1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel PCH/PCU SPI flash driver.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  */
8 
9 #include <linux/err.h>
10 #include <linux/io.h>
11 #include <linux/iopoll.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/sizes.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/partitions.h>
17 #include <linux/mtd/spi-nor.h>
18 #include <linux/platform_data/intel-spi.h>
19 
20 #include "intel-spi.h"
21 
22 /* Offsets are from @ispi->base */
23 #define BFPREG				0x00
24 
25 #define HSFSTS_CTL			0x04
26 #define HSFSTS_CTL_FSMIE		BIT(31)
27 #define HSFSTS_CTL_FDBC_SHIFT		24
28 #define HSFSTS_CTL_FDBC_MASK		(0x3f << HSFSTS_CTL_FDBC_SHIFT)
29 
30 #define HSFSTS_CTL_FCYCLE_SHIFT		17
31 #define HSFSTS_CTL_FCYCLE_MASK		(0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
32 /* HW sequencer opcodes */
33 #define HSFSTS_CTL_FCYCLE_READ		(0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
34 #define HSFSTS_CTL_FCYCLE_WRITE		(0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
35 #define HSFSTS_CTL_FCYCLE_ERASE		(0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
36 #define HSFSTS_CTL_FCYCLE_ERASE_64K	(0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
37 #define HSFSTS_CTL_FCYCLE_RDID		(0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
38 #define HSFSTS_CTL_FCYCLE_WRSR		(0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
39 #define HSFSTS_CTL_FCYCLE_RDSR		(0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
40 
41 #define HSFSTS_CTL_FGO			BIT(16)
42 #define HSFSTS_CTL_FLOCKDN		BIT(15)
43 #define HSFSTS_CTL_FDV			BIT(14)
44 #define HSFSTS_CTL_SCIP			BIT(5)
45 #define HSFSTS_CTL_AEL			BIT(2)
46 #define HSFSTS_CTL_FCERR		BIT(1)
47 #define HSFSTS_CTL_FDONE		BIT(0)
48 
49 #define FADDR				0x08
50 #define DLOCK				0x0c
51 #define FDATA(n)			(0x10 + ((n) * 4))
52 
53 #define FRACC				0x50
54 
55 #define FREG(n)				(0x54 + ((n) * 4))
56 #define FREG_BASE_MASK			0x3fff
57 #define FREG_LIMIT_SHIFT		16
58 #define FREG_LIMIT_MASK			(0x03fff << FREG_LIMIT_SHIFT)
59 
60 /* Offset is from @ispi->pregs */
61 #define PR(n)				((n) * 4)
62 #define PR_WPE				BIT(31)
63 #define PR_LIMIT_SHIFT			16
64 #define PR_LIMIT_MASK			(0x3fff << PR_LIMIT_SHIFT)
65 #define PR_RPE				BIT(15)
66 #define PR_BASE_MASK			0x3fff
67 
68 /* Offsets are from @ispi->sregs */
69 #define SSFSTS_CTL			0x00
70 #define SSFSTS_CTL_FSMIE		BIT(23)
71 #define SSFSTS_CTL_DS			BIT(22)
72 #define SSFSTS_CTL_DBC_SHIFT		16
73 #define SSFSTS_CTL_SPOP			BIT(11)
74 #define SSFSTS_CTL_ACS			BIT(10)
75 #define SSFSTS_CTL_SCGO			BIT(9)
76 #define SSFSTS_CTL_COP_SHIFT		12
77 #define SSFSTS_CTL_FRS			BIT(7)
78 #define SSFSTS_CTL_DOFRS		BIT(6)
79 #define SSFSTS_CTL_AEL			BIT(4)
80 #define SSFSTS_CTL_FCERR		BIT(3)
81 #define SSFSTS_CTL_FDONE		BIT(2)
82 #define SSFSTS_CTL_SCIP			BIT(0)
83 
84 #define PREOP_OPTYPE			0x04
85 #define OPMENU0				0x08
86 #define OPMENU1				0x0c
87 
88 #define OPTYPE_READ_NO_ADDR		0
89 #define OPTYPE_WRITE_NO_ADDR		1
90 #define OPTYPE_READ_WITH_ADDR		2
91 #define OPTYPE_WRITE_WITH_ADDR		3
92 
93 /* CPU specifics */
94 #define BYT_PR				0x74
95 #define BYT_SSFSTS_CTL			0x90
96 #define BYT_BCR				0xfc
97 #define BYT_BCR_WPD			BIT(0)
98 #define BYT_FREG_NUM			5
99 #define BYT_PR_NUM			5
100 
101 #define LPT_PR				0x74
102 #define LPT_SSFSTS_CTL			0x90
103 #define LPT_FREG_NUM			5
104 #define LPT_PR_NUM			5
105 
106 #define BXT_PR				0x84
107 #define BXT_SSFSTS_CTL			0xa0
108 #define BXT_FREG_NUM			12
109 #define BXT_PR_NUM			6
110 
111 #define LVSCC				0xc4
112 #define UVSCC				0xc8
113 #define ERASE_OPCODE_SHIFT		8
114 #define ERASE_OPCODE_MASK		(0xff << ERASE_OPCODE_SHIFT)
115 #define ERASE_64K_OPCODE_SHIFT		16
116 #define ERASE_64K_OPCODE_MASK		(0xff << ERASE_OPCODE_SHIFT)
117 
118 #define INTEL_SPI_TIMEOUT		5000 /* ms */
119 #define INTEL_SPI_FIFO_SZ		64
120 
121 /**
122  * struct intel_spi - Driver private data
123  * @dev: Device pointer
124  * @info: Pointer to board specific info
125  * @nor: SPI NOR layer structure
126  * @base: Beginning of MMIO space
127  * @pregs: Start of protection registers
128  * @sregs: Start of software sequencer registers
129  * @nregions: Maximum number of regions
130  * @pr_num: Maximum number of protected range registers
131  * @writeable: Is the chip writeable
132  * @locked: Is SPI setting locked
133  * @swseq_reg: Use SW sequencer in register reads/writes
134  * @swseq_erase: Use SW sequencer in erase operation
135  * @erase_64k: 64k erase supported
136  * @atomic_preopcode: Holds preopcode when atomic sequence is requested
137  * @opcodes: Opcodes which are supported. This are programmed by BIOS
138  *           before it locks down the controller.
139  */
140 struct intel_spi {
141 	struct device *dev;
142 	const struct intel_spi_boardinfo *info;
143 	struct spi_nor nor;
144 	void __iomem *base;
145 	void __iomem *pregs;
146 	void __iomem *sregs;
147 	size_t nregions;
148 	size_t pr_num;
149 	bool writeable;
150 	bool locked;
151 	bool swseq_reg;
152 	bool swseq_erase;
153 	bool erase_64k;
154 	u8 atomic_preopcode;
155 	u8 opcodes[8];
156 };
157 
158 static bool writeable;
159 module_param(writeable, bool, 0);
160 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
161 
intel_spi_dump_regs(struct intel_spi * ispi)162 static void intel_spi_dump_regs(struct intel_spi *ispi)
163 {
164 	u32 value;
165 	int i;
166 
167 	dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
168 
169 	value = readl(ispi->base + HSFSTS_CTL);
170 	dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
171 	if (value & HSFSTS_CTL_FLOCKDN)
172 		dev_dbg(ispi->dev, "-> Locked\n");
173 
174 	dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
175 	dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
176 
177 	for (i = 0; i < 16; i++)
178 		dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
179 			i, readl(ispi->base + FDATA(i)));
180 
181 	dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
182 
183 	for (i = 0; i < ispi->nregions; i++)
184 		dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
185 			readl(ispi->base + FREG(i)));
186 	for (i = 0; i < ispi->pr_num; i++)
187 		dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
188 			readl(ispi->pregs + PR(i)));
189 
190 	value = readl(ispi->sregs + SSFSTS_CTL);
191 	dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
192 	dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
193 		readl(ispi->sregs + PREOP_OPTYPE));
194 	dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", readl(ispi->sregs + OPMENU0));
195 	dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", readl(ispi->sregs + OPMENU1));
196 
197 	if (ispi->info->type == INTEL_SPI_BYT)
198 		dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR));
199 
200 	dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
201 	dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
202 
203 	dev_dbg(ispi->dev, "Protected regions:\n");
204 	for (i = 0; i < ispi->pr_num; i++) {
205 		u32 base, limit;
206 
207 		value = readl(ispi->pregs + PR(i));
208 		if (!(value & (PR_WPE | PR_RPE)))
209 			continue;
210 
211 		limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
212 		base = value & PR_BASE_MASK;
213 
214 		dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
215 			 i, base << 12, (limit << 12) | 0xfff,
216 			 value & PR_WPE ? 'W' : '.',
217 			 value & PR_RPE ? 'R' : '.');
218 	}
219 
220 	dev_dbg(ispi->dev, "Flash regions:\n");
221 	for (i = 0; i < ispi->nregions; i++) {
222 		u32 region, base, limit;
223 
224 		region = readl(ispi->base + FREG(i));
225 		base = region & FREG_BASE_MASK;
226 		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
227 
228 		if (base >= limit || (i > 0 && limit == 0))
229 			dev_dbg(ispi->dev, " %02d disabled\n", i);
230 		else
231 			dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
232 				 i, base << 12, (limit << 12) | 0xfff);
233 	}
234 
235 	dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
236 		ispi->swseq_reg ? 'S' : 'H');
237 	dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
238 		ispi->swseq_erase ? 'S' : 'H');
239 }
240 
241 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
intel_spi_read_block(struct intel_spi * ispi,void * buf,size_t size)242 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
243 {
244 	size_t bytes;
245 	int i = 0;
246 
247 	if (size > INTEL_SPI_FIFO_SZ)
248 		return -EINVAL;
249 
250 	while (size > 0) {
251 		bytes = min_t(size_t, size, 4);
252 		memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
253 		size -= bytes;
254 		buf += bytes;
255 		i++;
256 	}
257 
258 	return 0;
259 }
260 
261 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
intel_spi_write_block(struct intel_spi * ispi,const void * buf,size_t size)262 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
263 				 size_t size)
264 {
265 	size_t bytes;
266 	int i = 0;
267 
268 	if (size > INTEL_SPI_FIFO_SZ)
269 		return -EINVAL;
270 
271 	while (size > 0) {
272 		bytes = min_t(size_t, size, 4);
273 		memcpy_toio(ispi->base + FDATA(i), buf, bytes);
274 		size -= bytes;
275 		buf += bytes;
276 		i++;
277 	}
278 
279 	return 0;
280 }
281 
intel_spi_wait_hw_busy(struct intel_spi * ispi)282 static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
283 {
284 	u32 val;
285 
286 	return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
287 				  !(val & HSFSTS_CTL_SCIP), 40,
288 				  INTEL_SPI_TIMEOUT * 1000);
289 }
290 
intel_spi_wait_sw_busy(struct intel_spi * ispi)291 static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
292 {
293 	u32 val;
294 
295 	return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
296 				  !(val & SSFSTS_CTL_SCIP), 40,
297 				  INTEL_SPI_TIMEOUT * 1000);
298 }
299 
intel_spi_init(struct intel_spi * ispi)300 static int intel_spi_init(struct intel_spi *ispi)
301 {
302 	u32 opmenu0, opmenu1, lvscc, uvscc, val;
303 	int i;
304 
305 	switch (ispi->info->type) {
306 	case INTEL_SPI_BYT:
307 		ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
308 		ispi->pregs = ispi->base + BYT_PR;
309 		ispi->nregions = BYT_FREG_NUM;
310 		ispi->pr_num = BYT_PR_NUM;
311 		ispi->swseq_reg = true;
312 
313 		if (writeable) {
314 			/* Disable write protection */
315 			val = readl(ispi->base + BYT_BCR);
316 			if (!(val & BYT_BCR_WPD)) {
317 				val |= BYT_BCR_WPD;
318 				writel(val, ispi->base + BYT_BCR);
319 				val = readl(ispi->base + BYT_BCR);
320 			}
321 
322 			ispi->writeable = !!(val & BYT_BCR_WPD);
323 		}
324 
325 		break;
326 
327 	case INTEL_SPI_LPT:
328 		ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
329 		ispi->pregs = ispi->base + LPT_PR;
330 		ispi->nregions = LPT_FREG_NUM;
331 		ispi->pr_num = LPT_PR_NUM;
332 		ispi->swseq_reg = true;
333 		break;
334 
335 	case INTEL_SPI_BXT:
336 		ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
337 		ispi->pregs = ispi->base + BXT_PR;
338 		ispi->nregions = BXT_FREG_NUM;
339 		ispi->pr_num = BXT_PR_NUM;
340 		ispi->erase_64k = true;
341 		break;
342 
343 	default:
344 		return -EINVAL;
345 	}
346 
347 	/* Disable #SMI generation from HW sequencer */
348 	val = readl(ispi->base + HSFSTS_CTL);
349 	val &= ~HSFSTS_CTL_FSMIE;
350 	writel(val, ispi->base + HSFSTS_CTL);
351 
352 	/*
353 	 * Determine whether erase operation should use HW or SW sequencer.
354 	 *
355 	 * The HW sequencer has a predefined list of opcodes, with only the
356 	 * erase opcode being programmable in LVSCC and UVSCC registers.
357 	 * If these registers don't contain a valid erase opcode, erase
358 	 * cannot be done using HW sequencer.
359 	 */
360 	lvscc = readl(ispi->base + LVSCC);
361 	uvscc = readl(ispi->base + UVSCC);
362 	if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
363 		ispi->swseq_erase = true;
364 	/* SPI controller on Intel BXT supports 64K erase opcode */
365 	if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
366 		if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
367 		    !(uvscc & ERASE_64K_OPCODE_MASK))
368 			ispi->erase_64k = false;
369 
370 	/*
371 	 * Some controllers can only do basic operations using hardware
372 	 * sequencer. All other operations are supposed to be carried out
373 	 * using software sequencer.
374 	 */
375 	if (ispi->swseq_reg) {
376 		/* Disable #SMI generation from SW sequencer */
377 		val = readl(ispi->sregs + SSFSTS_CTL);
378 		val &= ~SSFSTS_CTL_FSMIE;
379 		writel(val, ispi->sregs + SSFSTS_CTL);
380 	}
381 
382 	/* Check controller's lock status */
383 	val = readl(ispi->base + HSFSTS_CTL);
384 	ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
385 
386 	if (ispi->locked) {
387 		/*
388 		 * BIOS programs allowed opcodes and then locks down the
389 		 * register. So read back what opcodes it decided to support.
390 		 * That's the set we are going to support as well.
391 		 */
392 		opmenu0 = readl(ispi->sregs + OPMENU0);
393 		opmenu1 = readl(ispi->sregs + OPMENU1);
394 
395 		if (opmenu0 && opmenu1) {
396 			for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
397 				ispi->opcodes[i] = opmenu0 >> i * 8;
398 				ispi->opcodes[i + 4] = opmenu1 >> i * 8;
399 			}
400 		}
401 	}
402 
403 	intel_spi_dump_regs(ispi);
404 
405 	return 0;
406 }
407 
intel_spi_opcode_index(struct intel_spi * ispi,u8 opcode,int optype)408 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
409 {
410 	int i;
411 	int preop;
412 
413 	if (ispi->locked) {
414 		for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
415 			if (ispi->opcodes[i] == opcode)
416 				return i;
417 
418 		return -EINVAL;
419 	}
420 
421 	/* The lock is off, so just use index 0 */
422 	writel(opcode, ispi->sregs + OPMENU0);
423 	preop = readw(ispi->sregs + PREOP_OPTYPE);
424 	writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
425 
426 	return 0;
427 }
428 
intel_spi_hw_cycle(struct intel_spi * ispi,u8 opcode,int len)429 static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, int len)
430 {
431 	u32 val, status;
432 	int ret;
433 
434 	val = readl(ispi->base + HSFSTS_CTL);
435 	val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
436 
437 	switch (opcode) {
438 	case SPINOR_OP_RDID:
439 		val |= HSFSTS_CTL_FCYCLE_RDID;
440 		break;
441 	case SPINOR_OP_WRSR:
442 		val |= HSFSTS_CTL_FCYCLE_WRSR;
443 		break;
444 	case SPINOR_OP_RDSR:
445 		val |= HSFSTS_CTL_FCYCLE_RDSR;
446 		break;
447 	default:
448 		return -EINVAL;
449 	}
450 
451 	if (len > INTEL_SPI_FIFO_SZ)
452 		return -EINVAL;
453 
454 	val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
455 	val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
456 	val |= HSFSTS_CTL_FGO;
457 	writel(val, ispi->base + HSFSTS_CTL);
458 
459 	ret = intel_spi_wait_hw_busy(ispi);
460 	if (ret)
461 		return ret;
462 
463 	status = readl(ispi->base + HSFSTS_CTL);
464 	if (status & HSFSTS_CTL_FCERR)
465 		return -EIO;
466 	else if (status & HSFSTS_CTL_AEL)
467 		return -EACCES;
468 
469 	return 0;
470 }
471 
intel_spi_sw_cycle(struct intel_spi * ispi,u8 opcode,int len,int optype)472 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, int len,
473 			      int optype)
474 {
475 	u32 val = 0, status;
476 	u8 atomic_preopcode;
477 	int ret;
478 
479 	ret = intel_spi_opcode_index(ispi, opcode, optype);
480 	if (ret < 0)
481 		return ret;
482 
483 	if (len > INTEL_SPI_FIFO_SZ)
484 		return -EINVAL;
485 
486 	/*
487 	 * Always clear it after each SW sequencer operation regardless
488 	 * of whether it is successful or not.
489 	 */
490 	atomic_preopcode = ispi->atomic_preopcode;
491 	ispi->atomic_preopcode = 0;
492 
493 	/* Only mark 'Data Cycle' bit when there is data to be transferred */
494 	if (len > 0)
495 		val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
496 	val |= ret << SSFSTS_CTL_COP_SHIFT;
497 	val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
498 	val |= SSFSTS_CTL_SCGO;
499 	if (atomic_preopcode) {
500 		u16 preop;
501 
502 		switch (optype) {
503 		case OPTYPE_WRITE_NO_ADDR:
504 		case OPTYPE_WRITE_WITH_ADDR:
505 			/* Pick matching preopcode for the atomic sequence */
506 			preop = readw(ispi->sregs + PREOP_OPTYPE);
507 			if ((preop & 0xff) == atomic_preopcode)
508 				; /* Do nothing */
509 			else if ((preop >> 8) == atomic_preopcode)
510 				val |= SSFSTS_CTL_SPOP;
511 			else
512 				return -EINVAL;
513 
514 			/* Enable atomic sequence */
515 			val |= SSFSTS_CTL_ACS;
516 			break;
517 
518 		default:
519 			return -EINVAL;
520 		}
521 
522 	}
523 	writel(val, ispi->sregs + SSFSTS_CTL);
524 
525 	ret = intel_spi_wait_sw_busy(ispi);
526 	if (ret)
527 		return ret;
528 
529 	status = readl(ispi->sregs + SSFSTS_CTL);
530 	if (status & SSFSTS_CTL_FCERR)
531 		return -EIO;
532 	else if (status & SSFSTS_CTL_AEL)
533 		return -EACCES;
534 
535 	return 0;
536 }
537 
intel_spi_read_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)538 static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
539 {
540 	struct intel_spi *ispi = nor->priv;
541 	int ret;
542 
543 	/* Address of the first chip */
544 	writel(0, ispi->base + FADDR);
545 
546 	if (ispi->swseq_reg)
547 		ret = intel_spi_sw_cycle(ispi, opcode, len,
548 					 OPTYPE_READ_NO_ADDR);
549 	else
550 		ret = intel_spi_hw_cycle(ispi, opcode, len);
551 
552 	if (ret)
553 		return ret;
554 
555 	return intel_spi_read_block(ispi, buf, len);
556 }
557 
intel_spi_write_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)558 static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
559 {
560 	struct intel_spi *ispi = nor->priv;
561 	int ret;
562 
563 	/*
564 	 * This is handled with atomic operation and preop code in Intel
565 	 * controller so we only verify that it is available. If the
566 	 * controller is not locked, program the opcode to the PREOP
567 	 * register for later use.
568 	 *
569 	 * When hardware sequencer is used there is no need to program
570 	 * any opcodes (it handles them automatically as part of a command).
571 	 */
572 	if (opcode == SPINOR_OP_WREN) {
573 		u16 preop;
574 
575 		if (!ispi->swseq_reg)
576 			return 0;
577 
578 		preop = readw(ispi->sregs + PREOP_OPTYPE);
579 		if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
580 			if (ispi->locked)
581 				return -EINVAL;
582 			writel(opcode, ispi->sregs + PREOP_OPTYPE);
583 		}
584 
585 		/*
586 		 * This enables atomic sequence on next SW sycle. Will
587 		 * be cleared after next operation.
588 		 */
589 		ispi->atomic_preopcode = opcode;
590 		return 0;
591 	}
592 
593 	writel(0, ispi->base + FADDR);
594 
595 	/* Write the value beforehand */
596 	ret = intel_spi_write_block(ispi, buf, len);
597 	if (ret)
598 		return ret;
599 
600 	if (ispi->swseq_reg)
601 		return intel_spi_sw_cycle(ispi, opcode, len,
602 					  OPTYPE_WRITE_NO_ADDR);
603 	return intel_spi_hw_cycle(ispi, opcode, len);
604 }
605 
intel_spi_read(struct spi_nor * nor,loff_t from,size_t len,u_char * read_buf)606 static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len,
607 			      u_char *read_buf)
608 {
609 	struct intel_spi *ispi = nor->priv;
610 	size_t block_size, retlen = 0;
611 	u32 val, status;
612 	ssize_t ret;
613 
614 	/*
615 	 * Atomic sequence is not expected with HW sequencer reads. Make
616 	 * sure it is cleared regardless.
617 	 */
618 	if (WARN_ON_ONCE(ispi->atomic_preopcode))
619 		ispi->atomic_preopcode = 0;
620 
621 	switch (nor->read_opcode) {
622 	case SPINOR_OP_READ:
623 	case SPINOR_OP_READ_FAST:
624 	case SPINOR_OP_READ_4B:
625 	case SPINOR_OP_READ_FAST_4B:
626 		break;
627 	default:
628 		return -EINVAL;
629 	}
630 
631 	while (len > 0) {
632 		block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
633 
634 		/* Read cannot cross 4K boundary */
635 		block_size = min_t(loff_t, from + block_size,
636 				   round_up(from + 1, SZ_4K)) - from;
637 
638 		writel(from, ispi->base + FADDR);
639 
640 		val = readl(ispi->base + HSFSTS_CTL);
641 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
642 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
643 		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
644 		val |= HSFSTS_CTL_FCYCLE_READ;
645 		val |= HSFSTS_CTL_FGO;
646 		writel(val, ispi->base + HSFSTS_CTL);
647 
648 		ret = intel_spi_wait_hw_busy(ispi);
649 		if (ret)
650 			return ret;
651 
652 		status = readl(ispi->base + HSFSTS_CTL);
653 		if (status & HSFSTS_CTL_FCERR)
654 			ret = -EIO;
655 		else if (status & HSFSTS_CTL_AEL)
656 			ret = -EACCES;
657 
658 		if (ret < 0) {
659 			dev_err(ispi->dev, "read error: %llx: %#x\n", from,
660 				status);
661 			return ret;
662 		}
663 
664 		ret = intel_spi_read_block(ispi, read_buf, block_size);
665 		if (ret)
666 			return ret;
667 
668 		len -= block_size;
669 		from += block_size;
670 		retlen += block_size;
671 		read_buf += block_size;
672 	}
673 
674 	return retlen;
675 }
676 
intel_spi_write(struct spi_nor * nor,loff_t to,size_t len,const u_char * write_buf)677 static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len,
678 			       const u_char *write_buf)
679 {
680 	struct intel_spi *ispi = nor->priv;
681 	size_t block_size, retlen = 0;
682 	u32 val, status;
683 	ssize_t ret;
684 
685 	/* Not needed with HW sequencer write, make sure it is cleared */
686 	ispi->atomic_preopcode = 0;
687 
688 	while (len > 0) {
689 		block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
690 
691 		/* Write cannot cross 4K boundary */
692 		block_size = min_t(loff_t, to + block_size,
693 				   round_up(to + 1, SZ_4K)) - to;
694 
695 		writel(to, ispi->base + FADDR);
696 
697 		val = readl(ispi->base + HSFSTS_CTL);
698 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
699 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
700 		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
701 		val |= HSFSTS_CTL_FCYCLE_WRITE;
702 
703 		ret = intel_spi_write_block(ispi, write_buf, block_size);
704 		if (ret) {
705 			dev_err(ispi->dev, "failed to write block\n");
706 			return ret;
707 		}
708 
709 		/* Start the write now */
710 		val |= HSFSTS_CTL_FGO;
711 		writel(val, ispi->base + HSFSTS_CTL);
712 
713 		ret = intel_spi_wait_hw_busy(ispi);
714 		if (ret) {
715 			dev_err(ispi->dev, "timeout\n");
716 			return ret;
717 		}
718 
719 		status = readl(ispi->base + HSFSTS_CTL);
720 		if (status & HSFSTS_CTL_FCERR)
721 			ret = -EIO;
722 		else if (status & HSFSTS_CTL_AEL)
723 			ret = -EACCES;
724 
725 		if (ret < 0) {
726 			dev_err(ispi->dev, "write error: %llx: %#x\n", to,
727 				status);
728 			return ret;
729 		}
730 
731 		len -= block_size;
732 		to += block_size;
733 		retlen += block_size;
734 		write_buf += block_size;
735 	}
736 
737 	return retlen;
738 }
739 
intel_spi_erase(struct spi_nor * nor,loff_t offs)740 static int intel_spi_erase(struct spi_nor *nor, loff_t offs)
741 {
742 	size_t erase_size, len = nor->mtd.erasesize;
743 	struct intel_spi *ispi = nor->priv;
744 	u32 val, status, cmd;
745 	int ret;
746 
747 	/* If the hardware can do 64k erase use that when possible */
748 	if (len >= SZ_64K && ispi->erase_64k) {
749 		cmd = HSFSTS_CTL_FCYCLE_ERASE_64K;
750 		erase_size = SZ_64K;
751 	} else {
752 		cmd = HSFSTS_CTL_FCYCLE_ERASE;
753 		erase_size = SZ_4K;
754 	}
755 
756 	if (ispi->swseq_erase) {
757 		while (len > 0) {
758 			writel(offs, ispi->base + FADDR);
759 
760 			ret = intel_spi_sw_cycle(ispi, nor->erase_opcode,
761 						 0, OPTYPE_WRITE_WITH_ADDR);
762 			if (ret)
763 				return ret;
764 
765 			offs += erase_size;
766 			len -= erase_size;
767 		}
768 
769 		return 0;
770 	}
771 
772 	/* Not needed with HW sequencer erase, make sure it is cleared */
773 	ispi->atomic_preopcode = 0;
774 
775 	while (len > 0) {
776 		writel(offs, ispi->base + FADDR);
777 
778 		val = readl(ispi->base + HSFSTS_CTL);
779 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
780 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
781 		val |= cmd;
782 		val |= HSFSTS_CTL_FGO;
783 		writel(val, ispi->base + HSFSTS_CTL);
784 
785 		ret = intel_spi_wait_hw_busy(ispi);
786 		if (ret)
787 			return ret;
788 
789 		status = readl(ispi->base + HSFSTS_CTL);
790 		if (status & HSFSTS_CTL_FCERR)
791 			return -EIO;
792 		else if (status & HSFSTS_CTL_AEL)
793 			return -EACCES;
794 
795 		offs += erase_size;
796 		len -= erase_size;
797 	}
798 
799 	return 0;
800 }
801 
intel_spi_is_protected(const struct intel_spi * ispi,unsigned int base,unsigned int limit)802 static bool intel_spi_is_protected(const struct intel_spi *ispi,
803 				   unsigned int base, unsigned int limit)
804 {
805 	int i;
806 
807 	for (i = 0; i < ispi->pr_num; i++) {
808 		u32 pr_base, pr_limit, pr_value;
809 
810 		pr_value = readl(ispi->pregs + PR(i));
811 		if (!(pr_value & (PR_WPE | PR_RPE)))
812 			continue;
813 
814 		pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
815 		pr_base = pr_value & PR_BASE_MASK;
816 
817 		if (pr_base >= base && pr_limit <= limit)
818 			return true;
819 	}
820 
821 	return false;
822 }
823 
824 /*
825  * There will be a single partition holding all enabled flash regions. We
826  * call this "BIOS".
827  */
intel_spi_fill_partition(struct intel_spi * ispi,struct mtd_partition * part)828 static void intel_spi_fill_partition(struct intel_spi *ispi,
829 				     struct mtd_partition *part)
830 {
831 	u64 end;
832 	int i;
833 
834 	memset(part, 0, sizeof(*part));
835 
836 	/* Start from the mandatory descriptor region */
837 	part->size = 4096;
838 	part->name = "BIOS";
839 
840 	/*
841 	 * Now try to find where this partition ends based on the flash
842 	 * region registers.
843 	 */
844 	for (i = 1; i < ispi->nregions; i++) {
845 		u32 region, base, limit;
846 
847 		region = readl(ispi->base + FREG(i));
848 		base = region & FREG_BASE_MASK;
849 		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
850 
851 		if (base >= limit || limit == 0)
852 			continue;
853 
854 		/*
855 		 * If any of the regions have protection bits set, make the
856 		 * whole partition read-only to be on the safe side.
857 		 */
858 		if (intel_spi_is_protected(ispi, base, limit))
859 			ispi->writeable = false;
860 
861 		end = (limit << 12) + 4096;
862 		if (end > part->size)
863 			part->size = end;
864 	}
865 }
866 
intel_spi_probe(struct device * dev,struct resource * mem,const struct intel_spi_boardinfo * info)867 struct intel_spi *intel_spi_probe(struct device *dev,
868 	struct resource *mem, const struct intel_spi_boardinfo *info)
869 {
870 	const struct spi_nor_hwcaps hwcaps = {
871 		.mask = SNOR_HWCAPS_READ |
872 			SNOR_HWCAPS_READ_FAST |
873 			SNOR_HWCAPS_PP,
874 	};
875 	struct mtd_partition part;
876 	struct intel_spi *ispi;
877 	int ret;
878 
879 	if (!info || !mem)
880 		return ERR_PTR(-EINVAL);
881 
882 	ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL);
883 	if (!ispi)
884 		return ERR_PTR(-ENOMEM);
885 
886 	ispi->base = devm_ioremap_resource(dev, mem);
887 	if (IS_ERR(ispi->base))
888 		return ERR_CAST(ispi->base);
889 
890 	ispi->dev = dev;
891 	ispi->info = info;
892 	ispi->writeable = info->writeable;
893 
894 	ret = intel_spi_init(ispi);
895 	if (ret)
896 		return ERR_PTR(ret);
897 
898 	ispi->nor.dev = ispi->dev;
899 	ispi->nor.priv = ispi;
900 	ispi->nor.read_reg = intel_spi_read_reg;
901 	ispi->nor.write_reg = intel_spi_write_reg;
902 	ispi->nor.read = intel_spi_read;
903 	ispi->nor.write = intel_spi_write;
904 	ispi->nor.erase = intel_spi_erase;
905 
906 	ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps);
907 	if (ret) {
908 		dev_info(dev, "failed to locate the chip\n");
909 		return ERR_PTR(ret);
910 	}
911 
912 	intel_spi_fill_partition(ispi, &part);
913 
914 	/* Prevent writes if not explicitly enabled */
915 	if (!ispi->writeable || !writeable)
916 		ispi->nor.mtd.flags &= ~MTD_WRITEABLE;
917 
918 	ret = mtd_device_register(&ispi->nor.mtd, &part, 1);
919 	if (ret)
920 		return ERR_PTR(ret);
921 
922 	return ispi;
923 }
924 EXPORT_SYMBOL_GPL(intel_spi_probe);
925 
intel_spi_remove(struct intel_spi * ispi)926 int intel_spi_remove(struct intel_spi *ispi)
927 {
928 	return mtd_device_unregister(&ispi->nor.mtd);
929 }
930 EXPORT_SYMBOL_GPL(intel_spi_remove);
931 
932 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
933 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
934 MODULE_LICENSE("GPL v2");
935