1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale UPM NAND driver.
4 *
5 * Copyright © 2007-2008 MontaVista Software, Inc.
6 *
7 * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/delay.h>
13 #include <linux/mtd/rawnand.h>
14 #include <linux/mtd/nand_ecc.h>
15 #include <linux/mtd/partitions.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/of_address.h>
18 #include <linux/of_platform.h>
19 #include <linux/of_gpio.h>
20 #include <linux/io.h>
21 #include <linux/slab.h>
22 #include <asm/fsl_lbc.h>
23
24 #define FSL_UPM_WAIT_RUN_PATTERN 0x1
25 #define FSL_UPM_WAIT_WRITE_BYTE 0x2
26 #define FSL_UPM_WAIT_WRITE_BUFFER 0x4
27
28 struct fsl_upm_nand {
29 struct device *dev;
30 struct nand_chip chip;
31 int last_ctrl;
32 struct mtd_partition *parts;
33 struct fsl_upm upm;
34 uint8_t upm_addr_offset;
35 uint8_t upm_cmd_offset;
36 void __iomem *io_base;
37 int rnb_gpio[NAND_MAX_CHIPS];
38 uint32_t mchip_offsets[NAND_MAX_CHIPS];
39 uint32_t mchip_count;
40 uint32_t mchip_number;
41 int chip_delay;
42 uint32_t wait_flags;
43 };
44
to_fsl_upm_nand(struct mtd_info * mtdinfo)45 static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo)
46 {
47 return container_of(mtd_to_nand(mtdinfo), struct fsl_upm_nand,
48 chip);
49 }
50
fun_chip_ready(struct nand_chip * chip)51 static int fun_chip_ready(struct nand_chip *chip)
52 {
53 struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
54
55 if (gpio_get_value(fun->rnb_gpio[fun->mchip_number]))
56 return 1;
57
58 dev_vdbg(fun->dev, "busy\n");
59 return 0;
60 }
61
fun_wait_rnb(struct fsl_upm_nand * fun)62 static void fun_wait_rnb(struct fsl_upm_nand *fun)
63 {
64 if (fun->rnb_gpio[fun->mchip_number] >= 0) {
65 struct mtd_info *mtd = nand_to_mtd(&fun->chip);
66 int cnt = 1000000;
67
68 while (--cnt && !fun_chip_ready(&fun->chip))
69 cpu_relax();
70 if (!cnt)
71 dev_err(fun->dev, "tired waiting for RNB\n");
72 } else {
73 ndelay(100);
74 }
75 }
76
fun_cmd_ctrl(struct nand_chip * chip,int cmd,unsigned int ctrl)77 static void fun_cmd_ctrl(struct nand_chip *chip, int cmd, unsigned int ctrl)
78 {
79 struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
80 u32 mar;
81
82 if (!(ctrl & fun->last_ctrl)) {
83 fsl_upm_end_pattern(&fun->upm);
84
85 if (cmd == NAND_CMD_NONE)
86 return;
87
88 fun->last_ctrl = ctrl & (NAND_ALE | NAND_CLE);
89 }
90
91 if (ctrl & NAND_CTRL_CHANGE) {
92 if (ctrl & NAND_ALE)
93 fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
94 else if (ctrl & NAND_CLE)
95 fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
96 }
97
98 mar = (cmd << (32 - fun->upm.width)) |
99 fun->mchip_offsets[fun->mchip_number];
100 fsl_upm_run_pattern(&fun->upm, chip->legacy.IO_ADDR_R, mar);
101
102 if (fun->wait_flags & FSL_UPM_WAIT_RUN_PATTERN)
103 fun_wait_rnb(fun);
104 }
105
fun_select_chip(struct nand_chip * chip,int mchip_nr)106 static void fun_select_chip(struct nand_chip *chip, int mchip_nr)
107 {
108 struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
109
110 if (mchip_nr == -1) {
111 chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
112 } else if (mchip_nr >= 0 && mchip_nr < NAND_MAX_CHIPS) {
113 fun->mchip_number = mchip_nr;
114 chip->legacy.IO_ADDR_R = fun->io_base + fun->mchip_offsets[mchip_nr];
115 chip->legacy.IO_ADDR_W = chip->legacy.IO_ADDR_R;
116 } else {
117 BUG();
118 }
119 }
120
fun_read_byte(struct nand_chip * chip)121 static uint8_t fun_read_byte(struct nand_chip *chip)
122 {
123 struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
124
125 return in_8(fun->chip.legacy.IO_ADDR_R);
126 }
127
fun_read_buf(struct nand_chip * chip,uint8_t * buf,int len)128 static void fun_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
129 {
130 struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
131 int i;
132
133 for (i = 0; i < len; i++)
134 buf[i] = in_8(fun->chip.legacy.IO_ADDR_R);
135 }
136
fun_write_buf(struct nand_chip * chip,const uint8_t * buf,int len)137 static void fun_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
138 {
139 struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
140 int i;
141
142 for (i = 0; i < len; i++) {
143 out_8(fun->chip.legacy.IO_ADDR_W, buf[i]);
144 if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BYTE)
145 fun_wait_rnb(fun);
146 }
147 if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BUFFER)
148 fun_wait_rnb(fun);
149 }
150
fun_chip_init(struct fsl_upm_nand * fun,const struct device_node * upm_np,const struct resource * io_res)151 static int fun_chip_init(struct fsl_upm_nand *fun,
152 const struct device_node *upm_np,
153 const struct resource *io_res)
154 {
155 struct mtd_info *mtd = nand_to_mtd(&fun->chip);
156 int ret;
157 struct device_node *flash_np;
158
159 fun->chip.legacy.IO_ADDR_R = fun->io_base;
160 fun->chip.legacy.IO_ADDR_W = fun->io_base;
161 fun->chip.legacy.cmd_ctrl = fun_cmd_ctrl;
162 fun->chip.legacy.chip_delay = fun->chip_delay;
163 fun->chip.legacy.read_byte = fun_read_byte;
164 fun->chip.legacy.read_buf = fun_read_buf;
165 fun->chip.legacy.write_buf = fun_write_buf;
166 fun->chip.ecc.mode = NAND_ECC_SOFT;
167 fun->chip.ecc.algo = NAND_ECC_HAMMING;
168 if (fun->mchip_count > 1)
169 fun->chip.legacy.select_chip = fun_select_chip;
170
171 if (fun->rnb_gpio[0] >= 0)
172 fun->chip.legacy.dev_ready = fun_chip_ready;
173
174 mtd->dev.parent = fun->dev;
175
176 flash_np = of_get_next_child(upm_np, NULL);
177 if (!flash_np)
178 return -ENODEV;
179
180 nand_set_flash_node(&fun->chip, flash_np);
181 mtd->name = kasprintf(GFP_KERNEL, "0x%llx.%pOFn", (u64)io_res->start,
182 flash_np);
183 if (!mtd->name) {
184 ret = -ENOMEM;
185 goto err;
186 }
187
188 ret = nand_scan(&fun->chip, fun->mchip_count);
189 if (ret)
190 goto err;
191
192 ret = mtd_device_register(mtd, NULL, 0);
193 err:
194 of_node_put(flash_np);
195 if (ret)
196 kfree(mtd->name);
197 return ret;
198 }
199
fun_probe(struct platform_device * ofdev)200 static int fun_probe(struct platform_device *ofdev)
201 {
202 struct fsl_upm_nand *fun;
203 struct resource io_res;
204 const __be32 *prop;
205 int rnb_gpio;
206 int ret;
207 int size;
208 int i;
209
210 fun = kzalloc(sizeof(*fun), GFP_KERNEL);
211 if (!fun)
212 return -ENOMEM;
213
214 ret = of_address_to_resource(ofdev->dev.of_node, 0, &io_res);
215 if (ret) {
216 dev_err(&ofdev->dev, "can't get IO base\n");
217 goto err1;
218 }
219
220 ret = fsl_upm_find(io_res.start, &fun->upm);
221 if (ret) {
222 dev_err(&ofdev->dev, "can't find UPM\n");
223 goto err1;
224 }
225
226 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset",
227 &size);
228 if (!prop || size != sizeof(uint32_t)) {
229 dev_err(&ofdev->dev, "can't get UPM address offset\n");
230 ret = -EINVAL;
231 goto err1;
232 }
233 fun->upm_addr_offset = *prop;
234
235 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size);
236 if (!prop || size != sizeof(uint32_t)) {
237 dev_err(&ofdev->dev, "can't get UPM command offset\n");
238 ret = -EINVAL;
239 goto err1;
240 }
241 fun->upm_cmd_offset = *prop;
242
243 prop = of_get_property(ofdev->dev.of_node,
244 "fsl,upm-addr-line-cs-offsets", &size);
245 if (prop && (size / sizeof(uint32_t)) > 0) {
246 fun->mchip_count = size / sizeof(uint32_t);
247 if (fun->mchip_count >= NAND_MAX_CHIPS) {
248 dev_err(&ofdev->dev, "too much multiple chips\n");
249 goto err1;
250 }
251 for (i = 0; i < fun->mchip_count; i++)
252 fun->mchip_offsets[i] = be32_to_cpu(prop[i]);
253 } else {
254 fun->mchip_count = 1;
255 }
256
257 for (i = 0; i < fun->mchip_count; i++) {
258 fun->rnb_gpio[i] = -1;
259 rnb_gpio = of_get_gpio(ofdev->dev.of_node, i);
260 if (rnb_gpio >= 0) {
261 ret = gpio_request(rnb_gpio, dev_name(&ofdev->dev));
262 if (ret) {
263 dev_err(&ofdev->dev,
264 "can't request RNB gpio #%d\n", i);
265 goto err2;
266 }
267 gpio_direction_input(rnb_gpio);
268 fun->rnb_gpio[i] = rnb_gpio;
269 } else if (rnb_gpio == -EINVAL) {
270 dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i);
271 goto err2;
272 }
273 }
274
275 prop = of_get_property(ofdev->dev.of_node, "chip-delay", NULL);
276 if (prop)
277 fun->chip_delay = be32_to_cpup(prop);
278 else
279 fun->chip_delay = 50;
280
281 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-wait-flags", &size);
282 if (prop && size == sizeof(uint32_t))
283 fun->wait_flags = be32_to_cpup(prop);
284 else
285 fun->wait_flags = FSL_UPM_WAIT_RUN_PATTERN |
286 FSL_UPM_WAIT_WRITE_BYTE;
287
288 fun->io_base = devm_ioremap_nocache(&ofdev->dev, io_res.start,
289 resource_size(&io_res));
290 if (!fun->io_base) {
291 ret = -ENOMEM;
292 goto err2;
293 }
294
295 fun->dev = &ofdev->dev;
296 fun->last_ctrl = NAND_CLE;
297
298 ret = fun_chip_init(fun, ofdev->dev.of_node, &io_res);
299 if (ret)
300 goto err2;
301
302 dev_set_drvdata(&ofdev->dev, fun);
303
304 return 0;
305 err2:
306 for (i = 0; i < fun->mchip_count; i++) {
307 if (fun->rnb_gpio[i] < 0)
308 break;
309 gpio_free(fun->rnb_gpio[i]);
310 }
311 err1:
312 kfree(fun);
313
314 return ret;
315 }
316
fun_remove(struct platform_device * ofdev)317 static int fun_remove(struct platform_device *ofdev)
318 {
319 struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
320 struct mtd_info *mtd = nand_to_mtd(&fun->chip);
321 int i;
322
323 nand_release(&fun->chip);
324 kfree(mtd->name);
325
326 for (i = 0; i < fun->mchip_count; i++) {
327 if (fun->rnb_gpio[i] < 0)
328 break;
329 gpio_free(fun->rnb_gpio[i]);
330 }
331
332 kfree(fun);
333
334 return 0;
335 }
336
337 static const struct of_device_id of_fun_match[] = {
338 { .compatible = "fsl,upm-nand" },
339 {},
340 };
341 MODULE_DEVICE_TABLE(of, of_fun_match);
342
343 static struct platform_driver of_fun_driver = {
344 .driver = {
345 .name = "fsl,upm-nand",
346 .of_match_table = of_fun_match,
347 },
348 .probe = fun_probe,
349 .remove = fun_remove,
350 };
351
352 module_platform_driver(of_fun_driver);
353
354 MODULE_LICENSE("GPL");
355 MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>");
356 MODULE_DESCRIPTION("Driver for NAND chips working through Freescale "
357 "LocalBus User-Programmable Machine");
358