1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40 
41 #define MAJ 5
42 #define MIN 6
43 #define BUILD 0
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
46 
47 enum queue_mode {
48 	QUEUE_MODE_STRICT_PRIORITY,
49 	QUEUE_MODE_STREAM_RESERVATION,
50 };
51 
52 enum tx_queue_prio {
53 	TX_QUEUE_PRIO_HIGH,
54 	TX_QUEUE_PRIO_LOW,
55 };
56 
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60 				"Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62 				"Copyright (c) 2007-2014 Intel Corporation.";
63 
64 static const struct e1000_info *igb_info_tbl[] = {
65 	[board_82575] = &e1000_82575_info,
66 };
67 
68 static const struct pci_device_id igb_pci_tbl[] = {
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104 	/* required last entry */
105 	{0, }
106 };
107 
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
109 
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133 			    struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152 			  netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
172 				   bool setting);
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
174 				bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 				 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
180 
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
186 #endif
187 
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
196 			igb_runtime_idle)
197 };
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 	.notifier_call	= igb_notify_dca,
204 	.next		= NULL,
205 	.priority	= 0
206 };
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
213 
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215 		     pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218 
219 static const struct pci_error_handlers igb_err_handler = {
220 	.error_detected = igb_io_error_detected,
221 	.slot_reset = igb_io_slot_reset,
222 	.resume = igb_io_resume,
223 };
224 
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226 
227 static struct pci_driver igb_driver = {
228 	.name     = igb_driver_name,
229 	.id_table = igb_pci_tbl,
230 	.probe    = igb_probe,
231 	.remove   = igb_remove,
232 #ifdef CONFIG_PM
233 	.driver.pm = &igb_pm_ops,
234 #endif
235 	.shutdown = igb_shutdown,
236 	.sriov_configure = igb_pci_sriov_configure,
237 	.err_handler = &igb_err_handler
238 };
239 
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL v2");
243 MODULE_VERSION(DRV_VERSION);
244 
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249 
250 struct igb_reg_info {
251 	u32 ofs;
252 	char *name;
253 };
254 
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256 
257 	/* General Registers */
258 	{E1000_CTRL, "CTRL"},
259 	{E1000_STATUS, "STATUS"},
260 	{E1000_CTRL_EXT, "CTRL_EXT"},
261 
262 	/* Interrupt Registers */
263 	{E1000_ICR, "ICR"},
264 
265 	/* RX Registers */
266 	{E1000_RCTL, "RCTL"},
267 	{E1000_RDLEN(0), "RDLEN"},
268 	{E1000_RDH(0), "RDH"},
269 	{E1000_RDT(0), "RDT"},
270 	{E1000_RXDCTL(0), "RXDCTL"},
271 	{E1000_RDBAL(0), "RDBAL"},
272 	{E1000_RDBAH(0), "RDBAH"},
273 
274 	/* TX Registers */
275 	{E1000_TCTL, "TCTL"},
276 	{E1000_TDBAL(0), "TDBAL"},
277 	{E1000_TDBAH(0), "TDBAH"},
278 	{E1000_TDLEN(0), "TDLEN"},
279 	{E1000_TDH(0), "TDH"},
280 	{E1000_TDT(0), "TDT"},
281 	{E1000_TXDCTL(0), "TXDCTL"},
282 	{E1000_TDFH, "TDFH"},
283 	{E1000_TDFT, "TDFT"},
284 	{E1000_TDFHS, "TDFHS"},
285 	{E1000_TDFPC, "TDFPC"},
286 
287 	/* List Terminator */
288 	{}
289 };
290 
291 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
293 {
294 	int n = 0;
295 	char rname[16];
296 	u32 regs[8];
297 
298 	switch (reginfo->ofs) {
299 	case E1000_RDLEN(0):
300 		for (n = 0; n < 4; n++)
301 			regs[n] = rd32(E1000_RDLEN(n));
302 		break;
303 	case E1000_RDH(0):
304 		for (n = 0; n < 4; n++)
305 			regs[n] = rd32(E1000_RDH(n));
306 		break;
307 	case E1000_RDT(0):
308 		for (n = 0; n < 4; n++)
309 			regs[n] = rd32(E1000_RDT(n));
310 		break;
311 	case E1000_RXDCTL(0):
312 		for (n = 0; n < 4; n++)
313 			regs[n] = rd32(E1000_RXDCTL(n));
314 		break;
315 	case E1000_RDBAL(0):
316 		for (n = 0; n < 4; n++)
317 			regs[n] = rd32(E1000_RDBAL(n));
318 		break;
319 	case E1000_RDBAH(0):
320 		for (n = 0; n < 4; n++)
321 			regs[n] = rd32(E1000_RDBAH(n));
322 		break;
323 	case E1000_TDBAL(0):
324 		for (n = 0; n < 4; n++)
325 			regs[n] = rd32(E1000_RDBAL(n));
326 		break;
327 	case E1000_TDBAH(0):
328 		for (n = 0; n < 4; n++)
329 			regs[n] = rd32(E1000_TDBAH(n));
330 		break;
331 	case E1000_TDLEN(0):
332 		for (n = 0; n < 4; n++)
333 			regs[n] = rd32(E1000_TDLEN(n));
334 		break;
335 	case E1000_TDH(0):
336 		for (n = 0; n < 4; n++)
337 			regs[n] = rd32(E1000_TDH(n));
338 		break;
339 	case E1000_TDT(0):
340 		for (n = 0; n < 4; n++)
341 			regs[n] = rd32(E1000_TDT(n));
342 		break;
343 	case E1000_TXDCTL(0):
344 		for (n = 0; n < 4; n++)
345 			regs[n] = rd32(E1000_TXDCTL(n));
346 		break;
347 	default:
348 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
349 		return;
350 	}
351 
352 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
354 		regs[2], regs[3]);
355 }
356 
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)358 static void igb_dump(struct igb_adapter *adapter)
359 {
360 	struct net_device *netdev = adapter->netdev;
361 	struct e1000_hw *hw = &adapter->hw;
362 	struct igb_reg_info *reginfo;
363 	struct igb_ring *tx_ring;
364 	union e1000_adv_tx_desc *tx_desc;
365 	struct my_u0 { u64 a; u64 b; } *u0;
366 	struct igb_ring *rx_ring;
367 	union e1000_adv_rx_desc *rx_desc;
368 	u32 staterr;
369 	u16 i, n;
370 
371 	if (!netif_msg_hw(adapter))
372 		return;
373 
374 	/* Print netdevice Info */
375 	if (netdev) {
376 		dev_info(&adapter->pdev->dev, "Net device Info\n");
377 		pr_info("Device Name     state            trans_start\n");
378 		pr_info("%-15s %016lX %016lX\n", netdev->name,
379 			netdev->state, dev_trans_start(netdev));
380 	}
381 
382 	/* Print Registers */
383 	dev_info(&adapter->pdev->dev, "Register Dump\n");
384 	pr_info(" Register Name   Value\n");
385 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386 	     reginfo->name; reginfo++) {
387 		igb_regdump(hw, reginfo);
388 	}
389 
390 	/* Print TX Ring Summary */
391 	if (!netdev || !netif_running(netdev))
392 		goto exit;
393 
394 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
396 	for (n = 0; n < adapter->num_tx_queues; n++) {
397 		struct igb_tx_buffer *buffer_info;
398 		tx_ring = adapter->tx_ring[n];
399 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
402 			(u64)dma_unmap_addr(buffer_info, dma),
403 			dma_unmap_len(buffer_info, len),
404 			buffer_info->next_to_watch,
405 			(u64)buffer_info->time_stamp);
406 	}
407 
408 	/* Print TX Rings */
409 	if (!netif_msg_tx_done(adapter))
410 		goto rx_ring_summary;
411 
412 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
413 
414 	/* Transmit Descriptor Formats
415 	 *
416 	 * Advanced Transmit Descriptor
417 	 *   +--------------------------------------------------------------+
418 	 * 0 |         Buffer Address [63:0]                                |
419 	 *   +--------------------------------------------------------------+
420 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
421 	 *   +--------------------------------------------------------------+
422 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
423 	 */
424 
425 	for (n = 0; n < adapter->num_tx_queues; n++) {
426 		tx_ring = adapter->tx_ring[n];
427 		pr_info("------------------------------------\n");
428 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429 		pr_info("------------------------------------\n");
430 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
431 
432 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433 			const char *next_desc;
434 			struct igb_tx_buffer *buffer_info;
435 			tx_desc = IGB_TX_DESC(tx_ring, i);
436 			buffer_info = &tx_ring->tx_buffer_info[i];
437 			u0 = (struct my_u0 *)tx_desc;
438 			if (i == tx_ring->next_to_use &&
439 			    i == tx_ring->next_to_clean)
440 				next_desc = " NTC/U";
441 			else if (i == tx_ring->next_to_use)
442 				next_desc = " NTU";
443 			else if (i == tx_ring->next_to_clean)
444 				next_desc = " NTC";
445 			else
446 				next_desc = "";
447 
448 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
449 				i, le64_to_cpu(u0->a),
450 				le64_to_cpu(u0->b),
451 				(u64)dma_unmap_addr(buffer_info, dma),
452 				dma_unmap_len(buffer_info, len),
453 				buffer_info->next_to_watch,
454 				(u64)buffer_info->time_stamp,
455 				buffer_info->skb, next_desc);
456 
457 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
458 				print_hex_dump(KERN_INFO, "",
459 					DUMP_PREFIX_ADDRESS,
460 					16, 1, buffer_info->skb->data,
461 					dma_unmap_len(buffer_info, len),
462 					true);
463 		}
464 	}
465 
466 	/* Print RX Rings Summary */
467 rx_ring_summary:
468 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469 	pr_info("Queue [NTU] [NTC]\n");
470 	for (n = 0; n < adapter->num_rx_queues; n++) {
471 		rx_ring = adapter->rx_ring[n];
472 		pr_info(" %5d %5X %5X\n",
473 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
474 	}
475 
476 	/* Print RX Rings */
477 	if (!netif_msg_rx_status(adapter))
478 		goto exit;
479 
480 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
481 
482 	/* Advanced Receive Descriptor (Read) Format
483 	 *    63                                           1        0
484 	 *    +-----------------------------------------------------+
485 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
486 	 *    +----------------------------------------------+------+
487 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
488 	 *    +-----------------------------------------------------+
489 	 *
490 	 *
491 	 * Advanced Receive Descriptor (Write-Back) Format
492 	 *
493 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
494 	 *   +------------------------------------------------------+
495 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
496 	 *   | Checksum   Ident  |   |           |    | Type | Type |
497 	 *   +------------------------------------------------------+
498 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499 	 *   +------------------------------------------------------+
500 	 *   63       48 47    32 31            20 19               0
501 	 */
502 
503 	for (n = 0; n < adapter->num_rx_queues; n++) {
504 		rx_ring = adapter->rx_ring[n];
505 		pr_info("------------------------------------\n");
506 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507 		pr_info("------------------------------------\n");
508 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
509 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
510 
511 		for (i = 0; i < rx_ring->count; i++) {
512 			const char *next_desc;
513 			struct igb_rx_buffer *buffer_info;
514 			buffer_info = &rx_ring->rx_buffer_info[i];
515 			rx_desc = IGB_RX_DESC(rx_ring, i);
516 			u0 = (struct my_u0 *)rx_desc;
517 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518 
519 			if (i == rx_ring->next_to_use)
520 				next_desc = " NTU";
521 			else if (i == rx_ring->next_to_clean)
522 				next_desc = " NTC";
523 			else
524 				next_desc = "";
525 
526 			if (staterr & E1000_RXD_STAT_DD) {
527 				/* Descriptor Done */
528 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
529 					"RWB", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					next_desc);
533 			} else {
534 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
535 					"R  ", i,
536 					le64_to_cpu(u0->a),
537 					le64_to_cpu(u0->b),
538 					(u64)buffer_info->dma,
539 					next_desc);
540 
541 				if (netif_msg_pktdata(adapter) &&
542 				    buffer_info->dma && buffer_info->page) {
543 					print_hex_dump(KERN_INFO, "",
544 					  DUMP_PREFIX_ADDRESS,
545 					  16, 1,
546 					  page_address(buffer_info->page) +
547 						      buffer_info->page_offset,
548 					  igb_rx_bufsz(rx_ring), true);
549 				}
550 			}
551 		}
552 	}
553 
554 exit:
555 	return;
556 }
557 
558 /**
559  *  igb_get_i2c_data - Reads the I2C SDA data bit
560  *  @hw: pointer to hardware structure
561  *  @i2cctl: Current value of I2CCTL register
562  *
563  *  Returns the I2C data bit value
564  **/
igb_get_i2c_data(void * data)565 static int igb_get_i2c_data(void *data)
566 {
567 	struct igb_adapter *adapter = (struct igb_adapter *)data;
568 	struct e1000_hw *hw = &adapter->hw;
569 	s32 i2cctl = rd32(E1000_I2CPARAMS);
570 
571 	return !!(i2cctl & E1000_I2C_DATA_IN);
572 }
573 
574 /**
575  *  igb_set_i2c_data - Sets the I2C data bit
576  *  @data: pointer to hardware structure
577  *  @state: I2C data value (0 or 1) to set
578  *
579  *  Sets the I2C data bit
580  **/
igb_set_i2c_data(void * data,int state)581 static void igb_set_i2c_data(void *data, int state)
582 {
583 	struct igb_adapter *adapter = (struct igb_adapter *)data;
584 	struct e1000_hw *hw = &adapter->hw;
585 	s32 i2cctl = rd32(E1000_I2CPARAMS);
586 
587 	if (state)
588 		i2cctl |= E1000_I2C_DATA_OUT;
589 	else
590 		i2cctl &= ~E1000_I2C_DATA_OUT;
591 
592 	i2cctl &= ~E1000_I2C_DATA_OE_N;
593 	i2cctl |= E1000_I2C_CLK_OE_N;
594 	wr32(E1000_I2CPARAMS, i2cctl);
595 	wrfl();
596 
597 }
598 
599 /**
600  *  igb_set_i2c_clk - Sets the I2C SCL clock
601  *  @data: pointer to hardware structure
602  *  @state: state to set clock
603  *
604  *  Sets the I2C clock line to state
605  **/
igb_set_i2c_clk(void * data,int state)606 static void igb_set_i2c_clk(void *data, int state)
607 {
608 	struct igb_adapter *adapter = (struct igb_adapter *)data;
609 	struct e1000_hw *hw = &adapter->hw;
610 	s32 i2cctl = rd32(E1000_I2CPARAMS);
611 
612 	if (state) {
613 		i2cctl |= E1000_I2C_CLK_OUT;
614 		i2cctl &= ~E1000_I2C_CLK_OE_N;
615 	} else {
616 		i2cctl &= ~E1000_I2C_CLK_OUT;
617 		i2cctl &= ~E1000_I2C_CLK_OE_N;
618 	}
619 	wr32(E1000_I2CPARAMS, i2cctl);
620 	wrfl();
621 }
622 
623 /**
624  *  igb_get_i2c_clk - Gets the I2C SCL clock state
625  *  @data: pointer to hardware structure
626  *
627  *  Gets the I2C clock state
628  **/
igb_get_i2c_clk(void * data)629 static int igb_get_i2c_clk(void *data)
630 {
631 	struct igb_adapter *adapter = (struct igb_adapter *)data;
632 	struct e1000_hw *hw = &adapter->hw;
633 	s32 i2cctl = rd32(E1000_I2CPARAMS);
634 
635 	return !!(i2cctl & E1000_I2C_CLK_IN);
636 }
637 
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639 	.setsda		= igb_set_i2c_data,
640 	.setscl		= igb_set_i2c_clk,
641 	.getsda		= igb_get_i2c_data,
642 	.getscl		= igb_get_i2c_clk,
643 	.udelay		= 5,
644 	.timeout	= 20,
645 };
646 
647 /**
648  *  igb_get_hw_dev - return device
649  *  @hw: pointer to hardware structure
650  *
651  *  used by hardware layer to print debugging information
652  **/
igb_get_hw_dev(struct e1000_hw * hw)653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
654 {
655 	struct igb_adapter *adapter = hw->back;
656 	return adapter->netdev;
657 }
658 
659 /**
660  *  igb_init_module - Driver Registration Routine
661  *
662  *  igb_init_module is the first routine called when the driver is
663  *  loaded. All it does is register with the PCI subsystem.
664  **/
igb_init_module(void)665 static int __init igb_init_module(void)
666 {
667 	int ret;
668 
669 	pr_info("%s - version %s\n",
670 	       igb_driver_string, igb_driver_version);
671 	pr_info("%s\n", igb_copyright);
672 
673 #ifdef CONFIG_IGB_DCA
674 	dca_register_notify(&dca_notifier);
675 #endif
676 	ret = pci_register_driver(&igb_driver);
677 	return ret;
678 }
679 
680 module_init(igb_init_module);
681 
682 /**
683  *  igb_exit_module - Driver Exit Cleanup Routine
684  *
685  *  igb_exit_module is called just before the driver is removed
686  *  from memory.
687  **/
igb_exit_module(void)688 static void __exit igb_exit_module(void)
689 {
690 #ifdef CONFIG_IGB_DCA
691 	dca_unregister_notify(&dca_notifier);
692 #endif
693 	pci_unregister_driver(&igb_driver);
694 }
695 
696 module_exit(igb_exit_module);
697 
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
699 /**
700  *  igb_cache_ring_register - Descriptor ring to register mapping
701  *  @adapter: board private structure to initialize
702  *
703  *  Once we know the feature-set enabled for the device, we'll cache
704  *  the register offset the descriptor ring is assigned to.
705  **/
igb_cache_ring_register(struct igb_adapter * adapter)706 static void igb_cache_ring_register(struct igb_adapter *adapter)
707 {
708 	int i = 0, j = 0;
709 	u32 rbase_offset = adapter->vfs_allocated_count;
710 
711 	switch (adapter->hw.mac.type) {
712 	case e1000_82576:
713 		/* The queues are allocated for virtualization such that VF 0
714 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715 		 * In order to avoid collision we start at the first free queue
716 		 * and continue consuming queues in the same sequence
717 		 */
718 		if (adapter->vfs_allocated_count) {
719 			for (; i < adapter->rss_queues; i++)
720 				adapter->rx_ring[i]->reg_idx = rbase_offset +
721 							       Q_IDX_82576(i);
722 		}
723 		/* Fall through */
724 	case e1000_82575:
725 	case e1000_82580:
726 	case e1000_i350:
727 	case e1000_i354:
728 	case e1000_i210:
729 	case e1000_i211:
730 		/* Fall through */
731 	default:
732 		for (; i < adapter->num_rx_queues; i++)
733 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734 		for (; j < adapter->num_tx_queues; j++)
735 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
736 		break;
737 	}
738 }
739 
igb_rd32(struct e1000_hw * hw,u32 reg)740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
741 {
742 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
744 	u32 value = 0;
745 
746 	if (E1000_REMOVED(hw_addr))
747 		return ~value;
748 
749 	value = readl(&hw_addr[reg]);
750 
751 	/* reads should not return all F's */
752 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753 		struct net_device *netdev = igb->netdev;
754 		hw->hw_addr = NULL;
755 		netdev_err(netdev, "PCIe link lost\n");
756 		WARN(pci_device_is_present(igb->pdev),
757 		     "igb: Failed to read reg 0x%x!\n", reg);
758 	}
759 
760 	return value;
761 }
762 
763 /**
764  *  igb_write_ivar - configure ivar for given MSI-X vector
765  *  @hw: pointer to the HW structure
766  *  @msix_vector: vector number we are allocating to a given ring
767  *  @index: row index of IVAR register to write within IVAR table
768  *  @offset: column offset of in IVAR, should be multiple of 8
769  *
770  *  This function is intended to handle the writing of the IVAR register
771  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
772  *  each containing an cause allocation for an Rx and Tx ring, and a
773  *  variable number of rows depending on the number of queues supported.
774  **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)775 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
776 			   int index, int offset)
777 {
778 	u32 ivar = array_rd32(E1000_IVAR0, index);
779 
780 	/* clear any bits that are currently set */
781 	ivar &= ~((u32)0xFF << offset);
782 
783 	/* write vector and valid bit */
784 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
785 
786 	array_wr32(E1000_IVAR0, index, ivar);
787 }
788 
789 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)790 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
791 {
792 	struct igb_adapter *adapter = q_vector->adapter;
793 	struct e1000_hw *hw = &adapter->hw;
794 	int rx_queue = IGB_N0_QUEUE;
795 	int tx_queue = IGB_N0_QUEUE;
796 	u32 msixbm = 0;
797 
798 	if (q_vector->rx.ring)
799 		rx_queue = q_vector->rx.ring->reg_idx;
800 	if (q_vector->tx.ring)
801 		tx_queue = q_vector->tx.ring->reg_idx;
802 
803 	switch (hw->mac.type) {
804 	case e1000_82575:
805 		/* The 82575 assigns vectors using a bitmask, which matches the
806 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
807 		 * or more queues to a vector, we write the appropriate bits
808 		 * into the MSIXBM register for that vector.
809 		 */
810 		if (rx_queue > IGB_N0_QUEUE)
811 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
812 		if (tx_queue > IGB_N0_QUEUE)
813 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
814 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
815 			msixbm |= E1000_EIMS_OTHER;
816 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
817 		q_vector->eims_value = msixbm;
818 		break;
819 	case e1000_82576:
820 		/* 82576 uses a table that essentially consists of 2 columns
821 		 * with 8 rows.  The ordering is column-major so we use the
822 		 * lower 3 bits as the row index, and the 4th bit as the
823 		 * column offset.
824 		 */
825 		if (rx_queue > IGB_N0_QUEUE)
826 			igb_write_ivar(hw, msix_vector,
827 				       rx_queue & 0x7,
828 				       (rx_queue & 0x8) << 1);
829 		if (tx_queue > IGB_N0_QUEUE)
830 			igb_write_ivar(hw, msix_vector,
831 				       tx_queue & 0x7,
832 				       ((tx_queue & 0x8) << 1) + 8);
833 		q_vector->eims_value = BIT(msix_vector);
834 		break;
835 	case e1000_82580:
836 	case e1000_i350:
837 	case e1000_i354:
838 	case e1000_i210:
839 	case e1000_i211:
840 		/* On 82580 and newer adapters the scheme is similar to 82576
841 		 * however instead of ordering column-major we have things
842 		 * ordered row-major.  So we traverse the table by using
843 		 * bit 0 as the column offset, and the remaining bits as the
844 		 * row index.
845 		 */
846 		if (rx_queue > IGB_N0_QUEUE)
847 			igb_write_ivar(hw, msix_vector,
848 				       rx_queue >> 1,
849 				       (rx_queue & 0x1) << 4);
850 		if (tx_queue > IGB_N0_QUEUE)
851 			igb_write_ivar(hw, msix_vector,
852 				       tx_queue >> 1,
853 				       ((tx_queue & 0x1) << 4) + 8);
854 		q_vector->eims_value = BIT(msix_vector);
855 		break;
856 	default:
857 		BUG();
858 		break;
859 	}
860 
861 	/* add q_vector eims value to global eims_enable_mask */
862 	adapter->eims_enable_mask |= q_vector->eims_value;
863 
864 	/* configure q_vector to set itr on first interrupt */
865 	q_vector->set_itr = 1;
866 }
867 
868 /**
869  *  igb_configure_msix - Configure MSI-X hardware
870  *  @adapter: board private structure to initialize
871  *
872  *  igb_configure_msix sets up the hardware to properly
873  *  generate MSI-X interrupts.
874  **/
igb_configure_msix(struct igb_adapter * adapter)875 static void igb_configure_msix(struct igb_adapter *adapter)
876 {
877 	u32 tmp;
878 	int i, vector = 0;
879 	struct e1000_hw *hw = &adapter->hw;
880 
881 	adapter->eims_enable_mask = 0;
882 
883 	/* set vector for other causes, i.e. link changes */
884 	switch (hw->mac.type) {
885 	case e1000_82575:
886 		tmp = rd32(E1000_CTRL_EXT);
887 		/* enable MSI-X PBA support*/
888 		tmp |= E1000_CTRL_EXT_PBA_CLR;
889 
890 		/* Auto-Mask interrupts upon ICR read. */
891 		tmp |= E1000_CTRL_EXT_EIAME;
892 		tmp |= E1000_CTRL_EXT_IRCA;
893 
894 		wr32(E1000_CTRL_EXT, tmp);
895 
896 		/* enable msix_other interrupt */
897 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
898 		adapter->eims_other = E1000_EIMS_OTHER;
899 
900 		break;
901 
902 	case e1000_82576:
903 	case e1000_82580:
904 	case e1000_i350:
905 	case e1000_i354:
906 	case e1000_i210:
907 	case e1000_i211:
908 		/* Turn on MSI-X capability first, or our settings
909 		 * won't stick.  And it will take days to debug.
910 		 */
911 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
912 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
913 		     E1000_GPIE_NSICR);
914 
915 		/* enable msix_other interrupt */
916 		adapter->eims_other = BIT(vector);
917 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
918 
919 		wr32(E1000_IVAR_MISC, tmp);
920 		break;
921 	default:
922 		/* do nothing, since nothing else supports MSI-X */
923 		break;
924 	} /* switch (hw->mac.type) */
925 
926 	adapter->eims_enable_mask |= adapter->eims_other;
927 
928 	for (i = 0; i < adapter->num_q_vectors; i++)
929 		igb_assign_vector(adapter->q_vector[i], vector++);
930 
931 	wrfl();
932 }
933 
934 /**
935  *  igb_request_msix - Initialize MSI-X interrupts
936  *  @adapter: board private structure to initialize
937  *
938  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
939  *  kernel.
940  **/
igb_request_msix(struct igb_adapter * adapter)941 static int igb_request_msix(struct igb_adapter *adapter)
942 {
943 	struct net_device *netdev = adapter->netdev;
944 	int i, err = 0, vector = 0, free_vector = 0;
945 
946 	err = request_irq(adapter->msix_entries[vector].vector,
947 			  igb_msix_other, 0, netdev->name, adapter);
948 	if (err)
949 		goto err_out;
950 
951 	for (i = 0; i < adapter->num_q_vectors; i++) {
952 		struct igb_q_vector *q_vector = adapter->q_vector[i];
953 
954 		vector++;
955 
956 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
957 
958 		if (q_vector->rx.ring && q_vector->tx.ring)
959 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
960 				q_vector->rx.ring->queue_index);
961 		else if (q_vector->tx.ring)
962 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
963 				q_vector->tx.ring->queue_index);
964 		else if (q_vector->rx.ring)
965 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
966 				q_vector->rx.ring->queue_index);
967 		else
968 			sprintf(q_vector->name, "%s-unused", netdev->name);
969 
970 		err = request_irq(adapter->msix_entries[vector].vector,
971 				  igb_msix_ring, 0, q_vector->name,
972 				  q_vector);
973 		if (err)
974 			goto err_free;
975 	}
976 
977 	igb_configure_msix(adapter);
978 	return 0;
979 
980 err_free:
981 	/* free already assigned IRQs */
982 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
983 
984 	vector--;
985 	for (i = 0; i < vector; i++) {
986 		free_irq(adapter->msix_entries[free_vector++].vector,
987 			 adapter->q_vector[i]);
988 	}
989 err_out:
990 	return err;
991 }
992 
993 /**
994  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
995  *  @adapter: board private structure to initialize
996  *  @v_idx: Index of vector to be freed
997  *
998  *  This function frees the memory allocated to the q_vector.
999  **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)1000 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1001 {
1002 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1003 
1004 	adapter->q_vector[v_idx] = NULL;
1005 
1006 	/* igb_get_stats64() might access the rings on this vector,
1007 	 * we must wait a grace period before freeing it.
1008 	 */
1009 	if (q_vector)
1010 		kfree_rcu(q_vector, rcu);
1011 }
1012 
1013 /**
1014  *  igb_reset_q_vector - Reset config for interrupt vector
1015  *  @adapter: board private structure to initialize
1016  *  @v_idx: Index of vector to be reset
1017  *
1018  *  If NAPI is enabled it will delete any references to the
1019  *  NAPI struct. This is preparation for igb_free_q_vector.
1020  **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)1021 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1022 {
1023 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1024 
1025 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1026 	 * allocated. So, q_vector is NULL so we should stop here.
1027 	 */
1028 	if (!q_vector)
1029 		return;
1030 
1031 	if (q_vector->tx.ring)
1032 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1033 
1034 	if (q_vector->rx.ring)
1035 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1036 
1037 	netif_napi_del(&q_vector->napi);
1038 
1039 }
1040 
igb_reset_interrupt_capability(struct igb_adapter * adapter)1041 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1042 {
1043 	int v_idx = adapter->num_q_vectors;
1044 
1045 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1046 		pci_disable_msix(adapter->pdev);
1047 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1048 		pci_disable_msi(adapter->pdev);
1049 
1050 	while (v_idx--)
1051 		igb_reset_q_vector(adapter, v_idx);
1052 }
1053 
1054 /**
1055  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1056  *  @adapter: board private structure to initialize
1057  *
1058  *  This function frees the memory allocated to the q_vectors.  In addition if
1059  *  NAPI is enabled it will delete any references to the NAPI struct prior
1060  *  to freeing the q_vector.
1061  **/
igb_free_q_vectors(struct igb_adapter * adapter)1062 static void igb_free_q_vectors(struct igb_adapter *adapter)
1063 {
1064 	int v_idx = adapter->num_q_vectors;
1065 
1066 	adapter->num_tx_queues = 0;
1067 	adapter->num_rx_queues = 0;
1068 	adapter->num_q_vectors = 0;
1069 
1070 	while (v_idx--) {
1071 		igb_reset_q_vector(adapter, v_idx);
1072 		igb_free_q_vector(adapter, v_idx);
1073 	}
1074 }
1075 
1076 /**
1077  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1078  *  @adapter: board private structure to initialize
1079  *
1080  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1081  *  MSI-X interrupts allocated.
1082  */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1083 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1084 {
1085 	igb_free_q_vectors(adapter);
1086 	igb_reset_interrupt_capability(adapter);
1087 }
1088 
1089 /**
1090  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1091  *  @adapter: board private structure to initialize
1092  *  @msix: boolean value of MSIX capability
1093  *
1094  *  Attempt to configure interrupts using the best available
1095  *  capabilities of the hardware and kernel.
1096  **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1097 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1098 {
1099 	int err;
1100 	int numvecs, i;
1101 
1102 	if (!msix)
1103 		goto msi_only;
1104 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1105 
1106 	/* Number of supported queues. */
1107 	adapter->num_rx_queues = adapter->rss_queues;
1108 	if (adapter->vfs_allocated_count)
1109 		adapter->num_tx_queues = 1;
1110 	else
1111 		adapter->num_tx_queues = adapter->rss_queues;
1112 
1113 	/* start with one vector for every Rx queue */
1114 	numvecs = adapter->num_rx_queues;
1115 
1116 	/* if Tx handler is separate add 1 for every Tx queue */
1117 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1118 		numvecs += adapter->num_tx_queues;
1119 
1120 	/* store the number of vectors reserved for queues */
1121 	adapter->num_q_vectors = numvecs;
1122 
1123 	/* add 1 vector for link status interrupts */
1124 	numvecs++;
1125 	for (i = 0; i < numvecs; i++)
1126 		adapter->msix_entries[i].entry = i;
1127 
1128 	err = pci_enable_msix_range(adapter->pdev,
1129 				    adapter->msix_entries,
1130 				    numvecs,
1131 				    numvecs);
1132 	if (err > 0)
1133 		return;
1134 
1135 	igb_reset_interrupt_capability(adapter);
1136 
1137 	/* If we can't do MSI-X, try MSI */
1138 msi_only:
1139 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1140 #ifdef CONFIG_PCI_IOV
1141 	/* disable SR-IOV for non MSI-X configurations */
1142 	if (adapter->vf_data) {
1143 		struct e1000_hw *hw = &adapter->hw;
1144 		/* disable iov and allow time for transactions to clear */
1145 		pci_disable_sriov(adapter->pdev);
1146 		msleep(500);
1147 
1148 		kfree(adapter->vf_mac_list);
1149 		adapter->vf_mac_list = NULL;
1150 		kfree(adapter->vf_data);
1151 		adapter->vf_data = NULL;
1152 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1153 		wrfl();
1154 		msleep(100);
1155 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1156 	}
1157 #endif
1158 	adapter->vfs_allocated_count = 0;
1159 	adapter->rss_queues = 1;
1160 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1161 	adapter->num_rx_queues = 1;
1162 	adapter->num_tx_queues = 1;
1163 	adapter->num_q_vectors = 1;
1164 	if (!pci_enable_msi(adapter->pdev))
1165 		adapter->flags |= IGB_FLAG_HAS_MSI;
1166 }
1167 
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1168 static void igb_add_ring(struct igb_ring *ring,
1169 			 struct igb_ring_container *head)
1170 {
1171 	head->ring = ring;
1172 	head->count++;
1173 }
1174 
1175 /**
1176  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1177  *  @adapter: board private structure to initialize
1178  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1179  *  @v_idx: index of vector in adapter struct
1180  *  @txr_count: total number of Tx rings to allocate
1181  *  @txr_idx: index of first Tx ring to allocate
1182  *  @rxr_count: total number of Rx rings to allocate
1183  *  @rxr_idx: index of first Rx ring to allocate
1184  *
1185  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1186  **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1187 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1188 			      int v_count, int v_idx,
1189 			      int txr_count, int txr_idx,
1190 			      int rxr_count, int rxr_idx)
1191 {
1192 	struct igb_q_vector *q_vector;
1193 	struct igb_ring *ring;
1194 	int ring_count;
1195 	size_t size;
1196 
1197 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1198 	if (txr_count > 1 || rxr_count > 1)
1199 		return -ENOMEM;
1200 
1201 	ring_count = txr_count + rxr_count;
1202 	size = struct_size(q_vector, ring, ring_count);
1203 
1204 	/* allocate q_vector and rings */
1205 	q_vector = adapter->q_vector[v_idx];
1206 	if (!q_vector) {
1207 		q_vector = kzalloc(size, GFP_KERNEL);
1208 	} else if (size > ksize(q_vector)) {
1209 		kfree_rcu(q_vector, rcu);
1210 		q_vector = kzalloc(size, GFP_KERNEL);
1211 	} else {
1212 		memset(q_vector, 0, size);
1213 	}
1214 	if (!q_vector)
1215 		return -ENOMEM;
1216 
1217 	/* initialize NAPI */
1218 	netif_napi_add(adapter->netdev, &q_vector->napi,
1219 		       igb_poll, 64);
1220 
1221 	/* tie q_vector and adapter together */
1222 	adapter->q_vector[v_idx] = q_vector;
1223 	q_vector->adapter = adapter;
1224 
1225 	/* initialize work limits */
1226 	q_vector->tx.work_limit = adapter->tx_work_limit;
1227 
1228 	/* initialize ITR configuration */
1229 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1230 	q_vector->itr_val = IGB_START_ITR;
1231 
1232 	/* initialize pointer to rings */
1233 	ring = q_vector->ring;
1234 
1235 	/* intialize ITR */
1236 	if (rxr_count) {
1237 		/* rx or rx/tx vector */
1238 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1239 			q_vector->itr_val = adapter->rx_itr_setting;
1240 	} else {
1241 		/* tx only vector */
1242 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1243 			q_vector->itr_val = adapter->tx_itr_setting;
1244 	}
1245 
1246 	if (txr_count) {
1247 		/* assign generic ring traits */
1248 		ring->dev = &adapter->pdev->dev;
1249 		ring->netdev = adapter->netdev;
1250 
1251 		/* configure backlink on ring */
1252 		ring->q_vector = q_vector;
1253 
1254 		/* update q_vector Tx values */
1255 		igb_add_ring(ring, &q_vector->tx);
1256 
1257 		/* For 82575, context index must be unique per ring. */
1258 		if (adapter->hw.mac.type == e1000_82575)
1259 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1260 
1261 		/* apply Tx specific ring traits */
1262 		ring->count = adapter->tx_ring_count;
1263 		ring->queue_index = txr_idx;
1264 
1265 		ring->cbs_enable = false;
1266 		ring->idleslope = 0;
1267 		ring->sendslope = 0;
1268 		ring->hicredit = 0;
1269 		ring->locredit = 0;
1270 
1271 		u64_stats_init(&ring->tx_syncp);
1272 		u64_stats_init(&ring->tx_syncp2);
1273 
1274 		/* assign ring to adapter */
1275 		adapter->tx_ring[txr_idx] = ring;
1276 
1277 		/* push pointer to next ring */
1278 		ring++;
1279 	}
1280 
1281 	if (rxr_count) {
1282 		/* assign generic ring traits */
1283 		ring->dev = &adapter->pdev->dev;
1284 		ring->netdev = adapter->netdev;
1285 
1286 		/* configure backlink on ring */
1287 		ring->q_vector = q_vector;
1288 
1289 		/* update q_vector Rx values */
1290 		igb_add_ring(ring, &q_vector->rx);
1291 
1292 		/* set flag indicating ring supports SCTP checksum offload */
1293 		if (adapter->hw.mac.type >= e1000_82576)
1294 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1295 
1296 		/* On i350, i354, i210, and i211, loopback VLAN packets
1297 		 * have the tag byte-swapped.
1298 		 */
1299 		if (adapter->hw.mac.type >= e1000_i350)
1300 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301 
1302 		/* apply Rx specific ring traits */
1303 		ring->count = adapter->rx_ring_count;
1304 		ring->queue_index = rxr_idx;
1305 
1306 		u64_stats_init(&ring->rx_syncp);
1307 
1308 		/* assign ring to adapter */
1309 		adapter->rx_ring[rxr_idx] = ring;
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 
1316 /**
1317  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318  *  @adapter: board private structure to initialize
1319  *
1320  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1321  *  return -ENOMEM.
1322  **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1323 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324 {
1325 	int q_vectors = adapter->num_q_vectors;
1326 	int rxr_remaining = adapter->num_rx_queues;
1327 	int txr_remaining = adapter->num_tx_queues;
1328 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329 	int err;
1330 
1331 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332 		for (; rxr_remaining; v_idx++) {
1333 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334 						 0, 0, 1, rxr_idx);
1335 
1336 			if (err)
1337 				goto err_out;
1338 
1339 			/* update counts and index */
1340 			rxr_remaining--;
1341 			rxr_idx++;
1342 		}
1343 	}
1344 
1345 	for (; v_idx < q_vectors; v_idx++) {
1346 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348 
1349 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1350 					 tqpv, txr_idx, rqpv, rxr_idx);
1351 
1352 		if (err)
1353 			goto err_out;
1354 
1355 		/* update counts and index */
1356 		rxr_remaining -= rqpv;
1357 		txr_remaining -= tqpv;
1358 		rxr_idx++;
1359 		txr_idx++;
1360 	}
1361 
1362 	return 0;
1363 
1364 err_out:
1365 	adapter->num_tx_queues = 0;
1366 	adapter->num_rx_queues = 0;
1367 	adapter->num_q_vectors = 0;
1368 
1369 	while (v_idx--)
1370 		igb_free_q_vector(adapter, v_idx);
1371 
1372 	return -ENOMEM;
1373 }
1374 
1375 /**
1376  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1377  *  @adapter: board private structure to initialize
1378  *  @msix: boolean value of MSIX capability
1379  *
1380  *  This function initializes the interrupts and allocates all of the queues.
1381  **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1382 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1383 {
1384 	struct pci_dev *pdev = adapter->pdev;
1385 	int err;
1386 
1387 	igb_set_interrupt_capability(adapter, msix);
1388 
1389 	err = igb_alloc_q_vectors(adapter);
1390 	if (err) {
1391 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1392 		goto err_alloc_q_vectors;
1393 	}
1394 
1395 	igb_cache_ring_register(adapter);
1396 
1397 	return 0;
1398 
1399 err_alloc_q_vectors:
1400 	igb_reset_interrupt_capability(adapter);
1401 	return err;
1402 }
1403 
1404 /**
1405  *  igb_request_irq - initialize interrupts
1406  *  @adapter: board private structure to initialize
1407  *
1408  *  Attempts to configure interrupts using the best available
1409  *  capabilities of the hardware and kernel.
1410  **/
igb_request_irq(struct igb_adapter * adapter)1411 static int igb_request_irq(struct igb_adapter *adapter)
1412 {
1413 	struct net_device *netdev = adapter->netdev;
1414 	struct pci_dev *pdev = adapter->pdev;
1415 	int err = 0;
1416 
1417 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1418 		err = igb_request_msix(adapter);
1419 		if (!err)
1420 			goto request_done;
1421 		/* fall back to MSI */
1422 		igb_free_all_tx_resources(adapter);
1423 		igb_free_all_rx_resources(adapter);
1424 
1425 		igb_clear_interrupt_scheme(adapter);
1426 		err = igb_init_interrupt_scheme(adapter, false);
1427 		if (err)
1428 			goto request_done;
1429 
1430 		igb_setup_all_tx_resources(adapter);
1431 		igb_setup_all_rx_resources(adapter);
1432 		igb_configure(adapter);
1433 	}
1434 
1435 	igb_assign_vector(adapter->q_vector[0], 0);
1436 
1437 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1438 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1439 				  netdev->name, adapter);
1440 		if (!err)
1441 			goto request_done;
1442 
1443 		/* fall back to legacy interrupts */
1444 		igb_reset_interrupt_capability(adapter);
1445 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1446 	}
1447 
1448 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1449 			  netdev->name, adapter);
1450 
1451 	if (err)
1452 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1453 			err);
1454 
1455 request_done:
1456 	return err;
1457 }
1458 
igb_free_irq(struct igb_adapter * adapter)1459 static void igb_free_irq(struct igb_adapter *adapter)
1460 {
1461 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1462 		int vector = 0, i;
1463 
1464 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1465 
1466 		for (i = 0; i < adapter->num_q_vectors; i++)
1467 			free_irq(adapter->msix_entries[vector++].vector,
1468 				 adapter->q_vector[i]);
1469 	} else {
1470 		free_irq(adapter->pdev->irq, adapter);
1471 	}
1472 }
1473 
1474 /**
1475  *  igb_irq_disable - Mask off interrupt generation on the NIC
1476  *  @adapter: board private structure
1477  **/
igb_irq_disable(struct igb_adapter * adapter)1478 static void igb_irq_disable(struct igb_adapter *adapter)
1479 {
1480 	struct e1000_hw *hw = &adapter->hw;
1481 
1482 	/* we need to be careful when disabling interrupts.  The VFs are also
1483 	 * mapped into these registers and so clearing the bits can cause
1484 	 * issues on the VF drivers so we only need to clear what we set
1485 	 */
1486 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1487 		u32 regval = rd32(E1000_EIAM);
1488 
1489 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1490 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1491 		regval = rd32(E1000_EIAC);
1492 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1493 	}
1494 
1495 	wr32(E1000_IAM, 0);
1496 	wr32(E1000_IMC, ~0);
1497 	wrfl();
1498 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499 		int i;
1500 
1501 		for (i = 0; i < adapter->num_q_vectors; i++)
1502 			synchronize_irq(adapter->msix_entries[i].vector);
1503 	} else {
1504 		synchronize_irq(adapter->pdev->irq);
1505 	}
1506 }
1507 
1508 /**
1509  *  igb_irq_enable - Enable default interrupt generation settings
1510  *  @adapter: board private structure
1511  **/
igb_irq_enable(struct igb_adapter * adapter)1512 static void igb_irq_enable(struct igb_adapter *adapter)
1513 {
1514 	struct e1000_hw *hw = &adapter->hw;
1515 
1516 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1517 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1518 		u32 regval = rd32(E1000_EIAC);
1519 
1520 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1521 		regval = rd32(E1000_EIAM);
1522 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1523 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1524 		if (adapter->vfs_allocated_count) {
1525 			wr32(E1000_MBVFIMR, 0xFF);
1526 			ims |= E1000_IMS_VMMB;
1527 		}
1528 		wr32(E1000_IMS, ims);
1529 	} else {
1530 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1531 				E1000_IMS_DRSTA);
1532 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1533 				E1000_IMS_DRSTA);
1534 	}
1535 }
1536 
igb_update_mng_vlan(struct igb_adapter * adapter)1537 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1538 {
1539 	struct e1000_hw *hw = &adapter->hw;
1540 	u16 pf_id = adapter->vfs_allocated_count;
1541 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1542 	u16 old_vid = adapter->mng_vlan_id;
1543 
1544 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1545 		/* add VID to filter table */
1546 		igb_vfta_set(hw, vid, pf_id, true, true);
1547 		adapter->mng_vlan_id = vid;
1548 	} else {
1549 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1550 	}
1551 
1552 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1553 	    (vid != old_vid) &&
1554 	    !test_bit(old_vid, adapter->active_vlans)) {
1555 		/* remove VID from filter table */
1556 		igb_vfta_set(hw, vid, pf_id, false, true);
1557 	}
1558 }
1559 
1560 /**
1561  *  igb_release_hw_control - release control of the h/w to f/w
1562  *  @adapter: address of board private structure
1563  *
1564  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1565  *  For ASF and Pass Through versions of f/w this means that the
1566  *  driver is no longer loaded.
1567  **/
igb_release_hw_control(struct igb_adapter * adapter)1568 static void igb_release_hw_control(struct igb_adapter *adapter)
1569 {
1570 	struct e1000_hw *hw = &adapter->hw;
1571 	u32 ctrl_ext;
1572 
1573 	/* Let firmware take over control of h/w */
1574 	ctrl_ext = rd32(E1000_CTRL_EXT);
1575 	wr32(E1000_CTRL_EXT,
1576 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1577 }
1578 
1579 /**
1580  *  igb_get_hw_control - get control of the h/w from f/w
1581  *  @adapter: address of board private structure
1582  *
1583  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1584  *  For ASF and Pass Through versions of f/w this means that
1585  *  the driver is loaded.
1586  **/
igb_get_hw_control(struct igb_adapter * adapter)1587 static void igb_get_hw_control(struct igb_adapter *adapter)
1588 {
1589 	struct e1000_hw *hw = &adapter->hw;
1590 	u32 ctrl_ext;
1591 
1592 	/* Let firmware know the driver has taken over */
1593 	ctrl_ext = rd32(E1000_CTRL_EXT);
1594 	wr32(E1000_CTRL_EXT,
1595 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1596 }
1597 
enable_fqtss(struct igb_adapter * adapter,bool enable)1598 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1599 {
1600 	struct net_device *netdev = adapter->netdev;
1601 	struct e1000_hw *hw = &adapter->hw;
1602 
1603 	WARN_ON(hw->mac.type != e1000_i210);
1604 
1605 	if (enable)
1606 		adapter->flags |= IGB_FLAG_FQTSS;
1607 	else
1608 		adapter->flags &= ~IGB_FLAG_FQTSS;
1609 
1610 	if (netif_running(netdev))
1611 		schedule_work(&adapter->reset_task);
1612 }
1613 
is_fqtss_enabled(struct igb_adapter * adapter)1614 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1615 {
1616 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1617 }
1618 
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1619 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1620 				   enum tx_queue_prio prio)
1621 {
1622 	u32 val;
1623 
1624 	WARN_ON(hw->mac.type != e1000_i210);
1625 	WARN_ON(queue < 0 || queue > 4);
1626 
1627 	val = rd32(E1000_I210_TXDCTL(queue));
1628 
1629 	if (prio == TX_QUEUE_PRIO_HIGH)
1630 		val |= E1000_TXDCTL_PRIORITY;
1631 	else
1632 		val &= ~E1000_TXDCTL_PRIORITY;
1633 
1634 	wr32(E1000_I210_TXDCTL(queue), val);
1635 }
1636 
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1637 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1638 {
1639 	u32 val;
1640 
1641 	WARN_ON(hw->mac.type != e1000_i210);
1642 	WARN_ON(queue < 0 || queue > 1);
1643 
1644 	val = rd32(E1000_I210_TQAVCC(queue));
1645 
1646 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1647 		val |= E1000_TQAVCC_QUEUEMODE;
1648 	else
1649 		val &= ~E1000_TQAVCC_QUEUEMODE;
1650 
1651 	wr32(E1000_I210_TQAVCC(queue), val);
1652 }
1653 
is_any_cbs_enabled(struct igb_adapter * adapter)1654 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1655 {
1656 	int i;
1657 
1658 	for (i = 0; i < adapter->num_tx_queues; i++) {
1659 		if (adapter->tx_ring[i]->cbs_enable)
1660 			return true;
1661 	}
1662 
1663 	return false;
1664 }
1665 
is_any_txtime_enabled(struct igb_adapter * adapter)1666 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1667 {
1668 	int i;
1669 
1670 	for (i = 0; i < adapter->num_tx_queues; i++) {
1671 		if (adapter->tx_ring[i]->launchtime_enable)
1672 			return true;
1673 	}
1674 
1675 	return false;
1676 }
1677 
1678 /**
1679  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1680  *  @adapter: pointer to adapter struct
1681  *  @queue: queue number
1682  *
1683  *  Configure CBS and Launchtime for a given hardware queue.
1684  *  Parameters are retrieved from the correct Tx ring, so
1685  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1686  *  for setting those correctly prior to this function being called.
1687  **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1688 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1689 {
1690 	struct igb_ring *ring = adapter->tx_ring[queue];
1691 	struct net_device *netdev = adapter->netdev;
1692 	struct e1000_hw *hw = &adapter->hw;
1693 	u32 tqavcc, tqavctrl;
1694 	u16 value;
1695 
1696 	WARN_ON(hw->mac.type != e1000_i210);
1697 	WARN_ON(queue < 0 || queue > 1);
1698 
1699 	/* If any of the Qav features is enabled, configure queues as SR and
1700 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1701 	 * as SP.
1702 	 */
1703 	if (ring->cbs_enable || ring->launchtime_enable) {
1704 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1705 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1706 	} else {
1707 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1708 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1709 	}
1710 
1711 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1712 	if (ring->cbs_enable || queue == 0) {
1713 		/* i210 does not allow the queue 0 to be in the Strict
1714 		 * Priority mode while the Qav mode is enabled, so,
1715 		 * instead of disabling strict priority mode, we give
1716 		 * queue 0 the maximum of credits possible.
1717 		 *
1718 		 * See section 8.12.19 of the i210 datasheet, "Note:
1719 		 * Queue0 QueueMode must be set to 1b when
1720 		 * TransmitMode is set to Qav."
1721 		 */
1722 		if (queue == 0 && !ring->cbs_enable) {
1723 			/* max "linkspeed" idleslope in kbps */
1724 			ring->idleslope = 1000000;
1725 			ring->hicredit = ETH_FRAME_LEN;
1726 		}
1727 
1728 		/* Always set data transfer arbitration to credit-based
1729 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1730 		 * the queues.
1731 		 */
1732 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1735 
1736 		/* According to i210 datasheet section 7.2.7.7, we should set
1737 		 * the 'idleSlope' field from TQAVCC register following the
1738 		 * equation:
1739 		 *
1740 		 * For 100 Mbps link speed:
1741 		 *
1742 		 *     value = BW * 0x7735 * 0.2                          (E1)
1743 		 *
1744 		 * For 1000Mbps link speed:
1745 		 *
1746 		 *     value = BW * 0x7735 * 2                            (E2)
1747 		 *
1748 		 * E1 and E2 can be merged into one equation as shown below.
1749 		 * Note that 'link-speed' is in Mbps.
1750 		 *
1751 		 *     value = BW * 0x7735 * 2 * link-speed
1752 		 *                           --------------               (E3)
1753 		 *                                1000
1754 		 *
1755 		 * 'BW' is the percentage bandwidth out of full link speed
1756 		 * which can be found with the following equation. Note that
1757 		 * idleSlope here is the parameter from this function which
1758 		 * is in kbps.
1759 		 *
1760 		 *     BW =     idleSlope
1761 		 *          -----------------                             (E4)
1762 		 *          link-speed * 1000
1763 		 *
1764 		 * That said, we can come up with a generic equation to
1765 		 * calculate the value we should set it TQAVCC register by
1766 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1767 		 *
1768 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1769 		 *         -----------------            --------------    (E5)
1770 		 *         link-speed * 1000                 1000
1771 		 *
1772 		 * 'link-speed' is present in both sides of the fraction so
1773 		 * it is canceled out. The final equation is the following:
1774 		 *
1775 		 *     value = idleSlope * 61034
1776 		 *             -----------------                          (E6)
1777 		 *                  1000000
1778 		 *
1779 		 * NOTE: For i210, given the above, we can see that idleslope
1780 		 *       is represented in 16.38431 kbps units by the value at
1781 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1782 		 *       the granularity for idleslope increments.
1783 		 *       For instance, if you want to configure a 2576kbps
1784 		 *       idleslope, the value to be written on the register
1785 		 *       would have to be 157.23. If rounded down, you end
1786 		 *       up with less bandwidth available than originally
1787 		 *       required (~2572 kbps). If rounded up, you end up
1788 		 *       with a higher bandwidth (~2589 kbps). Below the
1789 		 *       approach we take is to always round up the
1790 		 *       calculated value, so the resulting bandwidth might
1791 		 *       be slightly higher for some configurations.
1792 		 */
1793 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1794 
1795 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797 		tqavcc |= value;
1798 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799 
1800 		wr32(E1000_I210_TQAVHC(queue),
1801 		     0x80000000 + ring->hicredit * 0x7735);
1802 	} else {
1803 
1804 		/* Set idleSlope to zero. */
1805 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1808 
1809 		/* Set hiCredit to zero. */
1810 		wr32(E1000_I210_TQAVHC(queue), 0);
1811 
1812 		/* If CBS is not enabled for any queues anymore, then return to
1813 		 * the default state of Data Transmission Arbitration on
1814 		 * TQAVCTRL.
1815 		 */
1816 		if (!is_any_cbs_enabled(adapter)) {
1817 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 		}
1821 	}
1822 
1823 	/* If LaunchTime is enabled, set DataTranTIM. */
1824 	if (ring->launchtime_enable) {
1825 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826 		 * for any of the SR queues, and configure fetchtime delta.
1827 		 * XXX NOTE:
1828 		 *     - LaunchTime will be enabled for all SR queues.
1829 		 *     - A fixed offset can be added relative to the launch
1830 		 *       time of all packets if configured at reg LAUNCH_OS0.
1831 		 *       We are keeping it as 0 for now (default value).
1832 		 */
1833 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1836 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837 	} else {
1838 		/* If Launchtime is not enabled for any SR queues anymore,
1839 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840 		 * effectively disabling Launchtime.
1841 		 */
1842 		if (!is_any_txtime_enabled(adapter)) {
1843 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1847 		}
1848 	}
1849 
1850 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1851 	 * CBS are not configurable by software so we don't do any 'controller
1852 	 * configuration' in respect to these parameters.
1853 	 */
1854 
1855 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856 		   ring->cbs_enable ? "enabled" : "disabled",
1857 		   ring->launchtime_enable ? "enabled" : "disabled",
1858 		   queue,
1859 		   ring->idleslope, ring->sendslope,
1860 		   ring->hicredit, ring->locredit);
1861 }
1862 
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1863 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1864 				  bool enable)
1865 {
1866 	struct igb_ring *ring;
1867 
1868 	if (queue < 0 || queue > adapter->num_tx_queues)
1869 		return -EINVAL;
1870 
1871 	ring = adapter->tx_ring[queue];
1872 	ring->launchtime_enable = enable;
1873 
1874 	return 0;
1875 }
1876 
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1877 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878 			       bool enable, int idleslope, int sendslope,
1879 			       int hicredit, int locredit)
1880 {
1881 	struct igb_ring *ring;
1882 
1883 	if (queue < 0 || queue > adapter->num_tx_queues)
1884 		return -EINVAL;
1885 
1886 	ring = adapter->tx_ring[queue];
1887 
1888 	ring->cbs_enable = enable;
1889 	ring->idleslope = idleslope;
1890 	ring->sendslope = sendslope;
1891 	ring->hicredit = hicredit;
1892 	ring->locredit = locredit;
1893 
1894 	return 0;
1895 }
1896 
1897 /**
1898  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899  *  @adapter: pointer to adapter struct
1900  *
1901  *  Configure TQAVCTRL register switching the controller's Tx mode
1902  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1903  *  a call to igb_config_tx_modes() per queue so any previously saved
1904  *  Tx parameters are applied.
1905  **/
igb_setup_tx_mode(struct igb_adapter * adapter)1906 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1907 {
1908 	struct net_device *netdev = adapter->netdev;
1909 	struct e1000_hw *hw = &adapter->hw;
1910 	u32 val;
1911 
1912 	/* Only i210 controller supports changing the transmission mode. */
1913 	if (hw->mac.type != e1000_i210)
1914 		return;
1915 
1916 	if (is_fqtss_enabled(adapter)) {
1917 		int i, max_queue;
1918 
1919 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921 		 * so SP queues wait for SR ones.
1922 		 */
1923 		val = rd32(E1000_I210_TQAVCTRL);
1924 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926 		wr32(E1000_I210_TQAVCTRL, val);
1927 
1928 		/* Configure Tx and Rx packet buffers sizes as described in
1929 		 * i210 datasheet section 7.2.7.7.
1930 		 */
1931 		val = rd32(E1000_TXPBS);
1932 		val &= ~I210_TXPBSIZE_MASK;
1933 		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1934 			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1935 		wr32(E1000_TXPBS, val);
1936 
1937 		val = rd32(E1000_RXPBS);
1938 		val &= ~I210_RXPBSIZE_MASK;
1939 		val |= I210_RXPBSIZE_PB_30KB;
1940 		wr32(E1000_RXPBS, val);
1941 
1942 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943 		 * register should not exceed the buffer size programmed in
1944 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1946 		 * 4kB / 64.
1947 		 *
1948 		 * However, when we do so, no frame from queue 2 and 3 are
1949 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1950 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1951 		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1952 		 */
1953 		val = (4096 - 1) / 64;
1954 		wr32(E1000_I210_DTXMXPKTSZ, val);
1955 
1956 		/* Since FQTSS mode is enabled, apply any CBS configuration
1957 		 * previously set. If no previous CBS configuration has been
1958 		 * done, then the initial configuration is applied, which means
1959 		 * CBS is disabled.
1960 		 */
1961 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1963 
1964 		for (i = 0; i < max_queue; i++) {
1965 			igb_config_tx_modes(adapter, i);
1966 		}
1967 	} else {
1968 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1971 
1972 		val = rd32(E1000_I210_TQAVCTRL);
1973 		/* According to Section 8.12.21, the other flags we've set when
1974 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1975 		 * don't set they here.
1976 		 */
1977 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978 		wr32(E1000_I210_TQAVCTRL, val);
1979 	}
1980 
1981 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982 		   "enabled" : "disabled");
1983 }
1984 
1985 /**
1986  *  igb_configure - configure the hardware for RX and TX
1987  *  @adapter: private board structure
1988  **/
igb_configure(struct igb_adapter * adapter)1989 static void igb_configure(struct igb_adapter *adapter)
1990 {
1991 	struct net_device *netdev = adapter->netdev;
1992 	int i;
1993 
1994 	igb_get_hw_control(adapter);
1995 	igb_set_rx_mode(netdev);
1996 	igb_setup_tx_mode(adapter);
1997 
1998 	igb_restore_vlan(adapter);
1999 
2000 	igb_setup_tctl(adapter);
2001 	igb_setup_mrqc(adapter);
2002 	igb_setup_rctl(adapter);
2003 
2004 	igb_nfc_filter_restore(adapter);
2005 	igb_configure_tx(adapter);
2006 	igb_configure_rx(adapter);
2007 
2008 	igb_rx_fifo_flush_82575(&adapter->hw);
2009 
2010 	/* call igb_desc_unused which always leaves
2011 	 * at least 1 descriptor unused to make sure
2012 	 * next_to_use != next_to_clean
2013 	 */
2014 	for (i = 0; i < adapter->num_rx_queues; i++) {
2015 		struct igb_ring *ring = adapter->rx_ring[i];
2016 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2017 	}
2018 }
2019 
2020 /**
2021  *  igb_power_up_link - Power up the phy/serdes link
2022  *  @adapter: address of board private structure
2023  **/
igb_power_up_link(struct igb_adapter * adapter)2024 void igb_power_up_link(struct igb_adapter *adapter)
2025 {
2026 	igb_reset_phy(&adapter->hw);
2027 
2028 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029 		igb_power_up_phy_copper(&adapter->hw);
2030 	else
2031 		igb_power_up_serdes_link_82575(&adapter->hw);
2032 
2033 	igb_setup_link(&adapter->hw);
2034 }
2035 
2036 /**
2037  *  igb_power_down_link - Power down the phy/serdes link
2038  *  @adapter: address of board private structure
2039  */
igb_power_down_link(struct igb_adapter * adapter)2040 static void igb_power_down_link(struct igb_adapter *adapter)
2041 {
2042 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043 		igb_power_down_phy_copper_82575(&adapter->hw);
2044 	else
2045 		igb_shutdown_serdes_link_82575(&adapter->hw);
2046 }
2047 
2048 /**
2049  * Detect and switch function for Media Auto Sense
2050  * @adapter: address of the board private structure
2051  **/
igb_check_swap_media(struct igb_adapter * adapter)2052 static void igb_check_swap_media(struct igb_adapter *adapter)
2053 {
2054 	struct e1000_hw *hw = &adapter->hw;
2055 	u32 ctrl_ext, connsw;
2056 	bool swap_now = false;
2057 
2058 	ctrl_ext = rd32(E1000_CTRL_EXT);
2059 	connsw = rd32(E1000_CONNSW);
2060 
2061 	/* need to live swap if current media is copper and we have fiber/serdes
2062 	 * to go to.
2063 	 */
2064 
2065 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2066 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2067 		swap_now = true;
2068 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2069 		   !(connsw & E1000_CONNSW_SERDESD)) {
2070 		/* copper signal takes time to appear */
2071 		if (adapter->copper_tries < 4) {
2072 			adapter->copper_tries++;
2073 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2074 			wr32(E1000_CONNSW, connsw);
2075 			return;
2076 		} else {
2077 			adapter->copper_tries = 0;
2078 			if ((connsw & E1000_CONNSW_PHYSD) &&
2079 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2080 				swap_now = true;
2081 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2082 				wr32(E1000_CONNSW, connsw);
2083 			}
2084 		}
2085 	}
2086 
2087 	if (!swap_now)
2088 		return;
2089 
2090 	switch (hw->phy.media_type) {
2091 	case e1000_media_type_copper:
2092 		netdev_info(adapter->netdev,
2093 			"MAS: changing media to fiber/serdes\n");
2094 		ctrl_ext |=
2095 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 		adapter->copper_tries = 0;
2098 		break;
2099 	case e1000_media_type_internal_serdes:
2100 	case e1000_media_type_fiber:
2101 		netdev_info(adapter->netdev,
2102 			"MAS: changing media to copper\n");
2103 		ctrl_ext &=
2104 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2105 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2106 		break;
2107 	default:
2108 		/* shouldn't get here during regular operation */
2109 		netdev_err(adapter->netdev,
2110 			"AMS: Invalid media type found, returning\n");
2111 		break;
2112 	}
2113 	wr32(E1000_CTRL_EXT, ctrl_ext);
2114 }
2115 
2116 /**
2117  *  igb_up - Open the interface and prepare it to handle traffic
2118  *  @adapter: board private structure
2119  **/
igb_up(struct igb_adapter * adapter)2120 int igb_up(struct igb_adapter *adapter)
2121 {
2122 	struct e1000_hw *hw = &adapter->hw;
2123 	int i;
2124 
2125 	/* hardware has been reset, we need to reload some things */
2126 	igb_configure(adapter);
2127 
2128 	clear_bit(__IGB_DOWN, &adapter->state);
2129 
2130 	for (i = 0; i < adapter->num_q_vectors; i++)
2131 		napi_enable(&(adapter->q_vector[i]->napi));
2132 
2133 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2134 		igb_configure_msix(adapter);
2135 	else
2136 		igb_assign_vector(adapter->q_vector[0], 0);
2137 
2138 	/* Clear any pending interrupts. */
2139 	rd32(E1000_TSICR);
2140 	rd32(E1000_ICR);
2141 	igb_irq_enable(adapter);
2142 
2143 	/* notify VFs that reset has been completed */
2144 	if (adapter->vfs_allocated_count) {
2145 		u32 reg_data = rd32(E1000_CTRL_EXT);
2146 
2147 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2148 		wr32(E1000_CTRL_EXT, reg_data);
2149 	}
2150 
2151 	netif_tx_start_all_queues(adapter->netdev);
2152 
2153 	/* start the watchdog. */
2154 	hw->mac.get_link_status = 1;
2155 	schedule_work(&adapter->watchdog_task);
2156 
2157 	if ((adapter->flags & IGB_FLAG_EEE) &&
2158 	    (!hw->dev_spec._82575.eee_disable))
2159 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2160 
2161 	return 0;
2162 }
2163 
igb_down(struct igb_adapter * adapter)2164 void igb_down(struct igb_adapter *adapter)
2165 {
2166 	struct net_device *netdev = adapter->netdev;
2167 	struct e1000_hw *hw = &adapter->hw;
2168 	u32 tctl, rctl;
2169 	int i;
2170 
2171 	/* signal that we're down so the interrupt handler does not
2172 	 * reschedule our watchdog timer
2173 	 */
2174 	set_bit(__IGB_DOWN, &adapter->state);
2175 
2176 	/* disable receives in the hardware */
2177 	rctl = rd32(E1000_RCTL);
2178 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2179 	/* flush and sleep below */
2180 
2181 	igb_nfc_filter_exit(adapter);
2182 
2183 	netif_carrier_off(netdev);
2184 	netif_tx_stop_all_queues(netdev);
2185 
2186 	/* disable transmits in the hardware */
2187 	tctl = rd32(E1000_TCTL);
2188 	tctl &= ~E1000_TCTL_EN;
2189 	wr32(E1000_TCTL, tctl);
2190 	/* flush both disables and wait for them to finish */
2191 	wrfl();
2192 	usleep_range(10000, 11000);
2193 
2194 	igb_irq_disable(adapter);
2195 
2196 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2197 
2198 	for (i = 0; i < adapter->num_q_vectors; i++) {
2199 		if (adapter->q_vector[i]) {
2200 			napi_synchronize(&adapter->q_vector[i]->napi);
2201 			napi_disable(&adapter->q_vector[i]->napi);
2202 		}
2203 	}
2204 
2205 	del_timer_sync(&adapter->watchdog_timer);
2206 	del_timer_sync(&adapter->phy_info_timer);
2207 
2208 	/* record the stats before reset*/
2209 	spin_lock(&adapter->stats64_lock);
2210 	igb_update_stats(adapter);
2211 	spin_unlock(&adapter->stats64_lock);
2212 
2213 	adapter->link_speed = 0;
2214 	adapter->link_duplex = 0;
2215 
2216 	if (!pci_channel_offline(adapter->pdev))
2217 		igb_reset(adapter);
2218 
2219 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2220 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2221 
2222 	igb_clean_all_tx_rings(adapter);
2223 	igb_clean_all_rx_rings(adapter);
2224 #ifdef CONFIG_IGB_DCA
2225 
2226 	/* since we reset the hardware DCA settings were cleared */
2227 	igb_setup_dca(adapter);
2228 #endif
2229 }
2230 
igb_reinit_locked(struct igb_adapter * adapter)2231 void igb_reinit_locked(struct igb_adapter *adapter)
2232 {
2233 	WARN_ON(in_interrupt());
2234 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2235 		usleep_range(1000, 2000);
2236 	igb_down(adapter);
2237 	igb_up(adapter);
2238 	clear_bit(__IGB_RESETTING, &adapter->state);
2239 }
2240 
2241 /** igb_enable_mas - Media Autosense re-enable after swap
2242  *
2243  * @adapter: adapter struct
2244  **/
igb_enable_mas(struct igb_adapter * adapter)2245 static void igb_enable_mas(struct igb_adapter *adapter)
2246 {
2247 	struct e1000_hw *hw = &adapter->hw;
2248 	u32 connsw = rd32(E1000_CONNSW);
2249 
2250 	/* configure for SerDes media detect */
2251 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2252 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2253 		connsw |= E1000_CONNSW_ENRGSRC;
2254 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2255 		wr32(E1000_CONNSW, connsw);
2256 		wrfl();
2257 	}
2258 }
2259 
igb_reset(struct igb_adapter * adapter)2260 void igb_reset(struct igb_adapter *adapter)
2261 {
2262 	struct pci_dev *pdev = adapter->pdev;
2263 	struct e1000_hw *hw = &adapter->hw;
2264 	struct e1000_mac_info *mac = &hw->mac;
2265 	struct e1000_fc_info *fc = &hw->fc;
2266 	u32 pba, hwm;
2267 
2268 	/* Repartition Pba for greater than 9k mtu
2269 	 * To take effect CTRL.RST is required.
2270 	 */
2271 	switch (mac->type) {
2272 	case e1000_i350:
2273 	case e1000_i354:
2274 	case e1000_82580:
2275 		pba = rd32(E1000_RXPBS);
2276 		pba = igb_rxpbs_adjust_82580(pba);
2277 		break;
2278 	case e1000_82576:
2279 		pba = rd32(E1000_RXPBS);
2280 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2281 		break;
2282 	case e1000_82575:
2283 	case e1000_i210:
2284 	case e1000_i211:
2285 	default:
2286 		pba = E1000_PBA_34K;
2287 		break;
2288 	}
2289 
2290 	if (mac->type == e1000_82575) {
2291 		u32 min_rx_space, min_tx_space, needed_tx_space;
2292 
2293 		/* write Rx PBA so that hardware can report correct Tx PBA */
2294 		wr32(E1000_PBA, pba);
2295 
2296 		/* To maintain wire speed transmits, the Tx FIFO should be
2297 		 * large enough to accommodate two full transmit packets,
2298 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2299 		 * the Rx FIFO should be large enough to accommodate at least
2300 		 * one full receive packet and is similarly rounded up and
2301 		 * expressed in KB.
2302 		 */
2303 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2304 
2305 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2306 		 * but don't include Ethernet FCS because hardware appends it.
2307 		 * We only need to round down to the nearest 512 byte block
2308 		 * count since the value we care about is 2 frames, not 1.
2309 		 */
2310 		min_tx_space = adapter->max_frame_size;
2311 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2312 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2313 
2314 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2315 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2316 
2317 		/* If current Tx allocation is less than the min Tx FIFO size,
2318 		 * and the min Tx FIFO size is less than the current Rx FIFO
2319 		 * allocation, take space away from current Rx allocation.
2320 		 */
2321 		if (needed_tx_space < pba) {
2322 			pba -= needed_tx_space;
2323 
2324 			/* if short on Rx space, Rx wins and must trump Tx
2325 			 * adjustment
2326 			 */
2327 			if (pba < min_rx_space)
2328 				pba = min_rx_space;
2329 		}
2330 
2331 		/* adjust PBA for jumbo frames */
2332 		wr32(E1000_PBA, pba);
2333 	}
2334 
2335 	/* flow control settings
2336 	 * The high water mark must be low enough to fit one full frame
2337 	 * after transmitting the pause frame.  As such we must have enough
2338 	 * space to allow for us to complete our current transmit and then
2339 	 * receive the frame that is in progress from the link partner.
2340 	 * Set it to:
2341 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2342 	 */
2343 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2344 
2345 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2346 	fc->low_water = fc->high_water - 16;
2347 	fc->pause_time = 0xFFFF;
2348 	fc->send_xon = 1;
2349 	fc->current_mode = fc->requested_mode;
2350 
2351 	/* disable receive for all VFs and wait one second */
2352 	if (adapter->vfs_allocated_count) {
2353 		int i;
2354 
2355 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2356 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2357 
2358 		/* ping all the active vfs to let them know we are going down */
2359 		igb_ping_all_vfs(adapter);
2360 
2361 		/* disable transmits and receives */
2362 		wr32(E1000_VFRE, 0);
2363 		wr32(E1000_VFTE, 0);
2364 	}
2365 
2366 	/* Allow time for pending master requests to run */
2367 	hw->mac.ops.reset_hw(hw);
2368 	wr32(E1000_WUC, 0);
2369 
2370 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2371 		/* need to resetup here after media swap */
2372 		adapter->ei.get_invariants(hw);
2373 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2374 	}
2375 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2376 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2377 		igb_enable_mas(adapter);
2378 	}
2379 	if (hw->mac.ops.init_hw(hw))
2380 		dev_err(&pdev->dev, "Hardware Error\n");
2381 
2382 	/* RAR registers were cleared during init_hw, clear mac table */
2383 	igb_flush_mac_table(adapter);
2384 	__dev_uc_unsync(adapter->netdev, NULL);
2385 
2386 	/* Recover default RAR entry */
2387 	igb_set_default_mac_filter(adapter);
2388 
2389 	/* Flow control settings reset on hardware reset, so guarantee flow
2390 	 * control is off when forcing speed.
2391 	 */
2392 	if (!hw->mac.autoneg)
2393 		igb_force_mac_fc(hw);
2394 
2395 	igb_init_dmac(adapter, pba);
2396 #ifdef CONFIG_IGB_HWMON
2397 	/* Re-initialize the thermal sensor on i350 devices. */
2398 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2399 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2400 			/* If present, re-initialize the external thermal sensor
2401 			 * interface.
2402 			 */
2403 			if (adapter->ets)
2404 				mac->ops.init_thermal_sensor_thresh(hw);
2405 		}
2406 	}
2407 #endif
2408 	/* Re-establish EEE setting */
2409 	if (hw->phy.media_type == e1000_media_type_copper) {
2410 		switch (mac->type) {
2411 		case e1000_i350:
2412 		case e1000_i210:
2413 		case e1000_i211:
2414 			igb_set_eee_i350(hw, true, true);
2415 			break;
2416 		case e1000_i354:
2417 			igb_set_eee_i354(hw, true, true);
2418 			break;
2419 		default:
2420 			break;
2421 		}
2422 	}
2423 	if (!netif_running(adapter->netdev))
2424 		igb_power_down_link(adapter);
2425 
2426 	igb_update_mng_vlan(adapter);
2427 
2428 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2429 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2430 
2431 	/* Re-enable PTP, where applicable. */
2432 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2433 		igb_ptp_reset(adapter);
2434 
2435 	igb_get_phy_info(hw);
2436 }
2437 
igb_fix_features(struct net_device * netdev,netdev_features_t features)2438 static netdev_features_t igb_fix_features(struct net_device *netdev,
2439 	netdev_features_t features)
2440 {
2441 	/* Since there is no support for separate Rx/Tx vlan accel
2442 	 * enable/disable make sure Tx flag is always in same state as Rx.
2443 	 */
2444 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2445 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2446 	else
2447 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2448 
2449 	return features;
2450 }
2451 
igb_set_features(struct net_device * netdev,netdev_features_t features)2452 static int igb_set_features(struct net_device *netdev,
2453 	netdev_features_t features)
2454 {
2455 	netdev_features_t changed = netdev->features ^ features;
2456 	struct igb_adapter *adapter = netdev_priv(netdev);
2457 
2458 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2459 		igb_vlan_mode(netdev, features);
2460 
2461 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2462 		return 0;
2463 
2464 	if (!(features & NETIF_F_NTUPLE)) {
2465 		struct hlist_node *node2;
2466 		struct igb_nfc_filter *rule;
2467 
2468 		spin_lock(&adapter->nfc_lock);
2469 		hlist_for_each_entry_safe(rule, node2,
2470 					  &adapter->nfc_filter_list, nfc_node) {
2471 			igb_erase_filter(adapter, rule);
2472 			hlist_del(&rule->nfc_node);
2473 			kfree(rule);
2474 		}
2475 		spin_unlock(&adapter->nfc_lock);
2476 		adapter->nfc_filter_count = 0;
2477 	}
2478 
2479 	netdev->features = features;
2480 
2481 	if (netif_running(netdev))
2482 		igb_reinit_locked(adapter);
2483 	else
2484 		igb_reset(adapter);
2485 
2486 	return 1;
2487 }
2488 
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack * extack)2489 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2490 			   struct net_device *dev,
2491 			   const unsigned char *addr, u16 vid,
2492 			   u16 flags,
2493 			   struct netlink_ext_ack *extack)
2494 {
2495 	/* guarantee we can provide a unique filter for the unicast address */
2496 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2497 		struct igb_adapter *adapter = netdev_priv(dev);
2498 		int vfn = adapter->vfs_allocated_count;
2499 
2500 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2501 			return -ENOMEM;
2502 	}
2503 
2504 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2505 }
2506 
2507 #define IGB_MAX_MAC_HDR_LEN	127
2508 #define IGB_MAX_NETWORK_HDR_LEN	511
2509 
2510 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2511 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2512 		   netdev_features_t features)
2513 {
2514 	unsigned int network_hdr_len, mac_hdr_len;
2515 
2516 	/* Make certain the headers can be described by a context descriptor */
2517 	mac_hdr_len = skb_network_header(skb) - skb->data;
2518 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2519 		return features & ~(NETIF_F_HW_CSUM |
2520 				    NETIF_F_SCTP_CRC |
2521 				    NETIF_F_HW_VLAN_CTAG_TX |
2522 				    NETIF_F_TSO |
2523 				    NETIF_F_TSO6);
2524 
2525 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2526 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2527 		return features & ~(NETIF_F_HW_CSUM |
2528 				    NETIF_F_SCTP_CRC |
2529 				    NETIF_F_TSO |
2530 				    NETIF_F_TSO6);
2531 
2532 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2533 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2534 	 */
2535 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2536 		features &= ~NETIF_F_TSO;
2537 
2538 	return features;
2539 }
2540 
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2541 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2542 {
2543 	if (!is_fqtss_enabled(adapter)) {
2544 		enable_fqtss(adapter, true);
2545 		return;
2546 	}
2547 
2548 	igb_config_tx_modes(adapter, queue);
2549 
2550 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2551 		enable_fqtss(adapter, false);
2552 }
2553 
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2554 static int igb_offload_cbs(struct igb_adapter *adapter,
2555 			   struct tc_cbs_qopt_offload *qopt)
2556 {
2557 	struct e1000_hw *hw = &adapter->hw;
2558 	int err;
2559 
2560 	/* CBS offloading is only supported by i210 controller. */
2561 	if (hw->mac.type != e1000_i210)
2562 		return -EOPNOTSUPP;
2563 
2564 	/* CBS offloading is only supported by queue 0 and queue 1. */
2565 	if (qopt->queue < 0 || qopt->queue > 1)
2566 		return -EINVAL;
2567 
2568 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2569 				  qopt->idleslope, qopt->sendslope,
2570 				  qopt->hicredit, qopt->locredit);
2571 	if (err)
2572 		return err;
2573 
2574 	igb_offload_apply(adapter, qopt->queue);
2575 
2576 	return 0;
2577 }
2578 
2579 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2580 #define VLAN_PRIO_FULL_MASK (0x07)
2581 
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2582 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2583 				struct flow_cls_offload *f,
2584 				int traffic_class,
2585 				struct igb_nfc_filter *input)
2586 {
2587 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2588 	struct flow_dissector *dissector = rule->match.dissector;
2589 	struct netlink_ext_ack *extack = f->common.extack;
2590 
2591 	if (dissector->used_keys &
2592 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2593 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2594 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2595 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2596 		NL_SET_ERR_MSG_MOD(extack,
2597 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2598 		return -EOPNOTSUPP;
2599 	}
2600 
2601 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2602 		struct flow_match_eth_addrs match;
2603 
2604 		flow_rule_match_eth_addrs(rule, &match);
2605 		if (!is_zero_ether_addr(match.mask->dst)) {
2606 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2607 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2608 				return -EINVAL;
2609 			}
2610 
2611 			input->filter.match_flags |=
2612 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2613 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2614 		}
2615 
2616 		if (!is_zero_ether_addr(match.mask->src)) {
2617 			if (!is_broadcast_ether_addr(match.mask->src)) {
2618 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2619 				return -EINVAL;
2620 			}
2621 
2622 			input->filter.match_flags |=
2623 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2624 			ether_addr_copy(input->filter.src_addr, match.key->src);
2625 		}
2626 	}
2627 
2628 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2629 		struct flow_match_basic match;
2630 
2631 		flow_rule_match_basic(rule, &match);
2632 		if (match.mask->n_proto) {
2633 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2634 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2635 				return -EINVAL;
2636 			}
2637 
2638 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2639 			input->filter.etype = match.key->n_proto;
2640 		}
2641 	}
2642 
2643 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2644 		struct flow_match_vlan match;
2645 
2646 		flow_rule_match_vlan(rule, &match);
2647 		if (match.mask->vlan_priority) {
2648 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2649 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2650 				return -EINVAL;
2651 			}
2652 
2653 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2654 			input->filter.vlan_tci = match.key->vlan_priority;
2655 		}
2656 	}
2657 
2658 	input->action = traffic_class;
2659 	input->cookie = f->cookie;
2660 
2661 	return 0;
2662 }
2663 
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2664 static int igb_configure_clsflower(struct igb_adapter *adapter,
2665 				   struct flow_cls_offload *cls_flower)
2666 {
2667 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2668 	struct igb_nfc_filter *filter, *f;
2669 	int err, tc;
2670 
2671 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2672 	if (tc < 0) {
2673 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2674 		return -EINVAL;
2675 	}
2676 
2677 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2678 	if (!filter)
2679 		return -ENOMEM;
2680 
2681 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2682 	if (err < 0)
2683 		goto err_parse;
2684 
2685 	spin_lock(&adapter->nfc_lock);
2686 
2687 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2688 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2689 			err = -EEXIST;
2690 			NL_SET_ERR_MSG_MOD(extack,
2691 					   "This filter is already set in ethtool");
2692 			goto err_locked;
2693 		}
2694 	}
2695 
2696 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2697 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2698 			err = -EEXIST;
2699 			NL_SET_ERR_MSG_MOD(extack,
2700 					   "This filter is already set in cls_flower");
2701 			goto err_locked;
2702 		}
2703 	}
2704 
2705 	err = igb_add_filter(adapter, filter);
2706 	if (err < 0) {
2707 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2708 		goto err_locked;
2709 	}
2710 
2711 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2712 
2713 	spin_unlock(&adapter->nfc_lock);
2714 
2715 	return 0;
2716 
2717 err_locked:
2718 	spin_unlock(&adapter->nfc_lock);
2719 
2720 err_parse:
2721 	kfree(filter);
2722 
2723 	return err;
2724 }
2725 
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2726 static int igb_delete_clsflower(struct igb_adapter *adapter,
2727 				struct flow_cls_offload *cls_flower)
2728 {
2729 	struct igb_nfc_filter *filter;
2730 	int err;
2731 
2732 	spin_lock(&adapter->nfc_lock);
2733 
2734 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2735 		if (filter->cookie == cls_flower->cookie)
2736 			break;
2737 
2738 	if (!filter) {
2739 		err = -ENOENT;
2740 		goto out;
2741 	}
2742 
2743 	err = igb_erase_filter(adapter, filter);
2744 	if (err < 0)
2745 		goto out;
2746 
2747 	hlist_del(&filter->nfc_node);
2748 	kfree(filter);
2749 
2750 out:
2751 	spin_unlock(&adapter->nfc_lock);
2752 
2753 	return err;
2754 }
2755 
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2756 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2757 				   struct flow_cls_offload *cls_flower)
2758 {
2759 	switch (cls_flower->command) {
2760 	case FLOW_CLS_REPLACE:
2761 		return igb_configure_clsflower(adapter, cls_flower);
2762 	case FLOW_CLS_DESTROY:
2763 		return igb_delete_clsflower(adapter, cls_flower);
2764 	case FLOW_CLS_STATS:
2765 		return -EOPNOTSUPP;
2766 	default:
2767 		return -EOPNOTSUPP;
2768 	}
2769 }
2770 
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2771 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2772 				 void *cb_priv)
2773 {
2774 	struct igb_adapter *adapter = cb_priv;
2775 
2776 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2777 		return -EOPNOTSUPP;
2778 
2779 	switch (type) {
2780 	case TC_SETUP_CLSFLOWER:
2781 		return igb_setup_tc_cls_flower(adapter, type_data);
2782 
2783 	default:
2784 		return -EOPNOTSUPP;
2785 	}
2786 }
2787 
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2788 static int igb_offload_txtime(struct igb_adapter *adapter,
2789 			      struct tc_etf_qopt_offload *qopt)
2790 {
2791 	struct e1000_hw *hw = &adapter->hw;
2792 	int err;
2793 
2794 	/* Launchtime offloading is only supported by i210 controller. */
2795 	if (hw->mac.type != e1000_i210)
2796 		return -EOPNOTSUPP;
2797 
2798 	/* Launchtime offloading is only supported by queues 0 and 1. */
2799 	if (qopt->queue < 0 || qopt->queue > 1)
2800 		return -EINVAL;
2801 
2802 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2803 	if (err)
2804 		return err;
2805 
2806 	igb_offload_apply(adapter, qopt->queue);
2807 
2808 	return 0;
2809 }
2810 
2811 static LIST_HEAD(igb_block_cb_list);
2812 
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2813 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2814 			void *type_data)
2815 {
2816 	struct igb_adapter *adapter = netdev_priv(dev);
2817 
2818 	switch (type) {
2819 	case TC_SETUP_QDISC_CBS:
2820 		return igb_offload_cbs(adapter, type_data);
2821 	case TC_SETUP_BLOCK:
2822 		return flow_block_cb_setup_simple(type_data,
2823 						  &igb_block_cb_list,
2824 						  igb_setup_tc_block_cb,
2825 						  adapter, adapter, true);
2826 
2827 	case TC_SETUP_QDISC_ETF:
2828 		return igb_offload_txtime(adapter, type_data);
2829 
2830 	default:
2831 		return -EOPNOTSUPP;
2832 	}
2833 }
2834 
2835 static const struct net_device_ops igb_netdev_ops = {
2836 	.ndo_open		= igb_open,
2837 	.ndo_stop		= igb_close,
2838 	.ndo_start_xmit		= igb_xmit_frame,
2839 	.ndo_get_stats64	= igb_get_stats64,
2840 	.ndo_set_rx_mode	= igb_set_rx_mode,
2841 	.ndo_set_mac_address	= igb_set_mac,
2842 	.ndo_change_mtu		= igb_change_mtu,
2843 	.ndo_do_ioctl		= igb_ioctl,
2844 	.ndo_tx_timeout		= igb_tx_timeout,
2845 	.ndo_validate_addr	= eth_validate_addr,
2846 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2847 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2848 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2849 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2850 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2851 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2852 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
2853 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2854 	.ndo_fix_features	= igb_fix_features,
2855 	.ndo_set_features	= igb_set_features,
2856 	.ndo_fdb_add		= igb_ndo_fdb_add,
2857 	.ndo_features_check	= igb_features_check,
2858 	.ndo_setup_tc		= igb_setup_tc,
2859 };
2860 
2861 /**
2862  * igb_set_fw_version - Configure version string for ethtool
2863  * @adapter: adapter struct
2864  **/
igb_set_fw_version(struct igb_adapter * adapter)2865 void igb_set_fw_version(struct igb_adapter *adapter)
2866 {
2867 	struct e1000_hw *hw = &adapter->hw;
2868 	struct e1000_fw_version fw;
2869 
2870 	igb_get_fw_version(hw, &fw);
2871 
2872 	switch (hw->mac.type) {
2873 	case e1000_i210:
2874 	case e1000_i211:
2875 		if (!(igb_get_flash_presence_i210(hw))) {
2876 			snprintf(adapter->fw_version,
2877 				 sizeof(adapter->fw_version),
2878 				 "%2d.%2d-%d",
2879 				 fw.invm_major, fw.invm_minor,
2880 				 fw.invm_img_type);
2881 			break;
2882 		}
2883 		/* fall through */
2884 	default:
2885 		/* if option is rom valid, display its version too */
2886 		if (fw.or_valid) {
2887 			snprintf(adapter->fw_version,
2888 				 sizeof(adapter->fw_version),
2889 				 "%d.%d, 0x%08x, %d.%d.%d",
2890 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2891 				 fw.or_major, fw.or_build, fw.or_patch);
2892 		/* no option rom */
2893 		} else if (fw.etrack_id != 0X0000) {
2894 			snprintf(adapter->fw_version,
2895 			    sizeof(adapter->fw_version),
2896 			    "%d.%d, 0x%08x",
2897 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2898 		} else {
2899 		snprintf(adapter->fw_version,
2900 		    sizeof(adapter->fw_version),
2901 		    "%d.%d.%d",
2902 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2903 		}
2904 		break;
2905 	}
2906 }
2907 
2908 /**
2909  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2910  *
2911  * @adapter: adapter struct
2912  **/
igb_init_mas(struct igb_adapter * adapter)2913 static void igb_init_mas(struct igb_adapter *adapter)
2914 {
2915 	struct e1000_hw *hw = &adapter->hw;
2916 	u16 eeprom_data;
2917 
2918 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2919 	switch (hw->bus.func) {
2920 	case E1000_FUNC_0:
2921 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2922 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2923 			netdev_info(adapter->netdev,
2924 				"MAS: Enabling Media Autosense for port %d\n",
2925 				hw->bus.func);
2926 		}
2927 		break;
2928 	case E1000_FUNC_1:
2929 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2930 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2931 			netdev_info(adapter->netdev,
2932 				"MAS: Enabling Media Autosense for port %d\n",
2933 				hw->bus.func);
2934 		}
2935 		break;
2936 	case E1000_FUNC_2:
2937 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2938 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2939 			netdev_info(adapter->netdev,
2940 				"MAS: Enabling Media Autosense for port %d\n",
2941 				hw->bus.func);
2942 		}
2943 		break;
2944 	case E1000_FUNC_3:
2945 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2946 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2947 			netdev_info(adapter->netdev,
2948 				"MAS: Enabling Media Autosense for port %d\n",
2949 				hw->bus.func);
2950 		}
2951 		break;
2952 	default:
2953 		/* Shouldn't get here */
2954 		netdev_err(adapter->netdev,
2955 			"MAS: Invalid port configuration, returning\n");
2956 		break;
2957 	}
2958 }
2959 
2960 /**
2961  *  igb_init_i2c - Init I2C interface
2962  *  @adapter: pointer to adapter structure
2963  **/
igb_init_i2c(struct igb_adapter * adapter)2964 static s32 igb_init_i2c(struct igb_adapter *adapter)
2965 {
2966 	s32 status = 0;
2967 
2968 	/* I2C interface supported on i350 devices */
2969 	if (adapter->hw.mac.type != e1000_i350)
2970 		return 0;
2971 
2972 	/* Initialize the i2c bus which is controlled by the registers.
2973 	 * This bus will use the i2c_algo_bit structue that implements
2974 	 * the protocol through toggling of the 4 bits in the register.
2975 	 */
2976 	adapter->i2c_adap.owner = THIS_MODULE;
2977 	adapter->i2c_algo = igb_i2c_algo;
2978 	adapter->i2c_algo.data = adapter;
2979 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2980 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2981 	strlcpy(adapter->i2c_adap.name, "igb BB",
2982 		sizeof(adapter->i2c_adap.name));
2983 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2984 	return status;
2985 }
2986 
2987 /**
2988  *  igb_probe - Device Initialization Routine
2989  *  @pdev: PCI device information struct
2990  *  @ent: entry in igb_pci_tbl
2991  *
2992  *  Returns 0 on success, negative on failure
2993  *
2994  *  igb_probe initializes an adapter identified by a pci_dev structure.
2995  *  The OS initialization, configuring of the adapter private structure,
2996  *  and a hardware reset occur.
2997  **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2998 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2999 {
3000 	struct net_device *netdev;
3001 	struct igb_adapter *adapter;
3002 	struct e1000_hw *hw;
3003 	u16 eeprom_data = 0;
3004 	s32 ret_val;
3005 	static int global_quad_port_a; /* global quad port a indication */
3006 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3007 	int err, pci_using_dac;
3008 	u8 part_str[E1000_PBANUM_LENGTH];
3009 
3010 	/* Catch broken hardware that put the wrong VF device ID in
3011 	 * the PCIe SR-IOV capability.
3012 	 */
3013 	if (pdev->is_virtfn) {
3014 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3015 			pci_name(pdev), pdev->vendor, pdev->device);
3016 		return -EINVAL;
3017 	}
3018 
3019 	err = pci_enable_device_mem(pdev);
3020 	if (err)
3021 		return err;
3022 
3023 	pci_using_dac = 0;
3024 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3025 	if (!err) {
3026 		pci_using_dac = 1;
3027 	} else {
3028 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3029 		if (err) {
3030 			dev_err(&pdev->dev,
3031 				"No usable DMA configuration, aborting\n");
3032 			goto err_dma;
3033 		}
3034 	}
3035 
3036 	err = pci_request_mem_regions(pdev, igb_driver_name);
3037 	if (err)
3038 		goto err_pci_reg;
3039 
3040 	pci_enable_pcie_error_reporting(pdev);
3041 
3042 	pci_set_master(pdev);
3043 	pci_save_state(pdev);
3044 
3045 	err = -ENOMEM;
3046 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3047 				   IGB_MAX_TX_QUEUES);
3048 	if (!netdev)
3049 		goto err_alloc_etherdev;
3050 
3051 	SET_NETDEV_DEV(netdev, &pdev->dev);
3052 
3053 	pci_set_drvdata(pdev, netdev);
3054 	adapter = netdev_priv(netdev);
3055 	adapter->netdev = netdev;
3056 	adapter->pdev = pdev;
3057 	hw = &adapter->hw;
3058 	hw->back = adapter;
3059 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3060 
3061 	err = -EIO;
3062 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3063 	if (!adapter->io_addr)
3064 		goto err_ioremap;
3065 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3066 	hw->hw_addr = adapter->io_addr;
3067 
3068 	netdev->netdev_ops = &igb_netdev_ops;
3069 	igb_set_ethtool_ops(netdev);
3070 	netdev->watchdog_timeo = 5 * HZ;
3071 
3072 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3073 
3074 	netdev->mem_start = pci_resource_start(pdev, 0);
3075 	netdev->mem_end = pci_resource_end(pdev, 0);
3076 
3077 	/* PCI config space info */
3078 	hw->vendor_id = pdev->vendor;
3079 	hw->device_id = pdev->device;
3080 	hw->revision_id = pdev->revision;
3081 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3082 	hw->subsystem_device_id = pdev->subsystem_device;
3083 
3084 	/* Copy the default MAC, PHY and NVM function pointers */
3085 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3086 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3087 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3088 	/* Initialize skew-specific constants */
3089 	err = ei->get_invariants(hw);
3090 	if (err)
3091 		goto err_sw_init;
3092 
3093 	/* setup the private structure */
3094 	err = igb_sw_init(adapter);
3095 	if (err)
3096 		goto err_sw_init;
3097 
3098 	igb_get_bus_info_pcie(hw);
3099 
3100 	hw->phy.autoneg_wait_to_complete = false;
3101 
3102 	/* Copper options */
3103 	if (hw->phy.media_type == e1000_media_type_copper) {
3104 		hw->phy.mdix = AUTO_ALL_MODES;
3105 		hw->phy.disable_polarity_correction = false;
3106 		hw->phy.ms_type = e1000_ms_hw_default;
3107 	}
3108 
3109 	if (igb_check_reset_block(hw))
3110 		dev_info(&pdev->dev,
3111 			"PHY reset is blocked due to SOL/IDER session.\n");
3112 
3113 	/* features is initialized to 0 in allocation, it might have bits
3114 	 * set by igb_sw_init so we should use an or instead of an
3115 	 * assignment.
3116 	 */
3117 	netdev->features |= NETIF_F_SG |
3118 			    NETIF_F_TSO |
3119 			    NETIF_F_TSO6 |
3120 			    NETIF_F_RXHASH |
3121 			    NETIF_F_RXCSUM |
3122 			    NETIF_F_HW_CSUM;
3123 
3124 	if (hw->mac.type >= e1000_82576)
3125 		netdev->features |= NETIF_F_SCTP_CRC;
3126 
3127 	if (hw->mac.type >= e1000_i350)
3128 		netdev->features |= NETIF_F_HW_TC;
3129 
3130 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3131 				  NETIF_F_GSO_GRE_CSUM | \
3132 				  NETIF_F_GSO_IPXIP4 | \
3133 				  NETIF_F_GSO_IPXIP6 | \
3134 				  NETIF_F_GSO_UDP_TUNNEL | \
3135 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3136 
3137 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3138 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3139 
3140 	/* copy netdev features into list of user selectable features */
3141 	netdev->hw_features |= netdev->features |
3142 			       NETIF_F_HW_VLAN_CTAG_RX |
3143 			       NETIF_F_HW_VLAN_CTAG_TX |
3144 			       NETIF_F_RXALL;
3145 
3146 	if (hw->mac.type >= e1000_i350)
3147 		netdev->hw_features |= NETIF_F_NTUPLE;
3148 
3149 	if (pci_using_dac)
3150 		netdev->features |= NETIF_F_HIGHDMA;
3151 
3152 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3153 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3154 	netdev->hw_enc_features |= netdev->vlan_features;
3155 
3156 	/* set this bit last since it cannot be part of vlan_features */
3157 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3158 			    NETIF_F_HW_VLAN_CTAG_RX |
3159 			    NETIF_F_HW_VLAN_CTAG_TX;
3160 
3161 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3162 
3163 	netdev->priv_flags |= IFF_UNICAST_FLT;
3164 
3165 	/* MTU range: 68 - 9216 */
3166 	netdev->min_mtu = ETH_MIN_MTU;
3167 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3168 
3169 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3170 
3171 	/* before reading the NVM, reset the controller to put the device in a
3172 	 * known good starting state
3173 	 */
3174 	hw->mac.ops.reset_hw(hw);
3175 
3176 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3177 	 * that doesn't contain a checksum
3178 	 */
3179 	switch (hw->mac.type) {
3180 	case e1000_i210:
3181 	case e1000_i211:
3182 		if (igb_get_flash_presence_i210(hw)) {
3183 			if (hw->nvm.ops.validate(hw) < 0) {
3184 				dev_err(&pdev->dev,
3185 					"The NVM Checksum Is Not Valid\n");
3186 				err = -EIO;
3187 				goto err_eeprom;
3188 			}
3189 		}
3190 		break;
3191 	default:
3192 		if (hw->nvm.ops.validate(hw) < 0) {
3193 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3194 			err = -EIO;
3195 			goto err_eeprom;
3196 		}
3197 		break;
3198 	}
3199 
3200 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3201 		/* copy the MAC address out of the NVM */
3202 		if (hw->mac.ops.read_mac_addr(hw))
3203 			dev_err(&pdev->dev, "NVM Read Error\n");
3204 	}
3205 
3206 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3207 
3208 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3209 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3210 		err = -EIO;
3211 		goto err_eeprom;
3212 	}
3213 
3214 	igb_set_default_mac_filter(adapter);
3215 
3216 	/* get firmware version for ethtool -i */
3217 	igb_set_fw_version(adapter);
3218 
3219 	/* configure RXPBSIZE and TXPBSIZE */
3220 	if (hw->mac.type == e1000_i210) {
3221 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3222 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3223 	}
3224 
3225 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3226 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3227 
3228 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3229 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3230 
3231 	/* Initialize link properties that are user-changeable */
3232 	adapter->fc_autoneg = true;
3233 	hw->mac.autoneg = true;
3234 	hw->phy.autoneg_advertised = 0x2f;
3235 
3236 	hw->fc.requested_mode = e1000_fc_default;
3237 	hw->fc.current_mode = e1000_fc_default;
3238 
3239 	igb_validate_mdi_setting(hw);
3240 
3241 	/* By default, support wake on port A */
3242 	if (hw->bus.func == 0)
3243 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3244 
3245 	/* Check the NVM for wake support on non-port A ports */
3246 	if (hw->mac.type >= e1000_82580)
3247 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3248 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3249 				 &eeprom_data);
3250 	else if (hw->bus.func == 1)
3251 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3252 
3253 	if (eeprom_data & IGB_EEPROM_APME)
3254 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3255 
3256 	/* now that we have the eeprom settings, apply the special cases where
3257 	 * the eeprom may be wrong or the board simply won't support wake on
3258 	 * lan on a particular port
3259 	 */
3260 	switch (pdev->device) {
3261 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3262 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3263 		break;
3264 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3265 	case E1000_DEV_ID_82576_FIBER:
3266 	case E1000_DEV_ID_82576_SERDES:
3267 		/* Wake events only supported on port A for dual fiber
3268 		 * regardless of eeprom setting
3269 		 */
3270 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3271 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3272 		break;
3273 	case E1000_DEV_ID_82576_QUAD_COPPER:
3274 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3275 		/* if quad port adapter, disable WoL on all but port A */
3276 		if (global_quad_port_a != 0)
3277 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3278 		else
3279 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3280 		/* Reset for multiple quad port adapters */
3281 		if (++global_quad_port_a == 4)
3282 			global_quad_port_a = 0;
3283 		break;
3284 	default:
3285 		/* If the device can't wake, don't set software support */
3286 		if (!device_can_wakeup(&adapter->pdev->dev))
3287 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3288 	}
3289 
3290 	/* initialize the wol settings based on the eeprom settings */
3291 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3292 		adapter->wol |= E1000_WUFC_MAG;
3293 
3294 	/* Some vendors want WoL disabled by default, but still supported */
3295 	if ((hw->mac.type == e1000_i350) &&
3296 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3297 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3298 		adapter->wol = 0;
3299 	}
3300 
3301 	/* Some vendors want the ability to Use the EEPROM setting as
3302 	 * enable/disable only, and not for capability
3303 	 */
3304 	if (((hw->mac.type == e1000_i350) ||
3305 	     (hw->mac.type == e1000_i354)) &&
3306 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3307 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3308 		adapter->wol = 0;
3309 	}
3310 	if (hw->mac.type == e1000_i350) {
3311 		if (((pdev->subsystem_device == 0x5001) ||
3312 		     (pdev->subsystem_device == 0x5002)) &&
3313 				(hw->bus.func == 0)) {
3314 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3315 			adapter->wol = 0;
3316 		}
3317 		if (pdev->subsystem_device == 0x1F52)
3318 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3319 	}
3320 
3321 	device_set_wakeup_enable(&adapter->pdev->dev,
3322 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3323 
3324 	/* reset the hardware with the new settings */
3325 	igb_reset(adapter);
3326 
3327 	/* Init the I2C interface */
3328 	err = igb_init_i2c(adapter);
3329 	if (err) {
3330 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3331 		goto err_eeprom;
3332 	}
3333 
3334 	/* let the f/w know that the h/w is now under the control of the
3335 	 * driver.
3336 	 */
3337 	igb_get_hw_control(adapter);
3338 
3339 	strcpy(netdev->name, "eth%d");
3340 	err = register_netdev(netdev);
3341 	if (err)
3342 		goto err_register;
3343 
3344 	/* carrier off reporting is important to ethtool even BEFORE open */
3345 	netif_carrier_off(netdev);
3346 
3347 #ifdef CONFIG_IGB_DCA
3348 	if (dca_add_requester(&pdev->dev) == 0) {
3349 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3350 		dev_info(&pdev->dev, "DCA enabled\n");
3351 		igb_setup_dca(adapter);
3352 	}
3353 
3354 #endif
3355 #ifdef CONFIG_IGB_HWMON
3356 	/* Initialize the thermal sensor on i350 devices. */
3357 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3358 		u16 ets_word;
3359 
3360 		/* Read the NVM to determine if this i350 device supports an
3361 		 * external thermal sensor.
3362 		 */
3363 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3364 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3365 			adapter->ets = true;
3366 		else
3367 			adapter->ets = false;
3368 		if (igb_sysfs_init(adapter))
3369 			dev_err(&pdev->dev,
3370 				"failed to allocate sysfs resources\n");
3371 	} else {
3372 		adapter->ets = false;
3373 	}
3374 #endif
3375 	/* Check if Media Autosense is enabled */
3376 	adapter->ei = *ei;
3377 	if (hw->dev_spec._82575.mas_capable)
3378 		igb_init_mas(adapter);
3379 
3380 	/* do hw tstamp init after resetting */
3381 	igb_ptp_init(adapter);
3382 
3383 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3384 	/* print bus type/speed/width info, not applicable to i354 */
3385 	if (hw->mac.type != e1000_i354) {
3386 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3387 			 netdev->name,
3388 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3389 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3390 			   "unknown"),
3391 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3392 			  "Width x4" :
3393 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3394 			  "Width x2" :
3395 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3396 			  "Width x1" : "unknown"), netdev->dev_addr);
3397 	}
3398 
3399 	if ((hw->mac.type >= e1000_i210 ||
3400 	     igb_get_flash_presence_i210(hw))) {
3401 		ret_val = igb_read_part_string(hw, part_str,
3402 					       E1000_PBANUM_LENGTH);
3403 	} else {
3404 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3405 	}
3406 
3407 	if (ret_val)
3408 		strcpy(part_str, "Unknown");
3409 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3410 	dev_info(&pdev->dev,
3411 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3412 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3413 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3414 		adapter->num_rx_queues, adapter->num_tx_queues);
3415 	if (hw->phy.media_type == e1000_media_type_copper) {
3416 		switch (hw->mac.type) {
3417 		case e1000_i350:
3418 		case e1000_i210:
3419 		case e1000_i211:
3420 			/* Enable EEE for internal copper PHY devices */
3421 			err = igb_set_eee_i350(hw, true, true);
3422 			if ((!err) &&
3423 			    (!hw->dev_spec._82575.eee_disable)) {
3424 				adapter->eee_advert =
3425 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3426 				adapter->flags |= IGB_FLAG_EEE;
3427 			}
3428 			break;
3429 		case e1000_i354:
3430 			if ((rd32(E1000_CTRL_EXT) &
3431 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3432 				err = igb_set_eee_i354(hw, true, true);
3433 				if ((!err) &&
3434 					(!hw->dev_spec._82575.eee_disable)) {
3435 					adapter->eee_advert =
3436 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3437 					adapter->flags |= IGB_FLAG_EEE;
3438 				}
3439 			}
3440 			break;
3441 		default:
3442 			break;
3443 		}
3444 	}
3445 
3446 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
3447 
3448 	pm_runtime_put_noidle(&pdev->dev);
3449 	return 0;
3450 
3451 err_register:
3452 	igb_release_hw_control(adapter);
3453 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3454 err_eeprom:
3455 	if (!igb_check_reset_block(hw))
3456 		igb_reset_phy(hw);
3457 
3458 	if (hw->flash_address)
3459 		iounmap(hw->flash_address);
3460 err_sw_init:
3461 	kfree(adapter->mac_table);
3462 	kfree(adapter->shadow_vfta);
3463 	igb_clear_interrupt_scheme(adapter);
3464 #ifdef CONFIG_PCI_IOV
3465 	igb_disable_sriov(pdev);
3466 #endif
3467 	pci_iounmap(pdev, adapter->io_addr);
3468 err_ioremap:
3469 	free_netdev(netdev);
3470 err_alloc_etherdev:
3471 	pci_release_mem_regions(pdev);
3472 err_pci_reg:
3473 err_dma:
3474 	pci_disable_device(pdev);
3475 	return err;
3476 }
3477 
3478 #ifdef CONFIG_PCI_IOV
igb_disable_sriov(struct pci_dev * pdev)3479 static int igb_disable_sriov(struct pci_dev *pdev)
3480 {
3481 	struct net_device *netdev = pci_get_drvdata(pdev);
3482 	struct igb_adapter *adapter = netdev_priv(netdev);
3483 	struct e1000_hw *hw = &adapter->hw;
3484 
3485 	/* reclaim resources allocated to VFs */
3486 	if (adapter->vf_data) {
3487 		/* disable iov and allow time for transactions to clear */
3488 		if (pci_vfs_assigned(pdev)) {
3489 			dev_warn(&pdev->dev,
3490 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3491 			return -EPERM;
3492 		} else {
3493 			pci_disable_sriov(pdev);
3494 			msleep(500);
3495 		}
3496 
3497 		kfree(adapter->vf_mac_list);
3498 		adapter->vf_mac_list = NULL;
3499 		kfree(adapter->vf_data);
3500 		adapter->vf_data = NULL;
3501 		adapter->vfs_allocated_count = 0;
3502 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3503 		wrfl();
3504 		msleep(100);
3505 		dev_info(&pdev->dev, "IOV Disabled\n");
3506 
3507 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3508 		adapter->flags |= IGB_FLAG_DMAC;
3509 	}
3510 
3511 	return 0;
3512 }
3513 
igb_enable_sriov(struct pci_dev * pdev,int num_vfs)3514 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3515 {
3516 	struct net_device *netdev = pci_get_drvdata(pdev);
3517 	struct igb_adapter *adapter = netdev_priv(netdev);
3518 	int old_vfs = pci_num_vf(pdev);
3519 	struct vf_mac_filter *mac_list;
3520 	int err = 0;
3521 	int num_vf_mac_filters, i;
3522 
3523 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3524 		err = -EPERM;
3525 		goto out;
3526 	}
3527 	if (!num_vfs)
3528 		goto out;
3529 
3530 	if (old_vfs) {
3531 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3532 			 old_vfs, max_vfs);
3533 		adapter->vfs_allocated_count = old_vfs;
3534 	} else
3535 		adapter->vfs_allocated_count = num_vfs;
3536 
3537 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3538 				sizeof(struct vf_data_storage), GFP_KERNEL);
3539 
3540 	/* if allocation failed then we do not support SR-IOV */
3541 	if (!adapter->vf_data) {
3542 		adapter->vfs_allocated_count = 0;
3543 		err = -ENOMEM;
3544 		goto out;
3545 	}
3546 
3547 	/* Due to the limited number of RAR entries calculate potential
3548 	 * number of MAC filters available for the VFs. Reserve entries
3549 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3550 	 * for each VF for VF MAC.
3551 	 */
3552 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3553 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3554 			      adapter->vfs_allocated_count);
3555 
3556 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3557 				       sizeof(struct vf_mac_filter),
3558 				       GFP_KERNEL);
3559 
3560 	mac_list = adapter->vf_mac_list;
3561 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3562 
3563 	if (adapter->vf_mac_list) {
3564 		/* Initialize list of VF MAC filters */
3565 		for (i = 0; i < num_vf_mac_filters; i++) {
3566 			mac_list->vf = -1;
3567 			mac_list->free = true;
3568 			list_add(&mac_list->l, &adapter->vf_macs.l);
3569 			mac_list++;
3570 		}
3571 	} else {
3572 		/* If we could not allocate memory for the VF MAC filters
3573 		 * we can continue without this feature but warn user.
3574 		 */
3575 		dev_err(&pdev->dev,
3576 			"Unable to allocate memory for VF MAC filter list\n");
3577 	}
3578 
3579 	/* only call pci_enable_sriov() if no VFs are allocated already */
3580 	if (!old_vfs) {
3581 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3582 		if (err)
3583 			goto err_out;
3584 	}
3585 	dev_info(&pdev->dev, "%d VFs allocated\n",
3586 		 adapter->vfs_allocated_count);
3587 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3588 		igb_vf_configure(adapter, i);
3589 
3590 	/* DMA Coalescing is not supported in IOV mode. */
3591 	adapter->flags &= ~IGB_FLAG_DMAC;
3592 	goto out;
3593 
3594 err_out:
3595 	kfree(adapter->vf_mac_list);
3596 	adapter->vf_mac_list = NULL;
3597 	kfree(adapter->vf_data);
3598 	adapter->vf_data = NULL;
3599 	adapter->vfs_allocated_count = 0;
3600 out:
3601 	return err;
3602 }
3603 
3604 #endif
3605 /**
3606  *  igb_remove_i2c - Cleanup  I2C interface
3607  *  @adapter: pointer to adapter structure
3608  **/
igb_remove_i2c(struct igb_adapter * adapter)3609 static void igb_remove_i2c(struct igb_adapter *adapter)
3610 {
3611 	/* free the adapter bus structure */
3612 	i2c_del_adapter(&adapter->i2c_adap);
3613 }
3614 
3615 /**
3616  *  igb_remove - Device Removal Routine
3617  *  @pdev: PCI device information struct
3618  *
3619  *  igb_remove is called by the PCI subsystem to alert the driver
3620  *  that it should release a PCI device.  The could be caused by a
3621  *  Hot-Plug event, or because the driver is going to be removed from
3622  *  memory.
3623  **/
igb_remove(struct pci_dev * pdev)3624 static void igb_remove(struct pci_dev *pdev)
3625 {
3626 	struct net_device *netdev = pci_get_drvdata(pdev);
3627 	struct igb_adapter *adapter = netdev_priv(netdev);
3628 	struct e1000_hw *hw = &adapter->hw;
3629 
3630 	pm_runtime_get_noresume(&pdev->dev);
3631 #ifdef CONFIG_IGB_HWMON
3632 	igb_sysfs_exit(adapter);
3633 #endif
3634 	igb_remove_i2c(adapter);
3635 	igb_ptp_stop(adapter);
3636 	/* The watchdog timer may be rescheduled, so explicitly
3637 	 * disable watchdog from being rescheduled.
3638 	 */
3639 	set_bit(__IGB_DOWN, &adapter->state);
3640 	del_timer_sync(&adapter->watchdog_timer);
3641 	del_timer_sync(&adapter->phy_info_timer);
3642 
3643 	cancel_work_sync(&adapter->reset_task);
3644 	cancel_work_sync(&adapter->watchdog_task);
3645 
3646 #ifdef CONFIG_IGB_DCA
3647 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3648 		dev_info(&pdev->dev, "DCA disabled\n");
3649 		dca_remove_requester(&pdev->dev);
3650 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3651 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3652 	}
3653 #endif
3654 
3655 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3656 	 * would have already happened in close and is redundant.
3657 	 */
3658 	igb_release_hw_control(adapter);
3659 
3660 #ifdef CONFIG_PCI_IOV
3661 	igb_disable_sriov(pdev);
3662 #endif
3663 
3664 	unregister_netdev(netdev);
3665 
3666 	igb_clear_interrupt_scheme(adapter);
3667 
3668 	pci_iounmap(pdev, adapter->io_addr);
3669 	if (hw->flash_address)
3670 		iounmap(hw->flash_address);
3671 	pci_release_mem_regions(pdev);
3672 
3673 	kfree(adapter->mac_table);
3674 	kfree(adapter->shadow_vfta);
3675 	free_netdev(netdev);
3676 
3677 	pci_disable_pcie_error_reporting(pdev);
3678 
3679 	pci_disable_device(pdev);
3680 }
3681 
3682 /**
3683  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3684  *  @adapter: board private structure to initialize
3685  *
3686  *  This function initializes the vf specific data storage and then attempts to
3687  *  allocate the VFs.  The reason for ordering it this way is because it is much
3688  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3689  *  the memory for the VFs.
3690  **/
igb_probe_vfs(struct igb_adapter * adapter)3691 static void igb_probe_vfs(struct igb_adapter *adapter)
3692 {
3693 #ifdef CONFIG_PCI_IOV
3694 	struct pci_dev *pdev = adapter->pdev;
3695 	struct e1000_hw *hw = &adapter->hw;
3696 
3697 	/* Virtualization features not supported on i210 family. */
3698 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3699 		return;
3700 
3701 	/* Of the below we really only want the effect of getting
3702 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3703 	 * igb_enable_sriov() has no effect.
3704 	 */
3705 	igb_set_interrupt_capability(adapter, true);
3706 	igb_reset_interrupt_capability(adapter);
3707 
3708 	pci_sriov_set_totalvfs(pdev, 7);
3709 	igb_enable_sriov(pdev, max_vfs);
3710 
3711 #endif /* CONFIG_PCI_IOV */
3712 }
3713 
igb_get_max_rss_queues(struct igb_adapter * adapter)3714 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3715 {
3716 	struct e1000_hw *hw = &adapter->hw;
3717 	unsigned int max_rss_queues;
3718 
3719 	/* Determine the maximum number of RSS queues supported. */
3720 	switch (hw->mac.type) {
3721 	case e1000_i211:
3722 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3723 		break;
3724 	case e1000_82575:
3725 	case e1000_i210:
3726 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3727 		break;
3728 	case e1000_i350:
3729 		/* I350 cannot do RSS and SR-IOV at the same time */
3730 		if (!!adapter->vfs_allocated_count) {
3731 			max_rss_queues = 1;
3732 			break;
3733 		}
3734 		/* fall through */
3735 	case e1000_82576:
3736 		if (!!adapter->vfs_allocated_count) {
3737 			max_rss_queues = 2;
3738 			break;
3739 		}
3740 		/* fall through */
3741 	case e1000_82580:
3742 	case e1000_i354:
3743 	default:
3744 		max_rss_queues = IGB_MAX_RX_QUEUES;
3745 		break;
3746 	}
3747 
3748 	return max_rss_queues;
3749 }
3750 
igb_init_queue_configuration(struct igb_adapter * adapter)3751 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3752 {
3753 	u32 max_rss_queues;
3754 
3755 	max_rss_queues = igb_get_max_rss_queues(adapter);
3756 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3757 
3758 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3759 }
3760 
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3761 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3762 			      const u32 max_rss_queues)
3763 {
3764 	struct e1000_hw *hw = &adapter->hw;
3765 
3766 	/* Determine if we need to pair queues. */
3767 	switch (hw->mac.type) {
3768 	case e1000_82575:
3769 	case e1000_i211:
3770 		/* Device supports enough interrupts without queue pairing. */
3771 		break;
3772 	case e1000_82576:
3773 	case e1000_82580:
3774 	case e1000_i350:
3775 	case e1000_i354:
3776 	case e1000_i210:
3777 	default:
3778 		/* If rss_queues > half of max_rss_queues, pair the queues in
3779 		 * order to conserve interrupts due to limited supply.
3780 		 */
3781 		if (adapter->rss_queues > (max_rss_queues / 2))
3782 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3783 		else
3784 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3785 		break;
3786 	}
3787 }
3788 
3789 /**
3790  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3791  *  @adapter: board private structure to initialize
3792  *
3793  *  igb_sw_init initializes the Adapter private data structure.
3794  *  Fields are initialized based on PCI device information and
3795  *  OS network device settings (MTU size).
3796  **/
igb_sw_init(struct igb_adapter * adapter)3797 static int igb_sw_init(struct igb_adapter *adapter)
3798 {
3799 	struct e1000_hw *hw = &adapter->hw;
3800 	struct net_device *netdev = adapter->netdev;
3801 	struct pci_dev *pdev = adapter->pdev;
3802 
3803 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3804 
3805 	/* set default ring sizes */
3806 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3807 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3808 
3809 	/* set default ITR values */
3810 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3811 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3812 
3813 	/* set default work limits */
3814 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3815 
3816 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3817 				  VLAN_HLEN;
3818 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3819 
3820 	spin_lock_init(&adapter->nfc_lock);
3821 	spin_lock_init(&adapter->stats64_lock);
3822 #ifdef CONFIG_PCI_IOV
3823 	switch (hw->mac.type) {
3824 	case e1000_82576:
3825 	case e1000_i350:
3826 		if (max_vfs > 7) {
3827 			dev_warn(&pdev->dev,
3828 				 "Maximum of 7 VFs per PF, using max\n");
3829 			max_vfs = adapter->vfs_allocated_count = 7;
3830 		} else
3831 			adapter->vfs_allocated_count = max_vfs;
3832 		if (adapter->vfs_allocated_count)
3833 			dev_warn(&pdev->dev,
3834 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3835 		break;
3836 	default:
3837 		break;
3838 	}
3839 #endif /* CONFIG_PCI_IOV */
3840 
3841 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3842 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3843 
3844 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3845 				     sizeof(struct igb_mac_addr),
3846 				     GFP_KERNEL);
3847 	if (!adapter->mac_table)
3848 		return -ENOMEM;
3849 
3850 	igb_probe_vfs(adapter);
3851 
3852 	igb_init_queue_configuration(adapter);
3853 
3854 	/* Setup and initialize a copy of the hw vlan table array */
3855 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3856 				       GFP_KERNEL);
3857 	if (!adapter->shadow_vfta)
3858 		return -ENOMEM;
3859 
3860 	/* This call may decrease the number of queues */
3861 	if (igb_init_interrupt_scheme(adapter, true)) {
3862 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3863 		return -ENOMEM;
3864 	}
3865 
3866 	/* Explicitly disable IRQ since the NIC can be in any state. */
3867 	igb_irq_disable(adapter);
3868 
3869 	if (hw->mac.type >= e1000_i350)
3870 		adapter->flags &= ~IGB_FLAG_DMAC;
3871 
3872 	set_bit(__IGB_DOWN, &adapter->state);
3873 	return 0;
3874 }
3875 
3876 /**
3877  *  igb_open - Called when a network interface is made active
3878  *  @netdev: network interface device structure
3879  *
3880  *  Returns 0 on success, negative value on failure
3881  *
3882  *  The open entry point is called when a network interface is made
3883  *  active by the system (IFF_UP).  At this point all resources needed
3884  *  for transmit and receive operations are allocated, the interrupt
3885  *  handler is registered with the OS, the watchdog timer is started,
3886  *  and the stack is notified that the interface is ready.
3887  **/
__igb_open(struct net_device * netdev,bool resuming)3888 static int __igb_open(struct net_device *netdev, bool resuming)
3889 {
3890 	struct igb_adapter *adapter = netdev_priv(netdev);
3891 	struct e1000_hw *hw = &adapter->hw;
3892 	struct pci_dev *pdev = adapter->pdev;
3893 	int err;
3894 	int i;
3895 
3896 	/* disallow open during test */
3897 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3898 		WARN_ON(resuming);
3899 		return -EBUSY;
3900 	}
3901 
3902 	if (!resuming)
3903 		pm_runtime_get_sync(&pdev->dev);
3904 
3905 	netif_carrier_off(netdev);
3906 
3907 	/* allocate transmit descriptors */
3908 	err = igb_setup_all_tx_resources(adapter);
3909 	if (err)
3910 		goto err_setup_tx;
3911 
3912 	/* allocate receive descriptors */
3913 	err = igb_setup_all_rx_resources(adapter);
3914 	if (err)
3915 		goto err_setup_rx;
3916 
3917 	igb_power_up_link(adapter);
3918 
3919 	/* before we allocate an interrupt, we must be ready to handle it.
3920 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3921 	 * as soon as we call pci_request_irq, so we have to setup our
3922 	 * clean_rx handler before we do so.
3923 	 */
3924 	igb_configure(adapter);
3925 
3926 	err = igb_request_irq(adapter);
3927 	if (err)
3928 		goto err_req_irq;
3929 
3930 	/* Notify the stack of the actual queue counts. */
3931 	err = netif_set_real_num_tx_queues(adapter->netdev,
3932 					   adapter->num_tx_queues);
3933 	if (err)
3934 		goto err_set_queues;
3935 
3936 	err = netif_set_real_num_rx_queues(adapter->netdev,
3937 					   adapter->num_rx_queues);
3938 	if (err)
3939 		goto err_set_queues;
3940 
3941 	/* From here on the code is the same as igb_up() */
3942 	clear_bit(__IGB_DOWN, &adapter->state);
3943 
3944 	for (i = 0; i < adapter->num_q_vectors; i++)
3945 		napi_enable(&(adapter->q_vector[i]->napi));
3946 
3947 	/* Clear any pending interrupts. */
3948 	rd32(E1000_TSICR);
3949 	rd32(E1000_ICR);
3950 
3951 	igb_irq_enable(adapter);
3952 
3953 	/* notify VFs that reset has been completed */
3954 	if (adapter->vfs_allocated_count) {
3955 		u32 reg_data = rd32(E1000_CTRL_EXT);
3956 
3957 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3958 		wr32(E1000_CTRL_EXT, reg_data);
3959 	}
3960 
3961 	netif_tx_start_all_queues(netdev);
3962 
3963 	if (!resuming)
3964 		pm_runtime_put(&pdev->dev);
3965 
3966 	/* start the watchdog. */
3967 	hw->mac.get_link_status = 1;
3968 	schedule_work(&adapter->watchdog_task);
3969 
3970 	return 0;
3971 
3972 err_set_queues:
3973 	igb_free_irq(adapter);
3974 err_req_irq:
3975 	igb_release_hw_control(adapter);
3976 	igb_power_down_link(adapter);
3977 	igb_free_all_rx_resources(adapter);
3978 err_setup_rx:
3979 	igb_free_all_tx_resources(adapter);
3980 err_setup_tx:
3981 	igb_reset(adapter);
3982 	if (!resuming)
3983 		pm_runtime_put(&pdev->dev);
3984 
3985 	return err;
3986 }
3987 
igb_open(struct net_device * netdev)3988 int igb_open(struct net_device *netdev)
3989 {
3990 	return __igb_open(netdev, false);
3991 }
3992 
3993 /**
3994  *  igb_close - Disables a network interface
3995  *  @netdev: network interface device structure
3996  *
3997  *  Returns 0, this is not allowed to fail
3998  *
3999  *  The close entry point is called when an interface is de-activated
4000  *  by the OS.  The hardware is still under the driver's control, but
4001  *  needs to be disabled.  A global MAC reset is issued to stop the
4002  *  hardware, and all transmit and receive resources are freed.
4003  **/
__igb_close(struct net_device * netdev,bool suspending)4004 static int __igb_close(struct net_device *netdev, bool suspending)
4005 {
4006 	struct igb_adapter *adapter = netdev_priv(netdev);
4007 	struct pci_dev *pdev = adapter->pdev;
4008 
4009 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4010 
4011 	if (!suspending)
4012 		pm_runtime_get_sync(&pdev->dev);
4013 
4014 	igb_down(adapter);
4015 	igb_free_irq(adapter);
4016 
4017 	igb_free_all_tx_resources(adapter);
4018 	igb_free_all_rx_resources(adapter);
4019 
4020 	if (!suspending)
4021 		pm_runtime_put_sync(&pdev->dev);
4022 	return 0;
4023 }
4024 
igb_close(struct net_device * netdev)4025 int igb_close(struct net_device *netdev)
4026 {
4027 	if (netif_device_present(netdev) || netdev->dismantle)
4028 		return __igb_close(netdev, false);
4029 	return 0;
4030 }
4031 
4032 /**
4033  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4034  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4035  *
4036  *  Return 0 on success, negative on failure
4037  **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4038 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4039 {
4040 	struct device *dev = tx_ring->dev;
4041 	int size;
4042 
4043 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4044 
4045 	tx_ring->tx_buffer_info = vmalloc(size);
4046 	if (!tx_ring->tx_buffer_info)
4047 		goto err;
4048 
4049 	/* round up to nearest 4K */
4050 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4051 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4052 
4053 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4054 					   &tx_ring->dma, GFP_KERNEL);
4055 	if (!tx_ring->desc)
4056 		goto err;
4057 
4058 	tx_ring->next_to_use = 0;
4059 	tx_ring->next_to_clean = 0;
4060 
4061 	return 0;
4062 
4063 err:
4064 	vfree(tx_ring->tx_buffer_info);
4065 	tx_ring->tx_buffer_info = NULL;
4066 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4067 	return -ENOMEM;
4068 }
4069 
4070 /**
4071  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4072  *				 (Descriptors) for all queues
4073  *  @adapter: board private structure
4074  *
4075  *  Return 0 on success, negative on failure
4076  **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4077 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4078 {
4079 	struct pci_dev *pdev = adapter->pdev;
4080 	int i, err = 0;
4081 
4082 	for (i = 0; i < adapter->num_tx_queues; i++) {
4083 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4084 		if (err) {
4085 			dev_err(&pdev->dev,
4086 				"Allocation for Tx Queue %u failed\n", i);
4087 			for (i--; i >= 0; i--)
4088 				igb_free_tx_resources(adapter->tx_ring[i]);
4089 			break;
4090 		}
4091 	}
4092 
4093 	return err;
4094 }
4095 
4096 /**
4097  *  igb_setup_tctl - configure the transmit control registers
4098  *  @adapter: Board private structure
4099  **/
igb_setup_tctl(struct igb_adapter * adapter)4100 void igb_setup_tctl(struct igb_adapter *adapter)
4101 {
4102 	struct e1000_hw *hw = &adapter->hw;
4103 	u32 tctl;
4104 
4105 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4106 	wr32(E1000_TXDCTL(0), 0);
4107 
4108 	/* Program the Transmit Control Register */
4109 	tctl = rd32(E1000_TCTL);
4110 	tctl &= ~E1000_TCTL_CT;
4111 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4112 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4113 
4114 	igb_config_collision_dist(hw);
4115 
4116 	/* Enable transmits */
4117 	tctl |= E1000_TCTL_EN;
4118 
4119 	wr32(E1000_TCTL, tctl);
4120 }
4121 
4122 /**
4123  *  igb_configure_tx_ring - Configure transmit ring after Reset
4124  *  @adapter: board private structure
4125  *  @ring: tx ring to configure
4126  *
4127  *  Configure a transmit ring after a reset.
4128  **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4129 void igb_configure_tx_ring(struct igb_adapter *adapter,
4130 			   struct igb_ring *ring)
4131 {
4132 	struct e1000_hw *hw = &adapter->hw;
4133 	u32 txdctl = 0;
4134 	u64 tdba = ring->dma;
4135 	int reg_idx = ring->reg_idx;
4136 
4137 	wr32(E1000_TDLEN(reg_idx),
4138 	     ring->count * sizeof(union e1000_adv_tx_desc));
4139 	wr32(E1000_TDBAL(reg_idx),
4140 	     tdba & 0x00000000ffffffffULL);
4141 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4142 
4143 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4144 	wr32(E1000_TDH(reg_idx), 0);
4145 	writel(0, ring->tail);
4146 
4147 	txdctl |= IGB_TX_PTHRESH;
4148 	txdctl |= IGB_TX_HTHRESH << 8;
4149 	txdctl |= IGB_TX_WTHRESH << 16;
4150 
4151 	/* reinitialize tx_buffer_info */
4152 	memset(ring->tx_buffer_info, 0,
4153 	       sizeof(struct igb_tx_buffer) * ring->count);
4154 
4155 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4156 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4157 }
4158 
4159 /**
4160  *  igb_configure_tx - Configure transmit Unit after Reset
4161  *  @adapter: board private structure
4162  *
4163  *  Configure the Tx unit of the MAC after a reset.
4164  **/
igb_configure_tx(struct igb_adapter * adapter)4165 static void igb_configure_tx(struct igb_adapter *adapter)
4166 {
4167 	struct e1000_hw *hw = &adapter->hw;
4168 	int i;
4169 
4170 	/* disable the queues */
4171 	for (i = 0; i < adapter->num_tx_queues; i++)
4172 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4173 
4174 	wrfl();
4175 	usleep_range(10000, 20000);
4176 
4177 	for (i = 0; i < adapter->num_tx_queues; i++)
4178 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4179 }
4180 
4181 /**
4182  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4183  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4184  *
4185  *  Returns 0 on success, negative on failure
4186  **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4187 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4188 {
4189 	struct device *dev = rx_ring->dev;
4190 	int size;
4191 
4192 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4193 
4194 	rx_ring->rx_buffer_info = vmalloc(size);
4195 	if (!rx_ring->rx_buffer_info)
4196 		goto err;
4197 
4198 	/* Round up to nearest 4K */
4199 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4200 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4201 
4202 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4203 					   &rx_ring->dma, GFP_KERNEL);
4204 	if (!rx_ring->desc)
4205 		goto err;
4206 
4207 	rx_ring->next_to_alloc = 0;
4208 	rx_ring->next_to_clean = 0;
4209 	rx_ring->next_to_use = 0;
4210 
4211 	return 0;
4212 
4213 err:
4214 	vfree(rx_ring->rx_buffer_info);
4215 	rx_ring->rx_buffer_info = NULL;
4216 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4217 	return -ENOMEM;
4218 }
4219 
4220 /**
4221  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4222  *				 (Descriptors) for all queues
4223  *  @adapter: board private structure
4224  *
4225  *  Return 0 on success, negative on failure
4226  **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4227 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4228 {
4229 	struct pci_dev *pdev = adapter->pdev;
4230 	int i, err = 0;
4231 
4232 	for (i = 0; i < adapter->num_rx_queues; i++) {
4233 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4234 		if (err) {
4235 			dev_err(&pdev->dev,
4236 				"Allocation for Rx Queue %u failed\n", i);
4237 			for (i--; i >= 0; i--)
4238 				igb_free_rx_resources(adapter->rx_ring[i]);
4239 			break;
4240 		}
4241 	}
4242 
4243 	return err;
4244 }
4245 
4246 /**
4247  *  igb_setup_mrqc - configure the multiple receive queue control registers
4248  *  @adapter: Board private structure
4249  **/
igb_setup_mrqc(struct igb_adapter * adapter)4250 static void igb_setup_mrqc(struct igb_adapter *adapter)
4251 {
4252 	struct e1000_hw *hw = &adapter->hw;
4253 	u32 mrqc, rxcsum;
4254 	u32 j, num_rx_queues;
4255 	u32 rss_key[10];
4256 
4257 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4258 	for (j = 0; j < 10; j++)
4259 		wr32(E1000_RSSRK(j), rss_key[j]);
4260 
4261 	num_rx_queues = adapter->rss_queues;
4262 
4263 	switch (hw->mac.type) {
4264 	case e1000_82576:
4265 		/* 82576 supports 2 RSS queues for SR-IOV */
4266 		if (adapter->vfs_allocated_count)
4267 			num_rx_queues = 2;
4268 		break;
4269 	default:
4270 		break;
4271 	}
4272 
4273 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4274 		for (j = 0; j < IGB_RETA_SIZE; j++)
4275 			adapter->rss_indir_tbl[j] =
4276 			(j * num_rx_queues) / IGB_RETA_SIZE;
4277 		adapter->rss_indir_tbl_init = num_rx_queues;
4278 	}
4279 	igb_write_rss_indir_tbl(adapter);
4280 
4281 	/* Disable raw packet checksumming so that RSS hash is placed in
4282 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4283 	 * offloads as they are enabled by default
4284 	 */
4285 	rxcsum = rd32(E1000_RXCSUM);
4286 	rxcsum |= E1000_RXCSUM_PCSD;
4287 
4288 	if (adapter->hw.mac.type >= e1000_82576)
4289 		/* Enable Receive Checksum Offload for SCTP */
4290 		rxcsum |= E1000_RXCSUM_CRCOFL;
4291 
4292 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4293 	wr32(E1000_RXCSUM, rxcsum);
4294 
4295 	/* Generate RSS hash based on packet types, TCP/UDP
4296 	 * port numbers and/or IPv4/v6 src and dst addresses
4297 	 */
4298 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4299 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4300 	       E1000_MRQC_RSS_FIELD_IPV6 |
4301 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4302 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4303 
4304 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4305 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4306 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4307 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4308 
4309 	/* If VMDq is enabled then we set the appropriate mode for that, else
4310 	 * we default to RSS so that an RSS hash is calculated per packet even
4311 	 * if we are only using one queue
4312 	 */
4313 	if (adapter->vfs_allocated_count) {
4314 		if (hw->mac.type > e1000_82575) {
4315 			/* Set the default pool for the PF's first queue */
4316 			u32 vtctl = rd32(E1000_VT_CTL);
4317 
4318 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4319 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4320 			vtctl |= adapter->vfs_allocated_count <<
4321 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4322 			wr32(E1000_VT_CTL, vtctl);
4323 		}
4324 		if (adapter->rss_queues > 1)
4325 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4326 		else
4327 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4328 	} else {
4329 		if (hw->mac.type != e1000_i211)
4330 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4331 	}
4332 	igb_vmm_control(adapter);
4333 
4334 	wr32(E1000_MRQC, mrqc);
4335 }
4336 
4337 /**
4338  *  igb_setup_rctl - configure the receive control registers
4339  *  @adapter: Board private structure
4340  **/
igb_setup_rctl(struct igb_adapter * adapter)4341 void igb_setup_rctl(struct igb_adapter *adapter)
4342 {
4343 	struct e1000_hw *hw = &adapter->hw;
4344 	u32 rctl;
4345 
4346 	rctl = rd32(E1000_RCTL);
4347 
4348 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4349 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4350 
4351 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4352 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4353 
4354 	/* enable stripping of CRC. It's unlikely this will break BMC
4355 	 * redirection as it did with e1000. Newer features require
4356 	 * that the HW strips the CRC.
4357 	 */
4358 	rctl |= E1000_RCTL_SECRC;
4359 
4360 	/* disable store bad packets and clear size bits. */
4361 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4362 
4363 	/* enable LPE to allow for reception of jumbo frames */
4364 	rctl |= E1000_RCTL_LPE;
4365 
4366 	/* disable queue 0 to prevent tail write w/o re-config */
4367 	wr32(E1000_RXDCTL(0), 0);
4368 
4369 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4370 	 * queue drop for all VF and PF queues to prevent head of line blocking
4371 	 * if an un-trusted VF does not provide descriptors to hardware.
4372 	 */
4373 	if (adapter->vfs_allocated_count) {
4374 		/* set all queue drop enable bits */
4375 		wr32(E1000_QDE, ALL_QUEUES);
4376 	}
4377 
4378 	/* This is useful for sniffing bad packets. */
4379 	if (adapter->netdev->features & NETIF_F_RXALL) {
4380 		/* UPE and MPE will be handled by normal PROMISC logic
4381 		 * in e1000e_set_rx_mode
4382 		 */
4383 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4384 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4385 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4386 
4387 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4388 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4389 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4390 		 * and that breaks VLANs.
4391 		 */
4392 	}
4393 
4394 	wr32(E1000_RCTL, rctl);
4395 }
4396 
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4397 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4398 				   int vfn)
4399 {
4400 	struct e1000_hw *hw = &adapter->hw;
4401 	u32 vmolr;
4402 
4403 	if (size > MAX_JUMBO_FRAME_SIZE)
4404 		size = MAX_JUMBO_FRAME_SIZE;
4405 
4406 	vmolr = rd32(E1000_VMOLR(vfn));
4407 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4408 	vmolr |= size | E1000_VMOLR_LPE;
4409 	wr32(E1000_VMOLR(vfn), vmolr);
4410 
4411 	return 0;
4412 }
4413 
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4414 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4415 					 int vfn, bool enable)
4416 {
4417 	struct e1000_hw *hw = &adapter->hw;
4418 	u32 val, reg;
4419 
4420 	if (hw->mac.type < e1000_82576)
4421 		return;
4422 
4423 	if (hw->mac.type == e1000_i350)
4424 		reg = E1000_DVMOLR(vfn);
4425 	else
4426 		reg = E1000_VMOLR(vfn);
4427 
4428 	val = rd32(reg);
4429 	if (enable)
4430 		val |= E1000_VMOLR_STRVLAN;
4431 	else
4432 		val &= ~(E1000_VMOLR_STRVLAN);
4433 	wr32(reg, val);
4434 }
4435 
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4436 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4437 				 int vfn, bool aupe)
4438 {
4439 	struct e1000_hw *hw = &adapter->hw;
4440 	u32 vmolr;
4441 
4442 	/* This register exists only on 82576 and newer so if we are older then
4443 	 * we should exit and do nothing
4444 	 */
4445 	if (hw->mac.type < e1000_82576)
4446 		return;
4447 
4448 	vmolr = rd32(E1000_VMOLR(vfn));
4449 	if (aupe)
4450 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4451 	else
4452 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4453 
4454 	/* clear all bits that might not be set */
4455 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4456 
4457 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4458 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4459 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4460 	 * multicast packets
4461 	 */
4462 	if (vfn <= adapter->vfs_allocated_count)
4463 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4464 
4465 	wr32(E1000_VMOLR(vfn), vmolr);
4466 }
4467 
4468 /**
4469  *  igb_configure_rx_ring - Configure a receive ring after Reset
4470  *  @adapter: board private structure
4471  *  @ring: receive ring to be configured
4472  *
4473  *  Configure the Rx unit of the MAC after a reset.
4474  **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4475 void igb_configure_rx_ring(struct igb_adapter *adapter,
4476 			   struct igb_ring *ring)
4477 {
4478 	struct e1000_hw *hw = &adapter->hw;
4479 	union e1000_adv_rx_desc *rx_desc;
4480 	u64 rdba = ring->dma;
4481 	int reg_idx = ring->reg_idx;
4482 	u32 srrctl = 0, rxdctl = 0;
4483 
4484 	/* disable the queue */
4485 	wr32(E1000_RXDCTL(reg_idx), 0);
4486 
4487 	/* Set DMA base address registers */
4488 	wr32(E1000_RDBAL(reg_idx),
4489 	     rdba & 0x00000000ffffffffULL);
4490 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4491 	wr32(E1000_RDLEN(reg_idx),
4492 	     ring->count * sizeof(union e1000_adv_rx_desc));
4493 
4494 	/* initialize head and tail */
4495 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4496 	wr32(E1000_RDH(reg_idx), 0);
4497 	writel(0, ring->tail);
4498 
4499 	/* set descriptor configuration */
4500 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4501 	if (ring_uses_large_buffer(ring))
4502 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4503 	else
4504 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4505 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4506 	if (hw->mac.type >= e1000_82580)
4507 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4508 	/* Only set Drop Enable if we are supporting multiple queues */
4509 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4510 		srrctl |= E1000_SRRCTL_DROP_EN;
4511 
4512 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4513 
4514 	/* set filtering for VMDQ pools */
4515 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4516 
4517 	rxdctl |= IGB_RX_PTHRESH;
4518 	rxdctl |= IGB_RX_HTHRESH << 8;
4519 	rxdctl |= IGB_RX_WTHRESH << 16;
4520 
4521 	/* initialize rx_buffer_info */
4522 	memset(ring->rx_buffer_info, 0,
4523 	       sizeof(struct igb_rx_buffer) * ring->count);
4524 
4525 	/* initialize Rx descriptor 0 */
4526 	rx_desc = IGB_RX_DESC(ring, 0);
4527 	rx_desc->wb.upper.length = 0;
4528 
4529 	/* enable receive descriptor fetching */
4530 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4531 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4532 }
4533 
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4534 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4535 				  struct igb_ring *rx_ring)
4536 {
4537 	/* set build_skb and buffer size flags */
4538 	clear_ring_build_skb_enabled(rx_ring);
4539 	clear_ring_uses_large_buffer(rx_ring);
4540 
4541 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4542 		return;
4543 
4544 	set_ring_build_skb_enabled(rx_ring);
4545 
4546 #if (PAGE_SIZE < 8192)
4547 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4548 		return;
4549 
4550 	set_ring_uses_large_buffer(rx_ring);
4551 #endif
4552 }
4553 
4554 /**
4555  *  igb_configure_rx - Configure receive Unit after Reset
4556  *  @adapter: board private structure
4557  *
4558  *  Configure the Rx unit of the MAC after a reset.
4559  **/
igb_configure_rx(struct igb_adapter * adapter)4560 static void igb_configure_rx(struct igb_adapter *adapter)
4561 {
4562 	int i;
4563 
4564 	/* set the correct pool for the PF default MAC address in entry 0 */
4565 	igb_set_default_mac_filter(adapter);
4566 
4567 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4568 	 * the Base and Length of the Rx Descriptor Ring
4569 	 */
4570 	for (i = 0; i < adapter->num_rx_queues; i++) {
4571 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4572 
4573 		igb_set_rx_buffer_len(adapter, rx_ring);
4574 		igb_configure_rx_ring(adapter, rx_ring);
4575 	}
4576 }
4577 
4578 /**
4579  *  igb_free_tx_resources - Free Tx Resources per Queue
4580  *  @tx_ring: Tx descriptor ring for a specific queue
4581  *
4582  *  Free all transmit software resources
4583  **/
igb_free_tx_resources(struct igb_ring * tx_ring)4584 void igb_free_tx_resources(struct igb_ring *tx_ring)
4585 {
4586 	igb_clean_tx_ring(tx_ring);
4587 
4588 	vfree(tx_ring->tx_buffer_info);
4589 	tx_ring->tx_buffer_info = NULL;
4590 
4591 	/* if not set, then don't free */
4592 	if (!tx_ring->desc)
4593 		return;
4594 
4595 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4596 			  tx_ring->desc, tx_ring->dma);
4597 
4598 	tx_ring->desc = NULL;
4599 }
4600 
4601 /**
4602  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4603  *  @adapter: board private structure
4604  *
4605  *  Free all transmit software resources
4606  **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4607 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4608 {
4609 	int i;
4610 
4611 	for (i = 0; i < adapter->num_tx_queues; i++)
4612 		if (adapter->tx_ring[i])
4613 			igb_free_tx_resources(adapter->tx_ring[i]);
4614 }
4615 
4616 /**
4617  *  igb_clean_tx_ring - Free Tx Buffers
4618  *  @tx_ring: ring to be cleaned
4619  **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4620 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4621 {
4622 	u16 i = tx_ring->next_to_clean;
4623 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4624 
4625 	while (i != tx_ring->next_to_use) {
4626 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4627 
4628 		/* Free all the Tx ring sk_buffs */
4629 		dev_kfree_skb_any(tx_buffer->skb);
4630 
4631 		/* unmap skb header data */
4632 		dma_unmap_single(tx_ring->dev,
4633 				 dma_unmap_addr(tx_buffer, dma),
4634 				 dma_unmap_len(tx_buffer, len),
4635 				 DMA_TO_DEVICE);
4636 
4637 		/* check for eop_desc to determine the end of the packet */
4638 		eop_desc = tx_buffer->next_to_watch;
4639 		tx_desc = IGB_TX_DESC(tx_ring, i);
4640 
4641 		/* unmap remaining buffers */
4642 		while (tx_desc != eop_desc) {
4643 			tx_buffer++;
4644 			tx_desc++;
4645 			i++;
4646 			if (unlikely(i == tx_ring->count)) {
4647 				i = 0;
4648 				tx_buffer = tx_ring->tx_buffer_info;
4649 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4650 			}
4651 
4652 			/* unmap any remaining paged data */
4653 			if (dma_unmap_len(tx_buffer, len))
4654 				dma_unmap_page(tx_ring->dev,
4655 					       dma_unmap_addr(tx_buffer, dma),
4656 					       dma_unmap_len(tx_buffer, len),
4657 					       DMA_TO_DEVICE);
4658 		}
4659 
4660 		/* move us one more past the eop_desc for start of next pkt */
4661 		tx_buffer++;
4662 		i++;
4663 		if (unlikely(i == tx_ring->count)) {
4664 			i = 0;
4665 			tx_buffer = tx_ring->tx_buffer_info;
4666 		}
4667 	}
4668 
4669 	/* reset BQL for queue */
4670 	netdev_tx_reset_queue(txring_txq(tx_ring));
4671 
4672 	/* reset next_to_use and next_to_clean */
4673 	tx_ring->next_to_use = 0;
4674 	tx_ring->next_to_clean = 0;
4675 }
4676 
4677 /**
4678  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4679  *  @adapter: board private structure
4680  **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4681 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4682 {
4683 	int i;
4684 
4685 	for (i = 0; i < adapter->num_tx_queues; i++)
4686 		if (adapter->tx_ring[i])
4687 			igb_clean_tx_ring(adapter->tx_ring[i]);
4688 }
4689 
4690 /**
4691  *  igb_free_rx_resources - Free Rx Resources
4692  *  @rx_ring: ring to clean the resources from
4693  *
4694  *  Free all receive software resources
4695  **/
igb_free_rx_resources(struct igb_ring * rx_ring)4696 void igb_free_rx_resources(struct igb_ring *rx_ring)
4697 {
4698 	igb_clean_rx_ring(rx_ring);
4699 
4700 	vfree(rx_ring->rx_buffer_info);
4701 	rx_ring->rx_buffer_info = NULL;
4702 
4703 	/* if not set, then don't free */
4704 	if (!rx_ring->desc)
4705 		return;
4706 
4707 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4708 			  rx_ring->desc, rx_ring->dma);
4709 
4710 	rx_ring->desc = NULL;
4711 }
4712 
4713 /**
4714  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4715  *  @adapter: board private structure
4716  *
4717  *  Free all receive software resources
4718  **/
igb_free_all_rx_resources(struct igb_adapter * adapter)4719 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4720 {
4721 	int i;
4722 
4723 	for (i = 0; i < adapter->num_rx_queues; i++)
4724 		if (adapter->rx_ring[i])
4725 			igb_free_rx_resources(adapter->rx_ring[i]);
4726 }
4727 
4728 /**
4729  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4730  *  @rx_ring: ring to free buffers from
4731  **/
igb_clean_rx_ring(struct igb_ring * rx_ring)4732 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4733 {
4734 	u16 i = rx_ring->next_to_clean;
4735 
4736 	dev_kfree_skb(rx_ring->skb);
4737 	rx_ring->skb = NULL;
4738 
4739 	/* Free all the Rx ring sk_buffs */
4740 	while (i != rx_ring->next_to_alloc) {
4741 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4742 
4743 		/* Invalidate cache lines that may have been written to by
4744 		 * device so that we avoid corrupting memory.
4745 		 */
4746 		dma_sync_single_range_for_cpu(rx_ring->dev,
4747 					      buffer_info->dma,
4748 					      buffer_info->page_offset,
4749 					      igb_rx_bufsz(rx_ring),
4750 					      DMA_FROM_DEVICE);
4751 
4752 		/* free resources associated with mapping */
4753 		dma_unmap_page_attrs(rx_ring->dev,
4754 				     buffer_info->dma,
4755 				     igb_rx_pg_size(rx_ring),
4756 				     DMA_FROM_DEVICE,
4757 				     IGB_RX_DMA_ATTR);
4758 		__page_frag_cache_drain(buffer_info->page,
4759 					buffer_info->pagecnt_bias);
4760 
4761 		i++;
4762 		if (i == rx_ring->count)
4763 			i = 0;
4764 	}
4765 
4766 	rx_ring->next_to_alloc = 0;
4767 	rx_ring->next_to_clean = 0;
4768 	rx_ring->next_to_use = 0;
4769 }
4770 
4771 /**
4772  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4773  *  @adapter: board private structure
4774  **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)4775 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4776 {
4777 	int i;
4778 
4779 	for (i = 0; i < adapter->num_rx_queues; i++)
4780 		if (adapter->rx_ring[i])
4781 			igb_clean_rx_ring(adapter->rx_ring[i]);
4782 }
4783 
4784 /**
4785  *  igb_set_mac - Change the Ethernet Address of the NIC
4786  *  @netdev: network interface device structure
4787  *  @p: pointer to an address structure
4788  *
4789  *  Returns 0 on success, negative on failure
4790  **/
igb_set_mac(struct net_device * netdev,void * p)4791 static int igb_set_mac(struct net_device *netdev, void *p)
4792 {
4793 	struct igb_adapter *adapter = netdev_priv(netdev);
4794 	struct e1000_hw *hw = &adapter->hw;
4795 	struct sockaddr *addr = p;
4796 
4797 	if (!is_valid_ether_addr(addr->sa_data))
4798 		return -EADDRNOTAVAIL;
4799 
4800 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4801 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4802 
4803 	/* set the correct pool for the new PF MAC address in entry 0 */
4804 	igb_set_default_mac_filter(adapter);
4805 
4806 	return 0;
4807 }
4808 
4809 /**
4810  *  igb_write_mc_addr_list - write multicast addresses to MTA
4811  *  @netdev: network interface device structure
4812  *
4813  *  Writes multicast address list to the MTA hash table.
4814  *  Returns: -ENOMEM on failure
4815  *           0 on no addresses written
4816  *           X on writing X addresses to MTA
4817  **/
igb_write_mc_addr_list(struct net_device * netdev)4818 static int igb_write_mc_addr_list(struct net_device *netdev)
4819 {
4820 	struct igb_adapter *adapter = netdev_priv(netdev);
4821 	struct e1000_hw *hw = &adapter->hw;
4822 	struct netdev_hw_addr *ha;
4823 	u8  *mta_list;
4824 	int i;
4825 
4826 	if (netdev_mc_empty(netdev)) {
4827 		/* nothing to program, so clear mc list */
4828 		igb_update_mc_addr_list(hw, NULL, 0);
4829 		igb_restore_vf_multicasts(adapter);
4830 		return 0;
4831 	}
4832 
4833 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4834 	if (!mta_list)
4835 		return -ENOMEM;
4836 
4837 	/* The shared function expects a packed array of only addresses. */
4838 	i = 0;
4839 	netdev_for_each_mc_addr(ha, netdev)
4840 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4841 
4842 	igb_update_mc_addr_list(hw, mta_list, i);
4843 	kfree(mta_list);
4844 
4845 	return netdev_mc_count(netdev);
4846 }
4847 
igb_vlan_promisc_enable(struct igb_adapter * adapter)4848 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4849 {
4850 	struct e1000_hw *hw = &adapter->hw;
4851 	u32 i, pf_id;
4852 
4853 	switch (hw->mac.type) {
4854 	case e1000_i210:
4855 	case e1000_i211:
4856 	case e1000_i350:
4857 		/* VLAN filtering needed for VLAN prio filter */
4858 		if (adapter->netdev->features & NETIF_F_NTUPLE)
4859 			break;
4860 		/* fall through */
4861 	case e1000_82576:
4862 	case e1000_82580:
4863 	case e1000_i354:
4864 		/* VLAN filtering needed for pool filtering */
4865 		if (adapter->vfs_allocated_count)
4866 			break;
4867 		/* fall through */
4868 	default:
4869 		return 1;
4870 	}
4871 
4872 	/* We are already in VLAN promisc, nothing to do */
4873 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4874 		return 0;
4875 
4876 	if (!adapter->vfs_allocated_count)
4877 		goto set_vfta;
4878 
4879 	/* Add PF to all active pools */
4880 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4881 
4882 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4883 		u32 vlvf = rd32(E1000_VLVF(i));
4884 
4885 		vlvf |= BIT(pf_id);
4886 		wr32(E1000_VLVF(i), vlvf);
4887 	}
4888 
4889 set_vfta:
4890 	/* Set all bits in the VLAN filter table array */
4891 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4892 		hw->mac.ops.write_vfta(hw, i, ~0U);
4893 
4894 	/* Set flag so we don't redo unnecessary work */
4895 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4896 
4897 	return 0;
4898 }
4899 
4900 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)4901 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4902 {
4903 	struct e1000_hw *hw = &adapter->hw;
4904 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4905 	u32 vid_start = vfta_offset * 32;
4906 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4907 	u32 i, vid, word, bits, pf_id;
4908 
4909 	/* guarantee that we don't scrub out management VLAN */
4910 	vid = adapter->mng_vlan_id;
4911 	if (vid >= vid_start && vid < vid_end)
4912 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4913 
4914 	if (!adapter->vfs_allocated_count)
4915 		goto set_vfta;
4916 
4917 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4918 
4919 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4920 		u32 vlvf = rd32(E1000_VLVF(i));
4921 
4922 		/* pull VLAN ID from VLVF */
4923 		vid = vlvf & VLAN_VID_MASK;
4924 
4925 		/* only concern ourselves with a certain range */
4926 		if (vid < vid_start || vid >= vid_end)
4927 			continue;
4928 
4929 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4930 			/* record VLAN ID in VFTA */
4931 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4932 
4933 			/* if PF is part of this then continue */
4934 			if (test_bit(vid, adapter->active_vlans))
4935 				continue;
4936 		}
4937 
4938 		/* remove PF from the pool */
4939 		bits = ~BIT(pf_id);
4940 		bits &= rd32(E1000_VLVF(i));
4941 		wr32(E1000_VLVF(i), bits);
4942 	}
4943 
4944 set_vfta:
4945 	/* extract values from active_vlans and write back to VFTA */
4946 	for (i = VFTA_BLOCK_SIZE; i--;) {
4947 		vid = (vfta_offset + i) * 32;
4948 		word = vid / BITS_PER_LONG;
4949 		bits = vid % BITS_PER_LONG;
4950 
4951 		vfta[i] |= adapter->active_vlans[word] >> bits;
4952 
4953 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4954 	}
4955 }
4956 
igb_vlan_promisc_disable(struct igb_adapter * adapter)4957 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4958 {
4959 	u32 i;
4960 
4961 	/* We are not in VLAN promisc, nothing to do */
4962 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4963 		return;
4964 
4965 	/* Set flag so we don't redo unnecessary work */
4966 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4967 
4968 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4969 		igb_scrub_vfta(adapter, i);
4970 }
4971 
4972 /**
4973  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4974  *  @netdev: network interface device structure
4975  *
4976  *  The set_rx_mode entry point is called whenever the unicast or multicast
4977  *  address lists or the network interface flags are updated.  This routine is
4978  *  responsible for configuring the hardware for proper unicast, multicast,
4979  *  promiscuous mode, and all-multi behavior.
4980  **/
igb_set_rx_mode(struct net_device * netdev)4981 static void igb_set_rx_mode(struct net_device *netdev)
4982 {
4983 	struct igb_adapter *adapter = netdev_priv(netdev);
4984 	struct e1000_hw *hw = &adapter->hw;
4985 	unsigned int vfn = adapter->vfs_allocated_count;
4986 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4987 	int count;
4988 
4989 	/* Check for Promiscuous and All Multicast modes */
4990 	if (netdev->flags & IFF_PROMISC) {
4991 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4992 		vmolr |= E1000_VMOLR_MPME;
4993 
4994 		/* enable use of UTA filter to force packets to default pool */
4995 		if (hw->mac.type == e1000_82576)
4996 			vmolr |= E1000_VMOLR_ROPE;
4997 	} else {
4998 		if (netdev->flags & IFF_ALLMULTI) {
4999 			rctl |= E1000_RCTL_MPE;
5000 			vmolr |= E1000_VMOLR_MPME;
5001 		} else {
5002 			/* Write addresses to the MTA, if the attempt fails
5003 			 * then we should just turn on promiscuous mode so
5004 			 * that we can at least receive multicast traffic
5005 			 */
5006 			count = igb_write_mc_addr_list(netdev);
5007 			if (count < 0) {
5008 				rctl |= E1000_RCTL_MPE;
5009 				vmolr |= E1000_VMOLR_MPME;
5010 			} else if (count) {
5011 				vmolr |= E1000_VMOLR_ROMPE;
5012 			}
5013 		}
5014 	}
5015 
5016 	/* Write addresses to available RAR registers, if there is not
5017 	 * sufficient space to store all the addresses then enable
5018 	 * unicast promiscuous mode
5019 	 */
5020 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5021 		rctl |= E1000_RCTL_UPE;
5022 		vmolr |= E1000_VMOLR_ROPE;
5023 	}
5024 
5025 	/* enable VLAN filtering by default */
5026 	rctl |= E1000_RCTL_VFE;
5027 
5028 	/* disable VLAN filtering for modes that require it */
5029 	if ((netdev->flags & IFF_PROMISC) ||
5030 	    (netdev->features & NETIF_F_RXALL)) {
5031 		/* if we fail to set all rules then just clear VFE */
5032 		if (igb_vlan_promisc_enable(adapter))
5033 			rctl &= ~E1000_RCTL_VFE;
5034 	} else {
5035 		igb_vlan_promisc_disable(adapter);
5036 	}
5037 
5038 	/* update state of unicast, multicast, and VLAN filtering modes */
5039 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5040 				     E1000_RCTL_VFE);
5041 	wr32(E1000_RCTL, rctl);
5042 
5043 #if (PAGE_SIZE < 8192)
5044 	if (!adapter->vfs_allocated_count) {
5045 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5046 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5047 	}
5048 #endif
5049 	wr32(E1000_RLPML, rlpml);
5050 
5051 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5052 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5053 	 * we will have issues with VLAN tag stripping not being done for frames
5054 	 * that are only arriving because we are the default pool
5055 	 */
5056 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5057 		return;
5058 
5059 	/* set UTA to appropriate mode */
5060 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5061 
5062 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5063 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5064 
5065 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5066 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5067 #if (PAGE_SIZE < 8192)
5068 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5069 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5070 	else
5071 #endif
5072 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5073 	vmolr |= E1000_VMOLR_LPE;
5074 
5075 	wr32(E1000_VMOLR(vfn), vmolr);
5076 
5077 	igb_restore_vf_multicasts(adapter);
5078 }
5079 
igb_check_wvbr(struct igb_adapter * adapter)5080 static void igb_check_wvbr(struct igb_adapter *adapter)
5081 {
5082 	struct e1000_hw *hw = &adapter->hw;
5083 	u32 wvbr = 0;
5084 
5085 	switch (hw->mac.type) {
5086 	case e1000_82576:
5087 	case e1000_i350:
5088 		wvbr = rd32(E1000_WVBR);
5089 		if (!wvbr)
5090 			return;
5091 		break;
5092 	default:
5093 		break;
5094 	}
5095 
5096 	adapter->wvbr |= wvbr;
5097 }
5098 
5099 #define IGB_STAGGERED_QUEUE_OFFSET 8
5100 
igb_spoof_check(struct igb_adapter * adapter)5101 static void igb_spoof_check(struct igb_adapter *adapter)
5102 {
5103 	int j;
5104 
5105 	if (!adapter->wvbr)
5106 		return;
5107 
5108 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5109 		if (adapter->wvbr & BIT(j) ||
5110 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5111 			dev_warn(&adapter->pdev->dev,
5112 				"Spoof event(s) detected on VF %d\n", j);
5113 			adapter->wvbr &=
5114 				~(BIT(j) |
5115 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5116 		}
5117 	}
5118 }
5119 
5120 /* Need to wait a few seconds after link up to get diagnostic information from
5121  * the phy
5122  */
igb_update_phy_info(struct timer_list * t)5123 static void igb_update_phy_info(struct timer_list *t)
5124 {
5125 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5126 	igb_get_phy_info(&adapter->hw);
5127 }
5128 
5129 /**
5130  *  igb_has_link - check shared code for link and determine up/down
5131  *  @adapter: pointer to driver private info
5132  **/
igb_has_link(struct igb_adapter * adapter)5133 bool igb_has_link(struct igb_adapter *adapter)
5134 {
5135 	struct e1000_hw *hw = &adapter->hw;
5136 	bool link_active = false;
5137 
5138 	/* get_link_status is set on LSC (link status) interrupt or
5139 	 * rx sequence error interrupt.  get_link_status will stay
5140 	 * false until the e1000_check_for_link establishes link
5141 	 * for copper adapters ONLY
5142 	 */
5143 	switch (hw->phy.media_type) {
5144 	case e1000_media_type_copper:
5145 		if (!hw->mac.get_link_status)
5146 			return true;
5147 		/* fall through */
5148 	case e1000_media_type_internal_serdes:
5149 		hw->mac.ops.check_for_link(hw);
5150 		link_active = !hw->mac.get_link_status;
5151 		break;
5152 	default:
5153 	case e1000_media_type_unknown:
5154 		break;
5155 	}
5156 
5157 	if (((hw->mac.type == e1000_i210) ||
5158 	     (hw->mac.type == e1000_i211)) &&
5159 	     (hw->phy.id == I210_I_PHY_ID)) {
5160 		if (!netif_carrier_ok(adapter->netdev)) {
5161 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5162 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5163 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5164 			adapter->link_check_timeout = jiffies;
5165 		}
5166 	}
5167 
5168 	return link_active;
5169 }
5170 
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5171 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5172 {
5173 	bool ret = false;
5174 	u32 ctrl_ext, thstat;
5175 
5176 	/* check for thermal sensor event on i350 copper only */
5177 	if (hw->mac.type == e1000_i350) {
5178 		thstat = rd32(E1000_THSTAT);
5179 		ctrl_ext = rd32(E1000_CTRL_EXT);
5180 
5181 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5182 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5183 			ret = !!(thstat & event);
5184 	}
5185 
5186 	return ret;
5187 }
5188 
5189 /**
5190  *  igb_check_lvmmc - check for malformed packets received
5191  *  and indicated in LVMMC register
5192  *  @adapter: pointer to adapter
5193  **/
igb_check_lvmmc(struct igb_adapter * adapter)5194 static void igb_check_lvmmc(struct igb_adapter *adapter)
5195 {
5196 	struct e1000_hw *hw = &adapter->hw;
5197 	u32 lvmmc;
5198 
5199 	lvmmc = rd32(E1000_LVMMC);
5200 	if (lvmmc) {
5201 		if (unlikely(net_ratelimit())) {
5202 			netdev_warn(adapter->netdev,
5203 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5204 				    lvmmc);
5205 		}
5206 	}
5207 }
5208 
5209 /**
5210  *  igb_watchdog - Timer Call-back
5211  *  @data: pointer to adapter cast into an unsigned long
5212  **/
igb_watchdog(struct timer_list * t)5213 static void igb_watchdog(struct timer_list *t)
5214 {
5215 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5216 	/* Do the rest outside of interrupt context */
5217 	schedule_work(&adapter->watchdog_task);
5218 }
5219 
igb_watchdog_task(struct work_struct * work)5220 static void igb_watchdog_task(struct work_struct *work)
5221 {
5222 	struct igb_adapter *adapter = container_of(work,
5223 						   struct igb_adapter,
5224 						   watchdog_task);
5225 	struct e1000_hw *hw = &adapter->hw;
5226 	struct e1000_phy_info *phy = &hw->phy;
5227 	struct net_device *netdev = adapter->netdev;
5228 	u32 link;
5229 	int i;
5230 	u32 connsw;
5231 	u16 phy_data, retry_count = 20;
5232 
5233 	link = igb_has_link(adapter);
5234 
5235 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5236 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5237 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5238 		else
5239 			link = false;
5240 	}
5241 
5242 	/* Force link down if we have fiber to swap to */
5243 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5244 		if (hw->phy.media_type == e1000_media_type_copper) {
5245 			connsw = rd32(E1000_CONNSW);
5246 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5247 				link = 0;
5248 		}
5249 	}
5250 	if (link) {
5251 		/* Perform a reset if the media type changed. */
5252 		if (hw->dev_spec._82575.media_changed) {
5253 			hw->dev_spec._82575.media_changed = false;
5254 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5255 			igb_reset(adapter);
5256 		}
5257 		/* Cancel scheduled suspend requests. */
5258 		pm_runtime_resume(netdev->dev.parent);
5259 
5260 		if (!netif_carrier_ok(netdev)) {
5261 			u32 ctrl;
5262 
5263 			hw->mac.ops.get_speed_and_duplex(hw,
5264 							 &adapter->link_speed,
5265 							 &adapter->link_duplex);
5266 
5267 			ctrl = rd32(E1000_CTRL);
5268 			/* Links status message must follow this format */
5269 			netdev_info(netdev,
5270 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5271 			       netdev->name,
5272 			       adapter->link_speed,
5273 			       adapter->link_duplex == FULL_DUPLEX ?
5274 			       "Full" : "Half",
5275 			       (ctrl & E1000_CTRL_TFCE) &&
5276 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5277 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5278 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5279 
5280 			/* disable EEE if enabled */
5281 			if ((adapter->flags & IGB_FLAG_EEE) &&
5282 				(adapter->link_duplex == HALF_DUPLEX)) {
5283 				dev_info(&adapter->pdev->dev,
5284 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5285 				adapter->hw.dev_spec._82575.eee_disable = true;
5286 				adapter->flags &= ~IGB_FLAG_EEE;
5287 			}
5288 
5289 			/* check if SmartSpeed worked */
5290 			igb_check_downshift(hw);
5291 			if (phy->speed_downgraded)
5292 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5293 
5294 			/* check for thermal sensor event */
5295 			if (igb_thermal_sensor_event(hw,
5296 			    E1000_THSTAT_LINK_THROTTLE))
5297 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5298 
5299 			/* adjust timeout factor according to speed/duplex */
5300 			adapter->tx_timeout_factor = 1;
5301 			switch (adapter->link_speed) {
5302 			case SPEED_10:
5303 				adapter->tx_timeout_factor = 14;
5304 				break;
5305 			case SPEED_100:
5306 				/* maybe add some timeout factor ? */
5307 				break;
5308 			}
5309 
5310 			if (adapter->link_speed != SPEED_1000)
5311 				goto no_wait;
5312 
5313 			/* wait for Remote receiver status OK */
5314 retry_read_status:
5315 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5316 					      &phy_data)) {
5317 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5318 				    retry_count) {
5319 					msleep(100);
5320 					retry_count--;
5321 					goto retry_read_status;
5322 				} else if (!retry_count) {
5323 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5324 				}
5325 			} else {
5326 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5327 			}
5328 no_wait:
5329 			netif_carrier_on(netdev);
5330 
5331 			igb_ping_all_vfs(adapter);
5332 			igb_check_vf_rate_limit(adapter);
5333 
5334 			/* link state has changed, schedule phy info update */
5335 			if (!test_bit(__IGB_DOWN, &adapter->state))
5336 				mod_timer(&adapter->phy_info_timer,
5337 					  round_jiffies(jiffies + 2 * HZ));
5338 		}
5339 	} else {
5340 		if (netif_carrier_ok(netdev)) {
5341 			adapter->link_speed = 0;
5342 			adapter->link_duplex = 0;
5343 
5344 			/* check for thermal sensor event */
5345 			if (igb_thermal_sensor_event(hw,
5346 			    E1000_THSTAT_PWR_DOWN)) {
5347 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5348 			}
5349 
5350 			/* Links status message must follow this format */
5351 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5352 			       netdev->name);
5353 			netif_carrier_off(netdev);
5354 
5355 			igb_ping_all_vfs(adapter);
5356 
5357 			/* link state has changed, schedule phy info update */
5358 			if (!test_bit(__IGB_DOWN, &adapter->state))
5359 				mod_timer(&adapter->phy_info_timer,
5360 					  round_jiffies(jiffies + 2 * HZ));
5361 
5362 			/* link is down, time to check for alternate media */
5363 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5364 				igb_check_swap_media(adapter);
5365 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5366 					schedule_work(&adapter->reset_task);
5367 					/* return immediately */
5368 					return;
5369 				}
5370 			}
5371 			pm_schedule_suspend(netdev->dev.parent,
5372 					    MSEC_PER_SEC * 5);
5373 
5374 		/* also check for alternate media here */
5375 		} else if (!netif_carrier_ok(netdev) &&
5376 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5377 			igb_check_swap_media(adapter);
5378 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5379 				schedule_work(&adapter->reset_task);
5380 				/* return immediately */
5381 				return;
5382 			}
5383 		}
5384 	}
5385 
5386 	spin_lock(&adapter->stats64_lock);
5387 	igb_update_stats(adapter);
5388 	spin_unlock(&adapter->stats64_lock);
5389 
5390 	for (i = 0; i < adapter->num_tx_queues; i++) {
5391 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5392 		if (!netif_carrier_ok(netdev)) {
5393 			/* We've lost link, so the controller stops DMA,
5394 			 * but we've got queued Tx work that's never going
5395 			 * to get done, so reset controller to flush Tx.
5396 			 * (Do the reset outside of interrupt context).
5397 			 */
5398 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5399 				adapter->tx_timeout_count++;
5400 				schedule_work(&adapter->reset_task);
5401 				/* return immediately since reset is imminent */
5402 				return;
5403 			}
5404 		}
5405 
5406 		/* Force detection of hung controller every watchdog period */
5407 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5408 	}
5409 
5410 	/* Cause software interrupt to ensure Rx ring is cleaned */
5411 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5412 		u32 eics = 0;
5413 
5414 		for (i = 0; i < adapter->num_q_vectors; i++)
5415 			eics |= adapter->q_vector[i]->eims_value;
5416 		wr32(E1000_EICS, eics);
5417 	} else {
5418 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5419 	}
5420 
5421 	igb_spoof_check(adapter);
5422 	igb_ptp_rx_hang(adapter);
5423 	igb_ptp_tx_hang(adapter);
5424 
5425 	/* Check LVMMC register on i350/i354 only */
5426 	if ((adapter->hw.mac.type == e1000_i350) ||
5427 	    (adapter->hw.mac.type == e1000_i354))
5428 		igb_check_lvmmc(adapter);
5429 
5430 	/* Reset the timer */
5431 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5432 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5433 			mod_timer(&adapter->watchdog_timer,
5434 				  round_jiffies(jiffies +  HZ));
5435 		else
5436 			mod_timer(&adapter->watchdog_timer,
5437 				  round_jiffies(jiffies + 2 * HZ));
5438 	}
5439 }
5440 
5441 enum latency_range {
5442 	lowest_latency = 0,
5443 	low_latency = 1,
5444 	bulk_latency = 2,
5445 	latency_invalid = 255
5446 };
5447 
5448 /**
5449  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5450  *  @q_vector: pointer to q_vector
5451  *
5452  *  Stores a new ITR value based on strictly on packet size.  This
5453  *  algorithm is less sophisticated than that used in igb_update_itr,
5454  *  due to the difficulty of synchronizing statistics across multiple
5455  *  receive rings.  The divisors and thresholds used by this function
5456  *  were determined based on theoretical maximum wire speed and testing
5457  *  data, in order to minimize response time while increasing bulk
5458  *  throughput.
5459  *  This functionality is controlled by ethtool's coalescing settings.
5460  *  NOTE:  This function is called only when operating in a multiqueue
5461  *         receive environment.
5462  **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5463 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5464 {
5465 	int new_val = q_vector->itr_val;
5466 	int avg_wire_size = 0;
5467 	struct igb_adapter *adapter = q_vector->adapter;
5468 	unsigned int packets;
5469 
5470 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5471 	 * ints/sec - ITR timer value of 120 ticks.
5472 	 */
5473 	if (adapter->link_speed != SPEED_1000) {
5474 		new_val = IGB_4K_ITR;
5475 		goto set_itr_val;
5476 	}
5477 
5478 	packets = q_vector->rx.total_packets;
5479 	if (packets)
5480 		avg_wire_size = q_vector->rx.total_bytes / packets;
5481 
5482 	packets = q_vector->tx.total_packets;
5483 	if (packets)
5484 		avg_wire_size = max_t(u32, avg_wire_size,
5485 				      q_vector->tx.total_bytes / packets);
5486 
5487 	/* if avg_wire_size isn't set no work was done */
5488 	if (!avg_wire_size)
5489 		goto clear_counts;
5490 
5491 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5492 	avg_wire_size += 24;
5493 
5494 	/* Don't starve jumbo frames */
5495 	avg_wire_size = min(avg_wire_size, 3000);
5496 
5497 	/* Give a little boost to mid-size frames */
5498 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5499 		new_val = avg_wire_size / 3;
5500 	else
5501 		new_val = avg_wire_size / 2;
5502 
5503 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5504 	if (new_val < IGB_20K_ITR &&
5505 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5506 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5507 		new_val = IGB_20K_ITR;
5508 
5509 set_itr_val:
5510 	if (new_val != q_vector->itr_val) {
5511 		q_vector->itr_val = new_val;
5512 		q_vector->set_itr = 1;
5513 	}
5514 clear_counts:
5515 	q_vector->rx.total_bytes = 0;
5516 	q_vector->rx.total_packets = 0;
5517 	q_vector->tx.total_bytes = 0;
5518 	q_vector->tx.total_packets = 0;
5519 }
5520 
5521 /**
5522  *  igb_update_itr - update the dynamic ITR value based on statistics
5523  *  @q_vector: pointer to q_vector
5524  *  @ring_container: ring info to update the itr for
5525  *
5526  *  Stores a new ITR value based on packets and byte
5527  *  counts during the last interrupt.  The advantage of per interrupt
5528  *  computation is faster updates and more accurate ITR for the current
5529  *  traffic pattern.  Constants in this function were computed
5530  *  based on theoretical maximum wire speed and thresholds were set based
5531  *  on testing data as well as attempting to minimize response time
5532  *  while increasing bulk throughput.
5533  *  This functionality is controlled by ethtool's coalescing settings.
5534  *  NOTE:  These calculations are only valid when operating in a single-
5535  *         queue environment.
5536  **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5537 static void igb_update_itr(struct igb_q_vector *q_vector,
5538 			   struct igb_ring_container *ring_container)
5539 {
5540 	unsigned int packets = ring_container->total_packets;
5541 	unsigned int bytes = ring_container->total_bytes;
5542 	u8 itrval = ring_container->itr;
5543 
5544 	/* no packets, exit with status unchanged */
5545 	if (packets == 0)
5546 		return;
5547 
5548 	switch (itrval) {
5549 	case lowest_latency:
5550 		/* handle TSO and jumbo frames */
5551 		if (bytes/packets > 8000)
5552 			itrval = bulk_latency;
5553 		else if ((packets < 5) && (bytes > 512))
5554 			itrval = low_latency;
5555 		break;
5556 	case low_latency:  /* 50 usec aka 20000 ints/s */
5557 		if (bytes > 10000) {
5558 			/* this if handles the TSO accounting */
5559 			if (bytes/packets > 8000)
5560 				itrval = bulk_latency;
5561 			else if ((packets < 10) || ((bytes/packets) > 1200))
5562 				itrval = bulk_latency;
5563 			else if ((packets > 35))
5564 				itrval = lowest_latency;
5565 		} else if (bytes/packets > 2000) {
5566 			itrval = bulk_latency;
5567 		} else if (packets <= 2 && bytes < 512) {
5568 			itrval = lowest_latency;
5569 		}
5570 		break;
5571 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5572 		if (bytes > 25000) {
5573 			if (packets > 35)
5574 				itrval = low_latency;
5575 		} else if (bytes < 1500) {
5576 			itrval = low_latency;
5577 		}
5578 		break;
5579 	}
5580 
5581 	/* clear work counters since we have the values we need */
5582 	ring_container->total_bytes = 0;
5583 	ring_container->total_packets = 0;
5584 
5585 	/* write updated itr to ring container */
5586 	ring_container->itr = itrval;
5587 }
5588 
igb_set_itr(struct igb_q_vector * q_vector)5589 static void igb_set_itr(struct igb_q_vector *q_vector)
5590 {
5591 	struct igb_adapter *adapter = q_vector->adapter;
5592 	u32 new_itr = q_vector->itr_val;
5593 	u8 current_itr = 0;
5594 
5595 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5596 	if (adapter->link_speed != SPEED_1000) {
5597 		current_itr = 0;
5598 		new_itr = IGB_4K_ITR;
5599 		goto set_itr_now;
5600 	}
5601 
5602 	igb_update_itr(q_vector, &q_vector->tx);
5603 	igb_update_itr(q_vector, &q_vector->rx);
5604 
5605 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5606 
5607 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5608 	if (current_itr == lowest_latency &&
5609 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5610 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5611 		current_itr = low_latency;
5612 
5613 	switch (current_itr) {
5614 	/* counts and packets in update_itr are dependent on these numbers */
5615 	case lowest_latency:
5616 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5617 		break;
5618 	case low_latency:
5619 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5620 		break;
5621 	case bulk_latency:
5622 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5623 		break;
5624 	default:
5625 		break;
5626 	}
5627 
5628 set_itr_now:
5629 	if (new_itr != q_vector->itr_val) {
5630 		/* this attempts to bias the interrupt rate towards Bulk
5631 		 * by adding intermediate steps when interrupt rate is
5632 		 * increasing
5633 		 */
5634 		new_itr = new_itr > q_vector->itr_val ?
5635 			  max((new_itr * q_vector->itr_val) /
5636 			  (new_itr + (q_vector->itr_val >> 2)),
5637 			  new_itr) : new_itr;
5638 		/* Don't write the value here; it resets the adapter's
5639 		 * internal timer, and causes us to delay far longer than
5640 		 * we should between interrupts.  Instead, we write the ITR
5641 		 * value at the beginning of the next interrupt so the timing
5642 		 * ends up being correct.
5643 		 */
5644 		q_vector->itr_val = new_itr;
5645 		q_vector->set_itr = 1;
5646 	}
5647 }
5648 
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5649 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5650 			    struct igb_tx_buffer *first,
5651 			    u32 vlan_macip_lens, u32 type_tucmd,
5652 			    u32 mss_l4len_idx)
5653 {
5654 	struct e1000_adv_tx_context_desc *context_desc;
5655 	u16 i = tx_ring->next_to_use;
5656 	struct timespec64 ts;
5657 
5658 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5659 
5660 	i++;
5661 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5662 
5663 	/* set bits to identify this as an advanced context descriptor */
5664 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5665 
5666 	/* For 82575, context index must be unique per ring. */
5667 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5668 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5669 
5670 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5671 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5672 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5673 
5674 	/* We assume there is always a valid tx time available. Invalid times
5675 	 * should have been handled by the upper layers.
5676 	 */
5677 	if (tx_ring->launchtime_enable) {
5678 		ts = ktime_to_timespec64(first->skb->tstamp);
5679 		first->skb->tstamp = ktime_set(0, 0);
5680 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5681 	} else {
5682 		context_desc->seqnum_seed = 0;
5683 	}
5684 }
5685 
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5686 static int igb_tso(struct igb_ring *tx_ring,
5687 		   struct igb_tx_buffer *first,
5688 		   u8 *hdr_len)
5689 {
5690 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5691 	struct sk_buff *skb = first->skb;
5692 	union {
5693 		struct iphdr *v4;
5694 		struct ipv6hdr *v6;
5695 		unsigned char *hdr;
5696 	} ip;
5697 	union {
5698 		struct tcphdr *tcp;
5699 		unsigned char *hdr;
5700 	} l4;
5701 	u32 paylen, l4_offset;
5702 	int err;
5703 
5704 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5705 		return 0;
5706 
5707 	if (!skb_is_gso(skb))
5708 		return 0;
5709 
5710 	err = skb_cow_head(skb, 0);
5711 	if (err < 0)
5712 		return err;
5713 
5714 	ip.hdr = skb_network_header(skb);
5715 	l4.hdr = skb_checksum_start(skb);
5716 
5717 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5718 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5719 
5720 	/* initialize outer IP header fields */
5721 	if (ip.v4->version == 4) {
5722 		unsigned char *csum_start = skb_checksum_start(skb);
5723 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5724 
5725 		/* IP header will have to cancel out any data that
5726 		 * is not a part of the outer IP header
5727 		 */
5728 		ip.v4->check = csum_fold(csum_partial(trans_start,
5729 						      csum_start - trans_start,
5730 						      0));
5731 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5732 
5733 		ip.v4->tot_len = 0;
5734 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5735 				   IGB_TX_FLAGS_CSUM |
5736 				   IGB_TX_FLAGS_IPV4;
5737 	} else {
5738 		ip.v6->payload_len = 0;
5739 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5740 				   IGB_TX_FLAGS_CSUM;
5741 	}
5742 
5743 	/* determine offset of inner transport header */
5744 	l4_offset = l4.hdr - skb->data;
5745 
5746 	/* compute length of segmentation header */
5747 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5748 
5749 	/* remove payload length from inner checksum */
5750 	paylen = skb->len - l4_offset;
5751 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5752 
5753 	/* update gso size and bytecount with header size */
5754 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5755 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5756 
5757 	/* MSS L4LEN IDX */
5758 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5759 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5760 
5761 	/* VLAN MACLEN IPLEN */
5762 	vlan_macip_lens = l4.hdr - ip.hdr;
5763 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5764 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5765 
5766 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5767 			type_tucmd, mss_l4len_idx);
5768 
5769 	return 1;
5770 }
5771 
igb_ipv6_csum_is_sctp(struct sk_buff * skb)5772 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5773 {
5774 	unsigned int offset = 0;
5775 
5776 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5777 
5778 	return offset == skb_checksum_start_offset(skb);
5779 }
5780 
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)5781 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5782 {
5783 	struct sk_buff *skb = first->skb;
5784 	u32 vlan_macip_lens = 0;
5785 	u32 type_tucmd = 0;
5786 
5787 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5788 csum_failed:
5789 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5790 		    !tx_ring->launchtime_enable)
5791 			return;
5792 		goto no_csum;
5793 	}
5794 
5795 	switch (skb->csum_offset) {
5796 	case offsetof(struct tcphdr, check):
5797 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5798 		/* fall through */
5799 	case offsetof(struct udphdr, check):
5800 		break;
5801 	case offsetof(struct sctphdr, checksum):
5802 		/* validate that this is actually an SCTP request */
5803 		if (((first->protocol == htons(ETH_P_IP)) &&
5804 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5805 		    ((first->protocol == htons(ETH_P_IPV6)) &&
5806 		     igb_ipv6_csum_is_sctp(skb))) {
5807 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5808 			break;
5809 		}
5810 		/* fall through */
5811 	default:
5812 		skb_checksum_help(skb);
5813 		goto csum_failed;
5814 	}
5815 
5816 	/* update TX checksum flag */
5817 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5818 	vlan_macip_lens = skb_checksum_start_offset(skb) -
5819 			  skb_network_offset(skb);
5820 no_csum:
5821 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5822 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5823 
5824 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5825 }
5826 
5827 #define IGB_SET_FLAG(_input, _flag, _result) \
5828 	((_flag <= _result) ? \
5829 	 ((u32)(_input & _flag) * (_result / _flag)) : \
5830 	 ((u32)(_input & _flag) / (_flag / _result)))
5831 
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)5832 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5833 {
5834 	/* set type for advanced descriptor with frame checksum insertion */
5835 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5836 		       E1000_ADVTXD_DCMD_DEXT |
5837 		       E1000_ADVTXD_DCMD_IFCS;
5838 
5839 	/* set HW vlan bit if vlan is present */
5840 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5841 				 (E1000_ADVTXD_DCMD_VLE));
5842 
5843 	/* set segmentation bits for TSO */
5844 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5845 				 (E1000_ADVTXD_DCMD_TSE));
5846 
5847 	/* set timestamp bit if present */
5848 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5849 				 (E1000_ADVTXD_MAC_TSTAMP));
5850 
5851 	/* insert frame checksum */
5852 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5853 
5854 	return cmd_type;
5855 }
5856 
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)5857 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5858 				 union e1000_adv_tx_desc *tx_desc,
5859 				 u32 tx_flags, unsigned int paylen)
5860 {
5861 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5862 
5863 	/* 82575 requires a unique index per ring */
5864 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5865 		olinfo_status |= tx_ring->reg_idx << 4;
5866 
5867 	/* insert L4 checksum */
5868 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5869 				      IGB_TX_FLAGS_CSUM,
5870 				      (E1000_TXD_POPTS_TXSM << 8));
5871 
5872 	/* insert IPv4 checksum */
5873 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5874 				      IGB_TX_FLAGS_IPV4,
5875 				      (E1000_TXD_POPTS_IXSM << 8));
5876 
5877 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5878 }
5879 
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)5880 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5881 {
5882 	struct net_device *netdev = tx_ring->netdev;
5883 
5884 	netif_stop_subqueue(netdev, tx_ring->queue_index);
5885 
5886 	/* Herbert's original patch had:
5887 	 *  smp_mb__after_netif_stop_queue();
5888 	 * but since that doesn't exist yet, just open code it.
5889 	 */
5890 	smp_mb();
5891 
5892 	/* We need to check again in a case another CPU has just
5893 	 * made room available.
5894 	 */
5895 	if (igb_desc_unused(tx_ring) < size)
5896 		return -EBUSY;
5897 
5898 	/* A reprieve! */
5899 	netif_wake_subqueue(netdev, tx_ring->queue_index);
5900 
5901 	u64_stats_update_begin(&tx_ring->tx_syncp2);
5902 	tx_ring->tx_stats.restart_queue2++;
5903 	u64_stats_update_end(&tx_ring->tx_syncp2);
5904 
5905 	return 0;
5906 }
5907 
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)5908 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5909 {
5910 	if (igb_desc_unused(tx_ring) >= size)
5911 		return 0;
5912 	return __igb_maybe_stop_tx(tx_ring, size);
5913 }
5914 
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)5915 static int igb_tx_map(struct igb_ring *tx_ring,
5916 		      struct igb_tx_buffer *first,
5917 		      const u8 hdr_len)
5918 {
5919 	struct sk_buff *skb = first->skb;
5920 	struct igb_tx_buffer *tx_buffer;
5921 	union e1000_adv_tx_desc *tx_desc;
5922 	skb_frag_t *frag;
5923 	dma_addr_t dma;
5924 	unsigned int data_len, size;
5925 	u32 tx_flags = first->tx_flags;
5926 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5927 	u16 i = tx_ring->next_to_use;
5928 
5929 	tx_desc = IGB_TX_DESC(tx_ring, i);
5930 
5931 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5932 
5933 	size = skb_headlen(skb);
5934 	data_len = skb->data_len;
5935 
5936 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5937 
5938 	tx_buffer = first;
5939 
5940 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5941 		if (dma_mapping_error(tx_ring->dev, dma))
5942 			goto dma_error;
5943 
5944 		/* record length, and DMA address */
5945 		dma_unmap_len_set(tx_buffer, len, size);
5946 		dma_unmap_addr_set(tx_buffer, dma, dma);
5947 
5948 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5949 
5950 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5951 			tx_desc->read.cmd_type_len =
5952 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5953 
5954 			i++;
5955 			tx_desc++;
5956 			if (i == tx_ring->count) {
5957 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5958 				i = 0;
5959 			}
5960 			tx_desc->read.olinfo_status = 0;
5961 
5962 			dma += IGB_MAX_DATA_PER_TXD;
5963 			size -= IGB_MAX_DATA_PER_TXD;
5964 
5965 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5966 		}
5967 
5968 		if (likely(!data_len))
5969 			break;
5970 
5971 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5972 
5973 		i++;
5974 		tx_desc++;
5975 		if (i == tx_ring->count) {
5976 			tx_desc = IGB_TX_DESC(tx_ring, 0);
5977 			i = 0;
5978 		}
5979 		tx_desc->read.olinfo_status = 0;
5980 
5981 		size = skb_frag_size(frag);
5982 		data_len -= size;
5983 
5984 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5985 				       size, DMA_TO_DEVICE);
5986 
5987 		tx_buffer = &tx_ring->tx_buffer_info[i];
5988 	}
5989 
5990 	/* write last descriptor with RS and EOP bits */
5991 	cmd_type |= size | IGB_TXD_DCMD;
5992 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5993 
5994 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5995 
5996 	/* set the timestamp */
5997 	first->time_stamp = jiffies;
5998 
5999 	skb_tx_timestamp(skb);
6000 
6001 	/* Force memory writes to complete before letting h/w know there
6002 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6003 	 * memory model archs, such as IA-64).
6004 	 *
6005 	 * We also need this memory barrier to make certain all of the
6006 	 * status bits have been updated before next_to_watch is written.
6007 	 */
6008 	dma_wmb();
6009 
6010 	/* set next_to_watch value indicating a packet is present */
6011 	first->next_to_watch = tx_desc;
6012 
6013 	i++;
6014 	if (i == tx_ring->count)
6015 		i = 0;
6016 
6017 	tx_ring->next_to_use = i;
6018 
6019 	/* Make sure there is space in the ring for the next send. */
6020 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6021 
6022 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6023 		writel(i, tx_ring->tail);
6024 	}
6025 	return 0;
6026 
6027 dma_error:
6028 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6029 	tx_buffer = &tx_ring->tx_buffer_info[i];
6030 
6031 	/* clear dma mappings for failed tx_buffer_info map */
6032 	while (tx_buffer != first) {
6033 		if (dma_unmap_len(tx_buffer, len))
6034 			dma_unmap_page(tx_ring->dev,
6035 				       dma_unmap_addr(tx_buffer, dma),
6036 				       dma_unmap_len(tx_buffer, len),
6037 				       DMA_TO_DEVICE);
6038 		dma_unmap_len_set(tx_buffer, len, 0);
6039 
6040 		if (i-- == 0)
6041 			i += tx_ring->count;
6042 		tx_buffer = &tx_ring->tx_buffer_info[i];
6043 	}
6044 
6045 	if (dma_unmap_len(tx_buffer, len))
6046 		dma_unmap_single(tx_ring->dev,
6047 				 dma_unmap_addr(tx_buffer, dma),
6048 				 dma_unmap_len(tx_buffer, len),
6049 				 DMA_TO_DEVICE);
6050 	dma_unmap_len_set(tx_buffer, len, 0);
6051 
6052 	dev_kfree_skb_any(tx_buffer->skb);
6053 	tx_buffer->skb = NULL;
6054 
6055 	tx_ring->next_to_use = i;
6056 
6057 	return -1;
6058 }
6059 
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6060 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6061 				struct igb_ring *tx_ring)
6062 {
6063 	struct igb_tx_buffer *first;
6064 	int tso;
6065 	u32 tx_flags = 0;
6066 	unsigned short f;
6067 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6068 	__be16 protocol = vlan_get_protocol(skb);
6069 	u8 hdr_len = 0;
6070 
6071 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6072 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6073 	 *       + 2 desc gap to keep tail from touching head,
6074 	 *       + 1 desc for context descriptor,
6075 	 * otherwise try next time
6076 	 */
6077 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6078 		count += TXD_USE_COUNT(skb_frag_size(
6079 						&skb_shinfo(skb)->frags[f]));
6080 
6081 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6082 		/* this is a hard error */
6083 		return NETDEV_TX_BUSY;
6084 	}
6085 
6086 	/* record the location of the first descriptor for this packet */
6087 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6088 	first->skb = skb;
6089 	first->bytecount = skb->len;
6090 	first->gso_segs = 1;
6091 
6092 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6093 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6094 
6095 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6096 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6097 					   &adapter->state)) {
6098 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6099 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6100 
6101 			adapter->ptp_tx_skb = skb_get(skb);
6102 			adapter->ptp_tx_start = jiffies;
6103 			if (adapter->hw.mac.type == e1000_82576)
6104 				schedule_work(&adapter->ptp_tx_work);
6105 		} else {
6106 			adapter->tx_hwtstamp_skipped++;
6107 		}
6108 	}
6109 
6110 	if (skb_vlan_tag_present(skb)) {
6111 		tx_flags |= IGB_TX_FLAGS_VLAN;
6112 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6113 	}
6114 
6115 	/* record initial flags and protocol */
6116 	first->tx_flags = tx_flags;
6117 	first->protocol = protocol;
6118 
6119 	tso = igb_tso(tx_ring, first, &hdr_len);
6120 	if (tso < 0)
6121 		goto out_drop;
6122 	else if (!tso)
6123 		igb_tx_csum(tx_ring, first);
6124 
6125 	if (igb_tx_map(tx_ring, first, hdr_len))
6126 		goto cleanup_tx_tstamp;
6127 
6128 	return NETDEV_TX_OK;
6129 
6130 out_drop:
6131 	dev_kfree_skb_any(first->skb);
6132 	first->skb = NULL;
6133 cleanup_tx_tstamp:
6134 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6135 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6136 
6137 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6138 		adapter->ptp_tx_skb = NULL;
6139 		if (adapter->hw.mac.type == e1000_82576)
6140 			cancel_work_sync(&adapter->ptp_tx_work);
6141 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6142 	}
6143 
6144 	return NETDEV_TX_OK;
6145 }
6146 
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6147 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6148 						    struct sk_buff *skb)
6149 {
6150 	unsigned int r_idx = skb->queue_mapping;
6151 
6152 	if (r_idx >= adapter->num_tx_queues)
6153 		r_idx = r_idx % adapter->num_tx_queues;
6154 
6155 	return adapter->tx_ring[r_idx];
6156 }
6157 
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6158 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6159 				  struct net_device *netdev)
6160 {
6161 	struct igb_adapter *adapter = netdev_priv(netdev);
6162 
6163 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6164 	 * in order to meet this minimum size requirement.
6165 	 */
6166 	if (skb_put_padto(skb, 17))
6167 		return NETDEV_TX_OK;
6168 
6169 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6170 }
6171 
6172 /**
6173  *  igb_tx_timeout - Respond to a Tx Hang
6174  *  @netdev: network interface device structure
6175  **/
igb_tx_timeout(struct net_device * netdev)6176 static void igb_tx_timeout(struct net_device *netdev)
6177 {
6178 	struct igb_adapter *adapter = netdev_priv(netdev);
6179 	struct e1000_hw *hw = &adapter->hw;
6180 
6181 	/* Do the reset outside of interrupt context */
6182 	adapter->tx_timeout_count++;
6183 
6184 	if (hw->mac.type >= e1000_82580)
6185 		hw->dev_spec._82575.global_device_reset = true;
6186 
6187 	schedule_work(&adapter->reset_task);
6188 	wr32(E1000_EICS,
6189 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6190 }
6191 
igb_reset_task(struct work_struct * work)6192 static void igb_reset_task(struct work_struct *work)
6193 {
6194 	struct igb_adapter *adapter;
6195 	adapter = container_of(work, struct igb_adapter, reset_task);
6196 
6197 	igb_dump(adapter);
6198 	netdev_err(adapter->netdev, "Reset adapter\n");
6199 	igb_reinit_locked(adapter);
6200 }
6201 
6202 /**
6203  *  igb_get_stats64 - Get System Network Statistics
6204  *  @netdev: network interface device structure
6205  *  @stats: rtnl_link_stats64 pointer
6206  **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6207 static void igb_get_stats64(struct net_device *netdev,
6208 			    struct rtnl_link_stats64 *stats)
6209 {
6210 	struct igb_adapter *adapter = netdev_priv(netdev);
6211 
6212 	spin_lock(&adapter->stats64_lock);
6213 	igb_update_stats(adapter);
6214 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6215 	spin_unlock(&adapter->stats64_lock);
6216 }
6217 
6218 /**
6219  *  igb_change_mtu - Change the Maximum Transfer Unit
6220  *  @netdev: network interface device structure
6221  *  @new_mtu: new value for maximum frame size
6222  *
6223  *  Returns 0 on success, negative on failure
6224  **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6225 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6226 {
6227 	struct igb_adapter *adapter = netdev_priv(netdev);
6228 	struct pci_dev *pdev = adapter->pdev;
6229 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6230 
6231 	/* adjust max frame to be at least the size of a standard frame */
6232 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6233 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6234 
6235 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6236 		usleep_range(1000, 2000);
6237 
6238 	/* igb_down has a dependency on max_frame_size */
6239 	adapter->max_frame_size = max_frame;
6240 
6241 	if (netif_running(netdev))
6242 		igb_down(adapter);
6243 
6244 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6245 		 netdev->mtu, new_mtu);
6246 	netdev->mtu = new_mtu;
6247 
6248 	if (netif_running(netdev))
6249 		igb_up(adapter);
6250 	else
6251 		igb_reset(adapter);
6252 
6253 	clear_bit(__IGB_RESETTING, &adapter->state);
6254 
6255 	return 0;
6256 }
6257 
6258 /**
6259  *  igb_update_stats - Update the board statistics counters
6260  *  @adapter: board private structure
6261  **/
igb_update_stats(struct igb_adapter * adapter)6262 void igb_update_stats(struct igb_adapter *adapter)
6263 {
6264 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6265 	struct e1000_hw *hw = &adapter->hw;
6266 	struct pci_dev *pdev = adapter->pdev;
6267 	u32 reg, mpc;
6268 	int i;
6269 	u64 bytes, packets;
6270 	unsigned int start;
6271 	u64 _bytes, _packets;
6272 
6273 	/* Prevent stats update while adapter is being reset, or if the pci
6274 	 * connection is down.
6275 	 */
6276 	if (adapter->link_speed == 0)
6277 		return;
6278 	if (pci_channel_offline(pdev))
6279 		return;
6280 
6281 	bytes = 0;
6282 	packets = 0;
6283 
6284 	rcu_read_lock();
6285 	for (i = 0; i < adapter->num_rx_queues; i++) {
6286 		struct igb_ring *ring = adapter->rx_ring[i];
6287 		u32 rqdpc = rd32(E1000_RQDPC(i));
6288 		if (hw->mac.type >= e1000_i210)
6289 			wr32(E1000_RQDPC(i), 0);
6290 
6291 		if (rqdpc) {
6292 			ring->rx_stats.drops += rqdpc;
6293 			net_stats->rx_fifo_errors += rqdpc;
6294 		}
6295 
6296 		do {
6297 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6298 			_bytes = ring->rx_stats.bytes;
6299 			_packets = ring->rx_stats.packets;
6300 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6301 		bytes += _bytes;
6302 		packets += _packets;
6303 	}
6304 
6305 	net_stats->rx_bytes = bytes;
6306 	net_stats->rx_packets = packets;
6307 
6308 	bytes = 0;
6309 	packets = 0;
6310 	for (i = 0; i < adapter->num_tx_queues; i++) {
6311 		struct igb_ring *ring = adapter->tx_ring[i];
6312 		do {
6313 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6314 			_bytes = ring->tx_stats.bytes;
6315 			_packets = ring->tx_stats.packets;
6316 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6317 		bytes += _bytes;
6318 		packets += _packets;
6319 	}
6320 	net_stats->tx_bytes = bytes;
6321 	net_stats->tx_packets = packets;
6322 	rcu_read_unlock();
6323 
6324 	/* read stats registers */
6325 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6326 	adapter->stats.gprc += rd32(E1000_GPRC);
6327 	adapter->stats.gorc += rd32(E1000_GORCL);
6328 	rd32(E1000_GORCH); /* clear GORCL */
6329 	adapter->stats.bprc += rd32(E1000_BPRC);
6330 	adapter->stats.mprc += rd32(E1000_MPRC);
6331 	adapter->stats.roc += rd32(E1000_ROC);
6332 
6333 	adapter->stats.prc64 += rd32(E1000_PRC64);
6334 	adapter->stats.prc127 += rd32(E1000_PRC127);
6335 	adapter->stats.prc255 += rd32(E1000_PRC255);
6336 	adapter->stats.prc511 += rd32(E1000_PRC511);
6337 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6338 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6339 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6340 	adapter->stats.sec += rd32(E1000_SEC);
6341 
6342 	mpc = rd32(E1000_MPC);
6343 	adapter->stats.mpc += mpc;
6344 	net_stats->rx_fifo_errors += mpc;
6345 	adapter->stats.scc += rd32(E1000_SCC);
6346 	adapter->stats.ecol += rd32(E1000_ECOL);
6347 	adapter->stats.mcc += rd32(E1000_MCC);
6348 	adapter->stats.latecol += rd32(E1000_LATECOL);
6349 	adapter->stats.dc += rd32(E1000_DC);
6350 	adapter->stats.rlec += rd32(E1000_RLEC);
6351 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6352 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6353 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6354 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6355 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6356 	adapter->stats.gptc += rd32(E1000_GPTC);
6357 	adapter->stats.gotc += rd32(E1000_GOTCL);
6358 	rd32(E1000_GOTCH); /* clear GOTCL */
6359 	adapter->stats.rnbc += rd32(E1000_RNBC);
6360 	adapter->stats.ruc += rd32(E1000_RUC);
6361 	adapter->stats.rfc += rd32(E1000_RFC);
6362 	adapter->stats.rjc += rd32(E1000_RJC);
6363 	adapter->stats.tor += rd32(E1000_TORH);
6364 	adapter->stats.tot += rd32(E1000_TOTH);
6365 	adapter->stats.tpr += rd32(E1000_TPR);
6366 
6367 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6368 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6369 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6370 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6371 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6372 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6373 
6374 	adapter->stats.mptc += rd32(E1000_MPTC);
6375 	adapter->stats.bptc += rd32(E1000_BPTC);
6376 
6377 	adapter->stats.tpt += rd32(E1000_TPT);
6378 	adapter->stats.colc += rd32(E1000_COLC);
6379 
6380 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6381 	/* read internal phy specific stats */
6382 	reg = rd32(E1000_CTRL_EXT);
6383 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6384 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6385 
6386 		/* this stat has invalid values on i210/i211 */
6387 		if ((hw->mac.type != e1000_i210) &&
6388 		    (hw->mac.type != e1000_i211))
6389 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6390 	}
6391 
6392 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6393 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6394 
6395 	adapter->stats.iac += rd32(E1000_IAC);
6396 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6397 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6398 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6399 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6400 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6401 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6402 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6403 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6404 
6405 	/* Fill out the OS statistics structure */
6406 	net_stats->multicast = adapter->stats.mprc;
6407 	net_stats->collisions = adapter->stats.colc;
6408 
6409 	/* Rx Errors */
6410 
6411 	/* RLEC on some newer hardware can be incorrect so build
6412 	 * our own version based on RUC and ROC
6413 	 */
6414 	net_stats->rx_errors = adapter->stats.rxerrc +
6415 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6416 		adapter->stats.ruc + adapter->stats.roc +
6417 		adapter->stats.cexterr;
6418 	net_stats->rx_length_errors = adapter->stats.ruc +
6419 				      adapter->stats.roc;
6420 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6421 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6422 	net_stats->rx_missed_errors = adapter->stats.mpc;
6423 
6424 	/* Tx Errors */
6425 	net_stats->tx_errors = adapter->stats.ecol +
6426 			       adapter->stats.latecol;
6427 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6428 	net_stats->tx_window_errors = adapter->stats.latecol;
6429 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6430 
6431 	/* Tx Dropped needs to be maintained elsewhere */
6432 
6433 	/* Management Stats */
6434 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6435 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6436 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6437 
6438 	/* OS2BMC Stats */
6439 	reg = rd32(E1000_MANC);
6440 	if (reg & E1000_MANC_EN_BMC2OS) {
6441 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6442 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6443 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6444 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6445 	}
6446 }
6447 
igb_tsync_interrupt(struct igb_adapter * adapter)6448 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6449 {
6450 	struct e1000_hw *hw = &adapter->hw;
6451 	struct ptp_clock_event event;
6452 	struct timespec64 ts;
6453 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6454 
6455 	if (tsicr & TSINTR_SYS_WRAP) {
6456 		event.type = PTP_CLOCK_PPS;
6457 		if (adapter->ptp_caps.pps)
6458 			ptp_clock_event(adapter->ptp_clock, &event);
6459 		ack |= TSINTR_SYS_WRAP;
6460 	}
6461 
6462 	if (tsicr & E1000_TSICR_TXTS) {
6463 		/* retrieve hardware timestamp */
6464 		schedule_work(&adapter->ptp_tx_work);
6465 		ack |= E1000_TSICR_TXTS;
6466 	}
6467 
6468 	if (tsicr & TSINTR_TT0) {
6469 		spin_lock(&adapter->tmreg_lock);
6470 		ts = timespec64_add(adapter->perout[0].start,
6471 				    adapter->perout[0].period);
6472 		/* u32 conversion of tv_sec is safe until y2106 */
6473 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6474 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6475 		tsauxc = rd32(E1000_TSAUXC);
6476 		tsauxc |= TSAUXC_EN_TT0;
6477 		wr32(E1000_TSAUXC, tsauxc);
6478 		adapter->perout[0].start = ts;
6479 		spin_unlock(&adapter->tmreg_lock);
6480 		ack |= TSINTR_TT0;
6481 	}
6482 
6483 	if (tsicr & TSINTR_TT1) {
6484 		spin_lock(&adapter->tmreg_lock);
6485 		ts = timespec64_add(adapter->perout[1].start,
6486 				    adapter->perout[1].period);
6487 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6488 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6489 		tsauxc = rd32(E1000_TSAUXC);
6490 		tsauxc |= TSAUXC_EN_TT1;
6491 		wr32(E1000_TSAUXC, tsauxc);
6492 		adapter->perout[1].start = ts;
6493 		spin_unlock(&adapter->tmreg_lock);
6494 		ack |= TSINTR_TT1;
6495 	}
6496 
6497 	if (tsicr & TSINTR_AUTT0) {
6498 		nsec = rd32(E1000_AUXSTMPL0);
6499 		sec  = rd32(E1000_AUXSTMPH0);
6500 		event.type = PTP_CLOCK_EXTTS;
6501 		event.index = 0;
6502 		event.timestamp = sec * 1000000000ULL + nsec;
6503 		ptp_clock_event(adapter->ptp_clock, &event);
6504 		ack |= TSINTR_AUTT0;
6505 	}
6506 
6507 	if (tsicr & TSINTR_AUTT1) {
6508 		nsec = rd32(E1000_AUXSTMPL1);
6509 		sec  = rd32(E1000_AUXSTMPH1);
6510 		event.type = PTP_CLOCK_EXTTS;
6511 		event.index = 1;
6512 		event.timestamp = sec * 1000000000ULL + nsec;
6513 		ptp_clock_event(adapter->ptp_clock, &event);
6514 		ack |= TSINTR_AUTT1;
6515 	}
6516 
6517 	/* acknowledge the interrupts */
6518 	wr32(E1000_TSICR, ack);
6519 }
6520 
igb_msix_other(int irq,void * data)6521 static irqreturn_t igb_msix_other(int irq, void *data)
6522 {
6523 	struct igb_adapter *adapter = data;
6524 	struct e1000_hw *hw = &adapter->hw;
6525 	u32 icr = rd32(E1000_ICR);
6526 	/* reading ICR causes bit 31 of EICR to be cleared */
6527 
6528 	if (icr & E1000_ICR_DRSTA)
6529 		schedule_work(&adapter->reset_task);
6530 
6531 	if (icr & E1000_ICR_DOUTSYNC) {
6532 		/* HW is reporting DMA is out of sync */
6533 		adapter->stats.doosync++;
6534 		/* The DMA Out of Sync is also indication of a spoof event
6535 		 * in IOV mode. Check the Wrong VM Behavior register to
6536 		 * see if it is really a spoof event.
6537 		 */
6538 		igb_check_wvbr(adapter);
6539 	}
6540 
6541 	/* Check for a mailbox event */
6542 	if (icr & E1000_ICR_VMMB)
6543 		igb_msg_task(adapter);
6544 
6545 	if (icr & E1000_ICR_LSC) {
6546 		hw->mac.get_link_status = 1;
6547 		/* guard against interrupt when we're going down */
6548 		if (!test_bit(__IGB_DOWN, &adapter->state))
6549 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6550 	}
6551 
6552 	if (icr & E1000_ICR_TS)
6553 		igb_tsync_interrupt(adapter);
6554 
6555 	wr32(E1000_EIMS, adapter->eims_other);
6556 
6557 	return IRQ_HANDLED;
6558 }
6559 
igb_write_itr(struct igb_q_vector * q_vector)6560 static void igb_write_itr(struct igb_q_vector *q_vector)
6561 {
6562 	struct igb_adapter *adapter = q_vector->adapter;
6563 	u32 itr_val = q_vector->itr_val & 0x7FFC;
6564 
6565 	if (!q_vector->set_itr)
6566 		return;
6567 
6568 	if (!itr_val)
6569 		itr_val = 0x4;
6570 
6571 	if (adapter->hw.mac.type == e1000_82575)
6572 		itr_val |= itr_val << 16;
6573 	else
6574 		itr_val |= E1000_EITR_CNT_IGNR;
6575 
6576 	writel(itr_val, q_vector->itr_register);
6577 	q_vector->set_itr = 0;
6578 }
6579 
igb_msix_ring(int irq,void * data)6580 static irqreturn_t igb_msix_ring(int irq, void *data)
6581 {
6582 	struct igb_q_vector *q_vector = data;
6583 
6584 	/* Write the ITR value calculated from the previous interrupt. */
6585 	igb_write_itr(q_vector);
6586 
6587 	napi_schedule(&q_vector->napi);
6588 
6589 	return IRQ_HANDLED;
6590 }
6591 
6592 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)6593 static void igb_update_tx_dca(struct igb_adapter *adapter,
6594 			      struct igb_ring *tx_ring,
6595 			      int cpu)
6596 {
6597 	struct e1000_hw *hw = &adapter->hw;
6598 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6599 
6600 	if (hw->mac.type != e1000_82575)
6601 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6602 
6603 	/* We can enable relaxed ordering for reads, but not writes when
6604 	 * DCA is enabled.  This is due to a known issue in some chipsets
6605 	 * which will cause the DCA tag to be cleared.
6606 	 */
6607 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6608 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6609 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6610 
6611 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6612 }
6613 
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)6614 static void igb_update_rx_dca(struct igb_adapter *adapter,
6615 			      struct igb_ring *rx_ring,
6616 			      int cpu)
6617 {
6618 	struct e1000_hw *hw = &adapter->hw;
6619 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6620 
6621 	if (hw->mac.type != e1000_82575)
6622 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6623 
6624 	/* We can enable relaxed ordering for reads, but not writes when
6625 	 * DCA is enabled.  This is due to a known issue in some chipsets
6626 	 * which will cause the DCA tag to be cleared.
6627 	 */
6628 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6629 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6630 
6631 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6632 }
6633 
igb_update_dca(struct igb_q_vector * q_vector)6634 static void igb_update_dca(struct igb_q_vector *q_vector)
6635 {
6636 	struct igb_adapter *adapter = q_vector->adapter;
6637 	int cpu = get_cpu();
6638 
6639 	if (q_vector->cpu == cpu)
6640 		goto out_no_update;
6641 
6642 	if (q_vector->tx.ring)
6643 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6644 
6645 	if (q_vector->rx.ring)
6646 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6647 
6648 	q_vector->cpu = cpu;
6649 out_no_update:
6650 	put_cpu();
6651 }
6652 
igb_setup_dca(struct igb_adapter * adapter)6653 static void igb_setup_dca(struct igb_adapter *adapter)
6654 {
6655 	struct e1000_hw *hw = &adapter->hw;
6656 	int i;
6657 
6658 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6659 		return;
6660 
6661 	/* Always use CB2 mode, difference is masked in the CB driver. */
6662 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6663 
6664 	for (i = 0; i < adapter->num_q_vectors; i++) {
6665 		adapter->q_vector[i]->cpu = -1;
6666 		igb_update_dca(adapter->q_vector[i]);
6667 	}
6668 }
6669 
__igb_notify_dca(struct device * dev,void * data)6670 static int __igb_notify_dca(struct device *dev, void *data)
6671 {
6672 	struct net_device *netdev = dev_get_drvdata(dev);
6673 	struct igb_adapter *adapter = netdev_priv(netdev);
6674 	struct pci_dev *pdev = adapter->pdev;
6675 	struct e1000_hw *hw = &adapter->hw;
6676 	unsigned long event = *(unsigned long *)data;
6677 
6678 	switch (event) {
6679 	case DCA_PROVIDER_ADD:
6680 		/* if already enabled, don't do it again */
6681 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6682 			break;
6683 		if (dca_add_requester(dev) == 0) {
6684 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
6685 			dev_info(&pdev->dev, "DCA enabled\n");
6686 			igb_setup_dca(adapter);
6687 			break;
6688 		}
6689 		/* Fall Through - since DCA is disabled. */
6690 	case DCA_PROVIDER_REMOVE:
6691 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6692 			/* without this a class_device is left
6693 			 * hanging around in the sysfs model
6694 			 */
6695 			dca_remove_requester(dev);
6696 			dev_info(&pdev->dev, "DCA disabled\n");
6697 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6698 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6699 		}
6700 		break;
6701 	}
6702 
6703 	return 0;
6704 }
6705 
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)6706 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6707 			  void *p)
6708 {
6709 	int ret_val;
6710 
6711 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6712 					 __igb_notify_dca);
6713 
6714 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6715 }
6716 #endif /* CONFIG_IGB_DCA */
6717 
6718 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)6719 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6720 {
6721 	unsigned char mac_addr[ETH_ALEN];
6722 
6723 	eth_zero_addr(mac_addr);
6724 	igb_set_vf_mac(adapter, vf, mac_addr);
6725 
6726 	/* By default spoof check is enabled for all VFs */
6727 	adapter->vf_data[vf].spoofchk_enabled = true;
6728 
6729 	/* By default VFs are not trusted */
6730 	adapter->vf_data[vf].trusted = false;
6731 
6732 	return 0;
6733 }
6734 
6735 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)6736 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6737 {
6738 	struct e1000_hw *hw = &adapter->hw;
6739 	u32 ping;
6740 	int i;
6741 
6742 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6743 		ping = E1000_PF_CONTROL_MSG;
6744 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6745 			ping |= E1000_VT_MSGTYPE_CTS;
6746 		igb_write_mbx(hw, &ping, 1, i);
6747 	}
6748 }
6749 
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)6750 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6751 {
6752 	struct e1000_hw *hw = &adapter->hw;
6753 	u32 vmolr = rd32(E1000_VMOLR(vf));
6754 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6755 
6756 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6757 			    IGB_VF_FLAG_MULTI_PROMISC);
6758 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6759 
6760 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6761 		vmolr |= E1000_VMOLR_MPME;
6762 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6763 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6764 	} else {
6765 		/* if we have hashes and we are clearing a multicast promisc
6766 		 * flag we need to write the hashes to the MTA as this step
6767 		 * was previously skipped
6768 		 */
6769 		if (vf_data->num_vf_mc_hashes > 30) {
6770 			vmolr |= E1000_VMOLR_MPME;
6771 		} else if (vf_data->num_vf_mc_hashes) {
6772 			int j;
6773 
6774 			vmolr |= E1000_VMOLR_ROMPE;
6775 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6776 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6777 		}
6778 	}
6779 
6780 	wr32(E1000_VMOLR(vf), vmolr);
6781 
6782 	/* there are flags left unprocessed, likely not supported */
6783 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
6784 		return -EINVAL;
6785 
6786 	return 0;
6787 }
6788 
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)6789 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6790 				  u32 *msgbuf, u32 vf)
6791 {
6792 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6793 	u16 *hash_list = (u16 *)&msgbuf[1];
6794 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6795 	int i;
6796 
6797 	/* salt away the number of multicast addresses assigned
6798 	 * to this VF for later use to restore when the PF multi cast
6799 	 * list changes
6800 	 */
6801 	vf_data->num_vf_mc_hashes = n;
6802 
6803 	/* only up to 30 hash values supported */
6804 	if (n > 30)
6805 		n = 30;
6806 
6807 	/* store the hashes for later use */
6808 	for (i = 0; i < n; i++)
6809 		vf_data->vf_mc_hashes[i] = hash_list[i];
6810 
6811 	/* Flush and reset the mta with the new values */
6812 	igb_set_rx_mode(adapter->netdev);
6813 
6814 	return 0;
6815 }
6816 
igb_restore_vf_multicasts(struct igb_adapter * adapter)6817 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6818 {
6819 	struct e1000_hw *hw = &adapter->hw;
6820 	struct vf_data_storage *vf_data;
6821 	int i, j;
6822 
6823 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6824 		u32 vmolr = rd32(E1000_VMOLR(i));
6825 
6826 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6827 
6828 		vf_data = &adapter->vf_data[i];
6829 
6830 		if ((vf_data->num_vf_mc_hashes > 30) ||
6831 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6832 			vmolr |= E1000_VMOLR_MPME;
6833 		} else if (vf_data->num_vf_mc_hashes) {
6834 			vmolr |= E1000_VMOLR_ROMPE;
6835 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6836 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6837 		}
6838 		wr32(E1000_VMOLR(i), vmolr);
6839 	}
6840 }
6841 
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)6842 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6843 {
6844 	struct e1000_hw *hw = &adapter->hw;
6845 	u32 pool_mask, vlvf_mask, i;
6846 
6847 	/* create mask for VF and other pools */
6848 	pool_mask = E1000_VLVF_POOLSEL_MASK;
6849 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6850 
6851 	/* drop PF from pool bits */
6852 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6853 			     adapter->vfs_allocated_count);
6854 
6855 	/* Find the vlan filter for this id */
6856 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6857 		u32 vlvf = rd32(E1000_VLVF(i));
6858 		u32 vfta_mask, vid, vfta;
6859 
6860 		/* remove the vf from the pool */
6861 		if (!(vlvf & vlvf_mask))
6862 			continue;
6863 
6864 		/* clear out bit from VLVF */
6865 		vlvf ^= vlvf_mask;
6866 
6867 		/* if other pools are present, just remove ourselves */
6868 		if (vlvf & pool_mask)
6869 			goto update_vlvfb;
6870 
6871 		/* if PF is present, leave VFTA */
6872 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6873 			goto update_vlvf;
6874 
6875 		vid = vlvf & E1000_VLVF_VLANID_MASK;
6876 		vfta_mask = BIT(vid % 32);
6877 
6878 		/* clear bit from VFTA */
6879 		vfta = adapter->shadow_vfta[vid / 32];
6880 		if (vfta & vfta_mask)
6881 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6882 update_vlvf:
6883 		/* clear pool selection enable */
6884 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6885 			vlvf &= E1000_VLVF_POOLSEL_MASK;
6886 		else
6887 			vlvf = 0;
6888 update_vlvfb:
6889 		/* clear pool bits */
6890 		wr32(E1000_VLVF(i), vlvf);
6891 	}
6892 }
6893 
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)6894 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6895 {
6896 	u32 vlvf;
6897 	int idx;
6898 
6899 	/* short cut the special case */
6900 	if (vlan == 0)
6901 		return 0;
6902 
6903 	/* Search for the VLAN id in the VLVF entries */
6904 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6905 		vlvf = rd32(E1000_VLVF(idx));
6906 		if ((vlvf & VLAN_VID_MASK) == vlan)
6907 			break;
6908 	}
6909 
6910 	return idx;
6911 }
6912 
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)6913 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6914 {
6915 	struct e1000_hw *hw = &adapter->hw;
6916 	u32 bits, pf_id;
6917 	int idx;
6918 
6919 	idx = igb_find_vlvf_entry(hw, vid);
6920 	if (!idx)
6921 		return;
6922 
6923 	/* See if any other pools are set for this VLAN filter
6924 	 * entry other than the PF.
6925 	 */
6926 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6927 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6928 	bits &= rd32(E1000_VLVF(idx));
6929 
6930 	/* Disable the filter so this falls into the default pool. */
6931 	if (!bits) {
6932 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6933 			wr32(E1000_VLVF(idx), BIT(pf_id));
6934 		else
6935 			wr32(E1000_VLVF(idx), 0);
6936 	}
6937 }
6938 
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)6939 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6940 			   bool add, u32 vf)
6941 {
6942 	int pf_id = adapter->vfs_allocated_count;
6943 	struct e1000_hw *hw = &adapter->hw;
6944 	int err;
6945 
6946 	/* If VLAN overlaps with one the PF is currently monitoring make
6947 	 * sure that we are able to allocate a VLVF entry.  This may be
6948 	 * redundant but it guarantees PF will maintain visibility to
6949 	 * the VLAN.
6950 	 */
6951 	if (add && test_bit(vid, adapter->active_vlans)) {
6952 		err = igb_vfta_set(hw, vid, pf_id, true, false);
6953 		if (err)
6954 			return err;
6955 	}
6956 
6957 	err = igb_vfta_set(hw, vid, vf, add, false);
6958 
6959 	if (add && !err)
6960 		return err;
6961 
6962 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6963 	 * we may need to drop the PF pool bit in order to allow us to free
6964 	 * up the VLVF resources.
6965 	 */
6966 	if (test_bit(vid, adapter->active_vlans) ||
6967 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6968 		igb_update_pf_vlvf(adapter, vid);
6969 
6970 	return err;
6971 }
6972 
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)6973 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6974 {
6975 	struct e1000_hw *hw = &adapter->hw;
6976 
6977 	if (vid)
6978 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6979 	else
6980 		wr32(E1000_VMVIR(vf), 0);
6981 }
6982 
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)6983 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6984 				u16 vlan, u8 qos)
6985 {
6986 	int err;
6987 
6988 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
6989 	if (err)
6990 		return err;
6991 
6992 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6993 	igb_set_vmolr(adapter, vf, !vlan);
6994 
6995 	/* revoke access to previous VLAN */
6996 	if (vlan != adapter->vf_data[vf].pf_vlan)
6997 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6998 				false, vf);
6999 
7000 	adapter->vf_data[vf].pf_vlan = vlan;
7001 	adapter->vf_data[vf].pf_qos = qos;
7002 	igb_set_vf_vlan_strip(adapter, vf, true);
7003 	dev_info(&adapter->pdev->dev,
7004 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7005 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7006 		dev_warn(&adapter->pdev->dev,
7007 			 "The VF VLAN has been set, but the PF device is not up.\n");
7008 		dev_warn(&adapter->pdev->dev,
7009 			 "Bring the PF device up before attempting to use the VF device.\n");
7010 	}
7011 
7012 	return err;
7013 }
7014 
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7015 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7016 {
7017 	/* Restore tagless access via VLAN 0 */
7018 	igb_set_vf_vlan(adapter, 0, true, vf);
7019 
7020 	igb_set_vmvir(adapter, 0, vf);
7021 	igb_set_vmolr(adapter, vf, true);
7022 
7023 	/* Remove any PF assigned VLAN */
7024 	if (adapter->vf_data[vf].pf_vlan)
7025 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7026 				false, vf);
7027 
7028 	adapter->vf_data[vf].pf_vlan = 0;
7029 	adapter->vf_data[vf].pf_qos = 0;
7030 	igb_set_vf_vlan_strip(adapter, vf, false);
7031 
7032 	return 0;
7033 }
7034 
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7035 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7036 			       u16 vlan, u8 qos, __be16 vlan_proto)
7037 {
7038 	struct igb_adapter *adapter = netdev_priv(netdev);
7039 
7040 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7041 		return -EINVAL;
7042 
7043 	if (vlan_proto != htons(ETH_P_8021Q))
7044 		return -EPROTONOSUPPORT;
7045 
7046 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7047 			       igb_disable_port_vlan(adapter, vf);
7048 }
7049 
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7050 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7051 {
7052 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7053 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7054 	int ret;
7055 
7056 	if (adapter->vf_data[vf].pf_vlan)
7057 		return -1;
7058 
7059 	/* VLAN 0 is a special case, don't allow it to be removed */
7060 	if (!vid && !add)
7061 		return 0;
7062 
7063 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7064 	if (!ret)
7065 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7066 	return ret;
7067 }
7068 
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7069 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7070 {
7071 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7072 
7073 	/* clear flags - except flag that indicates PF has set the MAC */
7074 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7075 	vf_data->last_nack = jiffies;
7076 
7077 	/* reset vlans for device */
7078 	igb_clear_vf_vfta(adapter, vf);
7079 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7080 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7081 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7082 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7083 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7084 
7085 	/* reset multicast table array for vf */
7086 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7087 
7088 	/* Flush and reset the mta with the new values */
7089 	igb_set_rx_mode(adapter->netdev);
7090 }
7091 
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7092 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7093 {
7094 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7095 
7096 	/* clear mac address as we were hotplug removed/added */
7097 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7098 		eth_zero_addr(vf_mac);
7099 
7100 	/* process remaining reset events */
7101 	igb_vf_reset(adapter, vf);
7102 }
7103 
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7104 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7105 {
7106 	struct e1000_hw *hw = &adapter->hw;
7107 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7108 	u32 reg, msgbuf[3];
7109 	u8 *addr = (u8 *)(&msgbuf[1]);
7110 
7111 	/* process all the same items cleared in a function level reset */
7112 	igb_vf_reset(adapter, vf);
7113 
7114 	/* set vf mac address */
7115 	igb_set_vf_mac(adapter, vf, vf_mac);
7116 
7117 	/* enable transmit and receive for vf */
7118 	reg = rd32(E1000_VFTE);
7119 	wr32(E1000_VFTE, reg | BIT(vf));
7120 	reg = rd32(E1000_VFRE);
7121 	wr32(E1000_VFRE, reg | BIT(vf));
7122 
7123 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7124 
7125 	/* reply to reset with ack and vf mac address */
7126 	if (!is_zero_ether_addr(vf_mac)) {
7127 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7128 		memcpy(addr, vf_mac, ETH_ALEN);
7129 	} else {
7130 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7131 	}
7132 	igb_write_mbx(hw, msgbuf, 3, vf);
7133 }
7134 
igb_flush_mac_table(struct igb_adapter * adapter)7135 static void igb_flush_mac_table(struct igb_adapter *adapter)
7136 {
7137 	struct e1000_hw *hw = &adapter->hw;
7138 	int i;
7139 
7140 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7141 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7142 		memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7143 		adapter->mac_table[i].queue = 0;
7144 		igb_rar_set_index(adapter, i);
7145 	}
7146 }
7147 
igb_available_rars(struct igb_adapter * adapter,u8 queue)7148 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7149 {
7150 	struct e1000_hw *hw = &adapter->hw;
7151 	/* do not count rar entries reserved for VFs MAC addresses */
7152 	int rar_entries = hw->mac.rar_entry_count -
7153 			  adapter->vfs_allocated_count;
7154 	int i, count = 0;
7155 
7156 	for (i = 0; i < rar_entries; i++) {
7157 		/* do not count default entries */
7158 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7159 			continue;
7160 
7161 		/* do not count "in use" entries for different queues */
7162 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7163 		    (adapter->mac_table[i].queue != queue))
7164 			continue;
7165 
7166 		count++;
7167 	}
7168 
7169 	return count;
7170 }
7171 
7172 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7173 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7174 {
7175 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7176 
7177 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7178 	mac_table->queue = adapter->vfs_allocated_count;
7179 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7180 
7181 	igb_rar_set_index(adapter, 0);
7182 }
7183 
7184 /* If the filter to be added and an already existing filter express
7185  * the same address and address type, it should be possible to only
7186  * override the other configurations, for example the queue to steer
7187  * traffic.
7188  */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7189 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7190 				      const u8 *addr, const u8 flags)
7191 {
7192 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7193 		return true;
7194 
7195 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7196 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7197 		return false;
7198 
7199 	if (!ether_addr_equal(addr, entry->addr))
7200 		return false;
7201 
7202 	return true;
7203 }
7204 
7205 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7206  * 'flags' is used to indicate what kind of match is made, match is by
7207  * default for the destination address, if matching by source address
7208  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7209  */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7210 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7211 				    const u8 *addr, const u8 queue,
7212 				    const u8 flags)
7213 {
7214 	struct e1000_hw *hw = &adapter->hw;
7215 	int rar_entries = hw->mac.rar_entry_count -
7216 			  adapter->vfs_allocated_count;
7217 	int i;
7218 
7219 	if (is_zero_ether_addr(addr))
7220 		return -EINVAL;
7221 
7222 	/* Search for the first empty entry in the MAC table.
7223 	 * Do not touch entries at the end of the table reserved for the VF MAC
7224 	 * addresses.
7225 	 */
7226 	for (i = 0; i < rar_entries; i++) {
7227 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7228 					       addr, flags))
7229 			continue;
7230 
7231 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7232 		adapter->mac_table[i].queue = queue;
7233 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7234 
7235 		igb_rar_set_index(adapter, i);
7236 		return i;
7237 	}
7238 
7239 	return -ENOSPC;
7240 }
7241 
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7242 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7243 			      const u8 queue)
7244 {
7245 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7246 }
7247 
7248 /* Remove a MAC filter for 'addr' directing matching traffic to
7249  * 'queue', 'flags' is used to indicate what kind of match need to be
7250  * removed, match is by default for the destination address, if
7251  * matching by source address is to be removed the flag
7252  * IGB_MAC_STATE_SRC_ADDR can be used.
7253  */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7254 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7255 				    const u8 *addr, const u8 queue,
7256 				    const u8 flags)
7257 {
7258 	struct e1000_hw *hw = &adapter->hw;
7259 	int rar_entries = hw->mac.rar_entry_count -
7260 			  adapter->vfs_allocated_count;
7261 	int i;
7262 
7263 	if (is_zero_ether_addr(addr))
7264 		return -EINVAL;
7265 
7266 	/* Search for matching entry in the MAC table based on given address
7267 	 * and queue. Do not touch entries at the end of the table reserved
7268 	 * for the VF MAC addresses.
7269 	 */
7270 	for (i = 0; i < rar_entries; i++) {
7271 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7272 			continue;
7273 		if ((adapter->mac_table[i].state & flags) != flags)
7274 			continue;
7275 		if (adapter->mac_table[i].queue != queue)
7276 			continue;
7277 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7278 			continue;
7279 
7280 		/* When a filter for the default address is "deleted",
7281 		 * we return it to its initial configuration
7282 		 */
7283 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7284 			adapter->mac_table[i].state =
7285 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7286 			adapter->mac_table[i].queue =
7287 				adapter->vfs_allocated_count;
7288 		} else {
7289 			adapter->mac_table[i].state = 0;
7290 			adapter->mac_table[i].queue = 0;
7291 			memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7292 		}
7293 
7294 		igb_rar_set_index(adapter, i);
7295 		return 0;
7296 	}
7297 
7298 	return -ENOENT;
7299 }
7300 
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7301 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7302 			      const u8 queue)
7303 {
7304 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7305 }
7306 
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7307 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7308 				const u8 *addr, u8 queue, u8 flags)
7309 {
7310 	struct e1000_hw *hw = &adapter->hw;
7311 
7312 	/* In theory, this should be supported on 82575 as well, but
7313 	 * that part wasn't easily accessible during development.
7314 	 */
7315 	if (hw->mac.type != e1000_i210)
7316 		return -EOPNOTSUPP;
7317 
7318 	return igb_add_mac_filter_flags(adapter, addr, queue,
7319 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7320 }
7321 
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7322 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7323 				const u8 *addr, u8 queue, u8 flags)
7324 {
7325 	return igb_del_mac_filter_flags(adapter, addr, queue,
7326 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7327 }
7328 
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7329 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7330 {
7331 	struct igb_adapter *adapter = netdev_priv(netdev);
7332 	int ret;
7333 
7334 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7335 
7336 	return min_t(int, ret, 0);
7337 }
7338 
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7339 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7340 {
7341 	struct igb_adapter *adapter = netdev_priv(netdev);
7342 
7343 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7344 
7345 	return 0;
7346 }
7347 
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7348 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7349 				 const u32 info, const u8 *addr)
7350 {
7351 	struct pci_dev *pdev = adapter->pdev;
7352 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7353 	struct list_head *pos;
7354 	struct vf_mac_filter *entry = NULL;
7355 	int ret = 0;
7356 
7357 	switch (info) {
7358 	case E1000_VF_MAC_FILTER_CLR:
7359 		/* remove all unicast MAC filters related to the current VF */
7360 		list_for_each(pos, &adapter->vf_macs.l) {
7361 			entry = list_entry(pos, struct vf_mac_filter, l);
7362 			if (entry->vf == vf) {
7363 				entry->vf = -1;
7364 				entry->free = true;
7365 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7366 			}
7367 		}
7368 		break;
7369 	case E1000_VF_MAC_FILTER_ADD:
7370 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7371 		    !vf_data->trusted) {
7372 			dev_warn(&pdev->dev,
7373 				 "VF %d requested MAC filter but is administratively denied\n",
7374 				 vf);
7375 			return -EINVAL;
7376 		}
7377 		if (!is_valid_ether_addr(addr)) {
7378 			dev_warn(&pdev->dev,
7379 				 "VF %d attempted to set invalid MAC filter\n",
7380 				 vf);
7381 			return -EINVAL;
7382 		}
7383 
7384 		/* try to find empty slot in the list */
7385 		list_for_each(pos, &adapter->vf_macs.l) {
7386 			entry = list_entry(pos, struct vf_mac_filter, l);
7387 			if (entry->free)
7388 				break;
7389 		}
7390 
7391 		if (entry && entry->free) {
7392 			entry->free = false;
7393 			entry->vf = vf;
7394 			ether_addr_copy(entry->vf_mac, addr);
7395 
7396 			ret = igb_add_mac_filter(adapter, addr, vf);
7397 			ret = min_t(int, ret, 0);
7398 		} else {
7399 			ret = -ENOSPC;
7400 		}
7401 
7402 		if (ret == -ENOSPC)
7403 			dev_warn(&pdev->dev,
7404 				 "VF %d has requested MAC filter but there is no space for it\n",
7405 				 vf);
7406 		break;
7407 	default:
7408 		ret = -EINVAL;
7409 		break;
7410 	}
7411 
7412 	return ret;
7413 }
7414 
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7415 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7416 {
7417 	struct pci_dev *pdev = adapter->pdev;
7418 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7419 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7420 
7421 	/* The VF MAC Address is stored in a packed array of bytes
7422 	 * starting at the second 32 bit word of the msg array
7423 	 */
7424 	unsigned char *addr = (unsigned char *)&msg[1];
7425 	int ret = 0;
7426 
7427 	if (!info) {
7428 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7429 		    !vf_data->trusted) {
7430 			dev_warn(&pdev->dev,
7431 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7432 				 vf);
7433 			return -EINVAL;
7434 		}
7435 
7436 		if (!is_valid_ether_addr(addr)) {
7437 			dev_warn(&pdev->dev,
7438 				 "VF %d attempted to set invalid MAC\n",
7439 				 vf);
7440 			return -EINVAL;
7441 		}
7442 
7443 		ret = igb_set_vf_mac(adapter, vf, addr);
7444 	} else {
7445 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7446 	}
7447 
7448 	return ret;
7449 }
7450 
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7451 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7452 {
7453 	struct e1000_hw *hw = &adapter->hw;
7454 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7455 	u32 msg = E1000_VT_MSGTYPE_NACK;
7456 
7457 	/* if device isn't clear to send it shouldn't be reading either */
7458 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7459 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7460 		igb_write_mbx(hw, &msg, 1, vf);
7461 		vf_data->last_nack = jiffies;
7462 	}
7463 }
7464 
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7465 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7466 {
7467 	struct pci_dev *pdev = adapter->pdev;
7468 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7469 	struct e1000_hw *hw = &adapter->hw;
7470 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7471 	s32 retval;
7472 
7473 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7474 
7475 	if (retval) {
7476 		/* if receive failed revoke VF CTS stats and restart init */
7477 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7478 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7479 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7480 			goto unlock;
7481 		goto out;
7482 	}
7483 
7484 	/* this is a message we already processed, do nothing */
7485 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7486 		goto unlock;
7487 
7488 	/* until the vf completes a reset it should not be
7489 	 * allowed to start any configuration.
7490 	 */
7491 	if (msgbuf[0] == E1000_VF_RESET) {
7492 		/* unlocks mailbox */
7493 		igb_vf_reset_msg(adapter, vf);
7494 		return;
7495 	}
7496 
7497 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7498 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7499 			goto unlock;
7500 		retval = -1;
7501 		goto out;
7502 	}
7503 
7504 	switch ((msgbuf[0] & 0xFFFF)) {
7505 	case E1000_VF_SET_MAC_ADDR:
7506 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7507 		break;
7508 	case E1000_VF_SET_PROMISC:
7509 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7510 		break;
7511 	case E1000_VF_SET_MULTICAST:
7512 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7513 		break;
7514 	case E1000_VF_SET_LPE:
7515 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7516 		break;
7517 	case E1000_VF_SET_VLAN:
7518 		retval = -1;
7519 		if (vf_data->pf_vlan)
7520 			dev_warn(&pdev->dev,
7521 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7522 				 vf);
7523 		else
7524 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7525 		break;
7526 	default:
7527 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7528 		retval = -1;
7529 		break;
7530 	}
7531 
7532 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7533 out:
7534 	/* notify the VF of the results of what it sent us */
7535 	if (retval)
7536 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7537 	else
7538 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7539 
7540 	/* unlocks mailbox */
7541 	igb_write_mbx(hw, msgbuf, 1, vf);
7542 	return;
7543 
7544 unlock:
7545 	igb_unlock_mbx(hw, vf);
7546 }
7547 
igb_msg_task(struct igb_adapter * adapter)7548 static void igb_msg_task(struct igb_adapter *adapter)
7549 {
7550 	struct e1000_hw *hw = &adapter->hw;
7551 	u32 vf;
7552 
7553 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7554 		/* process any reset requests */
7555 		if (!igb_check_for_rst(hw, vf))
7556 			igb_vf_reset_event(adapter, vf);
7557 
7558 		/* process any messages pending */
7559 		if (!igb_check_for_msg(hw, vf))
7560 			igb_rcv_msg_from_vf(adapter, vf);
7561 
7562 		/* process any acks */
7563 		if (!igb_check_for_ack(hw, vf))
7564 			igb_rcv_ack_from_vf(adapter, vf);
7565 	}
7566 }
7567 
7568 /**
7569  *  igb_set_uta - Set unicast filter table address
7570  *  @adapter: board private structure
7571  *  @set: boolean indicating if we are setting or clearing bits
7572  *
7573  *  The unicast table address is a register array of 32-bit registers.
7574  *  The table is meant to be used in a way similar to how the MTA is used
7575  *  however due to certain limitations in the hardware it is necessary to
7576  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7577  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7578  **/
igb_set_uta(struct igb_adapter * adapter,bool set)7579 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7580 {
7581 	struct e1000_hw *hw = &adapter->hw;
7582 	u32 uta = set ? ~0 : 0;
7583 	int i;
7584 
7585 	/* we only need to do this if VMDq is enabled */
7586 	if (!adapter->vfs_allocated_count)
7587 		return;
7588 
7589 	for (i = hw->mac.uta_reg_count; i--;)
7590 		array_wr32(E1000_UTA, i, uta);
7591 }
7592 
7593 /**
7594  *  igb_intr_msi - Interrupt Handler
7595  *  @irq: interrupt number
7596  *  @data: pointer to a network interface device structure
7597  **/
igb_intr_msi(int irq,void * data)7598 static irqreturn_t igb_intr_msi(int irq, void *data)
7599 {
7600 	struct igb_adapter *adapter = data;
7601 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7602 	struct e1000_hw *hw = &adapter->hw;
7603 	/* read ICR disables interrupts using IAM */
7604 	u32 icr = rd32(E1000_ICR);
7605 
7606 	igb_write_itr(q_vector);
7607 
7608 	if (icr & E1000_ICR_DRSTA)
7609 		schedule_work(&adapter->reset_task);
7610 
7611 	if (icr & E1000_ICR_DOUTSYNC) {
7612 		/* HW is reporting DMA is out of sync */
7613 		adapter->stats.doosync++;
7614 	}
7615 
7616 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7617 		hw->mac.get_link_status = 1;
7618 		if (!test_bit(__IGB_DOWN, &adapter->state))
7619 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7620 	}
7621 
7622 	if (icr & E1000_ICR_TS)
7623 		igb_tsync_interrupt(adapter);
7624 
7625 	napi_schedule(&q_vector->napi);
7626 
7627 	return IRQ_HANDLED;
7628 }
7629 
7630 /**
7631  *  igb_intr - Legacy Interrupt Handler
7632  *  @irq: interrupt number
7633  *  @data: pointer to a network interface device structure
7634  **/
igb_intr(int irq,void * data)7635 static irqreturn_t igb_intr(int irq, void *data)
7636 {
7637 	struct igb_adapter *adapter = data;
7638 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7639 	struct e1000_hw *hw = &adapter->hw;
7640 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7641 	 * need for the IMC write
7642 	 */
7643 	u32 icr = rd32(E1000_ICR);
7644 
7645 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7646 	 * not set, then the adapter didn't send an interrupt
7647 	 */
7648 	if (!(icr & E1000_ICR_INT_ASSERTED))
7649 		return IRQ_NONE;
7650 
7651 	igb_write_itr(q_vector);
7652 
7653 	if (icr & E1000_ICR_DRSTA)
7654 		schedule_work(&adapter->reset_task);
7655 
7656 	if (icr & E1000_ICR_DOUTSYNC) {
7657 		/* HW is reporting DMA is out of sync */
7658 		adapter->stats.doosync++;
7659 	}
7660 
7661 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7662 		hw->mac.get_link_status = 1;
7663 		/* guard against interrupt when we're going down */
7664 		if (!test_bit(__IGB_DOWN, &adapter->state))
7665 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7666 	}
7667 
7668 	if (icr & E1000_ICR_TS)
7669 		igb_tsync_interrupt(adapter);
7670 
7671 	napi_schedule(&q_vector->napi);
7672 
7673 	return IRQ_HANDLED;
7674 }
7675 
igb_ring_irq_enable(struct igb_q_vector * q_vector)7676 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7677 {
7678 	struct igb_adapter *adapter = q_vector->adapter;
7679 	struct e1000_hw *hw = &adapter->hw;
7680 
7681 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7682 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7683 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7684 			igb_set_itr(q_vector);
7685 		else
7686 			igb_update_ring_itr(q_vector);
7687 	}
7688 
7689 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
7690 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7691 			wr32(E1000_EIMS, q_vector->eims_value);
7692 		else
7693 			igb_irq_enable(adapter);
7694 	}
7695 }
7696 
7697 /**
7698  *  igb_poll - NAPI Rx polling callback
7699  *  @napi: napi polling structure
7700  *  @budget: count of how many packets we should handle
7701  **/
igb_poll(struct napi_struct * napi,int budget)7702 static int igb_poll(struct napi_struct *napi, int budget)
7703 {
7704 	struct igb_q_vector *q_vector = container_of(napi,
7705 						     struct igb_q_vector,
7706 						     napi);
7707 	bool clean_complete = true;
7708 	int work_done = 0;
7709 
7710 #ifdef CONFIG_IGB_DCA
7711 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7712 		igb_update_dca(q_vector);
7713 #endif
7714 	if (q_vector->tx.ring)
7715 		clean_complete = igb_clean_tx_irq(q_vector, budget);
7716 
7717 	if (q_vector->rx.ring) {
7718 		int cleaned = igb_clean_rx_irq(q_vector, budget);
7719 
7720 		work_done += cleaned;
7721 		if (cleaned >= budget)
7722 			clean_complete = false;
7723 	}
7724 
7725 	/* If all work not completed, return budget and keep polling */
7726 	if (!clean_complete)
7727 		return budget;
7728 
7729 	/* Exit the polling mode, but don't re-enable interrupts if stack might
7730 	 * poll us due to busy-polling
7731 	 */
7732 	if (likely(napi_complete_done(napi, work_done)))
7733 		igb_ring_irq_enable(q_vector);
7734 
7735 	return min(work_done, budget - 1);
7736 }
7737 
7738 /**
7739  *  igb_clean_tx_irq - Reclaim resources after transmit completes
7740  *  @q_vector: pointer to q_vector containing needed info
7741  *  @napi_budget: Used to determine if we are in netpoll
7742  *
7743  *  returns true if ring is completely cleaned
7744  **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)7745 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7746 {
7747 	struct igb_adapter *adapter = q_vector->adapter;
7748 	struct igb_ring *tx_ring = q_vector->tx.ring;
7749 	struct igb_tx_buffer *tx_buffer;
7750 	union e1000_adv_tx_desc *tx_desc;
7751 	unsigned int total_bytes = 0, total_packets = 0;
7752 	unsigned int budget = q_vector->tx.work_limit;
7753 	unsigned int i = tx_ring->next_to_clean;
7754 
7755 	if (test_bit(__IGB_DOWN, &adapter->state))
7756 		return true;
7757 
7758 	tx_buffer = &tx_ring->tx_buffer_info[i];
7759 	tx_desc = IGB_TX_DESC(tx_ring, i);
7760 	i -= tx_ring->count;
7761 
7762 	do {
7763 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7764 
7765 		/* if next_to_watch is not set then there is no work pending */
7766 		if (!eop_desc)
7767 			break;
7768 
7769 		/* prevent any other reads prior to eop_desc */
7770 		smp_rmb();
7771 
7772 		/* if DD is not set pending work has not been completed */
7773 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7774 			break;
7775 
7776 		/* clear next_to_watch to prevent false hangs */
7777 		tx_buffer->next_to_watch = NULL;
7778 
7779 		/* update the statistics for this packet */
7780 		total_bytes += tx_buffer->bytecount;
7781 		total_packets += tx_buffer->gso_segs;
7782 
7783 		/* free the skb */
7784 		napi_consume_skb(tx_buffer->skb, napi_budget);
7785 
7786 		/* unmap skb header data */
7787 		dma_unmap_single(tx_ring->dev,
7788 				 dma_unmap_addr(tx_buffer, dma),
7789 				 dma_unmap_len(tx_buffer, len),
7790 				 DMA_TO_DEVICE);
7791 
7792 		/* clear tx_buffer data */
7793 		dma_unmap_len_set(tx_buffer, len, 0);
7794 
7795 		/* clear last DMA location and unmap remaining buffers */
7796 		while (tx_desc != eop_desc) {
7797 			tx_buffer++;
7798 			tx_desc++;
7799 			i++;
7800 			if (unlikely(!i)) {
7801 				i -= tx_ring->count;
7802 				tx_buffer = tx_ring->tx_buffer_info;
7803 				tx_desc = IGB_TX_DESC(tx_ring, 0);
7804 			}
7805 
7806 			/* unmap any remaining paged data */
7807 			if (dma_unmap_len(tx_buffer, len)) {
7808 				dma_unmap_page(tx_ring->dev,
7809 					       dma_unmap_addr(tx_buffer, dma),
7810 					       dma_unmap_len(tx_buffer, len),
7811 					       DMA_TO_DEVICE);
7812 				dma_unmap_len_set(tx_buffer, len, 0);
7813 			}
7814 		}
7815 
7816 		/* move us one more past the eop_desc for start of next pkt */
7817 		tx_buffer++;
7818 		tx_desc++;
7819 		i++;
7820 		if (unlikely(!i)) {
7821 			i -= tx_ring->count;
7822 			tx_buffer = tx_ring->tx_buffer_info;
7823 			tx_desc = IGB_TX_DESC(tx_ring, 0);
7824 		}
7825 
7826 		/* issue prefetch for next Tx descriptor */
7827 		prefetch(tx_desc);
7828 
7829 		/* update budget accounting */
7830 		budget--;
7831 	} while (likely(budget));
7832 
7833 	netdev_tx_completed_queue(txring_txq(tx_ring),
7834 				  total_packets, total_bytes);
7835 	i += tx_ring->count;
7836 	tx_ring->next_to_clean = i;
7837 	u64_stats_update_begin(&tx_ring->tx_syncp);
7838 	tx_ring->tx_stats.bytes += total_bytes;
7839 	tx_ring->tx_stats.packets += total_packets;
7840 	u64_stats_update_end(&tx_ring->tx_syncp);
7841 	q_vector->tx.total_bytes += total_bytes;
7842 	q_vector->tx.total_packets += total_packets;
7843 
7844 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7845 		struct e1000_hw *hw = &adapter->hw;
7846 
7847 		/* Detect a transmit hang in hardware, this serializes the
7848 		 * check with the clearing of time_stamp and movement of i
7849 		 */
7850 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7851 		if (tx_buffer->next_to_watch &&
7852 		    time_after(jiffies, tx_buffer->time_stamp +
7853 			       (adapter->tx_timeout_factor * HZ)) &&
7854 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7855 
7856 			/* detected Tx unit hang */
7857 			dev_err(tx_ring->dev,
7858 				"Detected Tx Unit Hang\n"
7859 				"  Tx Queue             <%d>\n"
7860 				"  TDH                  <%x>\n"
7861 				"  TDT                  <%x>\n"
7862 				"  next_to_use          <%x>\n"
7863 				"  next_to_clean        <%x>\n"
7864 				"buffer_info[next_to_clean]\n"
7865 				"  time_stamp           <%lx>\n"
7866 				"  next_to_watch        <%p>\n"
7867 				"  jiffies              <%lx>\n"
7868 				"  desc.status          <%x>\n",
7869 				tx_ring->queue_index,
7870 				rd32(E1000_TDH(tx_ring->reg_idx)),
7871 				readl(tx_ring->tail),
7872 				tx_ring->next_to_use,
7873 				tx_ring->next_to_clean,
7874 				tx_buffer->time_stamp,
7875 				tx_buffer->next_to_watch,
7876 				jiffies,
7877 				tx_buffer->next_to_watch->wb.status);
7878 			netif_stop_subqueue(tx_ring->netdev,
7879 					    tx_ring->queue_index);
7880 
7881 			/* we are about to reset, no point in enabling stuff */
7882 			return true;
7883 		}
7884 	}
7885 
7886 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7887 	if (unlikely(total_packets &&
7888 	    netif_carrier_ok(tx_ring->netdev) &&
7889 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7890 		/* Make sure that anybody stopping the queue after this
7891 		 * sees the new next_to_clean.
7892 		 */
7893 		smp_mb();
7894 		if (__netif_subqueue_stopped(tx_ring->netdev,
7895 					     tx_ring->queue_index) &&
7896 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
7897 			netif_wake_subqueue(tx_ring->netdev,
7898 					    tx_ring->queue_index);
7899 
7900 			u64_stats_update_begin(&tx_ring->tx_syncp);
7901 			tx_ring->tx_stats.restart_queue++;
7902 			u64_stats_update_end(&tx_ring->tx_syncp);
7903 		}
7904 	}
7905 
7906 	return !!budget;
7907 }
7908 
7909 /**
7910  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7911  *  @rx_ring: rx descriptor ring to store buffers on
7912  *  @old_buff: donor buffer to have page reused
7913  *
7914  *  Synchronizes page for reuse by the adapter
7915  **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)7916 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7917 			      struct igb_rx_buffer *old_buff)
7918 {
7919 	struct igb_rx_buffer *new_buff;
7920 	u16 nta = rx_ring->next_to_alloc;
7921 
7922 	new_buff = &rx_ring->rx_buffer_info[nta];
7923 
7924 	/* update, and store next to alloc */
7925 	nta++;
7926 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7927 
7928 	/* Transfer page from old buffer to new buffer.
7929 	 * Move each member individually to avoid possible store
7930 	 * forwarding stalls.
7931 	 */
7932 	new_buff->dma		= old_buff->dma;
7933 	new_buff->page		= old_buff->page;
7934 	new_buff->page_offset	= old_buff->page_offset;
7935 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
7936 }
7937 
igb_page_is_reserved(struct page * page)7938 static inline bool igb_page_is_reserved(struct page *page)
7939 {
7940 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7941 }
7942 
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer)7943 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7944 {
7945 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7946 	struct page *page = rx_buffer->page;
7947 
7948 	/* avoid re-using remote pages */
7949 	if (unlikely(igb_page_is_reserved(page)))
7950 		return false;
7951 
7952 #if (PAGE_SIZE < 8192)
7953 	/* if we are only owner of page we can reuse it */
7954 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7955 		return false;
7956 #else
7957 #define IGB_LAST_OFFSET \
7958 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7959 
7960 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7961 		return false;
7962 #endif
7963 
7964 	/* If we have drained the page fragment pool we need to update
7965 	 * the pagecnt_bias and page count so that we fully restock the
7966 	 * number of references the driver holds.
7967 	 */
7968 	if (unlikely(!pagecnt_bias)) {
7969 		page_ref_add(page, USHRT_MAX);
7970 		rx_buffer->pagecnt_bias = USHRT_MAX;
7971 	}
7972 
7973 	return true;
7974 }
7975 
7976 /**
7977  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7978  *  @rx_ring: rx descriptor ring to transact packets on
7979  *  @rx_buffer: buffer containing page to add
7980  *  @skb: sk_buff to place the data into
7981  *  @size: size of buffer to be added
7982  *
7983  *  This function will add the data contained in rx_buffer->page to the skb.
7984  **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)7985 static void igb_add_rx_frag(struct igb_ring *rx_ring,
7986 			    struct igb_rx_buffer *rx_buffer,
7987 			    struct sk_buff *skb,
7988 			    unsigned int size)
7989 {
7990 #if (PAGE_SIZE < 8192)
7991 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7992 #else
7993 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7994 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7995 				SKB_DATA_ALIGN(size);
7996 #endif
7997 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7998 			rx_buffer->page_offset, size, truesize);
7999 #if (PAGE_SIZE < 8192)
8000 	rx_buffer->page_offset ^= truesize;
8001 #else
8002 	rx_buffer->page_offset += truesize;
8003 #endif
8004 }
8005 
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,union e1000_adv_rx_desc * rx_desc,unsigned int size)8006 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8007 					 struct igb_rx_buffer *rx_buffer,
8008 					 union e1000_adv_rx_desc *rx_desc,
8009 					 unsigned int size)
8010 {
8011 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8012 #if (PAGE_SIZE < 8192)
8013 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8014 #else
8015 	unsigned int truesize = SKB_DATA_ALIGN(size);
8016 #endif
8017 	unsigned int headlen;
8018 	struct sk_buff *skb;
8019 
8020 	/* prefetch first cache line of first page */
8021 	prefetch(va);
8022 #if L1_CACHE_BYTES < 128
8023 	prefetch(va + L1_CACHE_BYTES);
8024 #endif
8025 
8026 	/* allocate a skb to store the frags */
8027 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8028 	if (unlikely(!skb))
8029 		return NULL;
8030 
8031 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8032 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8033 		va += IGB_TS_HDR_LEN;
8034 		size -= IGB_TS_HDR_LEN;
8035 	}
8036 
8037 	/* Determine available headroom for copy */
8038 	headlen = size;
8039 	if (headlen > IGB_RX_HDR_LEN)
8040 		headlen = eth_get_headlen(skb->dev, va, IGB_RX_HDR_LEN);
8041 
8042 	/* align pull length to size of long to optimize memcpy performance */
8043 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8044 
8045 	/* update all of the pointers */
8046 	size -= headlen;
8047 	if (size) {
8048 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8049 				(va + headlen) - page_address(rx_buffer->page),
8050 				size, truesize);
8051 #if (PAGE_SIZE < 8192)
8052 		rx_buffer->page_offset ^= truesize;
8053 #else
8054 		rx_buffer->page_offset += truesize;
8055 #endif
8056 	} else {
8057 		rx_buffer->pagecnt_bias++;
8058 	}
8059 
8060 	return skb;
8061 }
8062 
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,union e1000_adv_rx_desc * rx_desc,unsigned int size)8063 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8064 				     struct igb_rx_buffer *rx_buffer,
8065 				     union e1000_adv_rx_desc *rx_desc,
8066 				     unsigned int size)
8067 {
8068 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8069 #if (PAGE_SIZE < 8192)
8070 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8071 #else
8072 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8073 				SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8074 #endif
8075 	struct sk_buff *skb;
8076 
8077 	/* prefetch first cache line of first page */
8078 	prefetch(va);
8079 #if L1_CACHE_BYTES < 128
8080 	prefetch(va + L1_CACHE_BYTES);
8081 #endif
8082 
8083 	/* build an skb around the page buffer */
8084 	skb = build_skb(va - IGB_SKB_PAD, truesize);
8085 	if (unlikely(!skb))
8086 		return NULL;
8087 
8088 	/* update pointers within the skb to store the data */
8089 	skb_reserve(skb, IGB_SKB_PAD);
8090 	__skb_put(skb, size);
8091 
8092 	/* pull timestamp out of packet data */
8093 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8094 		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8095 		__skb_pull(skb, IGB_TS_HDR_LEN);
8096 	}
8097 
8098 	/* update buffer offset */
8099 #if (PAGE_SIZE < 8192)
8100 	rx_buffer->page_offset ^= truesize;
8101 #else
8102 	rx_buffer->page_offset += truesize;
8103 #endif
8104 
8105 	return skb;
8106 }
8107 
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8108 static inline void igb_rx_checksum(struct igb_ring *ring,
8109 				   union e1000_adv_rx_desc *rx_desc,
8110 				   struct sk_buff *skb)
8111 {
8112 	skb_checksum_none_assert(skb);
8113 
8114 	/* Ignore Checksum bit is set */
8115 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8116 		return;
8117 
8118 	/* Rx checksum disabled via ethtool */
8119 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8120 		return;
8121 
8122 	/* TCP/UDP checksum error bit is set */
8123 	if (igb_test_staterr(rx_desc,
8124 			     E1000_RXDEXT_STATERR_TCPE |
8125 			     E1000_RXDEXT_STATERR_IPE)) {
8126 		/* work around errata with sctp packets where the TCPE aka
8127 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8128 		 * packets, (aka let the stack check the crc32c)
8129 		 */
8130 		if (!((skb->len == 60) &&
8131 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8132 			u64_stats_update_begin(&ring->rx_syncp);
8133 			ring->rx_stats.csum_err++;
8134 			u64_stats_update_end(&ring->rx_syncp);
8135 		}
8136 		/* let the stack verify checksum errors */
8137 		return;
8138 	}
8139 	/* It must be a TCP or UDP packet with a valid checksum */
8140 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8141 				      E1000_RXD_STAT_UDPCS))
8142 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8143 
8144 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8145 		le32_to_cpu(rx_desc->wb.upper.status_error));
8146 }
8147 
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8148 static inline void igb_rx_hash(struct igb_ring *ring,
8149 			       union e1000_adv_rx_desc *rx_desc,
8150 			       struct sk_buff *skb)
8151 {
8152 	if (ring->netdev->features & NETIF_F_RXHASH)
8153 		skb_set_hash(skb,
8154 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8155 			     PKT_HASH_TYPE_L3);
8156 }
8157 
8158 /**
8159  *  igb_is_non_eop - process handling of non-EOP buffers
8160  *  @rx_ring: Rx ring being processed
8161  *  @rx_desc: Rx descriptor for current buffer
8162  *  @skb: current socket buffer containing buffer in progress
8163  *
8164  *  This function updates next to clean.  If the buffer is an EOP buffer
8165  *  this function exits returning false, otherwise it will place the
8166  *  sk_buff in the next buffer to be chained and return true indicating
8167  *  that this is in fact a non-EOP buffer.
8168  **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8169 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8170 			   union e1000_adv_rx_desc *rx_desc)
8171 {
8172 	u32 ntc = rx_ring->next_to_clean + 1;
8173 
8174 	/* fetch, update, and store next to clean */
8175 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8176 	rx_ring->next_to_clean = ntc;
8177 
8178 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8179 
8180 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8181 		return false;
8182 
8183 	return true;
8184 }
8185 
8186 /**
8187  *  igb_cleanup_headers - Correct corrupted or empty headers
8188  *  @rx_ring: rx descriptor ring packet is being transacted on
8189  *  @rx_desc: pointer to the EOP Rx descriptor
8190  *  @skb: pointer to current skb being fixed
8191  *
8192  *  Address the case where we are pulling data in on pages only
8193  *  and as such no data is present in the skb header.
8194  *
8195  *  In addition if skb is not at least 60 bytes we need to pad it so that
8196  *  it is large enough to qualify as a valid Ethernet frame.
8197  *
8198  *  Returns true if an error was encountered and skb was freed.
8199  **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8200 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8201 				union e1000_adv_rx_desc *rx_desc,
8202 				struct sk_buff *skb)
8203 {
8204 	if (unlikely((igb_test_staterr(rx_desc,
8205 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8206 		struct net_device *netdev = rx_ring->netdev;
8207 		if (!(netdev->features & NETIF_F_RXALL)) {
8208 			dev_kfree_skb_any(skb);
8209 			return true;
8210 		}
8211 	}
8212 
8213 	/* if eth_skb_pad returns an error the skb was freed */
8214 	if (eth_skb_pad(skb))
8215 		return true;
8216 
8217 	return false;
8218 }
8219 
8220 /**
8221  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8222  *  @rx_ring: rx descriptor ring packet is being transacted on
8223  *  @rx_desc: pointer to the EOP Rx descriptor
8224  *  @skb: pointer to current skb being populated
8225  *
8226  *  This function checks the ring, descriptor, and packet information in
8227  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8228  *  other fields within the skb.
8229  **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8230 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8231 				   union e1000_adv_rx_desc *rx_desc,
8232 				   struct sk_buff *skb)
8233 {
8234 	struct net_device *dev = rx_ring->netdev;
8235 
8236 	igb_rx_hash(rx_ring, rx_desc, skb);
8237 
8238 	igb_rx_checksum(rx_ring, rx_desc, skb);
8239 
8240 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8241 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8242 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8243 
8244 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8245 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8246 		u16 vid;
8247 
8248 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8249 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8250 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8251 		else
8252 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8253 
8254 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8255 	}
8256 
8257 	skb_record_rx_queue(skb, rx_ring->queue_index);
8258 
8259 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8260 }
8261 
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size)8262 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8263 					       const unsigned int size)
8264 {
8265 	struct igb_rx_buffer *rx_buffer;
8266 
8267 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8268 	prefetchw(rx_buffer->page);
8269 
8270 	/* we are reusing so sync this buffer for CPU use */
8271 	dma_sync_single_range_for_cpu(rx_ring->dev,
8272 				      rx_buffer->dma,
8273 				      rx_buffer->page_offset,
8274 				      size,
8275 				      DMA_FROM_DEVICE);
8276 
8277 	rx_buffer->pagecnt_bias--;
8278 
8279 	return rx_buffer;
8280 }
8281 
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer)8282 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8283 			      struct igb_rx_buffer *rx_buffer)
8284 {
8285 	if (igb_can_reuse_rx_page(rx_buffer)) {
8286 		/* hand second half of page back to the ring */
8287 		igb_reuse_rx_page(rx_ring, rx_buffer);
8288 	} else {
8289 		/* We are not reusing the buffer so unmap it and free
8290 		 * any references we are holding to it
8291 		 */
8292 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8293 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8294 				     IGB_RX_DMA_ATTR);
8295 		__page_frag_cache_drain(rx_buffer->page,
8296 					rx_buffer->pagecnt_bias);
8297 	}
8298 
8299 	/* clear contents of rx_buffer */
8300 	rx_buffer->page = NULL;
8301 }
8302 
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8303 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8304 {
8305 	struct igb_ring *rx_ring = q_vector->rx.ring;
8306 	struct sk_buff *skb = rx_ring->skb;
8307 	unsigned int total_bytes = 0, total_packets = 0;
8308 	u16 cleaned_count = igb_desc_unused(rx_ring);
8309 
8310 	while (likely(total_packets < budget)) {
8311 		union e1000_adv_rx_desc *rx_desc;
8312 		struct igb_rx_buffer *rx_buffer;
8313 		unsigned int size;
8314 
8315 		/* return some buffers to hardware, one at a time is too slow */
8316 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8317 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8318 			cleaned_count = 0;
8319 		}
8320 
8321 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8322 		size = le16_to_cpu(rx_desc->wb.upper.length);
8323 		if (!size)
8324 			break;
8325 
8326 		/* This memory barrier is needed to keep us from reading
8327 		 * any other fields out of the rx_desc until we know the
8328 		 * descriptor has been written back
8329 		 */
8330 		dma_rmb();
8331 
8332 		rx_buffer = igb_get_rx_buffer(rx_ring, size);
8333 
8334 		/* retrieve a buffer from the ring */
8335 		if (skb)
8336 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8337 		else if (ring_uses_build_skb(rx_ring))
8338 			skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8339 		else
8340 			skb = igb_construct_skb(rx_ring, rx_buffer,
8341 						rx_desc, size);
8342 
8343 		/* exit if we failed to retrieve a buffer */
8344 		if (!skb) {
8345 			rx_ring->rx_stats.alloc_failed++;
8346 			rx_buffer->pagecnt_bias++;
8347 			break;
8348 		}
8349 
8350 		igb_put_rx_buffer(rx_ring, rx_buffer);
8351 		cleaned_count++;
8352 
8353 		/* fetch next buffer in frame if non-eop */
8354 		if (igb_is_non_eop(rx_ring, rx_desc))
8355 			continue;
8356 
8357 		/* verify the packet layout is correct */
8358 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8359 			skb = NULL;
8360 			continue;
8361 		}
8362 
8363 		/* probably a little skewed due to removing CRC */
8364 		total_bytes += skb->len;
8365 
8366 		/* populate checksum, timestamp, VLAN, and protocol */
8367 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8368 
8369 		napi_gro_receive(&q_vector->napi, skb);
8370 
8371 		/* reset skb pointer */
8372 		skb = NULL;
8373 
8374 		/* update budget accounting */
8375 		total_packets++;
8376 	}
8377 
8378 	/* place incomplete frames back on ring for completion */
8379 	rx_ring->skb = skb;
8380 
8381 	u64_stats_update_begin(&rx_ring->rx_syncp);
8382 	rx_ring->rx_stats.packets += total_packets;
8383 	rx_ring->rx_stats.bytes += total_bytes;
8384 	u64_stats_update_end(&rx_ring->rx_syncp);
8385 	q_vector->rx.total_packets += total_packets;
8386 	q_vector->rx.total_bytes += total_bytes;
8387 
8388 	if (cleaned_count)
8389 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8390 
8391 	return total_packets;
8392 }
8393 
igb_rx_offset(struct igb_ring * rx_ring)8394 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8395 {
8396 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8397 }
8398 
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)8399 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8400 				  struct igb_rx_buffer *bi)
8401 {
8402 	struct page *page = bi->page;
8403 	dma_addr_t dma;
8404 
8405 	/* since we are recycling buffers we should seldom need to alloc */
8406 	if (likely(page))
8407 		return true;
8408 
8409 	/* alloc new page for storage */
8410 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8411 	if (unlikely(!page)) {
8412 		rx_ring->rx_stats.alloc_failed++;
8413 		return false;
8414 	}
8415 
8416 	/* map page for use */
8417 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8418 				 igb_rx_pg_size(rx_ring),
8419 				 DMA_FROM_DEVICE,
8420 				 IGB_RX_DMA_ATTR);
8421 
8422 	/* if mapping failed free memory back to system since
8423 	 * there isn't much point in holding memory we can't use
8424 	 */
8425 	if (dma_mapping_error(rx_ring->dev, dma)) {
8426 		__free_pages(page, igb_rx_pg_order(rx_ring));
8427 
8428 		rx_ring->rx_stats.alloc_failed++;
8429 		return false;
8430 	}
8431 
8432 	bi->dma = dma;
8433 	bi->page = page;
8434 	bi->page_offset = igb_rx_offset(rx_ring);
8435 	bi->pagecnt_bias = 1;
8436 
8437 	return true;
8438 }
8439 
8440 /**
8441  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8442  *  @adapter: address of board private structure
8443  **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)8444 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8445 {
8446 	union e1000_adv_rx_desc *rx_desc;
8447 	struct igb_rx_buffer *bi;
8448 	u16 i = rx_ring->next_to_use;
8449 	u16 bufsz;
8450 
8451 	/* nothing to do */
8452 	if (!cleaned_count)
8453 		return;
8454 
8455 	rx_desc = IGB_RX_DESC(rx_ring, i);
8456 	bi = &rx_ring->rx_buffer_info[i];
8457 	i -= rx_ring->count;
8458 
8459 	bufsz = igb_rx_bufsz(rx_ring);
8460 
8461 	do {
8462 		if (!igb_alloc_mapped_page(rx_ring, bi))
8463 			break;
8464 
8465 		/* sync the buffer for use by the device */
8466 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8467 						 bi->page_offset, bufsz,
8468 						 DMA_FROM_DEVICE);
8469 
8470 		/* Refresh the desc even if buffer_addrs didn't change
8471 		 * because each write-back erases this info.
8472 		 */
8473 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8474 
8475 		rx_desc++;
8476 		bi++;
8477 		i++;
8478 		if (unlikely(!i)) {
8479 			rx_desc = IGB_RX_DESC(rx_ring, 0);
8480 			bi = rx_ring->rx_buffer_info;
8481 			i -= rx_ring->count;
8482 		}
8483 
8484 		/* clear the length for the next_to_use descriptor */
8485 		rx_desc->wb.upper.length = 0;
8486 
8487 		cleaned_count--;
8488 	} while (cleaned_count);
8489 
8490 	i += rx_ring->count;
8491 
8492 	if (rx_ring->next_to_use != i) {
8493 		/* record the next descriptor to use */
8494 		rx_ring->next_to_use = i;
8495 
8496 		/* update next to alloc since we have filled the ring */
8497 		rx_ring->next_to_alloc = i;
8498 
8499 		/* Force memory writes to complete before letting h/w
8500 		 * know there are new descriptors to fetch.  (Only
8501 		 * applicable for weak-ordered memory model archs,
8502 		 * such as IA-64).
8503 		 */
8504 		dma_wmb();
8505 		writel(i, rx_ring->tail);
8506 	}
8507 }
8508 
8509 /**
8510  * igb_mii_ioctl -
8511  * @netdev:
8512  * @ifreq:
8513  * @cmd:
8514  **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8515 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8516 {
8517 	struct igb_adapter *adapter = netdev_priv(netdev);
8518 	struct mii_ioctl_data *data = if_mii(ifr);
8519 
8520 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8521 		return -EOPNOTSUPP;
8522 
8523 	switch (cmd) {
8524 	case SIOCGMIIPHY:
8525 		data->phy_id = adapter->hw.phy.addr;
8526 		break;
8527 	case SIOCGMIIREG:
8528 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8529 				     &data->val_out))
8530 			return -EIO;
8531 		break;
8532 	case SIOCSMIIREG:
8533 	default:
8534 		return -EOPNOTSUPP;
8535 	}
8536 	return 0;
8537 }
8538 
8539 /**
8540  * igb_ioctl -
8541  * @netdev:
8542  * @ifreq:
8543  * @cmd:
8544  **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8545 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8546 {
8547 	switch (cmd) {
8548 	case SIOCGMIIPHY:
8549 	case SIOCGMIIREG:
8550 	case SIOCSMIIREG:
8551 		return igb_mii_ioctl(netdev, ifr, cmd);
8552 	case SIOCGHWTSTAMP:
8553 		return igb_ptp_get_ts_config(netdev, ifr);
8554 	case SIOCSHWTSTAMP:
8555 		return igb_ptp_set_ts_config(netdev, ifr);
8556 	default:
8557 		return -EOPNOTSUPP;
8558 	}
8559 }
8560 
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)8561 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8562 {
8563 	struct igb_adapter *adapter = hw->back;
8564 
8565 	pci_read_config_word(adapter->pdev, reg, value);
8566 }
8567 
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)8568 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8569 {
8570 	struct igb_adapter *adapter = hw->back;
8571 
8572 	pci_write_config_word(adapter->pdev, reg, *value);
8573 }
8574 
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)8575 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8576 {
8577 	struct igb_adapter *adapter = hw->back;
8578 
8579 	if (pcie_capability_read_word(adapter->pdev, reg, value))
8580 		return -E1000_ERR_CONFIG;
8581 
8582 	return 0;
8583 }
8584 
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)8585 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8586 {
8587 	struct igb_adapter *adapter = hw->back;
8588 
8589 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
8590 		return -E1000_ERR_CONFIG;
8591 
8592 	return 0;
8593 }
8594 
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)8595 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8596 {
8597 	struct igb_adapter *adapter = netdev_priv(netdev);
8598 	struct e1000_hw *hw = &adapter->hw;
8599 	u32 ctrl, rctl;
8600 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8601 
8602 	if (enable) {
8603 		/* enable VLAN tag insert/strip */
8604 		ctrl = rd32(E1000_CTRL);
8605 		ctrl |= E1000_CTRL_VME;
8606 		wr32(E1000_CTRL, ctrl);
8607 
8608 		/* Disable CFI check */
8609 		rctl = rd32(E1000_RCTL);
8610 		rctl &= ~E1000_RCTL_CFIEN;
8611 		wr32(E1000_RCTL, rctl);
8612 	} else {
8613 		/* disable VLAN tag insert/strip */
8614 		ctrl = rd32(E1000_CTRL);
8615 		ctrl &= ~E1000_CTRL_VME;
8616 		wr32(E1000_CTRL, ctrl);
8617 	}
8618 
8619 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8620 }
8621 
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)8622 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8623 			       __be16 proto, u16 vid)
8624 {
8625 	struct igb_adapter *adapter = netdev_priv(netdev);
8626 	struct e1000_hw *hw = &adapter->hw;
8627 	int pf_id = adapter->vfs_allocated_count;
8628 
8629 	/* add the filter since PF can receive vlans w/o entry in vlvf */
8630 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8631 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
8632 
8633 	set_bit(vid, adapter->active_vlans);
8634 
8635 	return 0;
8636 }
8637 
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)8638 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8639 				__be16 proto, u16 vid)
8640 {
8641 	struct igb_adapter *adapter = netdev_priv(netdev);
8642 	int pf_id = adapter->vfs_allocated_count;
8643 	struct e1000_hw *hw = &adapter->hw;
8644 
8645 	/* remove VID from filter table */
8646 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8647 		igb_vfta_set(hw, vid, pf_id, false, true);
8648 
8649 	clear_bit(vid, adapter->active_vlans);
8650 
8651 	return 0;
8652 }
8653 
igb_restore_vlan(struct igb_adapter * adapter)8654 static void igb_restore_vlan(struct igb_adapter *adapter)
8655 {
8656 	u16 vid = 1;
8657 
8658 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8659 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8660 
8661 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8662 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8663 }
8664 
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)8665 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8666 {
8667 	struct pci_dev *pdev = adapter->pdev;
8668 	struct e1000_mac_info *mac = &adapter->hw.mac;
8669 
8670 	mac->autoneg = 0;
8671 
8672 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
8673 	 * for the switch() below to work
8674 	 */
8675 	if ((spd & 1) || (dplx & ~1))
8676 		goto err_inval;
8677 
8678 	/* Fiber NIC's only allow 1000 gbps Full duplex
8679 	 * and 100Mbps Full duplex for 100baseFx sfp
8680 	 */
8681 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8682 		switch (spd + dplx) {
8683 		case SPEED_10 + DUPLEX_HALF:
8684 		case SPEED_10 + DUPLEX_FULL:
8685 		case SPEED_100 + DUPLEX_HALF:
8686 			goto err_inval;
8687 		default:
8688 			break;
8689 		}
8690 	}
8691 
8692 	switch (spd + dplx) {
8693 	case SPEED_10 + DUPLEX_HALF:
8694 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
8695 		break;
8696 	case SPEED_10 + DUPLEX_FULL:
8697 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
8698 		break;
8699 	case SPEED_100 + DUPLEX_HALF:
8700 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
8701 		break;
8702 	case SPEED_100 + DUPLEX_FULL:
8703 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
8704 		break;
8705 	case SPEED_1000 + DUPLEX_FULL:
8706 		mac->autoneg = 1;
8707 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8708 		break;
8709 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
8710 	default:
8711 		goto err_inval;
8712 	}
8713 
8714 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8715 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
8716 
8717 	return 0;
8718 
8719 err_inval:
8720 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8721 	return -EINVAL;
8722 }
8723 
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)8724 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8725 			  bool runtime)
8726 {
8727 	struct net_device *netdev = pci_get_drvdata(pdev);
8728 	struct igb_adapter *adapter = netdev_priv(netdev);
8729 	struct e1000_hw *hw = &adapter->hw;
8730 	u32 ctrl, rctl, status;
8731 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8732 	bool wake;
8733 
8734 	rtnl_lock();
8735 	netif_device_detach(netdev);
8736 
8737 	if (netif_running(netdev))
8738 		__igb_close(netdev, true);
8739 
8740 	igb_ptp_suspend(adapter);
8741 
8742 	igb_clear_interrupt_scheme(adapter);
8743 	rtnl_unlock();
8744 
8745 	status = rd32(E1000_STATUS);
8746 	if (status & E1000_STATUS_LU)
8747 		wufc &= ~E1000_WUFC_LNKC;
8748 
8749 	if (wufc) {
8750 		igb_setup_rctl(adapter);
8751 		igb_set_rx_mode(netdev);
8752 
8753 		/* turn on all-multi mode if wake on multicast is enabled */
8754 		if (wufc & E1000_WUFC_MC) {
8755 			rctl = rd32(E1000_RCTL);
8756 			rctl |= E1000_RCTL_MPE;
8757 			wr32(E1000_RCTL, rctl);
8758 		}
8759 
8760 		ctrl = rd32(E1000_CTRL);
8761 		ctrl |= E1000_CTRL_ADVD3WUC;
8762 		wr32(E1000_CTRL, ctrl);
8763 
8764 		/* Allow time for pending master requests to run */
8765 		igb_disable_pcie_master(hw);
8766 
8767 		wr32(E1000_WUC, E1000_WUC_PME_EN);
8768 		wr32(E1000_WUFC, wufc);
8769 	} else {
8770 		wr32(E1000_WUC, 0);
8771 		wr32(E1000_WUFC, 0);
8772 	}
8773 
8774 	wake = wufc || adapter->en_mng_pt;
8775 	if (!wake)
8776 		igb_power_down_link(adapter);
8777 	else
8778 		igb_power_up_link(adapter);
8779 
8780 	if (enable_wake)
8781 		*enable_wake = wake;
8782 
8783 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
8784 	 * would have already happened in close and is redundant.
8785 	 */
8786 	igb_release_hw_control(adapter);
8787 
8788 	pci_disable_device(pdev);
8789 
8790 	return 0;
8791 }
8792 
igb_deliver_wake_packet(struct net_device * netdev)8793 static void igb_deliver_wake_packet(struct net_device *netdev)
8794 {
8795 	struct igb_adapter *adapter = netdev_priv(netdev);
8796 	struct e1000_hw *hw = &adapter->hw;
8797 	struct sk_buff *skb;
8798 	u32 wupl;
8799 
8800 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8801 
8802 	/* WUPM stores only the first 128 bytes of the wake packet.
8803 	 * Read the packet only if we have the whole thing.
8804 	 */
8805 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8806 		return;
8807 
8808 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8809 	if (!skb)
8810 		return;
8811 
8812 	skb_put(skb, wupl);
8813 
8814 	/* Ensure reads are 32-bit aligned */
8815 	wupl = roundup(wupl, 4);
8816 
8817 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8818 
8819 	skb->protocol = eth_type_trans(skb, netdev);
8820 	netif_rx(skb);
8821 }
8822 
igb_suspend(struct device * dev)8823 static int __maybe_unused igb_suspend(struct device *dev)
8824 {
8825 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8826 }
8827 
igb_resume(struct device * dev)8828 static int __maybe_unused igb_resume(struct device *dev)
8829 {
8830 	struct pci_dev *pdev = to_pci_dev(dev);
8831 	struct net_device *netdev = pci_get_drvdata(pdev);
8832 	struct igb_adapter *adapter = netdev_priv(netdev);
8833 	struct e1000_hw *hw = &adapter->hw;
8834 	u32 err, val;
8835 
8836 	pci_set_power_state(pdev, PCI_D0);
8837 	pci_restore_state(pdev);
8838 	pci_save_state(pdev);
8839 
8840 	if (!pci_device_is_present(pdev))
8841 		return -ENODEV;
8842 	err = pci_enable_device_mem(pdev);
8843 	if (err) {
8844 		dev_err(&pdev->dev,
8845 			"igb: Cannot enable PCI device from suspend\n");
8846 		return err;
8847 	}
8848 	pci_set_master(pdev);
8849 
8850 	pci_enable_wake(pdev, PCI_D3hot, 0);
8851 	pci_enable_wake(pdev, PCI_D3cold, 0);
8852 
8853 	if (igb_init_interrupt_scheme(adapter, true)) {
8854 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8855 		return -ENOMEM;
8856 	}
8857 
8858 	igb_reset(adapter);
8859 
8860 	/* let the f/w know that the h/w is now under the control of the
8861 	 * driver.
8862 	 */
8863 	igb_get_hw_control(adapter);
8864 
8865 	val = rd32(E1000_WUS);
8866 	if (val & WAKE_PKT_WUS)
8867 		igb_deliver_wake_packet(netdev);
8868 
8869 	wr32(E1000_WUS, ~0);
8870 
8871 	rtnl_lock();
8872 	if (!err && netif_running(netdev))
8873 		err = __igb_open(netdev, true);
8874 
8875 	if (!err)
8876 		netif_device_attach(netdev);
8877 	rtnl_unlock();
8878 
8879 	return err;
8880 }
8881 
igb_runtime_idle(struct device * dev)8882 static int __maybe_unused igb_runtime_idle(struct device *dev)
8883 {
8884 	struct net_device *netdev = dev_get_drvdata(dev);
8885 	struct igb_adapter *adapter = netdev_priv(netdev);
8886 
8887 	if (!igb_has_link(adapter))
8888 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8889 
8890 	return -EBUSY;
8891 }
8892 
igb_runtime_suspend(struct device * dev)8893 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8894 {
8895 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8896 }
8897 
igb_runtime_resume(struct device * dev)8898 static int __maybe_unused igb_runtime_resume(struct device *dev)
8899 {
8900 	return igb_resume(dev);
8901 }
8902 
igb_shutdown(struct pci_dev * pdev)8903 static void igb_shutdown(struct pci_dev *pdev)
8904 {
8905 	bool wake;
8906 
8907 	__igb_shutdown(pdev, &wake, 0);
8908 
8909 	if (system_state == SYSTEM_POWER_OFF) {
8910 		pci_wake_from_d3(pdev, wake);
8911 		pci_set_power_state(pdev, PCI_D3hot);
8912 	}
8913 }
8914 
8915 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)8916 static int igb_sriov_reinit(struct pci_dev *dev)
8917 {
8918 	struct net_device *netdev = pci_get_drvdata(dev);
8919 	struct igb_adapter *adapter = netdev_priv(netdev);
8920 	struct pci_dev *pdev = adapter->pdev;
8921 
8922 	rtnl_lock();
8923 
8924 	if (netif_running(netdev))
8925 		igb_close(netdev);
8926 	else
8927 		igb_reset(adapter);
8928 
8929 	igb_clear_interrupt_scheme(adapter);
8930 
8931 	igb_init_queue_configuration(adapter);
8932 
8933 	if (igb_init_interrupt_scheme(adapter, true)) {
8934 		rtnl_unlock();
8935 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8936 		return -ENOMEM;
8937 	}
8938 
8939 	if (netif_running(netdev))
8940 		igb_open(netdev);
8941 
8942 	rtnl_unlock();
8943 
8944 	return 0;
8945 }
8946 
igb_pci_disable_sriov(struct pci_dev * dev)8947 static int igb_pci_disable_sriov(struct pci_dev *dev)
8948 {
8949 	int err = igb_disable_sriov(dev);
8950 
8951 	if (!err)
8952 		err = igb_sriov_reinit(dev);
8953 
8954 	return err;
8955 }
8956 
igb_pci_enable_sriov(struct pci_dev * dev,int num_vfs)8957 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8958 {
8959 	int err = igb_enable_sriov(dev, num_vfs);
8960 
8961 	if (err)
8962 		goto out;
8963 
8964 	err = igb_sriov_reinit(dev);
8965 	if (!err)
8966 		return num_vfs;
8967 
8968 out:
8969 	return err;
8970 }
8971 
8972 #endif
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)8973 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8974 {
8975 #ifdef CONFIG_PCI_IOV
8976 	if (num_vfs == 0)
8977 		return igb_pci_disable_sriov(dev);
8978 	else
8979 		return igb_pci_enable_sriov(dev, num_vfs);
8980 #endif
8981 	return 0;
8982 }
8983 
8984 /**
8985  *  igb_io_error_detected - called when PCI error is detected
8986  *  @pdev: Pointer to PCI device
8987  *  @state: The current pci connection state
8988  *
8989  *  This function is called after a PCI bus error affecting
8990  *  this device has been detected.
8991  **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)8992 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8993 					      pci_channel_state_t state)
8994 {
8995 	struct net_device *netdev = pci_get_drvdata(pdev);
8996 	struct igb_adapter *adapter = netdev_priv(netdev);
8997 
8998 	netif_device_detach(netdev);
8999 
9000 	if (state == pci_channel_io_perm_failure)
9001 		return PCI_ERS_RESULT_DISCONNECT;
9002 
9003 	if (netif_running(netdev))
9004 		igb_down(adapter);
9005 	pci_disable_device(pdev);
9006 
9007 	/* Request a slot slot reset. */
9008 	return PCI_ERS_RESULT_NEED_RESET;
9009 }
9010 
9011 /**
9012  *  igb_io_slot_reset - called after the pci bus has been reset.
9013  *  @pdev: Pointer to PCI device
9014  *
9015  *  Restart the card from scratch, as if from a cold-boot. Implementation
9016  *  resembles the first-half of the igb_resume routine.
9017  **/
igb_io_slot_reset(struct pci_dev * pdev)9018 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9019 {
9020 	struct net_device *netdev = pci_get_drvdata(pdev);
9021 	struct igb_adapter *adapter = netdev_priv(netdev);
9022 	struct e1000_hw *hw = &adapter->hw;
9023 	pci_ers_result_t result;
9024 
9025 	if (pci_enable_device_mem(pdev)) {
9026 		dev_err(&pdev->dev,
9027 			"Cannot re-enable PCI device after reset.\n");
9028 		result = PCI_ERS_RESULT_DISCONNECT;
9029 	} else {
9030 		pci_set_master(pdev);
9031 		pci_restore_state(pdev);
9032 		pci_save_state(pdev);
9033 
9034 		pci_enable_wake(pdev, PCI_D3hot, 0);
9035 		pci_enable_wake(pdev, PCI_D3cold, 0);
9036 
9037 		/* In case of PCI error, adapter lose its HW address
9038 		 * so we should re-assign it here.
9039 		 */
9040 		hw->hw_addr = adapter->io_addr;
9041 
9042 		igb_reset(adapter);
9043 		wr32(E1000_WUS, ~0);
9044 		result = PCI_ERS_RESULT_RECOVERED;
9045 	}
9046 
9047 	return result;
9048 }
9049 
9050 /**
9051  *  igb_io_resume - called when traffic can start flowing again.
9052  *  @pdev: Pointer to PCI device
9053  *
9054  *  This callback is called when the error recovery driver tells us that
9055  *  its OK to resume normal operation. Implementation resembles the
9056  *  second-half of the igb_resume routine.
9057  */
igb_io_resume(struct pci_dev * pdev)9058 static void igb_io_resume(struct pci_dev *pdev)
9059 {
9060 	struct net_device *netdev = pci_get_drvdata(pdev);
9061 	struct igb_adapter *adapter = netdev_priv(netdev);
9062 
9063 	if (netif_running(netdev)) {
9064 		if (igb_up(adapter)) {
9065 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9066 			return;
9067 		}
9068 	}
9069 
9070 	netif_device_attach(netdev);
9071 
9072 	/* let the f/w know that the h/w is now under the control of the
9073 	 * driver.
9074 	 */
9075 	igb_get_hw_control(adapter);
9076 }
9077 
9078 /**
9079  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9080  *  @adapter: Pointer to adapter structure
9081  *  @index: Index of the RAR entry which need to be synced with MAC table
9082  **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9083 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9084 {
9085 	struct e1000_hw *hw = &adapter->hw;
9086 	u32 rar_low, rar_high;
9087 	u8 *addr = adapter->mac_table[index].addr;
9088 
9089 	/* HW expects these to be in network order when they are plugged
9090 	 * into the registers which are little endian.  In order to guarantee
9091 	 * that ordering we need to do an leXX_to_cpup here in order to be
9092 	 * ready for the byteswap that occurs with writel
9093 	 */
9094 	rar_low = le32_to_cpup((__le32 *)(addr));
9095 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9096 
9097 	/* Indicate to hardware the Address is Valid. */
9098 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9099 		if (is_valid_ether_addr(addr))
9100 			rar_high |= E1000_RAH_AV;
9101 
9102 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9103 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9104 
9105 		switch (hw->mac.type) {
9106 		case e1000_82575:
9107 		case e1000_i210:
9108 			if (adapter->mac_table[index].state &
9109 			    IGB_MAC_STATE_QUEUE_STEERING)
9110 				rar_high |= E1000_RAH_QSEL_ENABLE;
9111 
9112 			rar_high |= E1000_RAH_POOL_1 *
9113 				    adapter->mac_table[index].queue;
9114 			break;
9115 		default:
9116 			rar_high |= E1000_RAH_POOL_1 <<
9117 				    adapter->mac_table[index].queue;
9118 			break;
9119 		}
9120 	}
9121 
9122 	wr32(E1000_RAL(index), rar_low);
9123 	wrfl();
9124 	wr32(E1000_RAH(index), rar_high);
9125 	wrfl();
9126 }
9127 
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9128 static int igb_set_vf_mac(struct igb_adapter *adapter,
9129 			  int vf, unsigned char *mac_addr)
9130 {
9131 	struct e1000_hw *hw = &adapter->hw;
9132 	/* VF MAC addresses start at end of receive addresses and moves
9133 	 * towards the first, as a result a collision should not be possible
9134 	 */
9135 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9136 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9137 
9138 	ether_addr_copy(vf_mac_addr, mac_addr);
9139 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9140 	adapter->mac_table[rar_entry].queue = vf;
9141 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9142 	igb_rar_set_index(adapter, rar_entry);
9143 
9144 	return 0;
9145 }
9146 
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9147 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9148 {
9149 	struct igb_adapter *adapter = netdev_priv(netdev);
9150 
9151 	if (vf >= adapter->vfs_allocated_count)
9152 		return -EINVAL;
9153 
9154 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9155 	 * flag and allows to overwrite the MAC via VF netdev.  This
9156 	 * is necessary to allow libvirt a way to restore the original
9157 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9158 	 * down a VM.
9159 	 */
9160 	if (is_zero_ether_addr(mac)) {
9161 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9162 		dev_info(&adapter->pdev->dev,
9163 			 "remove administratively set MAC on VF %d\n",
9164 			 vf);
9165 	} else if (is_valid_ether_addr(mac)) {
9166 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9167 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9168 			 mac, vf);
9169 		dev_info(&adapter->pdev->dev,
9170 			 "Reload the VF driver to make this change effective.");
9171 		/* Generate additional warning if PF is down */
9172 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9173 			dev_warn(&adapter->pdev->dev,
9174 				 "The VF MAC address has been set, but the PF device is not up.\n");
9175 			dev_warn(&adapter->pdev->dev,
9176 				 "Bring the PF device up before attempting to use the VF device.\n");
9177 		}
9178 	} else {
9179 		return -EINVAL;
9180 	}
9181 	return igb_set_vf_mac(adapter, vf, mac);
9182 }
9183 
igb_link_mbps(int internal_link_speed)9184 static int igb_link_mbps(int internal_link_speed)
9185 {
9186 	switch (internal_link_speed) {
9187 	case SPEED_100:
9188 		return 100;
9189 	case SPEED_1000:
9190 		return 1000;
9191 	default:
9192 		return 0;
9193 	}
9194 }
9195 
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9196 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9197 				  int link_speed)
9198 {
9199 	int rf_dec, rf_int;
9200 	u32 bcnrc_val;
9201 
9202 	if (tx_rate != 0) {
9203 		/* Calculate the rate factor values to set */
9204 		rf_int = link_speed / tx_rate;
9205 		rf_dec = (link_speed - (rf_int * tx_rate));
9206 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9207 			 tx_rate;
9208 
9209 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9210 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9211 			      E1000_RTTBCNRC_RF_INT_MASK);
9212 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9213 	} else {
9214 		bcnrc_val = 0;
9215 	}
9216 
9217 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9218 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9219 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9220 	 */
9221 	wr32(E1000_RTTBCNRM, 0x14);
9222 	wr32(E1000_RTTBCNRC, bcnrc_val);
9223 }
9224 
igb_check_vf_rate_limit(struct igb_adapter * adapter)9225 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9226 {
9227 	int actual_link_speed, i;
9228 	bool reset_rate = false;
9229 
9230 	/* VF TX rate limit was not set or not supported */
9231 	if ((adapter->vf_rate_link_speed == 0) ||
9232 	    (adapter->hw.mac.type != e1000_82576))
9233 		return;
9234 
9235 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9236 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9237 		reset_rate = true;
9238 		adapter->vf_rate_link_speed = 0;
9239 		dev_info(&adapter->pdev->dev,
9240 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9241 	}
9242 
9243 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9244 		if (reset_rate)
9245 			adapter->vf_data[i].tx_rate = 0;
9246 
9247 		igb_set_vf_rate_limit(&adapter->hw, i,
9248 				      adapter->vf_data[i].tx_rate,
9249 				      actual_link_speed);
9250 	}
9251 }
9252 
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9253 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9254 			     int min_tx_rate, int max_tx_rate)
9255 {
9256 	struct igb_adapter *adapter = netdev_priv(netdev);
9257 	struct e1000_hw *hw = &adapter->hw;
9258 	int actual_link_speed;
9259 
9260 	if (hw->mac.type != e1000_82576)
9261 		return -EOPNOTSUPP;
9262 
9263 	if (min_tx_rate)
9264 		return -EINVAL;
9265 
9266 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9267 	if ((vf >= adapter->vfs_allocated_count) ||
9268 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9269 	    (max_tx_rate < 0) ||
9270 	    (max_tx_rate > actual_link_speed))
9271 		return -EINVAL;
9272 
9273 	adapter->vf_rate_link_speed = actual_link_speed;
9274 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9275 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9276 
9277 	return 0;
9278 }
9279 
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9280 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9281 				   bool setting)
9282 {
9283 	struct igb_adapter *adapter = netdev_priv(netdev);
9284 	struct e1000_hw *hw = &adapter->hw;
9285 	u32 reg_val, reg_offset;
9286 
9287 	if (!adapter->vfs_allocated_count)
9288 		return -EOPNOTSUPP;
9289 
9290 	if (vf >= adapter->vfs_allocated_count)
9291 		return -EINVAL;
9292 
9293 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9294 	reg_val = rd32(reg_offset);
9295 	if (setting)
9296 		reg_val |= (BIT(vf) |
9297 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9298 	else
9299 		reg_val &= ~(BIT(vf) |
9300 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9301 	wr32(reg_offset, reg_val);
9302 
9303 	adapter->vf_data[vf].spoofchk_enabled = setting;
9304 	return 0;
9305 }
9306 
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9307 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9308 {
9309 	struct igb_adapter *adapter = netdev_priv(netdev);
9310 
9311 	if (vf >= adapter->vfs_allocated_count)
9312 		return -EINVAL;
9313 	if (adapter->vf_data[vf].trusted == setting)
9314 		return 0;
9315 
9316 	adapter->vf_data[vf].trusted = setting;
9317 
9318 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9319 		 vf, setting ? "" : "not ");
9320 	return 0;
9321 }
9322 
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9323 static int igb_ndo_get_vf_config(struct net_device *netdev,
9324 				 int vf, struct ifla_vf_info *ivi)
9325 {
9326 	struct igb_adapter *adapter = netdev_priv(netdev);
9327 	if (vf >= adapter->vfs_allocated_count)
9328 		return -EINVAL;
9329 	ivi->vf = vf;
9330 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9331 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9332 	ivi->min_tx_rate = 0;
9333 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9334 	ivi->qos = adapter->vf_data[vf].pf_qos;
9335 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9336 	ivi->trusted = adapter->vf_data[vf].trusted;
9337 	return 0;
9338 }
9339 
igb_vmm_control(struct igb_adapter * adapter)9340 static void igb_vmm_control(struct igb_adapter *adapter)
9341 {
9342 	struct e1000_hw *hw = &adapter->hw;
9343 	u32 reg;
9344 
9345 	switch (hw->mac.type) {
9346 	case e1000_82575:
9347 	case e1000_i210:
9348 	case e1000_i211:
9349 	case e1000_i354:
9350 	default:
9351 		/* replication is not supported for 82575 */
9352 		return;
9353 	case e1000_82576:
9354 		/* notify HW that the MAC is adding vlan tags */
9355 		reg = rd32(E1000_DTXCTL);
9356 		reg |= E1000_DTXCTL_VLAN_ADDED;
9357 		wr32(E1000_DTXCTL, reg);
9358 		/* Fall through */
9359 	case e1000_82580:
9360 		/* enable replication vlan tag stripping */
9361 		reg = rd32(E1000_RPLOLR);
9362 		reg |= E1000_RPLOLR_STRVLAN;
9363 		wr32(E1000_RPLOLR, reg);
9364 		/* Fall through */
9365 	case e1000_i350:
9366 		/* none of the above registers are supported by i350 */
9367 		break;
9368 	}
9369 
9370 	if (adapter->vfs_allocated_count) {
9371 		igb_vmdq_set_loopback_pf(hw, true);
9372 		igb_vmdq_set_replication_pf(hw, true);
9373 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9374 					      adapter->vfs_allocated_count);
9375 	} else {
9376 		igb_vmdq_set_loopback_pf(hw, false);
9377 		igb_vmdq_set_replication_pf(hw, false);
9378 	}
9379 }
9380 
igb_init_dmac(struct igb_adapter * adapter,u32 pba)9381 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9382 {
9383 	struct e1000_hw *hw = &adapter->hw;
9384 	u32 dmac_thr;
9385 	u16 hwm;
9386 
9387 	if (hw->mac.type > e1000_82580) {
9388 		if (adapter->flags & IGB_FLAG_DMAC) {
9389 			u32 reg;
9390 
9391 			/* force threshold to 0. */
9392 			wr32(E1000_DMCTXTH, 0);
9393 
9394 			/* DMA Coalescing high water mark needs to be greater
9395 			 * than the Rx threshold. Set hwm to PBA - max frame
9396 			 * size in 16B units, capping it at PBA - 6KB.
9397 			 */
9398 			hwm = 64 * (pba - 6);
9399 			reg = rd32(E1000_FCRTC);
9400 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9401 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9402 				& E1000_FCRTC_RTH_COAL_MASK);
9403 			wr32(E1000_FCRTC, reg);
9404 
9405 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9406 			 * frame size, capping it at PBA - 10KB.
9407 			 */
9408 			dmac_thr = pba - 10;
9409 			reg = rd32(E1000_DMACR);
9410 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9411 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9412 				& E1000_DMACR_DMACTHR_MASK);
9413 
9414 			/* transition to L0x or L1 if available..*/
9415 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9416 
9417 			/* watchdog timer= +-1000 usec in 32usec intervals */
9418 			reg |= (1000 >> 5);
9419 
9420 			/* Disable BMC-to-OS Watchdog Enable */
9421 			if (hw->mac.type != e1000_i354)
9422 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9423 
9424 			wr32(E1000_DMACR, reg);
9425 
9426 			/* no lower threshold to disable
9427 			 * coalescing(smart fifb)-UTRESH=0
9428 			 */
9429 			wr32(E1000_DMCRTRH, 0);
9430 
9431 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9432 
9433 			wr32(E1000_DMCTLX, reg);
9434 
9435 			/* free space in tx packet buffer to wake from
9436 			 * DMA coal
9437 			 */
9438 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9439 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9440 
9441 			/* make low power state decision controlled
9442 			 * by DMA coal
9443 			 */
9444 			reg = rd32(E1000_PCIEMISC);
9445 			reg &= ~E1000_PCIEMISC_LX_DECISION;
9446 			wr32(E1000_PCIEMISC, reg);
9447 		} /* endif adapter->dmac is not disabled */
9448 	} else if (hw->mac.type == e1000_82580) {
9449 		u32 reg = rd32(E1000_PCIEMISC);
9450 
9451 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9452 		wr32(E1000_DMACR, 0);
9453 	}
9454 }
9455 
9456 /**
9457  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9458  *  @hw: pointer to hardware structure
9459  *  @byte_offset: byte offset to read
9460  *  @dev_addr: device address
9461  *  @data: value read
9462  *
9463  *  Performs byte read operation over I2C interface at
9464  *  a specified device address.
9465  **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)9466 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9467 		      u8 dev_addr, u8 *data)
9468 {
9469 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9470 	struct i2c_client *this_client = adapter->i2c_client;
9471 	s32 status;
9472 	u16 swfw_mask = 0;
9473 
9474 	if (!this_client)
9475 		return E1000_ERR_I2C;
9476 
9477 	swfw_mask = E1000_SWFW_PHY0_SM;
9478 
9479 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9480 		return E1000_ERR_SWFW_SYNC;
9481 
9482 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9483 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9484 
9485 	if (status < 0)
9486 		return E1000_ERR_I2C;
9487 	else {
9488 		*data = status;
9489 		return 0;
9490 	}
9491 }
9492 
9493 /**
9494  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9495  *  @hw: pointer to hardware structure
9496  *  @byte_offset: byte offset to write
9497  *  @dev_addr: device address
9498  *  @data: value to write
9499  *
9500  *  Performs byte write operation over I2C interface at
9501  *  a specified device address.
9502  **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)9503 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9504 		       u8 dev_addr, u8 data)
9505 {
9506 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9507 	struct i2c_client *this_client = adapter->i2c_client;
9508 	s32 status;
9509 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9510 
9511 	if (!this_client)
9512 		return E1000_ERR_I2C;
9513 
9514 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9515 		return E1000_ERR_SWFW_SYNC;
9516 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9517 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9518 
9519 	if (status)
9520 		return E1000_ERR_I2C;
9521 	else
9522 		return 0;
9523 
9524 }
9525 
igb_reinit_queues(struct igb_adapter * adapter)9526 int igb_reinit_queues(struct igb_adapter *adapter)
9527 {
9528 	struct net_device *netdev = adapter->netdev;
9529 	struct pci_dev *pdev = adapter->pdev;
9530 	int err = 0;
9531 
9532 	if (netif_running(netdev))
9533 		igb_close(netdev);
9534 
9535 	igb_reset_interrupt_capability(adapter);
9536 
9537 	if (igb_init_interrupt_scheme(adapter, true)) {
9538 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9539 		return -ENOMEM;
9540 	}
9541 
9542 	if (netif_running(netdev))
9543 		err = igb_open(netdev);
9544 
9545 	return err;
9546 }
9547 
igb_nfc_filter_exit(struct igb_adapter * adapter)9548 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9549 {
9550 	struct igb_nfc_filter *rule;
9551 
9552 	spin_lock(&adapter->nfc_lock);
9553 
9554 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9555 		igb_erase_filter(adapter, rule);
9556 
9557 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9558 		igb_erase_filter(adapter, rule);
9559 
9560 	spin_unlock(&adapter->nfc_lock);
9561 }
9562 
igb_nfc_filter_restore(struct igb_adapter * adapter)9563 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9564 {
9565 	struct igb_nfc_filter *rule;
9566 
9567 	spin_lock(&adapter->nfc_lock);
9568 
9569 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9570 		igb_add_filter(adapter, rule);
9571 
9572 	spin_unlock(&adapter->nfc_lock);
9573 }
9574 /* igb_main.c */
9575