
1025
1026 /* write last descriptor with RS and EOP bits */
1027 cmd_type |= size | IGC_TXD_DCMD;
1028 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1029
1030 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1031
1032 /* set the timestamp */
1033 first->time_stamp = jiffies;
1034
1035 skb_tx_timestamp(skb);
1036
1037 /* Force memory writes to complete before letting h/w know there
1038 * are new descriptors to fetch. (Only applicable for weak-ordered
1039 * memory model archs, such as IA-64).
1040 *
1041 * We also need this memory barrier to make certain all of the
1042 * status bits have been updated before next_to_watch is written.
1043 */
1044 wmb();
1045
1046 /* set next_to_watch value indicating a packet is present */
1047 first->next_to_watch = tx_desc;
1048
1049 i++;
1050 if (i == tx_ring->count)
1051 i = 0;
1052
1053 tx_ring->next_to_use = i;
1054
1055 /* Make sure there is space in the ring for the next send. */
1056 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1057
1058 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1059 writel(i, tx_ring->tail);
1060 }
1061
1062 return 0;
1063 dma_error:
1064 dev_err(tx_ring->dev, "TX DMA map failed\n");
1065 tx_buffer = &tx_ring->tx_buffer_info[i];
1066
1067 /* clear dma mappings for failed tx_buffer_info map */
1068 while (tx_buffer != first) {
1069 if (dma_unmap_len(tx_buffer, len))
1070 dma_unmap_page(tx_ring->dev,
1071 dma_unmap_addr(tx_buffer, dma),
1072 dma_unmap_len(tx_buffer, len),
1073 DMA_TO_DEVICE);
1074 dma_unmap_len_set(tx_buffer, len, 0);
1075
1076 if (i-- == 0)
1077 i += tx_ring->count;
1078 tx_buffer = &tx_ring->tx_buffer_info[i];
1079 }
1080
1081 if (dma_unmap_len(tx_buffer, len))
1082 dma_unmap_single(tx_ring->dev,
1083 dma_unmap_addr(tx_buffer, dma),
1084 dma_unmap_len(tx_buffer, len),
1085 DMA_TO_DEVICE);
1086 dma_unmap_len_set(tx_buffer, len, 0);
1087
1088 dev_kfree_skb_any(tx_buffer->skb);
1089 tx_buffer->skb = NULL;
1090
1091 tx_ring->next_to_use = i;
1092
1093 return -1;
1094 }
1095
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1096 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1097 struct igc_ring *tx_ring)
1098 {
1099 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1100 __be16 protocol = vlan_get_protocol(skb);
1101 struct igc_tx_buffer *first;
1102 u32 tx_flags = 0;
1103 unsigned short f;
1104 u8 hdr_len = 0;
1105
1106 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1107 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1108 * + 2 desc gap to keep tail from touching head,
1109 * + 1 desc for context descriptor,
1110 * otherwise try next time
1111 */
1112 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1113 count += TXD_USE_COUNT(skb_frag_size(
1114 &skb_shinfo(skb)->frags[f]));
1115
1116 if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1117 /* this is a hard error */
1118 return NETDEV_TX_BUSY;
1119 }
1120
1121 /* record the location of the first descriptor for this packet */
1122 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1123 first->skb = skb;
1124 first->bytecount = skb->len;
1125 first->gso_segs = 1;
1126
1127 /* record initial flags and protocol */
1128 first->tx_flags = tx_flags;
1129 first->protocol = protocol;
1130
1131 igc_tx_csum(tx_ring, first);
1132
1133 igc_tx_map(tx_ring, first, hdr_len);
1134
1135 return NETDEV_TX_OK;
1136 }
1137
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1138 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1139 struct sk_buff *skb)
1140 {
1141 unsigned int r_idx = skb->queue_mapping;
1142
1143 if (r_idx >= adapter->num_tx_queues)
1144 r_idx = r_idx % adapter->num_tx_queues;
1145
1146 return adapter->tx_ring[r_idx];
1147 }
1148
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1149 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1150 struct net_device *netdev)
1151 {
1152 struct igc_adapter *adapter = netdev_priv(netdev);
1153
1154 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1155 * in order to meet this minimum size requirement.
1156 */
1157 if (skb->len < 17) {
1158 if (skb_padto(skb, 17))
1159 return NETDEV_TX_OK;
1160 skb->len = 17;
1161 }
1162
1163 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1164 }
1165
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1166 static inline void igc_rx_hash(struct igc_ring *ring,
1167 union igc_adv_rx_desc *rx_desc,
1168 struct sk_buff *skb)
1169 {
1170 if (ring->netdev->features & NETIF_F_RXHASH)
1171 skb_set_hash(skb,
1172 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1173 PKT_HASH_TYPE_L3);
1174 }
1175
1176 /**
1177 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1178 * @rx_ring: rx descriptor ring packet is being transacted on
1179 * @rx_desc: pointer to the EOP Rx descriptor
1180 * @skb: pointer to current skb being populated
1181 *
1182 * This function checks the ring, descriptor, and packet information in
1183 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
1184 * other fields within the skb.
1185 */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1186 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1187 union igc_adv_rx_desc *rx_desc,
1188 struct sk_buff *skb)
1189 {
1190 igc_rx_hash(rx_ring, rx_desc, skb);
1191
1192 skb_record_rx_queue(skb, rx_ring->queue_index);
1193
1194 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1195 }
1196
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size)1197 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1198 const unsigned int size)
1199 {
1200 struct igc_rx_buffer *rx_buffer;
1201
1202 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1203 prefetchw(rx_buffer->page);
1204
1205 /* we are reusing so sync this buffer for CPU use */
1206 dma_sync_single_range_for_cpu(rx_ring->dev,
1207 rx_buffer->dma,
1208 rx_buffer->page_offset,
1209 size,
1210 DMA_FROM_DEVICE);
1211
1212 rx_buffer->pagecnt_bias--;
1213
1214 return rx_buffer;
1215 }
1216
1217 /**
1218 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1219 * @rx_ring: rx descriptor ring to transact packets on
1220 * @rx_buffer: buffer containing page to add
1221 * @skb: sk_buff to place the data into
1222 * @size: size of buffer to be added
1223 *
1224 * This function will add the data contained in rx_buffer->page to the skb.
1225 */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1226 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1227 struct igc_rx_buffer *rx_buffer,
1228 struct sk_buff *skb,
1229 unsigned int size)
1230 {
1231 #if (PAGE_SIZE < 8192)
1232 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1233
1234 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1235 rx_buffer->page_offset, size, truesize);
1236 rx_buffer->page_offset ^= truesize;
1237 #else
1238 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1239 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1240 SKB_DATA_ALIGN(size);
1241 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1242 rx_buffer->page_offset, size, truesize);
1243 rx_buffer->page_offset += truesize;
1244 #endif
1245 }
1246
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,union igc_adv_rx_desc * rx_desc,unsigned int size)1247 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1248 struct igc_rx_buffer *rx_buffer,
1249 union igc_adv_rx_desc *rx_desc,
1250 unsigned int size)
1251 {
1252 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1253 #if (PAGE_SIZE < 8192)
1254 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1255 #else
1256 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1257 SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1258 #endif
1259 struct sk_buff *skb;
1260
1261 /* prefetch first cache line of first page */
1262 prefetch(va);
1263 #if L1_CACHE_BYTES < 128
1264 prefetch(va + L1_CACHE_BYTES);
1265 #endif
1266
1267 /* build an skb around the page buffer */
1268 skb = build_skb(va - IGC_SKB_PAD, truesize);
1269 if (unlikely(!skb))
1270 return NULL;
1271
1272 /* update pointers within the skb to store the data */
1273 skb_reserve(skb, IGC_SKB_PAD);
1274 __skb_put(skb, size);
1275
1276 /* update buffer offset */
1277 #if (PAGE_SIZE < 8192)
1278 rx_buffer->page_offset ^= truesize;
1279 #else
1280 rx_buffer->page_offset += truesize;
1281 #endif
1282
1283 return skb;
1284 }
1285
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,union igc_adv_rx_desc * rx_desc,unsigned int size)1286 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1287 struct igc_rx_buffer *rx_buffer,
1288 union igc_adv_rx_desc *rx_desc,
1289 unsigned int size)
1290 {
1291 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1292 #if (PAGE_SIZE < 8192)
1293 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1294 #else
1295 unsigned int truesize = SKB_DATA_ALIGN(size);
1296 #endif
1297 unsigned int headlen;
1298 struct sk_buff *skb;
1299
1300 /* prefetch first cache line of first page */
1301 prefetch(va);
1302 #if L1_CACHE_BYTES < 128
1303 prefetch(va + L1_CACHE_BYTES);
1304 #endif
1305
1306 /* allocate a skb to store the frags */
1307 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1308 if (unlikely(!skb))
1309 return NULL;
1310
1311 /* Determine available headroom for copy */
1312 headlen = size;
1313 if (headlen > IGC_RX_HDR_LEN)
1314 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1315
1316 /* align pull length to size of long to optimize memcpy performance */
1317 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1318
1319 /* update all of the pointers */
1320 size -= headlen;
1321 if (size) {
1322 skb_add_rx_frag(skb, 0, rx_buffer->page,
1323 (va + headlen) - page_address(rx_buffer->page),
1324 size, truesize);
1325 #if (PAGE_SIZE < 8192)
1326 rx_buffer->page_offset ^= truesize;
1327 #else
1328 rx_buffer->page_offset += truesize;
1329 #endif
1330 } else {
1331 rx_buffer->pagecnt_bias++;
1332 }
1333
1334 return skb;
1335 }
1336
1337 /**
1338 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1339 * @rx_ring: rx descriptor ring to store buffers on
1340 * @old_buff: donor buffer to have page reused
1341 *
1342 * Synchronizes page for reuse by the adapter
1343 */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)1344 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1345 struct igc_rx_buffer *old_buff)
1346 {
1347 u16 nta = rx_ring->next_to_alloc;
1348 struct igc_rx_buffer *new_buff;
1349
1350 new_buff = &rx_ring->rx_buffer_info[nta];
1351
1352 /* update, and store next to alloc */
1353 nta++;
1354 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1355
1356 /* Transfer page from old buffer to new buffer.
1357 * Move each member individually to avoid possible store
1358 * forwarding stalls.
1359 */
1360 new_buff->dma = old_buff->dma;
1361 new_buff->page = old_buff->page;
1362 new_buff->page_offset = old_buff->page_offset;
1363 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1364 }
1365
igc_page_is_reserved(struct page * page)1366 static inline bool igc_page_is_reserved(struct page *page)
1367 {
1368 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1369 }
1370
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer)1371 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1372 {
1373 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1374 struct page *page = rx_buffer->page;
1375
1376 /* avoid re-using remote pages */
1377 if (unlikely(igc_page_is_reserved(page)))
1378 return false;
1379
1380 #if (PAGE_SIZE < 8192)
1381 /* if we are only owner of page we can reuse it */
1382 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1383 return false;
1384 #else
1385 #define IGC_LAST_OFFSET \
1386 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1387
1388 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1389 return false;
1390 #endif
1391
1392 /* If we have drained the page fragment pool we need to update
1393 * the pagecnt_bias and page count so that we fully restock the
1394 * number of references the driver holds.
1395 */
1396 if (unlikely(!pagecnt_bias)) {
1397 page_ref_add(page, USHRT_MAX);
1398 rx_buffer->pagecnt_bias = USHRT_MAX;
1399 }
1400
1401 return true;
1402 }
1403
1404 /**
1405 * igc_is_non_eop - process handling of non-EOP buffers
1406 * @rx_ring: Rx ring being processed
1407 * @rx_desc: Rx descriptor for current buffer
1408 * @skb: current socket buffer containing buffer in progress
1409 *
1410 * This function updates next to clean. If the buffer is an EOP buffer
1411 * this function exits returning false, otherwise it will place the
1412 * sk_buff in the next buffer to be chained and return true indicating
1413 * that this is in fact a non-EOP buffer.
1414 */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)1415 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1416 union igc_adv_rx_desc *rx_desc)
1417 {
1418 u32 ntc = rx_ring->next_to_clean + 1;
1419
1420 /* fetch, update, and store next to clean */
1421 ntc = (ntc < rx_ring->count) ? ntc : 0;
1422 rx_ring->next_to_clean = ntc;
1423
1424 prefetch(IGC_RX_DESC(rx_ring, ntc));
1425
1426 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1427 return false;
1428
1429 return true;
1430 }
1431
1432 /**
1433 * igc_cleanup_headers - Correct corrupted or empty headers
1434 * @rx_ring: rx descriptor ring packet is being transacted on
1435 * @rx_desc: pointer to the EOP Rx descriptor
1436 * @skb: pointer to current skb being fixed
1437 *
1438 * Address the case where we are pulling data in on pages only
1439 * and as such no data is present in the skb header.
1440 *
1441 * In addition if skb is not at least 60 bytes we need to pad it so that
1442 * it is large enough to qualify as a valid Ethernet frame.
1443 *
1444 * Returns true if an error was encountered and skb was freed.
1445 */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1446 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1447 union igc_adv_rx_desc *rx_desc,
1448 struct sk_buff *skb)
1449 {
1450 if (unlikely((igc_test_staterr(rx_desc,
1451 IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1452 struct net_device *netdev = rx_ring->netdev;
1453
1454 if (!(netdev->features & NETIF_F_RXALL)) {
1455 dev_kfree_skb_any(skb);
1456 return true;
1457 }
1458 }
1459
1460 /* if eth_skb_pad returns an error the skb was freed */
1461 if (eth_skb_pad(skb))
1462 return true;
1463
1464 return false;
1465 }
1466
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer)1467 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1468 struct igc_rx_buffer *rx_buffer)
1469 {
1470 if (igc_can_reuse_rx_page(rx_buffer)) {
1471 /* hand second half of page back to the ring */
1472 igc_reuse_rx_page(rx_ring, rx_buffer);
1473 } else {
1474 /* We are not reusing the buffer so unmap it and free
1475 * any references we are holding to it
1476 */
1477 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1478 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1479 IGC_RX_DMA_ATTR);
1480 __page_frag_cache_drain(rx_buffer->page,
1481 rx_buffer->pagecnt_bias);
1482 }
1483
1484 /* clear contents of rx_buffer */
1485 rx_buffer->page = NULL;
1486 }
1487
1488 /**
1489 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1490 * @adapter: address of board private structure
1491 */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)1492 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1493 {
1494 union igc_adv_rx_desc *rx_desc;
1495 u16 i = rx_ring->next_to_use;
1496 struct igc_rx_buffer *bi;
1497 u16 bufsz;
1498
1499 /* nothing to do */
1500 if (!cleaned_count)
1501 return;
1502
1503 rx_desc = IGC_RX_DESC(rx_ring, i);
1504 bi = &rx_ring->rx_buffer_info[i];
1505 i -= rx_ring->count;
1506
1507 bufsz = igc_rx_bufsz(rx_ring);
1508
1509 do {
1510 if (!igc_alloc_mapped_page(rx_ring, bi))
1511 break;
1512
1513 /* sync the buffer for use by the device */
1514 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1515 bi->page_offset, bufsz,
1516 DMA_FROM_DEVICE);
1517
1518 /* Refresh the desc even if buffer_addrs didn't change
1519 * because each write-back erases this info.
1520 */
1521 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1522
1523 rx_desc++;
1524 bi++;
1525 i++;
1526 if (unlikely(!i)) {
1527 rx_desc = IGC_RX_DESC(rx_ring, 0);
1528 bi = rx_ring->rx_buffer_info;
1529 i -= rx_ring->count;
1530 }
1531
1532 /* clear the length for the next_to_use descriptor */
1533 rx_desc->wb.upper.length = 0;
1534
1535 cleaned_count--;
1536 } while (cleaned_count);
1537
1538 i += rx_ring->count;
1539
1540 if (rx_ring->next_to_use != i) {
1541 /* record the next descriptor to use */
1542 rx_ring->next_to_use = i;
1543
1544 /* update next to alloc since we have filled the ring */
1545 rx_ring->next_to_alloc = i;
1546
1547 /* Force memory writes to complete before letting h/w
1548 * know there are new descriptors to fetch. (Only
1549 * applicable for weak-ordered memory model archs,
1550 * such as IA-64).
1551 */
1552 wmb();
1553 writel(i, rx_ring->tail);
1554 }
1555 }
1556
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)1557 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1558 {
1559 unsigned int total_bytes = 0, total_packets = 0;
1560 struct igc_ring *rx_ring = q_vector->rx.ring;
1561 struct sk_buff *skb = rx_ring->skb;
1562 u16 cleaned_count = igc_desc_unused(rx_ring);
1563
1564 while (likely(total_packets < budget)) {
1565 union igc_adv_rx_desc *rx_desc;
1566 struct igc_rx_buffer *rx_buffer;
1567 unsigned int size;
1568
1569 /* return some buffers to hardware, one at a time is too slow */
1570 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1571 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1572 cleaned_count = 0;
1573 }
1574
1575 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1576 size = le16_to_cpu(rx_desc->wb.upper.length);
1577 if (!size)
1578 break;
1579
1580 /* This memory barrier is needed to keep us from reading
1581 * any other fields out of the rx_desc until we know the
1582 * descriptor has been written back
1583 */
1584 dma_rmb();
1585
1586 rx_buffer = igc_get_rx_buffer(rx_ring, size);
1587
1588 /* retrieve a buffer from the ring */
1589 if (skb)
1590 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1591 else if (ring_uses_build_skb(rx_ring))
1592 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1593 else
1594 skb = igc_construct_skb(rx_ring, rx_buffer,
1595 rx_desc, size);
1596
1597 /* exit if we failed to retrieve a buffer */
1598 if (!skb) {
1599 rx_ring->rx_stats.alloc_failed++;
1600 rx_buffer->pagecnt_bias++;
1601 break;
1602 }
1603
1604 igc_put_rx_buffer(rx_ring, rx_buffer);
1605 cleaned_count++;
1606
1607 /* fetch next buffer in frame if non-eop */
1608 if (igc_is_non_eop(rx_ring, rx_desc))
1609 continue;
1610
1611 /* verify the packet layout is correct */
1612 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1613 skb = NULL;
1614 continue;
1615 }
1616
1617 /* probably a little skewed due to removing CRC */
1618 total_bytes += skb->len;
1619
1620 /* populate checksum, timestamp, VLAN, and protocol */
1621 igc_process_skb_fields(rx_ring, rx_desc, skb);
1622
1623 napi_gro_receive(&q_vector->napi, skb);
1624
1625 /* reset skb pointer */
1626 skb = NULL;
1627
1628 /* update budget accounting */
1629 total_packets++;
1630 }
1631
1632 /* place incomplete frames back on ring for completion */
1633 rx_ring->skb = skb;
1634
1635 u64_stats_update_begin(&rx_ring->rx_syncp);
1636 rx_ring->rx_stats.packets += total_packets;
1637 rx_ring->rx_stats.bytes += total_bytes;
1638 u64_stats_update_end(&rx_ring->rx_syncp);
1639 q_vector->rx.total_packets += total_packets;
1640 q_vector->rx.total_bytes += total_bytes;
1641
1642 if (cleaned_count)
1643 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1644
1645 return total_packets;
1646 }
1647
igc_rx_offset(struct igc_ring * rx_ring)1648 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1649 {
1650 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1651 }
1652
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)1653 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1654 struct igc_rx_buffer *bi)
1655 {
1656 struct page *page = bi->page;
1657 dma_addr_t dma;
1658
1659 /* since we are recycling buffers we should seldom need to alloc */
1660 if (likely(page))
1661 return true;
1662
1663 /* alloc new page for storage */
1664 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1665 if (unlikely(!page)) {
1666 rx_ring->rx_stats.alloc_failed++;
1667 return false;
1668 }
1669
1670 /* map page for use */
1671 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1672 igc_rx_pg_size(rx_ring),
1673 DMA_FROM_DEVICE,
1674 IGC_RX_DMA_ATTR);
1675
1676 /* if mapping failed free memory back to system since
1677 * there isn't much point in holding memory we can't use
1678 */
1679 if (dma_mapping_error(rx_ring->dev, dma)) {
1680 __free_page(page);
1681
1682 rx_ring->rx_stats.alloc_failed++;
1683 return false;
1684 }
1685
1686 bi->dma = dma;
1687 bi->page = page;
1688 bi->page_offset = igc_rx_offset(rx_ring);
1689 bi->pagecnt_bias = 1;
1690
1691 return true;
1692 }
1693
1694 /**
1695 * igc_clean_tx_irq - Reclaim resources after transmit completes
1696 * @q_vector: pointer to q_vector containing needed info
1697 * @napi_budget: Used to determine if we are in netpoll
1698 *
1699 * returns true if ring is completely cleaned
1700 */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)1701 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1702 {
1703 struct igc_adapter *adapter = q_vector->adapter;
1704 unsigned int total_bytes = 0, total_packets = 0;
1705 unsigned int budget = q_vector->tx.work_limit;
1706 struct igc_ring *tx_ring = q_vector->tx.ring;
1707 unsigned int i = tx_ring->next_to_clean;
1708 struct igc_tx_buffer *tx_buffer;
1709 union igc_adv_tx_desc *tx_desc;
1710
1711 if (test_bit(__IGC_DOWN, &adapter->state))
1712 return true;
1713
1714 tx_buffer = &tx_ring->tx_buffer_info[i];
1715 tx_desc = IGC_TX_DESC(tx_ring, i);
1716 i -= tx_ring->count;
1717
1718 do {
1719 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
1720
1721 /* if next_to_watch is not set then there is no work pending */
1722 if (!eop_desc)
1723 break;
1724
1725 /* prevent any other reads prior to eop_desc */
1726 smp_rmb();
1727
1728 /* if DD is not set pending work has not been completed */
1729 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
1730 break;
1731
1732 /* clear next_to_watch to prevent false hangs */
1733 tx_buffer->next_to_watch = NULL;
1734
1735 /* update the statistics for this packet */
1736 total_bytes += tx_buffer->bytecount;
1737 total_packets += tx_buffer->gso_segs;
1738
1739 /* free the skb */
1740 napi_consume_skb(tx_buffer->skb, napi_budget);
1741
1742 /* unmap skb header data */
1743 dma_unmap_single(tx_ring->dev,
1744 dma_unmap_addr(tx_buffer, dma),
1745 dma_unmap_len(tx_buffer, len),
1746 DMA_TO_DEVICE);
1747
1748 /* clear tx_buffer data */
1749 dma_unmap_len_set(tx_buffer, len, 0);
1750
1751 /* clear last DMA location and unmap remaining buffers */
1752 while (tx_desc != eop_desc) {
1753 tx_buffer++;
1754 tx_desc++;
1755 i++;
1756 if (unlikely(!i)) {
1757 i -= tx_ring->count;
1758 tx_buffer = tx_ring->tx_buffer_info;
1759 tx_desc = IGC_TX_DESC(tx_ring, 0);
1760 }
1761
1762 /* unmap any remaining paged data */
1763 if (dma_unmap_len(tx_buffer, len)) {
1764 dma_unmap_page(tx_ring->dev,
1765 dma_unmap_addr(tx_buffer, dma),
1766 dma_unmap_len(tx_buffer, len),
1767 DMA_TO_DEVICE);
1768 dma_unmap_len_set(tx_buffer, len, 0);
1769 }
1770 }
1771
1772 /* move us one more past the eop_desc for start of next pkt */
1773 tx_buffer++;
1774 tx_desc++;
1775 i++;
1776 if (unlikely(!i)) {
1777 i -= tx_ring->count;
1778 tx_buffer = tx_ring->tx_buffer_info;
1779 tx_desc = IGC_TX_DESC(tx_ring, 0);
1780 }
1781
1782 /* issue prefetch for next Tx descriptor */
1783 prefetch(tx_desc);
1784
1785 /* update budget accounting */
1786 budget--;
1787 } while (likely(budget));
1788
1789 netdev_tx_completed_queue(txring_txq(tx_ring),
1790 total_packets, total_bytes);
1791
1792 i += tx_ring->count;
1793 tx_ring->next_to_clean = i;
1794 u64_stats_update_begin(&tx_ring->tx_syncp);
1795 tx_ring->tx_stats.bytes += total_bytes;
1796 tx_ring->tx_stats.packets += total_packets;
1797 u64_stats_update_end(&tx_ring->tx_syncp);
1798 q_vector->tx.total_bytes += total_bytes;
1799 q_vector->tx.total_packets += total_packets;
1800
1801 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
1802 struct igc_hw *hw = &adapter->hw;
1803
1804 /* Detect a transmit hang in hardware, this serializes the
1805 * check with the clearing of time_stamp and movement of i
1806 */
1807 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
1808 if (tx_buffer->next_to_watch &&
1809 time_after(jiffies, tx_buffer->time_stamp +
1810 (adapter->tx_timeout_factor * HZ)) &&
1811 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
1812 /* detected Tx unit hang */
1813 dev_err(tx_ring->dev,
1814 "Detected Tx Unit Hang\n"
1815 " Tx Queue <%d>\n"
1816 " TDH <%x>\n"
1817 " TDT <%x>\n"
1818 " next_to_use <%x>\n"
1819 " next_to_clean <%x>\n"
1820 "buffer_info[next_to_clean]\n"
1821 " time_stamp <%lx>\n"
1822 " next_to_watch <%p>\n"
1823 " jiffies <%lx>\n"
1824 " desc.status <%x>\n",
1825 tx_ring->queue_index,
1826 rd32(IGC_TDH(tx_ring->reg_idx)),
1827 readl(tx_ring->tail),
1828 tx_ring->next_to_use,
1829 tx_ring->next_to_clean,
1830 tx_buffer->time_stamp,
1831 tx_buffer->next_to_watch,
1832 jiffies,
1833 tx_buffer->next_to_watch->wb.status);
1834 netif_stop_subqueue(tx_ring->netdev,
1835 tx_ring->queue_index);
1836
1837 /* we are about to reset, no point in enabling stuff */
1838 return true;
1839 }
1840 }
1841
1842 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
1843 if (unlikely(total_packets &&
1844 netif_carrier_ok(tx_ring->netdev) &&
1845 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
1846 /* Make sure that anybody stopping the queue after this
1847 * sees the new next_to_clean.
1848 */
1849 smp_mb();
1850 if (__netif_subqueue_stopped(tx_ring->netdev,
1851 tx_ring->queue_index) &&
1852 !(test_bit(__IGC_DOWN, &adapter->state))) {
1853 netif_wake_subqueue(tx_ring->netdev,
1854 tx_ring->queue_index);
1855
1856 u64_stats_update_begin(&tx_ring->tx_syncp);
1857 tx_ring->tx_stats.restart_queue++;
1858 u64_stats_update_end(&tx_ring->tx_syncp);
1859 }
1860 }
1861
1862 return !!budget;
1863 }
1864
1865 /**
1866 * igc_up - Open the interface and prepare it to handle traffic
1867 * @adapter: board private structure
1868 */
igc_up(struct igc_adapter * adapter)1869 void igc_up(struct igc_adapter *adapter)
1870 {
1871 struct igc_hw *hw = &adapter->hw;
1872 int i = 0;
1873
1874 /* hardware has been reset, we need to reload some things */
1875 igc_configure(adapter);
1876
1877 clear_bit(__IGC_DOWN, &adapter->state);
1878
1879 for (i = 0; i < adapter->num_q_vectors; i++)
1880 napi_enable(&adapter->q_vector[i]->napi);
1881
1882 if (adapter->msix_entries)
1883 igc_configure_msix(adapter);
1884 else
1885 igc_assign_vector(adapter->q_vector[0], 0);
1886
1887 /* Clear any pending interrupts. */
1888 rd32(IGC_ICR);
1889 igc_irq_enable(adapter);
1890
1891 netif_tx_start_all_queues(adapter->netdev);
1892
1893 /* start the watchdog. */
1894 hw->mac.get_link_status = 1;
1895 schedule_work(&adapter->watchdog_task);
1896 }
1897
1898 /**
1899 * igc_update_stats - Update the board statistics counters
1900 * @adapter: board private structure
1901 */
igc_update_stats(struct igc_adapter * adapter)1902 void igc_update_stats(struct igc_adapter *adapter)
1903 {
1904 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
1905 struct pci_dev *pdev = adapter->pdev;
1906 struct igc_hw *hw = &adapter->hw;
1907 u64 _bytes, _packets;
1908 u64 bytes, packets;
1909 unsigned int start;
1910 u32 mpc;
1911 int i;
1912
1913 /* Prevent stats update while adapter is being reset, or if the pci
1914 * connection is down.
1915 */
1916 if (adapter->link_speed == 0)
1917 return;
1918 if (pci_channel_offline(pdev))
1919 return;
1920
1921 packets = 0;
1922 bytes = 0;
1923
1924 rcu_read_lock();
1925 for (i = 0; i < adapter->num_rx_queues; i++) {
1926 struct igc_ring *ring = adapter->rx_ring[i];
1927 u32 rqdpc = rd32(IGC_RQDPC(i));
1928
1929 if (hw->mac.type >= igc_i225)
1930 wr32(IGC_RQDPC(i), 0);
1931
1932 if (rqdpc) {
1933 ring->rx_stats.drops += rqdpc;
1934 net_stats->rx_fifo_errors += rqdpc;
1935 }
1936
1937 do {
1938 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
1939 _bytes = ring->rx_stats.bytes;
1940 _packets = ring->rx_stats.packets;
1941 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
1942 bytes += _bytes;
1943 packets += _packets;
1944 }
1945
1946 net_stats->rx_bytes = bytes;
1947 net_stats->rx_packets = packets;
1948
1949 packets = 0;
1950 bytes = 0;
1951 for (i = 0; i < adapter->num_tx_queues; i++) {
1952 struct igc_ring *ring = adapter->tx_ring[i];
1953
1954 do {
1955 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
1956 _bytes = ring->tx_stats.bytes;
1957 _packets = ring->tx_stats.packets;
1958 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
1959 bytes += _bytes;
1960 packets += _packets;
1961 }
1962 net_stats->tx_bytes = bytes;
1963 net_stats->tx_packets = packets;
1964 rcu_read_unlock();
1965
1966 /* read stats registers */
1967 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
1968 adapter->stats.gprc += rd32(IGC_GPRC);
1969 adapter->stats.gorc += rd32(IGC_GORCL);
1970 rd32(IGC_GORCH); /* clear GORCL */
1971 adapter->stats.bprc += rd32(IGC_BPRC);
1972 adapter->stats.mprc += rd32(IGC_MPRC);
1973 adapter->stats.roc += rd32(IGC_ROC);
1974
1975 adapter->stats.prc64 += rd32(IGC_PRC64);
1976 adapter->stats.prc127 += rd32(IGC_PRC127);
1977 adapter->stats.prc255 += rd32(IGC_PRC255);
1978 adapter->stats.prc511 += rd32(IGC_PRC511);
1979 adapter->stats.prc1023 += rd32(IGC_PRC1023);
1980 adapter->stats.prc1522 += rd32(IGC_PRC1522);
1981 adapter->stats.symerrs += rd32(IGC_SYMERRS);
1982 adapter->stats.sec += rd32(IGC_SEC);
1983
1984 mpc = rd32(IGC_MPC);
1985 adapter->stats.mpc += mpc;
1986 net_stats->rx_fifo_errors += mpc;
1987 adapter->stats.scc += rd32(IGC_SCC);
1988 adapter->stats.ecol += rd32(IGC_ECOL);
1989 adapter->stats.mcc += rd32(IGC_MCC);
1990 adapter->stats.latecol += rd32(IGC_LATECOL);
1991 adapter->stats.dc += rd32(IGC_DC);
1992 adapter->stats.rlec += rd32(IGC_RLEC);
1993 adapter->stats.xonrxc += rd32(IGC_XONRXC);
1994 adapter->stats.xontxc += rd32(IGC_XONTXC);
1995 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
1996 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
1997 adapter->stats.fcruc += rd32(IGC_FCRUC);
1998 adapter->stats.gptc += rd32(IGC_GPTC);
1999 adapter->stats.gotc += rd32(IGC_GOTCL);
2000 rd32(IGC_GOTCH); /* clear GOTCL */
2001 adapter->stats.rnbc += rd32(IGC_RNBC);
2002 adapter->stats.ruc += rd32(IGC_RUC);
2003 adapter->stats.rfc += rd32(IGC_RFC);
2004 adapter->stats.rjc += rd32(IGC_RJC);
2005 adapter->stats.tor += rd32(IGC_TORH);
2006 adapter->stats.tot += rd32(IGC_TOTH);
2007 adapter->stats.tpr += rd32(IGC_TPR);
2008
2009 adapter->stats.ptc64 += rd32(IGC_PTC64);
2010 adapter->stats.ptc127 += rd32(IGC_PTC127);
2011 adapter->stats.ptc255 += rd32(IGC_PTC255);
2012 adapter->stats.ptc511 += rd32(IGC_PTC511);
2013 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
2014 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
2015
2016 adapter->stats.mptc += rd32(IGC_MPTC);
2017 adapter->stats.bptc += rd32(IGC_BPTC);
2018
2019 adapter->stats.tpt += rd32(IGC_TPT);
2020 adapter->stats.colc += rd32(IGC_COLC);
2021
2022 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
2023
2024 adapter->stats.tsctc += rd32(IGC_TSCTC);
2025 adapter->stats.tsctfc += rd32(IGC_TSCTFC);
2026
2027 adapter->stats.iac += rd32(IGC_IAC);
2028 adapter->stats.icrxoc += rd32(IGC_ICRXOC);
2029 adapter->stats.icrxptc += rd32(IGC_ICRXPTC);
2030 adapter->stats.icrxatc += rd32(IGC_ICRXATC);
2031 adapter->stats.ictxptc += rd32(IGC_ICTXPTC);
2032 adapter->stats.ictxatc += rd32(IGC_ICTXATC);
2033 adapter->stats.ictxqec += rd32(IGC_ICTXQEC);
2034 adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC);
2035 adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC);
2036
2037 /* Fill out the OS statistics structure */
2038 net_stats->multicast = adapter->stats.mprc;
2039 net_stats->collisions = adapter->stats.colc;
2040
2041 /* Rx Errors */
2042
2043 /* RLEC on some newer hardware can be incorrect so build
2044 * our own version based on RUC and ROC
2045 */
2046 net_stats->rx_errors = adapter->stats.rxerrc +
2047 adapter->stats.crcerrs + adapter->stats.algnerrc +
2048 adapter->stats.ruc + adapter->stats.roc +
2049 adapter->stats.cexterr;
2050 net_stats->rx_length_errors = adapter->stats.ruc +
2051 adapter->stats.roc;
2052 net_stats->rx_crc_errors = adapter->stats.crcerrs;
2053 net_stats->rx_frame_errors = adapter->stats.algnerrc;
2054 net_stats->rx_missed_errors = adapter->stats.mpc;
2055
2056 /* Tx Errors */
2057 net_stats->tx_errors = adapter->stats.ecol +
2058 adapter->stats.latecol;
2059 net_stats->tx_aborted_errors = adapter->stats.ecol;
2060 net_stats->tx_window_errors = adapter->stats.latecol;
2061 net_stats->tx_carrier_errors = adapter->stats.tncrs;
2062
2063 /* Tx Dropped needs to be maintained elsewhere */
2064
2065 /* Management Stats */
2066 adapter->stats.mgptc += rd32(IGC_MGTPTC);
2067 adapter->stats.mgprc += rd32(IGC_MGTPRC);
2068 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
2069 }
2070
igc_nfc_filter_exit(struct igc_adapter * adapter)2071 static void igc_nfc_filter_exit(struct igc_adapter *adapter)
2072 {
2073 struct igc_nfc_filter *rule;
2074
2075 spin_lock(&adapter->nfc_lock);
2076
2077 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
2078 igc_erase_filter(adapter, rule);
2079
2080 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
2081 igc_erase_filter(adapter, rule);
2082
2083 spin_unlock(&adapter->nfc_lock);
2084 }
2085
igc_nfc_filter_restore(struct igc_adapter * adapter)2086 static void igc_nfc_filter_restore(struct igc_adapter *adapter)
2087 {
2088 struct igc_nfc_filter *rule;
2089
2090 spin_lock(&adapter->nfc_lock);
2091
2092 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
2093 igc_add_filter(adapter, rule);
2094
2095 spin_unlock(&adapter->nfc_lock);
2096 }
2097
2098 /**
2099 * igc_down - Close the interface
2100 * @adapter: board private structure
2101 */
igc_down(struct igc_adapter * adapter)2102 void igc_down(struct igc_adapter *adapter)
2103 {
2104 struct net_device *netdev = adapter->netdev;
2105 struct igc_hw *hw = &adapter->hw;
2106 u32 tctl, rctl;
2107 int i = 0;
2108
2109 set_bit(__IGC_DOWN, &adapter->state);
2110
2111 /* disable receives in the hardware */
2112 rctl = rd32(IGC_RCTL);
2113 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
2114 /* flush and sleep below */
2115
2116 igc_nfc_filter_exit(adapter);
2117
2118 /* set trans_start so we don't get spurious watchdogs during reset */
2119 netif_trans_update(netdev);
2120
2121 netif_carrier_off(netdev);
2122 netif_tx_stop_all_queues(netdev);
2123
2124 /* disable transmits in the hardware */
2125 tctl = rd32(IGC_TCTL);
2126 tctl &= ~IGC_TCTL_EN;
2127 wr32(IGC_TCTL, tctl);
2128 /* flush both disables and wait for them to finish */
2129 wrfl();
2130 usleep_range(10000, 20000);
2131
2132 igc_irq_disable(adapter);
2133
2134 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2135
2136 for (i = 0; i < adapter->num_q_vectors; i++) {
2137 if (adapter->q_vector[i]) {
2138 napi_synchronize(&adapter->q_vector[i]->napi);
2139 napi_disable(&adapter->q_vector[i]->napi);
2140 }
2141 }
2142
2143 del_timer_sync(&adapter->watchdog_timer);
2144 del_timer_sync(&adapter->phy_info_timer);
2145
2146 /* record the stats before reset*/
2147 spin_lock(&adapter->stats64_lock);
2148 igc_update_stats(adapter);
2149 spin_unlock(&adapter->stats64_lock);
2150
2151 adapter->link_speed = 0;
2152 adapter->link_duplex = 0;
2153
2154 if (!pci_channel_offline(adapter->pdev))
2155 igc_reset(adapter);
2156
2157 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2158 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
2159
2160 igc_clean_all_tx_rings(adapter);
2161 igc_clean_all_rx_rings(adapter);
2162 }
2163
igc_reinit_locked(struct igc_adapter * adapter)2164 void igc_reinit_locked(struct igc_adapter *adapter)
2165 {
2166 WARN_ON(in_interrupt());
2167 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2168 usleep_range(1000, 2000);
2169 igc_down(adapter);
2170 igc_up(adapter);
2171 clear_bit(__IGC_RESETTING, &adapter->state);
2172 }
2173
igc_reset_task(struct work_struct * work)2174 static void igc_reset_task(struct work_struct *work)
2175 {
2176 struct igc_adapter *adapter;
2177
2178 adapter = container_of(work, struct igc_adapter, reset_task);
2179
2180 netdev_err(adapter->netdev, "Reset adapter\n");
2181 igc_reinit_locked(adapter);
2182 }
2183
2184 /**
2185 * igc_change_mtu - Change the Maximum Transfer Unit
2186 * @netdev: network interface device structure
2187 * @new_mtu: new value for maximum frame size
2188 *
2189 * Returns 0 on success, negative on failure
2190 */
igc_change_mtu(struct net_device * netdev,int new_mtu)2191 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
2192 {
2193 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2194 struct igc_adapter *adapter = netdev_priv(netdev);
2195 struct pci_dev *pdev = adapter->pdev;
2196
2197 /* adjust max frame to be at least the size of a standard frame */
2198 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
2199 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
2200
2201 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2202 usleep_range(1000, 2000);
2203
2204 /* igc_down has a dependency on max_frame_size */
2205 adapter->max_frame_size = max_frame;
2206
2207 if (netif_running(netdev))
2208 igc_down(adapter);
2209
2210 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
2211 netdev->mtu, new_mtu);
2212 netdev->mtu = new_mtu;
2213
2214 if (netif_running(netdev))
2215 igc_up(adapter);
2216 else
2217 igc_reset(adapter);
2218
2219 clear_bit(__IGC_RESETTING, &adapter->state);
2220
2221 return 0;
2222 }
2223
2224 /**
2225 * igc_get_stats - Get System Network Statistics
2226 * @netdev: network interface device structure
2227 *
2228 * Returns the address of the device statistics structure.
2229 * The statistics are updated here and also from the timer callback.
2230 */
igc_get_stats(struct net_device * netdev)2231 static struct net_device_stats *igc_get_stats(struct net_device *netdev)
2232 {
2233 struct igc_adapter *adapter = netdev_priv(netdev);
2234
2235 if (!test_bit(__IGC_RESETTING, &adapter->state))
2236 igc_update_stats(adapter);
2237
2238 /* only return the current stats */
2239 return &netdev->stats;
2240 }
2241
igc_fix_features(struct net_device * netdev,netdev_features_t features)2242 static netdev_features_t igc_fix_features(struct net_device *netdev,
2243 netdev_features_t features)
2244 {
2245 /* Since there is no support for separate Rx/Tx vlan accel
2246 * enable/disable make sure Tx flag is always in same state as Rx.
2247 */
2248 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2249 features |= NETIF_F_HW_VLAN_CTAG_TX;
2250 else
2251 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2252
2253 return features;
2254 }
2255
igc_set_features(struct net_device * netdev,netdev_features_t features)2256 static int igc_set_features(struct net_device *netdev,
2257 netdev_features_t features)
2258 {
2259 netdev_features_t changed = netdev->features ^ features;
2260 struct igc_adapter *adapter = netdev_priv(netdev);
2261
2262 /* Add VLAN support */
2263 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2264 return 0;
2265
2266 if (!(features & NETIF_F_NTUPLE)) {
2267 struct hlist_node *node2;
2268 struct igc_nfc_filter *rule;
2269
2270 spin_lock(&adapter->nfc_lock);
2271 hlist_for_each_entry_safe(rule, node2,
2272 &adapter->nfc_filter_list, nfc_node) {
2273 igc_erase_filter(adapter, rule);
2274 hlist_del(&rule->nfc_node);
2275 kfree(rule);
2276 }
2277 spin_unlock(&adapter->nfc_lock);
2278 adapter->nfc_filter_count = 0;
2279 }
2280
2281 netdev->features = features;
2282
2283 if (netif_running(netdev))
2284 igc_reinit_locked(adapter);
2285 else
2286 igc_reset(adapter);
2287
2288 return 1;
2289 }
2290
2291 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2292 igc_features_check(struct sk_buff *skb, struct net_device *dev,
2293 netdev_features_t features)
2294 {
2295 unsigned int network_hdr_len, mac_hdr_len;
2296
2297 /* Make certain the headers can be described by a context descriptor */
2298 mac_hdr_len = skb_network_header(skb) - skb->data;
2299 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
2300 return features & ~(NETIF_F_HW_CSUM |
2301 NETIF_F_SCTP_CRC |
2302 NETIF_F_HW_VLAN_CTAG_TX |
2303 NETIF_F_TSO |
2304 NETIF_F_TSO6);
2305
2306 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2307 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
2308 return features & ~(NETIF_F_HW_CSUM |
2309 NETIF_F_SCTP_CRC |
2310 NETIF_F_TSO |
2311 NETIF_F_TSO6);
2312
2313 /* We can only support IPv4 TSO in tunnels if we can mangle the
2314 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2315 */
2316 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2317 features &= ~NETIF_F_TSO;
2318
2319 return features;
2320 }
2321
2322 /**
2323 * igc_configure - configure the hardware for RX and TX
2324 * @adapter: private board structure
2325 */
igc_configure(struct igc_adapter * adapter)2326 static void igc_configure(struct igc_adapter *adapter)
2327 {
2328 struct net_device *netdev = adapter->netdev;
2329 int i = 0;
2330
2331 igc_get_hw_control(adapter);
2332 igc_set_rx_mode(netdev);
2333
2334 igc_setup_tctl(adapter);
2335 igc_setup_mrqc(adapter);
2336 igc_setup_rctl(adapter);
2337
2338 igc_nfc_filter_restore(adapter);
2339 igc_configure_tx(adapter);
2340 igc_configure_rx(adapter);
2341
2342 igc_rx_fifo_flush_base(&adapter->hw);
2343
2344 /* call igc_desc_unused which always leaves
2345 * at least 1 descriptor unused to make sure
2346 * next_to_use != next_to_clean
2347 */
2348 for (i = 0; i < adapter->num_rx_queues; i++) {
2349 struct igc_ring *ring = adapter->rx_ring[i];
2350
2351 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2352 }
2353 }
2354
2355 /**
2356 * igc_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
2357 * @adapter: address of board private structure
2358 * @index: Index of the RAR entry which need to be synced with MAC table
2359 */
igc_rar_set_index(struct igc_adapter * adapter,u32 index)2360 static void igc_rar_set_index(struct igc_adapter *adapter, u32 index)
2361 {
2362 u8 *addr = adapter->mac_table[index].addr;
2363 struct igc_hw *hw = &adapter->hw;
2364 u32 rar_low, rar_high;
2365
2366 /* HW expects these to be in network order when they are plugged
2367 * into the registers which are little endian. In order to guarantee
2368 * that ordering we need to do an leXX_to_cpup here in order to be
2369 * ready for the byteswap that occurs with writel
2370 */
2371 rar_low = le32_to_cpup((__le32 *)(addr));
2372 rar_high = le16_to_cpup((__le16 *)(addr + 4));
2373
2374 /* Indicate to hardware the Address is Valid. */
2375 if (adapter->mac_table[index].state & IGC_MAC_STATE_IN_USE) {
2376 if (is_valid_ether_addr(addr))
2377 rar_high |= IGC_RAH_AV;
2378
2379 rar_high |= IGC_RAH_POOL_1 <<
2380 adapter->mac_table[index].queue;
2381 }
2382
2383 wr32(IGC_RAL(index), rar_low);
2384 wrfl();
2385 wr32(IGC_RAH(index), rar_high);
2386 wrfl();
2387 }
2388
2389 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)2390 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
2391 {
2392 struct igc_mac_addr *mac_table = &adapter->mac_table[0];
2393
2394 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
2395 mac_table->state = IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2396
2397 igc_rar_set_index(adapter, 0);
2398 }
2399
2400 /* If the filter to be added and an already existing filter express
2401 * the same address and address type, it should be possible to only
2402 * override the other configurations, for example the queue to steer
2403 * traffic.
2404 */
igc_mac_entry_can_be_used(const struct igc_mac_addr * entry,const u8 * addr,const u8 flags)2405 static bool igc_mac_entry_can_be_used(const struct igc_mac_addr *entry,
2406 const u8 *addr, const u8 flags)
2407 {
2408 if (!(entry->state & IGC_MAC_STATE_IN_USE))
2409 return true;
2410
2411 if ((entry->state & IGC_MAC_STATE_SRC_ADDR) !=
2412 (flags & IGC_MAC_STATE_SRC_ADDR))
2413 return false;
2414
2415 if (!ether_addr_equal(addr, entry->addr))
2416 return false;
2417
2418 return true;
2419 }
2420
2421 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
2422 * 'flags' is used to indicate what kind of match is made, match is by
2423 * default for the destination address, if matching by source address
2424 * is desired the flag IGC_MAC_STATE_SRC_ADDR can be used.
2425 */
igc_add_mac_filter_flags(struct igc_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)2426 static int igc_add_mac_filter_flags(struct igc_adapter *adapter,
2427 const u8 *addr, const u8 queue,
2428 const u8 flags)
2429 {
2430 struct igc_hw *hw = &adapter->hw;
2431 int rar_entries = hw->mac.rar_entry_count;
2432 int i;
2433
2434 if (is_zero_ether_addr(addr))
2435 return -EINVAL;
2436
2437 /* Search for the first empty entry in the MAC table.
2438 * Do not touch entries at the end of the table reserved for the VF MAC
2439 * addresses.
2440 */
2441 for (i = 0; i < rar_entries; i++) {
2442 if (!igc_mac_entry_can_be_used(&adapter->mac_table[i],
2443 addr, flags))
2444 continue;
2445
2446 ether_addr_copy(adapter->mac_table[i].addr, addr);
2447 adapter->mac_table[i].queue = queue;
2448 adapter->mac_table[i].state |= IGC_MAC_STATE_IN_USE | flags;
2449
2450 igc_rar_set_index(adapter, i);
2451 return i;
2452 }
2453
2454 return -ENOSPC;
2455 }
2456
igc_add_mac_steering_filter(struct igc_adapter * adapter,const u8 * addr,u8 queue,u8 flags)2457 int igc_add_mac_steering_filter(struct igc_adapter *adapter,
2458 const u8 *addr, u8 queue, u8 flags)
2459 {
2460 return igc_add_mac_filter_flags(adapter, addr, queue,
2461 IGC_MAC_STATE_QUEUE_STEERING | flags);
2462 }
2463
2464 /* Remove a MAC filter for 'addr' directing matching traffic to
2465 * 'queue', 'flags' is used to indicate what kind of match need to be
2466 * removed, match is by default for the destination address, if
2467 * matching by source address is to be removed the flag
2468 * IGC_MAC_STATE_SRC_ADDR can be used.
2469 */
igc_del_mac_filter_flags(struct igc_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)2470 static int igc_del_mac_filter_flags(struct igc_adapter *adapter,
2471 const u8 *addr, const u8 queue,
2472 const u8 flags)
2473 {
2474 struct igc_hw *hw = &adapter->hw;
2475 int rar_entries = hw->mac.rar_entry_count;
2476 int i;
2477
2478 if (is_zero_ether_addr(addr))
2479 return -EINVAL;
2480
2481 /* Search for matching entry in the MAC table based on given address
2482 * and queue. Do not touch entries at the end of the table reserved
2483 * for the VF MAC addresses.
2484 */
2485 for (i = 0; i < rar_entries; i++) {
2486 if (!(adapter->mac_table[i].state & IGC_MAC_STATE_IN_USE))
2487 continue;
2488 if ((adapter->mac_table[i].state & flags) != flags)
2489 continue;
2490 if (adapter->mac_table[i].queue != queue)
2491 continue;
2492 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
2493 continue;
2494
2495 /* When a filter for the default address is "deleted",
2496 * we return it to its initial configuration
2497 */
2498 if (adapter->mac_table[i].state & IGC_MAC_STATE_DEFAULT) {
2499 adapter->mac_table[i].state =
2500 IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2501 } else {
2502 adapter->mac_table[i].state = 0;
2503 adapter->mac_table[i].queue = 0;
2504 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
2505 }
2506
2507 igc_rar_set_index(adapter, i);
2508 return 0;
2509 }
2510
2511 return -ENOENT;
2512 }
2513
igc_del_mac_steering_filter(struct igc_adapter * adapter,const u8 * addr,u8 queue,u8 flags)2514 int igc_del_mac_steering_filter(struct igc_adapter *adapter,
2515 const u8 *addr, u8 queue, u8 flags)
2516 {
2517 return igc_del_mac_filter_flags(adapter, addr, queue,
2518 IGC_MAC_STATE_QUEUE_STEERING | flags);
2519 }
2520
2521 /**
2522 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2523 * @netdev: network interface device structure
2524 *
2525 * The set_rx_mode entry point is called whenever the unicast or multicast
2526 * address lists or the network interface flags are updated. This routine is
2527 * responsible for configuring the hardware for proper unicast, multicast,
2528 * promiscuous mode, and all-multi behavior.
2529 */
igc_set_rx_mode(struct net_device * netdev)2530 static void igc_set_rx_mode(struct net_device *netdev)
2531 {
2532 }
2533
2534 /**
2535 * igc_msix_other - msix other interrupt handler
2536 * @irq: interrupt number
2537 * @data: pointer to a q_vector
2538 */
igc_msix_other(int irq,void * data)2539 static irqreturn_t igc_msix_other(int irq, void *data)
2540 {
2541 struct igc_adapter *adapter = data;
2542 struct igc_hw *hw = &adapter->hw;
2543 u32 icr = rd32(IGC_ICR);
2544
2545 /* reading ICR causes bit 31 of EICR to be cleared */
2546 if (icr & IGC_ICR_DRSTA)
2547 schedule_work(&adapter->reset_task);
2548
2549 if (icr & IGC_ICR_DOUTSYNC) {
2550 /* HW is reporting DMA is out of sync */
2551 adapter->stats.doosync++;
2552 }
2553
2554 if (icr & IGC_ICR_LSC) {
2555 hw->mac.get_link_status = 1;
2556 /* guard against interrupt when we're going down */
2557 if (!test_bit(__IGC_DOWN, &adapter->state))
2558 mod_timer(&adapter->watchdog_timer, jiffies + 1);
2559 }
2560
2561 wr32(IGC_EIMS, adapter->eims_other);
2562
2563 return IRQ_HANDLED;
2564 }
2565
2566 /**
2567 * igc_write_ivar - configure ivar for given MSI-X vector
2568 * @hw: pointer to the HW structure
2569 * @msix_vector: vector number we are allocating to a given ring
2570 * @index: row index of IVAR register to write within IVAR table
2571 * @offset: column offset of in IVAR, should be multiple of 8
2572 *
2573 * The IVAR table consists of 2 columns,
2574 * each containing an cause allocation for an Rx and Tx ring, and a
2575 * variable number of rows depending on the number of queues supported.
2576 */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)2577 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2578 int index, int offset)
2579 {
2580 u32 ivar = array_rd32(IGC_IVAR0, index);
2581
2582 /* clear any bits that are currently set */
2583 ivar &= ~((u32)0xFF << offset);
2584
2585 /* write vector and valid bit */
2586 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2587
2588 array_wr32(IGC_IVAR0, index, ivar);
2589 }
2590
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)2591 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2592 {
2593 struct igc_adapter *adapter = q_vector->adapter;
2594 struct igc_hw *hw = &adapter->hw;
2595 int rx_queue = IGC_N0_QUEUE;
2596 int tx_queue = IGC_N0_QUEUE;
2597
2598 if (q_vector->rx.ring)
2599 rx_queue = q_vector->rx.ring->reg_idx;
2600 if (q_vector->tx.ring)
2601 tx_queue = q_vector->tx.ring->reg_idx;
2602
2603 switch (hw->mac.type) {
2604 case igc_i225:
2605 if (rx_queue > IGC_N0_QUEUE)
2606 igc_write_ivar(hw, msix_vector,
2607 rx_queue >> 1,
2608 (rx_queue & 0x1) << 4);
2609 if (tx_queue > IGC_N0_QUEUE)
2610 igc_write_ivar(hw, msix_vector,
2611 tx_queue >> 1,
2612 ((tx_queue & 0x1) << 4) + 8);
2613 q_vector->eims_value = BIT(msix_vector);
2614 break;
2615 default:
2616 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2617 break;
2618 }
2619
2620 /* add q_vector eims value to global eims_enable_mask */
2621 adapter->eims_enable_mask |= q_vector->eims_value;
2622
2623 /* configure q_vector to set itr on first interrupt */
2624 q_vector->set_itr = 1;
2625 }
2626
2627 /**
2628 * igc_configure_msix - Configure MSI-X hardware
2629 * @adapter: Pointer to adapter structure
2630 *
2631 * igc_configure_msix sets up the hardware to properly
2632 * generate MSI-X interrupts.
2633 */
igc_configure_msix(struct igc_adapter * adapter)2634 static void igc_configure_msix(struct igc_adapter *adapter)
2635 {
2636 struct igc_hw *hw = &adapter->hw;
2637 int i, vector = 0;
2638 u32 tmp;
2639
2640 adapter->eims_enable_mask = 0;
2641
2642 /* set vector for other causes, i.e. link changes */
2643 switch (hw->mac.type) {
2644 case igc_i225:
2645 /* Turn on MSI-X capability first, or our settings
2646 * won't stick. And it will take days to debug.
2647 */
2648 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2649 IGC_GPIE_PBA | IGC_GPIE_EIAME |
2650 IGC_GPIE_NSICR);
2651
2652 /* enable msix_other interrupt */
2653 adapter->eims_other = BIT(vector);
2654 tmp = (vector++ | IGC_IVAR_VALID) << 8;
2655
2656 wr32(IGC_IVAR_MISC, tmp);
2657 break;
2658 default:
2659 /* do nothing, since nothing else supports MSI-X */
2660 break;
2661 } /* switch (hw->mac.type) */
2662
2663 adapter->eims_enable_mask |= adapter->eims_other;
2664
2665 for (i = 0; i < adapter->num_q_vectors; i++)
2666 igc_assign_vector(adapter->q_vector[i], vector++);
2667
2668 wrfl();
2669 }
2670
igc_msix_ring(int irq,void * data)2671 static irqreturn_t igc_msix_ring(int irq, void *data)
2672 {
2673 struct igc_q_vector *q_vector = data;
2674
2675 /* Write the ITR value calculated from the previous interrupt. */
2676 igc_write_itr(q_vector);
2677
2678 napi_schedule(&q_vector->napi);
2679
2680 return IRQ_HANDLED;
2681 }
2682
2683 /**
2684 * igc_request_msix - Initialize MSI-X interrupts
2685 * @adapter: Pointer to adapter structure
2686 *
2687 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
2688 * kernel.
2689 */
igc_request_msix(struct igc_adapter * adapter)2690 static int igc_request_msix(struct igc_adapter *adapter)
2691 {
2692 int i = 0, err = 0, vector = 0, free_vector = 0;
2693 struct net_device *netdev = adapter->netdev;
2694
2695 err = request_irq(adapter->msix_entries[vector].vector,
2696 &igc_msix_other, 0, netdev->name, adapter);
2697 if (err)
2698 goto err_out;
2699
2700 for (i = 0; i < adapter->num_q_vectors; i++) {
2701 struct igc_q_vector *q_vector = adapter->q_vector[i];
2702
2703 vector++;
2704
2705 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
2706
2707 if (q_vector->rx.ring && q_vector->tx.ring)
2708 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
2709 q_vector->rx.ring->queue_index);
2710 else if (q_vector->tx.ring)
2711 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
2712 q_vector->tx.ring->queue_index);
2713 else if (q_vector->rx.ring)
2714 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
2715 q_vector->rx.ring->queue_index);
2716 else
2717 sprintf(q_vector->name, "%s-unused", netdev->name);
2718
2719 err = request_irq(adapter->msix_entries[vector].vector,
2720 igc_msix_ring, 0, q_vector->name,
2721 q_vector);
2722 if (err)
2723 goto err_free;
2724 }
2725
2726 igc_configure_msix(adapter);
2727 return 0;
2728
2729 err_free:
2730 /* free already assigned IRQs */
2731 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
2732
2733 vector--;
2734 for (i = 0; i < vector; i++) {
2735 free_irq(adapter->msix_entries[free_vector++].vector,
2736 adapter->q_vector[i]);
2737 }
2738 err_out:
2739 return err;
2740 }
2741
2742 /**
2743 * igc_reset_q_vector - Reset config for interrupt vector
2744 * @adapter: board private structure to initialize
2745 * @v_idx: Index of vector to be reset
2746 *
2747 * If NAPI is enabled it will delete any references to the
2748 * NAPI struct. This is preparation for igc_free_q_vector.
2749 */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)2750 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2751 {
2752 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2753
2754 /* if we're coming from igc_set_interrupt_capability, the vectors are
2755 * not yet allocated
2756 */
2757 if (!q_vector)
2758 return;
2759
2760 if (q_vector->tx.ring)
2761 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2762
2763 if (q_vector->rx.ring)
2764 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2765
2766 netif_napi_del(&q_vector->napi);
2767 }
2768
igc_reset_interrupt_capability(struct igc_adapter * adapter)2769 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
2770 {
2771 int v_idx = adapter->num_q_vectors;
2772
2773 if (adapter->msix_entries) {
2774 pci_disable_msix(adapter->pdev);
2775 kfree(adapter->msix_entries);
2776 adapter->msix_entries = NULL;
2777 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
2778 pci_disable_msi(adapter->pdev);
2779 }
2780
2781 while (v_idx--)
2782 igc_reset_q_vector(adapter, v_idx);
2783 }
2784
2785 /**
2786 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
2787 * @adapter: Pointer to adapter structure
2788 *
2789 * This function resets the device so that it has 0 rx queues, tx queues, and
2790 * MSI-X interrupts allocated.
2791 */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)2792 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
2793 {
2794 igc_free_q_vectors(adapter);
2795 igc_reset_interrupt_capability(adapter);
2796 }
2797
2798 /**
2799 * igc_free_q_vectors - Free memory allocated for interrupt vectors
2800 * @adapter: board private structure to initialize
2801 *
2802 * This function frees the memory allocated to the q_vectors. In addition if
2803 * NAPI is enabled it will delete any references to the NAPI struct prior
2804 * to freeing the q_vector.
2805 */
igc_free_q_vectors(struct igc_adapter * adapter)2806 static void igc_free_q_vectors(struct igc_adapter *adapter)
2807 {
2808 int v_idx = adapter->num_q_vectors;
2809
2810 adapter->num_tx_queues = 0;
2811 adapter->num_rx_queues = 0;
2812 adapter->num_q_vectors = 0;
2813
2814 while (v_idx--) {
2815 igc_reset_q_vector(adapter, v_idx);
2816 igc_free_q_vector(adapter, v_idx);
2817 }
2818 }
2819
2820 /**
2821 * igc_free_q_vector - Free memory allocated for specific interrupt vector
2822 * @adapter: board private structure to initialize
2823 * @v_idx: Index of vector to be freed
2824 *
2825 * This function frees the memory allocated to the q_vector.
2826 */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)2827 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2828 {
2829 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2830
2831 adapter->q_vector[v_idx] = NULL;
2832
2833 /* igc_get_stats64() might access the rings on this vector,
2834 * we must wait a grace period before freeing it.
2835 */
2836 if (q_vector)
2837 kfree_rcu(q_vector, rcu);
2838 }
2839
2840 /* Need to wait a few seconds after link up to get diagnostic information from
2841 * the phy
2842 */
igc_update_phy_info(struct timer_list * t)2843 static void igc_update_phy_info(struct timer_list *t)
2844 {
2845 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
2846
2847 igc_get_phy_info(&adapter->hw);
2848 }
2849
2850 /**
2851 * igc_has_link - check shared code for link and determine up/down
2852 * @adapter: pointer to driver private info
2853 */
igc_has_link(struct igc_adapter * adapter)2854 bool igc_has_link(struct igc_adapter *adapter)
2855 {
2856 struct igc_hw *hw = &adapter->hw;
2857 bool link_active = false;
2858
2859 /* get_link_status is set on LSC (link status) interrupt or
2860 * rx sequence error interrupt. get_link_status will stay
2861 * false until the igc_check_for_link establishes link
2862 * for copper adapters ONLY
2863 */
2864 switch (hw->phy.media_type) {
2865 case igc_media_type_copper:
2866 if (!hw->mac.get_link_status)
2867 return true;
2868 hw->mac.ops.check_for_link(hw);
2869 link_active = !hw->mac.get_link_status;
2870 break;
2871 default:
2872 case igc_media_type_unknown:
2873 break;
2874 }
2875
2876 if (hw->mac.type == igc_i225 &&
2877 hw->phy.id == I225_I_PHY_ID) {
2878 if (!netif_carrier_ok(adapter->netdev)) {
2879 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2880 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
2881 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
2882 adapter->link_check_timeout = jiffies;
2883 }
2884 }
2885
2886 return link_active;
2887 }
2888
2889 /**
2890 * igc_watchdog - Timer Call-back
2891 * @data: pointer to adapter cast into an unsigned long
2892 */
igc_watchdog(struct timer_list * t)2893 static void igc_watchdog(struct timer_list *t)
2894 {
2895 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
2896 /* Do the rest outside of interrupt context */
2897 schedule_work(&adapter->watchdog_task);
2898 }
2899
igc_watchdog_task(struct work_struct * work)2900 static void igc_watchdog_task(struct work_struct *work)
2901 {
2902 struct igc_adapter *adapter = container_of(work,
2903 struct igc_adapter,
2904 watchdog_task);
2905 struct net_device *netdev = adapter->netdev;
2906 struct igc_hw *hw = &adapter->hw;
2907 struct igc_phy_info *phy = &hw->phy;
2908 u16 phy_data, retry_count = 20;
2909 u32 connsw;
2910 u32 link;
2911 int i;
2912
2913 link = igc_has_link(adapter);
2914
2915 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
2916 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
2917 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2918 else
2919 link = false;
2920 }
2921
2922 /* Force link down if we have fiber to swap to */
2923 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
2924 if (hw->phy.media_type == igc_media_type_copper) {
2925 connsw = rd32(IGC_CONNSW);
2926 if (!(connsw & IGC_CONNSW_AUTOSENSE_EN))
2927 link = 0;
2928 }
2929 }
2930 if (link) {
2931 if (!netif_carrier_ok(netdev)) {
2932 u32 ctrl;
2933
2934 hw->mac.ops.get_speed_and_duplex(hw,
2935 &adapter->link_speed,
2936 &adapter->link_duplex);
2937
2938 ctrl = rd32(IGC_CTRL);
2939 /* Link status message must follow this format */
2940 netdev_info(netdev,
2941 "igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
2942 netdev->name,
2943 adapter->link_speed,
2944 adapter->link_duplex == FULL_DUPLEX ?
2945 "Full" : "Half",
2946 (ctrl & IGC_CTRL_TFCE) &&
2947 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
2948 (ctrl & IGC_CTRL_RFCE) ? "RX" :
2949 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
2950
2951 /* check if SmartSpeed worked */
2952 igc_check_downshift(hw);
2953 if (phy->speed_downgraded)
2954 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
2955
2956 /* adjust timeout factor according to speed/duplex */
2957 adapter->tx_timeout_factor = 1;
2958 switch (adapter->link_speed) {
2959 case SPEED_10:
2960 adapter->tx_timeout_factor = 14;
2961 break;
2962 case SPEED_100:
2963 /* maybe add some timeout factor ? */
2964 break;
2965 }
2966
2967 if (adapter->link_speed != SPEED_1000)
2968 goto no_wait;
2969
2970 /* wait for Remote receiver status OK */
2971 retry_read_status:
2972 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
2973 &phy_data)) {
2974 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
2975 retry_count) {
2976 msleep(100);
2977 retry_count--;
2978 goto retry_read_status;
2979 } else if (!retry_count) {
2980 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
2981 }
2982 } else {
2983 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
2984 }
2985 no_wait:
2986 netif_carrier_on(netdev);
2987
2988 /* link state has changed, schedule phy info update */
2989 if (!test_bit(__IGC_DOWN, &adapter->state))
2990 mod_timer(&adapter->phy_info_timer,
2991 round_jiffies(jiffies + 2 * HZ));
2992 }
2993 } else {
2994 if (netif_carrier_ok(netdev)) {
2995 adapter->link_speed = 0;
2996 adapter->link_duplex = 0;
2997
2998 /* Links status message must follow this format */
2999 netdev_info(netdev, "igc: %s NIC Link is Down\n",
3000 netdev->name);
3001 netif_carrier_off(netdev);
3002
3003 /* link state has changed, schedule phy info update */
3004 if (!test_bit(__IGC_DOWN, &adapter->state))
3005 mod_timer(&adapter->phy_info_timer,
3006 round_jiffies(jiffies + 2 * HZ));
3007
3008 /* link is down, time to check for alternate media */
3009 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
3010 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
3011 schedule_work(&adapter->reset_task);
3012 /* return immediately */
3013 return;
3014 }
3015 }
3016
3017 /* also check for alternate media here */
3018 } else if (!netif_carrier_ok(netdev) &&
3019 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
3020 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
3021 schedule_work(&adapter->reset_task);
3022 /* return immediately */
3023 return;
3024 }
3025 }
3026 }
3027
3028 spin_lock(&adapter->stats64_lock);
3029 igc_update_stats(adapter);
3030 spin_unlock(&adapter->stats64_lock);
3031
3032 for (i = 0; i < adapter->num_tx_queues; i++) {
3033 struct igc_ring *tx_ring = adapter->tx_ring[i];
3034
3035 if (!netif_carrier_ok(netdev)) {
3036 /* We've lost link, so the controller stops DMA,
3037 * but we've got queued Tx work that's never going
3038 * to get done, so reset controller to flush Tx.
3039 * (Do the reset outside of interrupt context).
3040 */
3041 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
3042 adapter->tx_timeout_count++;
3043 schedule_work(&adapter->reset_task);
3044 /* return immediately since reset is imminent */
3045 return;
3046 }
3047 }
3048
3049 /* Force detection of hung controller every watchdog period */
3050 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3051 }
3052
3053 /* Cause software interrupt to ensure Rx ring is cleaned */
3054 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3055 u32 eics = 0;
3056
3057 for (i = 0; i < adapter->num_q_vectors; i++)
3058 eics |= adapter->q_vector[i]->eims_value;
3059 wr32(IGC_EICS, eics);
3060 } else {
3061 wr32(IGC_ICS, IGC_ICS_RXDMT0);
3062 }
3063
3064 /* Reset the timer */
3065 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3066 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
3067 mod_timer(&adapter->watchdog_timer,
3068 round_jiffies(jiffies + HZ));
3069 else
3070 mod_timer(&adapter->watchdog_timer,
3071 round_jiffies(jiffies + 2 * HZ));
3072 }
3073 }
3074
3075 /**
3076 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3077 * @q_vector: pointer to q_vector
3078 *
3079 * Stores a new ITR value based on strictly on packet size. This
3080 * algorithm is less sophisticated than that used in igc_update_itr,
3081 * due to the difficulty of synchronizing statistics across multiple
3082 * receive rings. The divisors and thresholds used by this function
3083 * were determined based on theoretical maximum wire speed and testing
3084 * data, in order to minimize response time while increasing bulk
3085 * throughput.
3086 * NOTE: This function is called only when operating in a multiqueue
3087 * receive environment.
3088 */
igc_update_ring_itr(struct igc_q_vector * q_vector)3089 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3090 {
3091 struct igc_adapter *adapter = q_vector->adapter;
3092 int new_val = q_vector->itr_val;
3093 int avg_wire_size = 0;
3094 unsigned int packets;
3095
3096 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3097 * ints/sec - ITR timer value of 120 ticks.
3098 */
3099 switch (adapter->link_speed) {
3100 case SPEED_10:
3101 case SPEED_100:
3102 new_val = IGC_4K_ITR;
3103 goto set_itr_val;
3104 default:
3105 break;
3106 }
3107
3108 packets = q_vector->rx.total_packets;
3109 if (packets)
3110 avg_wire_size = q_vector->rx.total_bytes / packets;
3111
3112 packets = q_vector->tx.total_packets;
3113 if (packets)
3114 avg_wire_size = max_t(u32, avg_wire_size,
3115 q_vector->tx.total_bytes / packets);
3116
3117 /* if avg_wire_size isn't set no work was done */
3118 if (!avg_wire_size)
3119 goto clear_counts;
3120
3121 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3122 avg_wire_size += 24;
3123
3124 /* Don't starve jumbo frames */
3125 avg_wire_size = min(avg_wire_size, 3000);
3126
3127 /* Give a little boost to mid-size frames */
3128 if (avg_wire_size > 300 && avg_wire_size < 1200)
3129 new_val = avg_wire_size / 3;
3130 else
3131 new_val = avg_wire_size / 2;
3132
3133 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3134 if (new_val < IGC_20K_ITR &&
3135 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3136 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3137 new_val = IGC_20K_ITR;
3138
3139 set_itr_val:
3140 if (new_val != q_vector->itr_val) {
3141 q_vector->itr_val = new_val;
3142 q_vector->set_itr = 1;
3143 }
3144 clear_counts:
3145 q_vector->rx.total_bytes = 0;
3146 q_vector->rx.total_packets = 0;
3147 q_vector->tx.total_bytes = 0;
3148 q_vector->tx.total_packets = 0;
3149 }
3150
3151 /**
3152 * igc_update_itr - update the dynamic ITR value based on statistics
3153 * @q_vector: pointer to q_vector
3154 * @ring_container: ring info to update the itr for
3155 *
3156 * Stores a new ITR value based on packets and byte
3157 * counts during the last interrupt. The advantage of per interrupt
3158 * computation is faster updates and more accurate ITR for the current
3159 * traffic pattern. Constants in this function were computed
3160 * based on theoretical maximum wire speed and thresholds were set based
3161 * on testing data as well as attempting to minimize response time
3162 * while increasing bulk throughput.
3163 * NOTE: These calculations are only valid when operating in a single-
3164 * queue environment.
3165 */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)3166 static void igc_update_itr(struct igc_q_vector *q_vector,
3167 struct igc_ring_container *ring_container)
3168 {
3169 unsigned int packets = ring_container->total_packets;
3170 unsigned int bytes = ring_container->total_bytes;
3171 u8 itrval = ring_container->itr;
3172
3173 /* no packets, exit with status unchanged */
3174 if (packets == 0)
3175 return;
3176
3177 switch (itrval) {
3178 case lowest_latency:
3179 /* handle TSO and jumbo frames */
3180 if (bytes / packets > 8000)
3181 itrval = bulk_latency;
3182 else if ((packets < 5) && (bytes > 512))
3183 itrval = low_latency;
3184 break;
3185 case low_latency: /* 50 usec aka 20000 ints/s */
3186 if (bytes > 10000) {
3187 /* this if handles the TSO accounting */
3188 if (bytes / packets > 8000)
3189 itrval = bulk_latency;
3190 else if ((packets < 10) || ((bytes / packets) > 1200))
3191 itrval = bulk_latency;
3192 else if ((packets > 35))
3193 itrval = lowest_latency;
3194 } else if (bytes / packets > 2000) {
3195 itrval = bulk_latency;
3196 } else if (packets <= 2 && bytes < 512) {
3197 itrval = lowest_latency;
3198 }
3199 break;
3200 case bulk_latency: /* 250 usec aka 4000 ints/s */
3201 if (bytes > 25000) {
3202 if (packets > 35)
3203 itrval = low_latency;
3204 } else if (bytes < 1500) {
3205 itrval = low_latency;
3206 }
3207 break;
3208 }
3209
3210 /* clear work counters since we have the values we need */
3211 ring_container->total_bytes = 0;
3212 ring_container->total_packets = 0;
3213
3214 /* write updated itr to ring container */
3215 ring_container->itr = itrval;
3216 }
3217
3218 /**
3219 * igc_intr_msi - Interrupt Handler
3220 * @irq: interrupt number
3221 * @data: pointer to a network interface device structure
3222 */
igc_intr_msi(int irq,void * data)3223 static irqreturn_t igc_intr_msi(int irq, void *data)
3224 {
3225 struct igc_adapter *adapter = data;
3226 struct igc_q_vector *q_vector = adapter->q_vector[0];
3227 struct igc_hw *hw = &adapter->hw;
3228 /* read ICR disables interrupts using IAM */
3229 u32 icr = rd32(IGC_ICR);
3230
3231 igc_write_itr(q_vector);
3232
3233 if (icr & IGC_ICR_DRSTA)
3234 schedule_work(&adapter->reset_task);
3235
3236 if (icr & IGC_ICR_DOUTSYNC) {
3237 /* HW is reporting DMA is out of sync */
3238 adapter->stats.doosync++;
3239 }
3240
3241 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3242 hw->mac.get_link_status = 1;
3243 if (!test_bit(__IGC_DOWN, &adapter->state))
3244 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3245 }
3246
3247 napi_schedule(&q_vector->napi);
3248
3249 return IRQ_HANDLED;
3250 }
3251
3252 /**
3253 * igc_intr - Legacy Interrupt Handler
3254 * @irq: interrupt number
3255 * @data: pointer to a network interface device structure
3256 */
igc_intr(int irq,void * data)3257 static irqreturn_t igc_intr(int irq, void *data)
3258 {
3259 struct igc_adapter *adapter = data;
3260 struct igc_q_vector *q_vector = adapter->q_vector[0];
3261 struct igc_hw *hw = &adapter->hw;
3262 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3263 * need for the IMC write
3264 */
3265 u32 icr = rd32(IGC_ICR);
3266
3267 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3268 * not set, then the adapter didn't send an interrupt
3269 */
3270 if (!(icr & IGC_ICR_INT_ASSERTED))
3271 return IRQ_NONE;
3272
3273 igc_write_itr(q_vector);
3274
3275 if (icr & IGC_ICR_DRSTA)
3276 schedule_work(&adapter->reset_task);
3277
3278 if (icr & IGC_ICR_DOUTSYNC) {
3279 /* HW is reporting DMA is out of sync */
3280 adapter->stats.doosync++;
3281 }
3282
3283 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3284 hw->mac.get_link_status = 1;
3285 /* guard against interrupt when we're going down */
3286 if (!test_bit(__IGC_DOWN, &adapter->state))
3287 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3288 }
3289
3290 napi_schedule(&q_vector->napi);
3291
3292 return IRQ_HANDLED;
3293 }
3294
igc_set_itr(struct igc_q_vector * q_vector)3295 static void igc_set_itr(struct igc_q_vector *q_vector)
3296 {
3297 struct igc_adapter *adapter = q_vector->adapter;
3298 u32 new_itr = q_vector->itr_val;
3299 u8 current_itr = 0;
3300
3301 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3302 switch (adapter->link_speed) {
3303 case SPEED_10:
3304 case SPEED_100:
3305 current_itr = 0;
3306 new_itr = IGC_4K_ITR;
3307 goto set_itr_now;
3308 default:
3309 break;
3310 }
3311
3312 igc_update_itr(q_vector, &q_vector->tx);
3313 igc_update_itr(q_vector, &q_vector->rx);
3314
3315 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3316
3317 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3318 if (current_itr == lowest_latency &&
3319 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3320 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3321 current_itr = low_latency;
3322
3323 switch (current_itr) {
3324 /* counts and packets in update_itr are dependent on these numbers */
3325 case lowest_latency:
3326 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3327 break;
3328 case low_latency:
3329 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3330 break;
3331 case bulk_latency:
3332 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
3333 break;
3334 default:
3335 break;
3336 }
3337
3338 set_itr_now:
3339 if (new_itr != q_vector->itr_val) {
3340 /* this attempts to bias the interrupt rate towards Bulk
3341 * by adding intermediate steps when interrupt rate is
3342 * increasing
3343 */
3344 new_itr = new_itr > q_vector->itr_val ?
3345 max((new_itr * q_vector->itr_val) /
3346 (new_itr + (q_vector->itr_val >> 2)),
3347 new_itr) : new_itr;
3348 /* Don't write the value here; it resets the adapter's
3349 * internal timer, and causes us to delay far longer than
3350 * we should between interrupts. Instead, we write the ITR
3351 * value at the beginning of the next interrupt so the timing
3352 * ends up being correct.
3353 */
3354 q_vector->itr_val = new_itr;
3355 q_vector->set_itr = 1;
3356 }
3357 }
3358
igc_ring_irq_enable(struct igc_q_vector * q_vector)3359 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3360 {
3361 struct igc_adapter *adapter = q_vector->adapter;
3362 struct igc_hw *hw = &adapter->hw;
3363
3364 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3365 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3366 if (adapter->num_q_vectors == 1)
3367 igc_set_itr(q_vector);
3368 else
3369 igc_update_ring_itr(q_vector);
3370 }
3371
3372 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3373 if (adapter->msix_entries)
3374 wr32(IGC_EIMS, q_vector->eims_value);
3375 else
3376 igc_irq_enable(adapter);
3377 }
3378 }
3379
3380 /**
3381 * igc_poll - NAPI Rx polling callback
3382 * @napi: napi polling structure
3383 * @budget: count of how many packets we should handle
3384 */
igc_poll(struct napi_struct * napi,int budget)3385 static int igc_poll(struct napi_struct *napi, int budget)
3386 {
3387 struct igc_q_vector *q_vector = container_of(napi,
3388 struct igc_q_vector,
3389 napi);
3390 bool clean_complete = true;
3391 int work_done = 0;
3392
3393 if (q_vector->tx.ring)
3394 clean_complete = igc_clean_tx_irq(q_vector, budget);
3395
3396 if (q_vector->rx.ring) {
3397 int cleaned = igc_clean_rx_irq(q_vector, budget);
3398
3399 work_done += cleaned;
3400 if (cleaned >= budget)
3401 clean_complete = false;
3402 }
3403
3404 /* If all work not completed, return budget and keep polling */
3405 if (!clean_complete)
3406 return budget;
3407
3408 /* Exit the polling mode, but don't re-enable interrupts if stack might
3409 * poll us due to busy-polling
3410 */
3411 if (likely(napi_complete_done(napi, work_done)))
3412 igc_ring_irq_enable(q_vector);
3413
3414 return min(work_done, budget - 1);
3415 }
3416
3417 /**
3418 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3419 * @adapter: Pointer to adapter structure
3420 *
3421 * Attempt to configure interrupts using the best available
3422 * capabilities of the hardware and kernel.
3423 */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)3424 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3425 bool msix)
3426 {
3427 int numvecs, i;
3428 int err;
3429
3430 if (!msix)
3431 goto msi_only;
3432 adapter->flags |= IGC_FLAG_HAS_MSIX;
3433
3434 /* Number of supported queues. */
3435 adapter->num_rx_queues = adapter->rss_queues;
3436
3437 adapter->num_tx_queues = adapter->rss_queues;
3438
3439 /* start with one vector for every Rx queue */
3440 numvecs = adapter->num_rx_queues;
3441
3442 /* if Tx handler is separate add 1 for every Tx queue */
3443 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3444 numvecs += adapter->num_tx_queues;
3445
3446 /* store the number of vectors reserved for queues */
3447 adapter->num_q_vectors = numvecs;
3448
3449 /* add 1 vector for link status interrupts */
3450 numvecs++;
3451
3452 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3453 GFP_KERNEL);
3454
3455 if (!adapter->msix_entries)
3456 return;
3457
3458 /* populate entry values */
3459 for (i = 0; i < numvecs; i++)
3460 adapter->msix_entries[i].entry = i;
3461
3462 err = pci_enable_msix_range(adapter->pdev,
3463 adapter->msix_entries,
3464 numvecs,
3465 numvecs);
3466 if (err > 0)
3467 return;
3468
3469 kfree(adapter->msix_entries);
3470 adapter->msix_entries = NULL;
3471
3472 igc_reset_interrupt_capability(adapter);
3473
3474 msi_only:
3475 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3476
3477 adapter->rss_queues = 1;
3478 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3479 adapter->num_rx_queues = 1;
3480 adapter->num_tx_queues = 1;
3481 adapter->num_q_vectors = 1;
3482 if (!pci_enable_msi(adapter->pdev))
3483 adapter->flags |= IGC_FLAG_HAS_MSI;
3484 }
3485
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)3486 static void igc_add_ring(struct igc_ring *ring,
3487 struct igc_ring_container *head)
3488 {
3489 head->ring = ring;
3490 head->count++;
3491 }
3492
3493 /**
3494 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3495 * @adapter: board private structure to initialize
3496 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3497 * @v_idx: index of vector in adapter struct
3498 * @txr_count: total number of Tx rings to allocate
3499 * @txr_idx: index of first Tx ring to allocate
3500 * @rxr_count: total number of Rx rings to allocate
3501 * @rxr_idx: index of first Rx ring to allocate
3502 *
3503 * We allocate one q_vector. If allocation fails we return -ENOMEM.
3504 */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)3505 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3506 unsigned int v_count, unsigned int v_idx,
3507 unsigned int txr_count, unsigned int txr_idx,
3508 unsigned int rxr_count, unsigned int rxr_idx)
3509 {
3510 struct igc_q_vector *q_vector;
3511 struct igc_ring *ring;
3512 int ring_count;
3513
3514 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
3515 if (txr_count > 1 || rxr_count > 1)
3516 return -ENOMEM;
3517
3518 ring_count = txr_count + rxr_count;
3519
3520 /* allocate q_vector and rings */
3521 q_vector = adapter->q_vector[v_idx];
3522 if (!q_vector)
3523 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3524 GFP_KERNEL);
3525 else
3526 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3527 if (!q_vector)
3528 return -ENOMEM;
3529
3530 /* initialize NAPI */
3531 netif_napi_add(adapter->netdev, &q_vector->napi,
3532 igc_poll, 64);
3533
3534 /* tie q_vector and adapter together */
3535 adapter->q_vector[v_idx] = q_vector;
3536 q_vector->adapter = adapter;
3537
3538 /* initialize work limits */
3539 q_vector->tx.work_limit = adapter->tx_work_limit;
3540
3541 /* initialize ITR configuration */
3542 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3543 q_vector->itr_val = IGC_START_ITR;
3544
3545 /* initialize pointer to rings */
3546 ring = q_vector->ring;
3547
3548 /* initialize ITR */
3549 if (rxr_count) {
3550 /* rx or rx/tx vector */
3551 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3552 q_vector->itr_val = adapter->rx_itr_setting;
3553 } else {
3554 /* tx only vector */
3555 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3556 q_vector->itr_val = adapter->tx_itr_setting;
3557 }
3558
3559 if (txr_count) {
3560 /* assign generic ring traits */
3561 ring->dev = &adapter->pdev->dev;
3562 ring->netdev = adapter->netdev;
3563
3564 /* configure backlink on ring */
3565 ring->q_vector = q_vector;
3566
3567 /* update q_vector Tx values */
3568 igc_add_ring(ring, &q_vector->tx);
3569
3570 /* apply Tx specific ring traits */
3571 ring->count = adapter->tx_ring_count;
3572 ring->queue_index = txr_idx;
3573
3574 /* assign ring to adapter */
3575 adapter->tx_ring[txr_idx] = ring;
3576
3577 /* push pointer to next ring */
3578 ring++;
3579 }
3580
3581 if (rxr_count) {
3582 /* assign generic ring traits */
3583 ring->dev = &adapter->pdev->dev;
3584 ring->netdev = adapter->netdev;
3585
3586 /* configure backlink on ring */
3587 ring->q_vector = q_vector;
3588
3589 /* update q_vector Rx values */
3590 igc_add_ring(ring, &q_vector->rx);
3591
3592 /* apply Rx specific ring traits */
3593 ring->count = adapter->rx_ring_count;
3594 ring->queue_index = rxr_idx;
3595
3596 /* assign ring to adapter */
3597 adapter->rx_ring[rxr_idx] = ring;
3598 }
3599
3600 return 0;
3601 }
3602
3603 /**
3604 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3605 * @adapter: board private structure to initialize
3606 *
3607 * We allocate one q_vector per queue interrupt. If allocation fails we
3608 * return -ENOMEM.
3609 */
igc_alloc_q_vectors(struct igc_adapter * adapter)3610 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3611 {
3612 int rxr_remaining = adapter->num_rx_queues;
3613 int txr_remaining = adapter->num_tx_queues;
3614 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3615 int q_vectors = adapter->num_q_vectors;
3616 int err;
3617
3618 if (q_vectors >= (rxr_remaining + txr_remaining)) {
3619 for (; rxr_remaining; v_idx++) {
3620 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3621 0, 0, 1, rxr_idx);
3622
3623 if (err)
3624 goto err_out;
3625
3626 /* update counts and index */
3627 rxr_remaining--;
3628 rxr_idx++;
3629 }
3630 }
3631
3632 for (; v_idx < q_vectors; v_idx++) {
3633 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3634 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3635
3636 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3637 tqpv, txr_idx, rqpv, rxr_idx);
3638
3639 if (err)
3640 goto err_out;
3641
3642 /* update counts and index */
3643 rxr_remaining -= rqpv;
3644 txr_remaining -= tqpv;
3645 rxr_idx++;
3646 txr_idx++;
3647 }
3648
3649 return 0;
3650
3651 err_out:
3652 adapter->num_tx_queues = 0;
3653 adapter->num_rx_queues = 0;
3654 adapter->num_q_vectors = 0;
3655
3656 while (v_idx--)
3657 igc_free_q_vector(adapter, v_idx);
3658
3659 return -ENOMEM;
3660 }
3661
3662 /**
3663 * igc_cache_ring_register - Descriptor ring to register mapping
3664 * @adapter: board private structure to initialize
3665 *
3666 * Once we know the feature-set enabled for the device, we'll cache
3667 * the register offset the descriptor ring is assigned to.
3668 */
igc_cache_ring_register(struct igc_adapter * adapter)3669 static void igc_cache_ring_register(struct igc_adapter *adapter)
3670 {
3671 int i = 0, j = 0;
3672
3673 switch (adapter->hw.mac.type) {
3674 case igc_i225:
3675 /* Fall through */
3676 default:
3677 for (; i < adapter->num_rx_queues; i++)
3678 adapter->rx_ring[i]->reg_idx = i;
3679 for (; j < adapter->num_tx_queues; j++)
3680 adapter->tx_ring[j]->reg_idx = j;
3681 break;
3682 }
3683 }
3684
3685 /**
3686 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3687 * @adapter: Pointer to adapter structure
3688 *
3689 * This function initializes the interrupts and allocates all of the queues.
3690 */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)3691 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3692 {
3693 struct pci_dev *pdev = adapter->pdev;
3694 int err = 0;
3695
3696 igc_set_interrupt_capability(adapter, msix);
3697
3698 err = igc_alloc_q_vectors(adapter);
3699 if (err) {
3700 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
3701 goto err_alloc_q_vectors;
3702 }
3703
3704 igc_cache_ring_register(adapter);
3705
3706 return 0;
3707
3708 err_alloc_q_vectors:
3709 igc_reset_interrupt_capability(adapter);
3710 return err;
3711 }
3712
igc_free_irq(struct igc_adapter * adapter)3713 static void igc_free_irq(struct igc_adapter *adapter)
3714 {
3715 if (adapter->msix_entries) {
3716 int vector = 0, i;
3717
3718 free_irq(adapter->msix_entries[vector++].vector, adapter);
3719
3720 for (i = 0; i < adapter->num_q_vectors; i++)
3721 free_irq(adapter->msix_entries[vector++].vector,
3722 adapter->q_vector[i]);
3723 } else {
3724 free_irq(adapter->pdev->irq, adapter);
3725 }
3726 }
3727
3728 /**
3729 * igc_irq_disable - Mask off interrupt generation on the NIC
3730 * @adapter: board private structure
3731 */
igc_irq_disable(struct igc_adapter * adapter)3732 static void igc_irq_disable(struct igc_adapter *adapter)
3733 {
3734 struct igc_hw *hw = &adapter->hw;
3735
3736 if (adapter->msix_entries) {
3737 u32 regval = rd32(IGC_EIAM);
3738
3739 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3740 wr32(IGC_EIMC, adapter->eims_enable_mask);
3741 regval = rd32(IGC_EIAC);
3742 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3743 }
3744
3745 wr32(IGC_IAM, 0);
3746 wr32(IGC_IMC, ~0);
3747 wrfl();
3748
3749 if (adapter->msix_entries) {
3750 int vector = 0, i;
3751
3752 synchronize_irq(adapter->msix_entries[vector++].vector);
3753
3754 for (i = 0; i < adapter->num_q_vectors; i++)
3755 synchronize_irq(adapter->msix_entries[vector++].vector);
3756 } else {
3757 synchronize_irq(adapter->pdev->irq);
3758 }
3759 }
3760
3761 /**
3762 * igc_irq_enable - Enable default interrupt generation settings
3763 * @adapter: board private structure
3764 */
igc_irq_enable(struct igc_adapter * adapter)3765 static void igc_irq_enable(struct igc_adapter *adapter)
3766 {
3767 struct igc_hw *hw = &adapter->hw;
3768
3769 if (adapter->msix_entries) {
3770 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3771 u32 regval = rd32(IGC_EIAC);
3772
3773 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3774 regval = rd32(IGC_EIAM);
3775 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3776 wr32(IGC_EIMS, adapter->eims_enable_mask);
3777 wr32(IGC_IMS, ims);
3778 } else {
3779 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3780 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3781 }
3782 }
3783
3784 /**
3785 * igc_request_irq - initialize interrupts
3786 * @adapter: Pointer to adapter structure
3787 *
3788 * Attempts to configure interrupts using the best available
3789 * capabilities of the hardware and kernel.
3790 */
igc_request_irq(struct igc_adapter * adapter)3791 static int igc_request_irq(struct igc_adapter *adapter)
3792 {
3793 struct net_device *netdev = adapter->netdev;
3794 struct pci_dev *pdev = adapter->pdev;
3795 int err = 0;
3796
3797 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3798 err = igc_request_msix(adapter);
3799 if (!err)
3800 goto request_done;
3801 /* fall back to MSI */
3802 igc_free_all_tx_resources(adapter);
3803 igc_free_all_rx_resources(adapter);
3804
3805 igc_clear_interrupt_scheme(adapter);
3806 err = igc_init_interrupt_scheme(adapter, false);
3807 if (err)
3808 goto request_done;
3809 igc_setup_all_tx_resources(adapter);
3810 igc_setup_all_rx_resources(adapter);
3811 igc_configure(adapter);
3812 }
3813
3814 igc_assign_vector(adapter->q_vector[0], 0);
3815
3816 if (adapter->flags & IGC_FLAG_HAS_MSI) {
3817 err = request_irq(pdev->irq, &igc_intr_msi, 0,
3818 netdev->name, adapter);
3819 if (!err)
3820 goto request_done;
3821
3822 /* fall back to legacy interrupts */
3823 igc_reset_interrupt_capability(adapter);
3824 adapter->flags &= ~IGC_FLAG_HAS_MSI;
3825 }
3826
3827 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
3828 netdev->name, adapter);
3829
3830 if (err)
3831 dev_err(&pdev->dev, "Error %d getting interrupt\n",
3832 err);
3833
3834 request_done:
3835 return err;
3836 }
3837
igc_write_itr(struct igc_q_vector * q_vector)3838 static void igc_write_itr(struct igc_q_vector *q_vector)
3839 {
3840 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
3841
3842 if (!q_vector->set_itr)
3843 return;
3844
3845 if (!itr_val)
3846 itr_val = IGC_ITR_VAL_MASK;
3847
3848 itr_val |= IGC_EITR_CNT_IGNR;
3849
3850 writel(itr_val, q_vector->itr_register);
3851 q_vector->set_itr = 0;
3852 }
3853
3854 /**
3855 * igc_open - Called when a network interface is made active
3856 * @netdev: network interface device structure
3857 *
3858 * Returns 0 on success, negative value on failure
3859 *
3860 * The open entry point is called when a network interface is made
3861 * active by the system (IFF_UP). At this point all resources needed
3862 * for transmit and receive operations are allocated, the interrupt
3863 * handler is registered with the OS, the watchdog timer is started,
3864 * and the stack is notified that the interface is ready.
3865 */
__igc_open(struct net_device * netdev,bool resuming)3866 static int __igc_open(struct net_device *netdev, bool resuming)
3867 {
3868 struct igc_adapter *adapter = netdev_priv(netdev);
3869 struct igc_hw *hw = &adapter->hw;
3870 int err = 0;
3871 int i = 0;
3872
3873 /* disallow open during test */
3874
3875 if (test_bit(__IGC_TESTING, &adapter->state)) {
3876 WARN_ON(resuming);
3877 return -EBUSY;
3878 }
3879
3880 netif_carrier_off(netdev);
3881
3882 /* allocate transmit descriptors */
3883 err = igc_setup_all_tx_resources(adapter);
3884 if (err)
3885 goto err_setup_tx;
3886
3887 /* allocate receive descriptors */
3888 err = igc_setup_all_rx_resources(adapter);
3889 if (err)
3890 goto err_setup_rx;
3891
3892 igc_power_up_link(adapter);
3893
3894 igc_configure(adapter);
3895
3896 err = igc_request_irq(adapter);
3897 if (err)
3898 goto err_req_irq;
3899
3900 /* Notify the stack of the actual queue counts. */
3901 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3902 if (err)
3903 goto err_set_queues;
3904
3905 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3906 if (err)
3907 goto err_set_queues;
3908
3909 clear_bit(__IGC_DOWN, &adapter->state);
3910
3911 for (i = 0; i < adapter->num_q_vectors; i++)
3912 napi_enable(&adapter->q_vector[i]->napi);
3913
3914 /* Clear any pending interrupts. */
3915 rd32(IGC_ICR);
3916 igc_irq_enable(adapter);
3917
3918 netif_tx_start_all_queues(netdev);
3919
3920 /* start the watchdog. */
3921 hw->mac.get_link_status = 1;
3922 schedule_work(&adapter->watchdog_task);
3923
3924 return IGC_SUCCESS;
3925
3926 err_set_queues:
3927 igc_free_irq(adapter);
3928 err_req_irq:
3929 igc_release_hw_control(adapter);
3930 igc_power_down_link(adapter);
3931 igc_free_all_rx_resources(adapter);
3932 err_setup_rx:
3933 igc_free_all_tx_resources(adapter);
3934 err_setup_tx:
3935 igc_reset(adapter);
3936
3937 return err;
3938 }
3939
igc_open(struct net_device * netdev)3940 static int igc_open(struct net_device *netdev)
3941 {
3942 return __igc_open(netdev, false);
3943 }
3944
3945 /**
3946 * igc_close - Disables a network interface
3947 * @netdev: network interface device structure
3948 *
3949 * Returns 0, this is not allowed to fail
3950 *
3951 * The close entry point is called when an interface is de-activated
3952 * by the OS. The hardware is still under the driver's control, but
3953 * needs to be disabled. A global MAC reset is issued to stop the
3954 * hardware, and all transmit and receive resources are freed.
3955 */
__igc_close(struct net_device * netdev,bool suspending)3956 static int __igc_close(struct net_device *netdev, bool suspending)
3957 {
3958 struct igc_adapter *adapter = netdev_priv(netdev);
3959
3960 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
3961
3962 igc_down(adapter);
3963
3964 igc_release_hw_control(adapter);
3965
3966 igc_free_irq(adapter);
3967
3968 igc_free_all_tx_resources(adapter);
3969 igc_free_all_rx_resources(adapter);
3970
3971 return 0;
3972 }
3973
igc_close(struct net_device * netdev)3974 static int igc_close(struct net_device *netdev)
3975 {
3976 if (netif_device_present(netdev) || netdev->dismantle)
3977 return __igc_close(netdev, false);
3978 return 0;
3979 }
3980
3981 static const struct net_device_ops igc_netdev_ops = {
3982 .ndo_open = igc_open,
3983 .ndo_stop = igc_close,
3984 .ndo_start_xmit = igc_xmit_frame,
3985 .ndo_set_mac_address = igc_set_mac,
3986 .ndo_change_mtu = igc_change_mtu,
3987 .ndo_get_stats = igc_get_stats,
3988 .ndo_fix_features = igc_fix_features,
3989 .ndo_set_features = igc_set_features,
3990 .ndo_features_check = igc_features_check,
3991 };
3992
3993 /* PCIe configuration access */
igc_read_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)3994 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
3995 {
3996 struct igc_adapter *adapter = hw->back;
3997
3998 pci_read_config_word(adapter->pdev, reg, value);
3999 }
4000
igc_write_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)4001 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4002 {
4003 struct igc_adapter *adapter = hw->back;
4004
4005 pci_write_config_word(adapter->pdev, reg, *value);
4006 }
4007
igc_read_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)4008 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4009 {
4010 struct igc_adapter *adapter = hw->back;
4011
4012 if (!pci_is_pcie(adapter->pdev))
4013 return -IGC_ERR_CONFIG;
4014
4015 pcie_capability_read_word(adapter->pdev, reg, value);
4016
4017 return IGC_SUCCESS;
4018 }
4019
igc_write_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)4020 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4021 {
4022 struct igc_adapter *adapter = hw->back;
4023
4024 if (!pci_is_pcie(adapter->pdev))
4025 return -IGC_ERR_CONFIG;
4026
4027 pcie_capability_write_word(adapter->pdev, reg, *value);
4028
4029 return IGC_SUCCESS;
4030 }
4031
igc_rd32(struct igc_hw * hw,u32 reg)4032 u32 igc_rd32(struct igc_hw *hw, u32 reg)
4033 {
4034 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4035 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4036 u32 value = 0;
4037
4038 if (IGC_REMOVED(hw_addr))
4039 return ~value;
4040
4041 value = readl(&hw_addr[reg]);
4042
4043 /* reads should not return all F's */
4044 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4045 struct net_device *netdev = igc->netdev;
4046
4047 hw->hw_addr = NULL;
4048 netif_device_detach(netdev);
4049 netdev_err(netdev, "PCIe link lost, device now detached\n");
4050 WARN(pci_device_is_present(igc->pdev),
4051 "igc: Failed to read reg 0x%x!\n", reg);
4052 }
4053
4054 return value;
4055 }
4056
igc_set_spd_dplx(struct igc_adapter * adapter,u32 spd,u8 dplx)4057 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4058 {
4059 struct pci_dev *pdev = adapter->pdev;
4060 struct igc_mac_info *mac = &adapter->hw.mac;
4061
4062 mac->autoneg = 0;
4063
4064 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4065 * for the switch() below to work
4066 */
4067 if ((spd & 1) || (dplx & ~1))
4068 goto err_inval;
4069
4070 switch (spd + dplx) {
4071 case SPEED_10 + DUPLEX_HALF:
4072 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4073 break;
4074 case SPEED_10 + DUPLEX_FULL:
4075 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4076 break;
4077 case SPEED_100 + DUPLEX_HALF:
4078 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4079 break;
4080 case SPEED_100 + DUPLEX_FULL:
4081 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4082 break;
4083 case SPEED_1000 + DUPLEX_FULL:
4084 mac->autoneg = 1;
4085 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4086 break;
4087 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4088 goto err_inval;
4089 case SPEED_2500 + DUPLEX_FULL:
4090 mac->autoneg = 1;
4091 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4092 break;
4093 case SPEED_2500 + DUPLEX_HALF: /* not supported */
4094 default:
4095 goto err_inval;
4096 }
4097
4098 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4099 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4100
4101 return 0;
4102
4103 err_inval:
4104 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
4105 return -EINVAL;
4106 }
4107
4108 /**
4109 * igc_probe - Device Initialization Routine
4110 * @pdev: PCI device information struct
4111 * @ent: entry in igc_pci_tbl
4112 *
4113 * Returns 0 on success, negative on failure
4114 *
4115 * igc_probe initializes an adapter identified by a pci_dev structure.
4116 * The OS initialization, configuring the adapter private structure,
4117 * and a hardware reset occur.
4118 */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)4119 static int igc_probe(struct pci_dev *pdev,
4120 const struct pci_device_id *ent)
4121 {
4122 struct igc_adapter *adapter;
4123 struct net_device *netdev;
4124 struct igc_hw *hw;
4125 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4126 int err;
4127
4128 err = pci_enable_device_mem(pdev);
4129 if (err)
4130 return err;
4131
4132 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
4133 if (!err) {
4134 err = dma_set_coherent_mask(&pdev->dev,
4135 DMA_BIT_MASK(64));
4136 } else {
4137 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
4138 if (err) {
4139 err = dma_set_coherent_mask(&pdev->dev,
4140 DMA_BIT_MASK(32));
4141 if (err) {
4142 dev_err(&pdev->dev, "igc: Wrong DMA config\n");
4143 goto err_dma;
4144 }
4145 }
4146 }
4147
4148 err = pci_request_selected_regions(pdev,
4149 pci_select_bars(pdev,
4150 IORESOURCE_MEM),
4151 igc_driver_name);
4152 if (err)
4153 goto err_pci_reg;
4154
4155 pci_enable_pcie_error_reporting(pdev);
4156
4157 pci_set_master(pdev);
4158
4159 err = -ENOMEM;
4160 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
4161 IGC_MAX_TX_QUEUES);
4162
4163 if (!netdev)
4164 goto err_alloc_etherdev;
4165
4166 SET_NETDEV_DEV(netdev, &pdev->dev);
4167
4168 pci_set_drvdata(pdev, netdev);
4169 adapter = netdev_priv(netdev);
4170 adapter->netdev = netdev;
4171 adapter->pdev = pdev;
4172 hw = &adapter->hw;
4173 hw->back = adapter;
4174 adapter->port_num = hw->bus.func;
4175 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4176
4177 err = pci_save_state(pdev);
4178 if (err)
4179 goto err_ioremap;
4180
4181 err = -EIO;
4182 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
4183 pci_resource_len(pdev, 0));
4184 if (!adapter->io_addr)
4185 goto err_ioremap;
4186
4187 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
4188 hw->hw_addr = adapter->io_addr;
4189
4190 netdev->netdev_ops = &igc_netdev_ops;
4191 igc_set_ethtool_ops(netdev);
4192 netdev->watchdog_timeo = 5 * HZ;
4193
4194 netdev->mem_start = pci_resource_start(pdev, 0);
4195 netdev->mem_end = pci_resource_end(pdev, 0);
4196
4197 /* PCI config space info */
4198 hw->vendor_id = pdev->vendor;
4199 hw->device_id = pdev->device;
4200 hw->revision_id = pdev->revision;
4201 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4202 hw->subsystem_device_id = pdev->subsystem_device;
4203
4204 /* Copy the default MAC and PHY function pointers */
4205 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4206 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4207
4208 /* Initialize skew-specific constants */
4209 err = ei->get_invariants(hw);
4210 if (err)
4211 goto err_sw_init;
4212
4213 /* Add supported features to the features list*/
4214 netdev->features |= NETIF_F_HW_CSUM;
4215
4216 /* setup the private structure */
4217 err = igc_sw_init(adapter);
4218 if (err)
4219 goto err_sw_init;
4220
4221 /* copy netdev features into list of user selectable features */
4222 netdev->hw_features |= NETIF_F_NTUPLE;
4223 netdev->hw_features |= netdev->features;
4224
4225 /* MTU range: 68 - 9216 */
4226 netdev->min_mtu = ETH_MIN_MTU;
4227 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
4228
4229 /* before reading the NVM, reset the controller to put the device in a
4230 * known good starting state
4231 */
4232 hw->mac.ops.reset_hw(hw);
4233
4234 if (igc_get_flash_presence_i225(hw)) {
4235 if (hw->nvm.ops.validate(hw) < 0) {
4236 dev_err(&pdev->dev,
4237 "The NVM Checksum Is Not Valid\n");
4238 err = -EIO;
4239 goto err_eeprom;
4240 }
4241 }
4242
4243 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
4244 /* copy the MAC address out of the NVM */
4245 if (hw->mac.ops.read_mac_addr(hw))
4246 dev_err(&pdev->dev, "NVM Read Error\n");
4247 }
4248
4249 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
4250
4251 if (!is_valid_ether_addr(netdev->dev_addr)) {
4252 dev_err(&pdev->dev, "Invalid MAC Address\n");
4253 err = -EIO;
4254 goto err_eeprom;
4255 }
4256
4257 /* configure RXPBSIZE and TXPBSIZE */
4258 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
4259 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
4260
4261 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
4262 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
4263
4264 INIT_WORK(&adapter->reset_task, igc_reset_task);
4265 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
4266
4267 /* Initialize link properties that are user-changeable */
4268 adapter->fc_autoneg = true;
4269 hw->mac.autoneg = true;
4270 hw->phy.autoneg_advertised = 0xaf;
4271
4272 hw->fc.requested_mode = igc_fc_default;
4273 hw->fc.current_mode = igc_fc_default;
4274
4275 /* reset the hardware with the new settings */
4276 igc_reset(adapter);
4277
4278 /* let the f/w know that the h/w is now under the control of the
4279 * driver.
4280 */
4281 igc_get_hw_control(adapter);
4282
4283 strncpy(netdev->name, "eth%d", IFNAMSIZ);
4284 err = register_netdev(netdev);
4285 if (err)
4286 goto err_register;
4287
4288 /* carrier off reporting is important to ethtool even BEFORE open */
4289 netif_carrier_off(netdev);
4290
4291 /* Check if Media Autosense is enabled */
4292 adapter->ei = *ei;
4293
4294 /* print pcie link status and MAC address */
4295 pcie_print_link_status(pdev);
4296 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
4297
4298 return 0;
4299
4300 err_register:
4301 igc_release_hw_control(adapter);
4302 err_eeprom:
4303 if (!igc_check_reset_block(hw))
4304 igc_reset_phy(hw);
4305 err_sw_init:
4306 igc_clear_interrupt_scheme(adapter);
4307 iounmap(adapter->io_addr);
4308 err_ioremap:
4309 free_netdev(netdev);
4310 err_alloc_etherdev:
4311 pci_release_selected_regions(pdev,
4312 pci_select_bars(pdev, IORESOURCE_MEM));
4313 err_pci_reg:
4314 err_dma:
4315 pci_disable_device(pdev);
4316 return err;
4317 }
4318
4319 /**
4320 * igc_remove - Device Removal Routine
4321 * @pdev: PCI device information struct
4322 *
4323 * igc_remove is called by the PCI subsystem to alert the driver
4324 * that it should release a PCI device. This could be caused by a
4325 * Hot-Plug event, or because the driver is going to be removed from
4326 * memory.
4327 */
igc_remove(struct pci_dev * pdev)4328 static void igc_remove(struct pci_dev *pdev)
4329 {
4330 struct net_device *netdev = pci_get_drvdata(pdev);
4331 struct igc_adapter *adapter = netdev_priv(netdev);
4332
4333 set_bit(__IGC_DOWN, &adapter->state);
4334
4335 del_timer_sync(&adapter->watchdog_timer);
4336 del_timer_sync(&adapter->phy_info_timer);
4337
4338 cancel_work_sync(&adapter->reset_task);
4339 cancel_work_sync(&adapter->watchdog_task);
4340
4341 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4342 * would have already happened in close and is redundant.
4343 */
4344 igc_release_hw_control(adapter);
4345 unregister_netdev(netdev);
4346
4347 igc_clear_interrupt_scheme(adapter);
4348 pci_iounmap(pdev, adapter->io_addr);
4349 pci_release_mem_regions(pdev);
4350
4351 kfree(adapter->mac_table);
4352 kfree(adapter->shadow_vfta);
4353 free_netdev(netdev);
4354
4355 pci_disable_pcie_error_reporting(pdev);
4356
4357 pci_disable_device(pdev);
4358 }
4359
4360 static struct pci_driver igc_driver = {
4361 .name = igc_driver_name,
4362 .id_table = igc_pci_tbl,
4363 .probe = igc_probe,
4364 .remove = igc_remove,
4365 };
4366
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4367 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4368 const u32 max_rss_queues)
4369 {
4370 /* Determine if we need to pair queues. */
4371 /* If rss_queues > half of max_rss_queues, pair the queues in
4372 * order to conserve interrupts due to limited supply.
4373 */
4374 if (adapter->rss_queues > (max_rss_queues / 2))
4375 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4376 else
4377 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4378 }
4379
igc_get_max_rss_queues(struct igc_adapter * adapter)4380 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4381 {
4382 unsigned int max_rss_queues;
4383
4384 /* Determine the maximum number of RSS queues supported. */
4385 max_rss_queues = IGC_MAX_RX_QUEUES;
4386
4387 return max_rss_queues;
4388 }
4389
igc_init_queue_configuration(struct igc_adapter * adapter)4390 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4391 {
4392 u32 max_rss_queues;
4393
4394 max_rss_queues = igc_get_max_rss_queues(adapter);
4395 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4396
4397 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4398 }
4399
4400 /**
4401 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4402 * @adapter: board private structure to initialize
4403 *
4404 * igc_sw_init initializes the Adapter private data structure.
4405 * Fields are initialized based on PCI device information and
4406 * OS network device settings (MTU size).
4407 */
igc_sw_init(struct igc_adapter * adapter)4408 static int igc_sw_init(struct igc_adapter *adapter)
4409 {
4410 struct net_device *netdev = adapter->netdev;
4411 struct pci_dev *pdev = adapter->pdev;
4412 struct igc_hw *hw = &adapter->hw;
4413
4414 int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count;
4415
4416 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4417
4418 /* set default ring sizes */
4419 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4420 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4421
4422 /* set default ITR values */
4423 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4424 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4425
4426 /* set default work limits */
4427 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4428
4429 /* adjust max frame to be at least the size of a standard frame */
4430 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4431 VLAN_HLEN;
4432 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4433
4434 spin_lock_init(&adapter->nfc_lock);
4435 spin_lock_init(&adapter->stats64_lock);
4436 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4437 adapter->flags |= IGC_FLAG_HAS_MSIX;
4438
4439 adapter->mac_table = kzalloc(size, GFP_ATOMIC);
4440 if (!adapter->mac_table)
4441 return -ENOMEM;
4442
4443 igc_init_queue_configuration(adapter);
4444
4445 /* This call may decrease the number of queues */
4446 if (igc_init_interrupt_scheme(adapter, true)) {
4447 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4448 return -ENOMEM;
4449 }
4450
4451 /* Explicitly disable IRQ since the NIC can be in any state. */
4452 igc_irq_disable(adapter);
4453
4454 set_bit(__IGC_DOWN, &adapter->state);
4455
4456 return 0;
4457 }
4458
4459 /**
4460 * igc_reinit_queues - return error
4461 * @adapter: pointer to adapter structure
4462 */
igc_reinit_queues(struct igc_adapter * adapter)4463 int igc_reinit_queues(struct igc_adapter *adapter)
4464 {
4465 struct net_device *netdev = adapter->netdev;
4466 struct pci_dev *pdev = adapter->pdev;
4467 int err = 0;
4468
4469 if (netif_running(netdev))
4470 igc_close(netdev);
4471
4472 igc_reset_interrupt_capability(adapter);
4473
4474 if (igc_init_interrupt_scheme(adapter, true)) {
4475 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4476 return -ENOMEM;
4477 }
4478
4479 if (netif_running(netdev))
4480 err = igc_open(netdev);
4481
4482 return err;
4483 }
4484
4485 /**
4486 * igc_get_hw_dev - return device
4487 * @hw: pointer to hardware structure
4488 *
4489 * used by hardware layer to print debugging information
4490 */
igc_get_hw_dev(struct igc_hw * hw)4491 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
4492 {
4493 struct igc_adapter *adapter = hw->back;
4494
4495 return adapter->netdev;
4496 }
4497
4498 /**
4499 * igc_init_module - Driver Registration Routine
4500 *
4501 * igc_init_module is the first routine called when the driver is
4502 * loaded. All it does is register with the PCI subsystem.
4503 */
igc_init_module(void)4504 static int __init igc_init_module(void)
4505 {
4506 int ret;
4507
4508 pr_info("%s - version %s\n",
4509 igc_driver_string, igc_driver_version);
4510
4511 pr_info("%s\n", igc_copyright);
4512
4513 ret = pci_register_driver(&igc_driver);
4514 return ret;
4515 }
4516
4517 module_init(igc_init_module);
4518
4519 /**
4520 * igc_exit_module - Driver Exit Cleanup Routine
4521 *
4522 * igc_exit_module is called just before the driver is removed
4523 * from memory.
4524 */
igc_exit_module(void)4525 static void __exit igc_exit_module(void)
4526 {
4527 pci_unregister_driver(&igc_driver);
4528 }
4529
4530 module_exit(igc_exit_module);
4531 /* igc_main.c */
4532