1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4  *
5  * Copyright © 2006 Texas Instruments.
6  *
7  * Port to 2.6.23 Copyright © 2008 by:
8  *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
9  *   Troy Kisky <troy.kisky@boundarydevices.com>
10  *   Dirk Behme <Dirk.Behme@gmail.com>
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/mtd/rawnand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/slab.h>
21 #include <linux/of_device.h>
22 #include <linux/of.h>
23 
24 #include <linux/platform_data/mtd-davinci.h>
25 #include <linux/platform_data/mtd-davinci-aemif.h>
26 
27 /*
28  * This is a device driver for the NAND flash controller found on the
29  * various DaVinci family chips.  It handles up to four SoC chipselects,
30  * and some flavors of secondary chipselect (e.g. based on A12) as used
31  * with multichip packages.
32  *
33  * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
34  * available on chips like the DM355 and OMAP-L137 and needed with the
35  * more error-prone MLC NAND chips.
36  *
37  * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
38  * outputs in a "wire-AND" configuration, with no per-chip signals.
39  */
40 struct davinci_nand_info {
41 	struct nand_chip	chip;
42 
43 	struct platform_device	*pdev;
44 
45 	bool			is_readmode;
46 
47 	void __iomem		*base;
48 	void __iomem		*vaddr;
49 
50 	void __iomem		*current_cs;
51 
52 	uint32_t		mask_chipsel;
53 	uint32_t		mask_ale;
54 	uint32_t		mask_cle;
55 
56 	uint32_t		core_chipsel;
57 
58 	struct davinci_aemif_timing	*timing;
59 };
60 
61 static DEFINE_SPINLOCK(davinci_nand_lock);
62 static bool ecc4_busy;
63 
to_davinci_nand(struct mtd_info * mtd)64 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
65 {
66 	return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
67 }
68 
davinci_nand_readl(struct davinci_nand_info * info,int offset)69 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
70 		int offset)
71 {
72 	return __raw_readl(info->base + offset);
73 }
74 
davinci_nand_writel(struct davinci_nand_info * info,int offset,unsigned long value)75 static inline void davinci_nand_writel(struct davinci_nand_info *info,
76 		int offset, unsigned long value)
77 {
78 	__raw_writel(value, info->base + offset);
79 }
80 
81 /*----------------------------------------------------------------------*/
82 
83 /*
84  * Access to hardware control lines:  ALE, CLE, secondary chipselect.
85  */
86 
nand_davinci_hwcontrol(struct nand_chip * nand,int cmd,unsigned int ctrl)87 static void nand_davinci_hwcontrol(struct nand_chip *nand, int cmd,
88 				   unsigned int ctrl)
89 {
90 	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(nand));
91 	void __iomem			*addr = info->current_cs;
92 
93 	/* Did the control lines change? */
94 	if (ctrl & NAND_CTRL_CHANGE) {
95 		if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
96 			addr += info->mask_cle;
97 		else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
98 			addr += info->mask_ale;
99 
100 		nand->legacy.IO_ADDR_W = addr;
101 	}
102 
103 	if (cmd != NAND_CMD_NONE)
104 		iowrite8(cmd, nand->legacy.IO_ADDR_W);
105 }
106 
nand_davinci_select_chip(struct nand_chip * nand,int chip)107 static void nand_davinci_select_chip(struct nand_chip *nand, int chip)
108 {
109 	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(nand));
110 
111 	info->current_cs = info->vaddr;
112 
113 	/* maybe kick in a second chipselect */
114 	if (chip > 0)
115 		info->current_cs += info->mask_chipsel;
116 
117 	info->chip.legacy.IO_ADDR_W = info->current_cs;
118 	info->chip.legacy.IO_ADDR_R = info->chip.legacy.IO_ADDR_W;
119 }
120 
121 /*----------------------------------------------------------------------*/
122 
123 /*
124  * 1-bit hardware ECC ... context maintained for each core chipselect
125  */
126 
nand_davinci_readecc_1bit(struct mtd_info * mtd)127 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
128 {
129 	struct davinci_nand_info *info = to_davinci_nand(mtd);
130 
131 	return davinci_nand_readl(info, NANDF1ECC_OFFSET
132 			+ 4 * info->core_chipsel);
133 }
134 
nand_davinci_hwctl_1bit(struct nand_chip * chip,int mode)135 static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
136 {
137 	struct davinci_nand_info *info;
138 	uint32_t nandcfr;
139 	unsigned long flags;
140 
141 	info = to_davinci_nand(nand_to_mtd(chip));
142 
143 	/* Reset ECC hardware */
144 	nand_davinci_readecc_1bit(nand_to_mtd(chip));
145 
146 	spin_lock_irqsave(&davinci_nand_lock, flags);
147 
148 	/* Restart ECC hardware */
149 	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
150 	nandcfr |= BIT(8 + info->core_chipsel);
151 	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
152 
153 	spin_unlock_irqrestore(&davinci_nand_lock, flags);
154 }
155 
156 /*
157  * Read hardware ECC value and pack into three bytes
158  */
nand_davinci_calculate_1bit(struct nand_chip * chip,const u_char * dat,u_char * ecc_code)159 static int nand_davinci_calculate_1bit(struct nand_chip *chip,
160 				       const u_char *dat, u_char *ecc_code)
161 {
162 	unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
163 	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
164 
165 	/* invert so that erased block ecc is correct */
166 	ecc24 = ~ecc24;
167 	ecc_code[0] = (u_char)(ecc24);
168 	ecc_code[1] = (u_char)(ecc24 >> 8);
169 	ecc_code[2] = (u_char)(ecc24 >> 16);
170 
171 	return 0;
172 }
173 
nand_davinci_correct_1bit(struct nand_chip * chip,u_char * dat,u_char * read_ecc,u_char * calc_ecc)174 static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
175 				     u_char *read_ecc, u_char *calc_ecc)
176 {
177 	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
178 					  (read_ecc[2] << 16);
179 	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
180 					  (calc_ecc[2] << 16);
181 	uint32_t diff = eccCalc ^ eccNand;
182 
183 	if (diff) {
184 		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
185 			/* Correctable error */
186 			if ((diff >> (12 + 3)) < chip->ecc.size) {
187 				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
188 				return 1;
189 			} else {
190 				return -EBADMSG;
191 			}
192 		} else if (!(diff & (diff - 1))) {
193 			/* Single bit ECC error in the ECC itself,
194 			 * nothing to fix */
195 			return 1;
196 		} else {
197 			/* Uncorrectable error */
198 			return -EBADMSG;
199 		}
200 
201 	}
202 	return 0;
203 }
204 
205 /*----------------------------------------------------------------------*/
206 
207 /*
208  * 4-bit hardware ECC ... context maintained over entire AEMIF
209  *
210  * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
211  * since that forces use of a problematic "infix OOB" layout.
212  * Among other things, it trashes manufacturer bad block markers.
213  * Also, and specific to this hardware, it ECC-protects the "prepad"
214  * in the OOB ... while having ECC protection for parts of OOB would
215  * seem useful, the current MTD stack sometimes wants to update the
216  * OOB without recomputing ECC.
217  */
218 
nand_davinci_hwctl_4bit(struct nand_chip * chip,int mode)219 static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
220 {
221 	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
222 	unsigned long flags;
223 	u32 val;
224 
225 	/* Reset ECC hardware */
226 	davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
227 
228 	spin_lock_irqsave(&davinci_nand_lock, flags);
229 
230 	/* Start 4-bit ECC calculation for read/write */
231 	val = davinci_nand_readl(info, NANDFCR_OFFSET);
232 	val &= ~(0x03 << 4);
233 	val |= (info->core_chipsel << 4) | BIT(12);
234 	davinci_nand_writel(info, NANDFCR_OFFSET, val);
235 
236 	info->is_readmode = (mode == NAND_ECC_READ);
237 
238 	spin_unlock_irqrestore(&davinci_nand_lock, flags);
239 }
240 
241 /* Read raw ECC code after writing to NAND. */
242 static void
nand_davinci_readecc_4bit(struct davinci_nand_info * info,u32 code[4])243 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
244 {
245 	const u32 mask = 0x03ff03ff;
246 
247 	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
248 	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
249 	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
250 	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
251 }
252 
253 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
nand_davinci_calculate_4bit(struct nand_chip * chip,const u_char * dat,u_char * ecc_code)254 static int nand_davinci_calculate_4bit(struct nand_chip *chip,
255 				       const u_char *dat, u_char *ecc_code)
256 {
257 	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
258 	u32 raw_ecc[4], *p;
259 	unsigned i;
260 
261 	/* After a read, terminate ECC calculation by a dummy read
262 	 * of some 4-bit ECC register.  ECC covers everything that
263 	 * was read; correct() just uses the hardware state, so
264 	 * ecc_code is not needed.
265 	 */
266 	if (info->is_readmode) {
267 		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
268 		return 0;
269 	}
270 
271 	/* Pack eight raw 10-bit ecc values into ten bytes, making
272 	 * two passes which each convert four values (in upper and
273 	 * lower halves of two 32-bit words) into five bytes.  The
274 	 * ROM boot loader uses this same packing scheme.
275 	 */
276 	nand_davinci_readecc_4bit(info, raw_ecc);
277 	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
278 		*ecc_code++ =   p[0]        & 0xff;
279 		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
280 		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
281 		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
282 		*ecc_code++ =  (p[1] >> 18) & 0xff;
283 	}
284 
285 	return 0;
286 }
287 
288 /* Correct up to 4 bits in data we just read, using state left in the
289  * hardware plus the ecc_code computed when it was first written.
290  */
nand_davinci_correct_4bit(struct nand_chip * chip,u_char * data,u_char * ecc_code,u_char * null)291 static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
292 				     u_char *ecc_code, u_char *null)
293 {
294 	int i;
295 	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
296 	unsigned short ecc10[8];
297 	unsigned short *ecc16;
298 	u32 syndrome[4];
299 	u32 ecc_state;
300 	unsigned num_errors, corrected;
301 	unsigned long timeo;
302 
303 	/* Unpack ten bytes into eight 10 bit values.  We know we're
304 	 * little-endian, and use type punning for less shifting/masking.
305 	 */
306 	if (WARN_ON(0x01 & (uintptr_t)ecc_code))
307 		return -EINVAL;
308 	ecc16 = (unsigned short *)ecc_code;
309 
310 	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
311 	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
312 	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
313 	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
314 	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
315 	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
316 	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
317 	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
318 
319 	/* Tell ECC controller about the expected ECC codes. */
320 	for (i = 7; i >= 0; i--)
321 		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
322 
323 	/* Allow time for syndrome calculation ... then read it.
324 	 * A syndrome of all zeroes 0 means no detected errors.
325 	 */
326 	davinci_nand_readl(info, NANDFSR_OFFSET);
327 	nand_davinci_readecc_4bit(info, syndrome);
328 	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
329 		return 0;
330 
331 	/*
332 	 * Clear any previous address calculation by doing a dummy read of an
333 	 * error address register.
334 	 */
335 	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
336 
337 	/* Start address calculation, and wait for it to complete.
338 	 * We _could_ start reading more data while this is working,
339 	 * to speed up the overall page read.
340 	 */
341 	davinci_nand_writel(info, NANDFCR_OFFSET,
342 			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
343 
344 	/*
345 	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
346 	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
347 	 * begin trying to poll for the state, you may fall right out of your
348 	 * loop without any of the correction calculations having taken place.
349 	 * The recommendation from the hardware team is to initially delay as
350 	 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
351 	 * correction state.
352 	 */
353 	timeo = jiffies + usecs_to_jiffies(100);
354 	do {
355 		ecc_state = (davinci_nand_readl(info,
356 				NANDFSR_OFFSET) >> 8) & 0x0f;
357 		cpu_relax();
358 	} while ((ecc_state < 4) && time_before(jiffies, timeo));
359 
360 	for (;;) {
361 		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
362 
363 		switch ((fsr >> 8) & 0x0f) {
364 		case 0:		/* no error, should not happen */
365 			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
366 			return 0;
367 		case 1:		/* five or more errors detected */
368 			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
369 			return -EBADMSG;
370 		case 2:		/* error addresses computed */
371 		case 3:
372 			num_errors = 1 + ((fsr >> 16) & 0x03);
373 			goto correct;
374 		default:	/* still working on it */
375 			cpu_relax();
376 			continue;
377 		}
378 	}
379 
380 correct:
381 	/* correct each error */
382 	for (i = 0, corrected = 0; i < num_errors; i++) {
383 		int error_address, error_value;
384 
385 		if (i > 1) {
386 			error_address = davinci_nand_readl(info,
387 						NAND_ERR_ADD2_OFFSET);
388 			error_value = davinci_nand_readl(info,
389 						NAND_ERR_ERRVAL2_OFFSET);
390 		} else {
391 			error_address = davinci_nand_readl(info,
392 						NAND_ERR_ADD1_OFFSET);
393 			error_value = davinci_nand_readl(info,
394 						NAND_ERR_ERRVAL1_OFFSET);
395 		}
396 
397 		if (i & 1) {
398 			error_address >>= 16;
399 			error_value >>= 16;
400 		}
401 		error_address &= 0x3ff;
402 		error_address = (512 + 7) - error_address;
403 
404 		if (error_address < 512) {
405 			data[error_address] ^= error_value;
406 			corrected++;
407 		}
408 	}
409 
410 	return corrected;
411 }
412 
413 /*----------------------------------------------------------------------*/
414 
415 /*
416  * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
417  * how these chips are normally wired.  This translates to both 8 and 16
418  * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
419  *
420  * For now we assume that configuration, or any other one which ignores
421  * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
422  * and have that transparently morphed into multiple NAND operations.
423  */
nand_davinci_read_buf(struct nand_chip * chip,uint8_t * buf,int len)424 static void nand_davinci_read_buf(struct nand_chip *chip, uint8_t *buf,
425 				  int len)
426 {
427 	if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
428 		ioread32_rep(chip->legacy.IO_ADDR_R, buf, len >> 2);
429 	else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
430 		ioread16_rep(chip->legacy.IO_ADDR_R, buf, len >> 1);
431 	else
432 		ioread8_rep(chip->legacy.IO_ADDR_R, buf, len);
433 }
434 
nand_davinci_write_buf(struct nand_chip * chip,const uint8_t * buf,int len)435 static void nand_davinci_write_buf(struct nand_chip *chip, const uint8_t *buf,
436 				   int len)
437 {
438 	if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
439 		iowrite32_rep(chip->legacy.IO_ADDR_R, buf, len >> 2);
440 	else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
441 		iowrite16_rep(chip->legacy.IO_ADDR_R, buf, len >> 1);
442 	else
443 		iowrite8_rep(chip->legacy.IO_ADDR_R, buf, len);
444 }
445 
446 /*
447  * Check hardware register for wait status. Returns 1 if device is ready,
448  * 0 if it is still busy.
449  */
nand_davinci_dev_ready(struct nand_chip * chip)450 static int nand_davinci_dev_ready(struct nand_chip *chip)
451 {
452 	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
453 
454 	return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
455 }
456 
457 /*----------------------------------------------------------------------*/
458 
459 /* An ECC layout for using 4-bit ECC with small-page flash, storing
460  * ten ECC bytes plus the manufacturer's bad block marker byte, and
461  * and not overlapping the default BBT markers.
462  */
hwecc4_ooblayout_small_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)463 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
464 				      struct mtd_oob_region *oobregion)
465 {
466 	if (section > 2)
467 		return -ERANGE;
468 
469 	if (!section) {
470 		oobregion->offset = 0;
471 		oobregion->length = 5;
472 	} else if (section == 1) {
473 		oobregion->offset = 6;
474 		oobregion->length = 2;
475 	} else {
476 		oobregion->offset = 13;
477 		oobregion->length = 3;
478 	}
479 
480 	return 0;
481 }
482 
hwecc4_ooblayout_small_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)483 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
484 				       struct mtd_oob_region *oobregion)
485 {
486 	if (section > 1)
487 		return -ERANGE;
488 
489 	if (!section) {
490 		oobregion->offset = 8;
491 		oobregion->length = 5;
492 	} else {
493 		oobregion->offset = 16;
494 		oobregion->length = mtd->oobsize - 16;
495 	}
496 
497 	return 0;
498 }
499 
500 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
501 	.ecc = hwecc4_ooblayout_small_ecc,
502 	.free = hwecc4_ooblayout_small_free,
503 };
504 
505 #if defined(CONFIG_OF)
506 static const struct of_device_id davinci_nand_of_match[] = {
507 	{.compatible = "ti,davinci-nand", },
508 	{.compatible = "ti,keystone-nand", },
509 	{},
510 };
511 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
512 
513 static struct davinci_nand_pdata
nand_davinci_get_pdata(struct platform_device * pdev)514 	*nand_davinci_get_pdata(struct platform_device *pdev)
515 {
516 	if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
517 		struct davinci_nand_pdata *pdata;
518 		const char *mode;
519 		u32 prop;
520 
521 		pdata =  devm_kzalloc(&pdev->dev,
522 				sizeof(struct davinci_nand_pdata),
523 				GFP_KERNEL);
524 		pdev->dev.platform_data = pdata;
525 		if (!pdata)
526 			return ERR_PTR(-ENOMEM);
527 		if (!of_property_read_u32(pdev->dev.of_node,
528 			"ti,davinci-chipselect", &prop))
529 			pdata->core_chipsel = prop;
530 		else
531 			return ERR_PTR(-EINVAL);
532 
533 		if (!of_property_read_u32(pdev->dev.of_node,
534 			"ti,davinci-mask-ale", &prop))
535 			pdata->mask_ale = prop;
536 		if (!of_property_read_u32(pdev->dev.of_node,
537 			"ti,davinci-mask-cle", &prop))
538 			pdata->mask_cle = prop;
539 		if (!of_property_read_u32(pdev->dev.of_node,
540 			"ti,davinci-mask-chipsel", &prop))
541 			pdata->mask_chipsel = prop;
542 		if (!of_property_read_string(pdev->dev.of_node,
543 			"ti,davinci-ecc-mode", &mode)) {
544 			if (!strncmp("none", mode, 4))
545 				pdata->ecc_mode = NAND_ECC_NONE;
546 			if (!strncmp("soft", mode, 4))
547 				pdata->ecc_mode = NAND_ECC_SOFT;
548 			if (!strncmp("hw", mode, 2))
549 				pdata->ecc_mode = NAND_ECC_HW;
550 		}
551 		if (!of_property_read_u32(pdev->dev.of_node,
552 			"ti,davinci-ecc-bits", &prop))
553 			pdata->ecc_bits = prop;
554 
555 		if (!of_property_read_u32(pdev->dev.of_node,
556 			"ti,davinci-nand-buswidth", &prop) && prop == 16)
557 			pdata->options |= NAND_BUSWIDTH_16;
558 
559 		if (of_property_read_bool(pdev->dev.of_node,
560 			"ti,davinci-nand-use-bbt"))
561 			pdata->bbt_options = NAND_BBT_USE_FLASH;
562 
563 		/*
564 		 * Since kernel v4.8, this driver has been fixed to enable
565 		 * use of 4-bit hardware ECC with subpages and verified on
566 		 * TI's keystone EVMs (K2L, K2HK and K2E).
567 		 * However, in the interest of not breaking systems using
568 		 * existing UBI partitions, sub-page writes are not being
569 		 * (re)enabled. If you want to use subpage writes on Keystone
570 		 * platforms (i.e. do not have any existing UBI partitions),
571 		 * then use "ti,davinci-nand" as the compatible in your
572 		 * device-tree file.
573 		 */
574 		if (of_device_is_compatible(pdev->dev.of_node,
575 					    "ti,keystone-nand")) {
576 			pdata->options |= NAND_NO_SUBPAGE_WRITE;
577 		}
578 	}
579 
580 	return dev_get_platdata(&pdev->dev);
581 }
582 #else
583 static struct davinci_nand_pdata
nand_davinci_get_pdata(struct platform_device * pdev)584 	*nand_davinci_get_pdata(struct platform_device *pdev)
585 {
586 	return dev_get_platdata(&pdev->dev);
587 }
588 #endif
589 
davinci_nand_attach_chip(struct nand_chip * chip)590 static int davinci_nand_attach_chip(struct nand_chip *chip)
591 {
592 	struct mtd_info *mtd = nand_to_mtd(chip);
593 	struct davinci_nand_info *info = to_davinci_nand(mtd);
594 	struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
595 	int ret = 0;
596 
597 	if (IS_ERR(pdata))
598 		return PTR_ERR(pdata);
599 
600 	switch (info->chip.ecc.mode) {
601 	case NAND_ECC_NONE:
602 		pdata->ecc_bits = 0;
603 		break;
604 	case NAND_ECC_SOFT:
605 		pdata->ecc_bits = 0;
606 		/*
607 		 * This driver expects Hamming based ECC when ecc_mode is set
608 		 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
609 		 * avoid adding an extra ->ecc_algo field to
610 		 * davinci_nand_pdata.
611 		 */
612 		info->chip.ecc.algo = NAND_ECC_HAMMING;
613 		break;
614 	case NAND_ECC_HW:
615 		if (pdata->ecc_bits == 4) {
616 			/*
617 			 * No sanity checks:  CPUs must support this,
618 			 * and the chips may not use NAND_BUSWIDTH_16.
619 			 */
620 
621 			/* No sharing 4-bit hardware between chipselects yet */
622 			spin_lock_irq(&davinci_nand_lock);
623 			if (ecc4_busy)
624 				ret = -EBUSY;
625 			else
626 				ecc4_busy = true;
627 			spin_unlock_irq(&davinci_nand_lock);
628 
629 			if (ret == -EBUSY)
630 				return ret;
631 
632 			info->chip.ecc.calculate = nand_davinci_calculate_4bit;
633 			info->chip.ecc.correct = nand_davinci_correct_4bit;
634 			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
635 			info->chip.ecc.bytes = 10;
636 			info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
637 			info->chip.ecc.algo = NAND_ECC_BCH;
638 		} else {
639 			/* 1bit ecc hamming */
640 			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
641 			info->chip.ecc.correct = nand_davinci_correct_1bit;
642 			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
643 			info->chip.ecc.bytes = 3;
644 			info->chip.ecc.algo = NAND_ECC_HAMMING;
645 		}
646 		info->chip.ecc.size = 512;
647 		info->chip.ecc.strength = pdata->ecc_bits;
648 		break;
649 	default:
650 		return -EINVAL;
651 	}
652 
653 	/*
654 	 * Update ECC layout if needed ... for 1-bit HW ECC, the default
655 	 * is OK, but it allocates 6 bytes when only 3 are needed (for
656 	 * each 512 bytes).  For the 4-bit HW ECC, that default is not
657 	 * usable:  10 bytes are needed, not 6.
658 	 */
659 	if (pdata->ecc_bits == 4) {
660 		int chunks = mtd->writesize / 512;
661 
662 		if (!chunks || mtd->oobsize < 16) {
663 			dev_dbg(&info->pdev->dev, "too small\n");
664 			return -EINVAL;
665 		}
666 
667 		/* For small page chips, preserve the manufacturer's
668 		 * badblock marking data ... and make sure a flash BBT
669 		 * table marker fits in the free bytes.
670 		 */
671 		if (chunks == 1) {
672 			mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops);
673 		} else if (chunks == 4 || chunks == 8) {
674 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
675 			info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
676 		} else {
677 			return -EIO;
678 		}
679 	}
680 
681 	return ret;
682 }
683 
684 static const struct nand_controller_ops davinci_nand_controller_ops = {
685 	.attach_chip = davinci_nand_attach_chip,
686 };
687 
nand_davinci_probe(struct platform_device * pdev)688 static int nand_davinci_probe(struct platform_device *pdev)
689 {
690 	struct davinci_nand_pdata	*pdata;
691 	struct davinci_nand_info	*info;
692 	struct resource			*res1;
693 	struct resource			*res2;
694 	void __iomem			*vaddr;
695 	void __iomem			*base;
696 	int				ret;
697 	uint32_t			val;
698 	struct mtd_info			*mtd;
699 
700 	pdata = nand_davinci_get_pdata(pdev);
701 	if (IS_ERR(pdata))
702 		return PTR_ERR(pdata);
703 
704 	/* insist on board-specific configuration */
705 	if (!pdata)
706 		return -ENODEV;
707 
708 	/* which external chipselect will we be managing? */
709 	if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
710 		return -ENODEV;
711 
712 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
713 	if (!info)
714 		return -ENOMEM;
715 
716 	platform_set_drvdata(pdev, info);
717 
718 	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
719 	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
720 	if (!res1 || !res2) {
721 		dev_err(&pdev->dev, "resource missing\n");
722 		return -EINVAL;
723 	}
724 
725 	vaddr = devm_ioremap_resource(&pdev->dev, res1);
726 	if (IS_ERR(vaddr))
727 		return PTR_ERR(vaddr);
728 
729 	/*
730 	 * This registers range is used to setup NAND settings. In case with
731 	 * TI AEMIF driver, the same memory address range is requested already
732 	 * by AEMIF, so we cannot request it twice, just ioremap.
733 	 * The AEMIF and NAND drivers not use the same registers in this range.
734 	 */
735 	base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
736 	if (!base) {
737 		dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
738 		return -EADDRNOTAVAIL;
739 	}
740 
741 	info->pdev		= pdev;
742 	info->base		= base;
743 	info->vaddr		= vaddr;
744 
745 	mtd			= nand_to_mtd(&info->chip);
746 	mtd->dev.parent		= &pdev->dev;
747 	nand_set_flash_node(&info->chip, pdev->dev.of_node);
748 
749 	info->chip.legacy.IO_ADDR_R	= vaddr;
750 	info->chip.legacy.IO_ADDR_W	= vaddr;
751 	info->chip.legacy.chip_delay	= 0;
752 	info->chip.legacy.select_chip	= nand_davinci_select_chip;
753 
754 	/* options such as NAND_BBT_USE_FLASH */
755 	info->chip.bbt_options	= pdata->bbt_options;
756 	/* options such as 16-bit widths */
757 	info->chip.options	= pdata->options;
758 	info->chip.bbt_td	= pdata->bbt_td;
759 	info->chip.bbt_md	= pdata->bbt_md;
760 	info->timing		= pdata->timing;
761 
762 	info->current_cs	= info->vaddr;
763 	info->core_chipsel	= pdata->core_chipsel;
764 	info->mask_chipsel	= pdata->mask_chipsel;
765 
766 	/* use nandboot-capable ALE/CLE masks by default */
767 	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
768 	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
769 
770 	/* Set address of hardware control function */
771 	info->chip.legacy.cmd_ctrl	= nand_davinci_hwcontrol;
772 	info->chip.legacy.dev_ready	= nand_davinci_dev_ready;
773 
774 	/* Speed up buffer I/O */
775 	info->chip.legacy.read_buf     = nand_davinci_read_buf;
776 	info->chip.legacy.write_buf    = nand_davinci_write_buf;
777 
778 	/* Use board-specific ECC config */
779 	info->chip.ecc.mode	= pdata->ecc_mode;
780 
781 	spin_lock_irq(&davinci_nand_lock);
782 
783 	/* put CSxNAND into NAND mode */
784 	val = davinci_nand_readl(info, NANDFCR_OFFSET);
785 	val |= BIT(info->core_chipsel);
786 	davinci_nand_writel(info, NANDFCR_OFFSET, val);
787 
788 	spin_unlock_irq(&davinci_nand_lock);
789 
790 	/* Scan to find existence of the device(s) */
791 	info->chip.legacy.dummy_controller.ops = &davinci_nand_controller_ops;
792 	ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
793 	if (ret < 0) {
794 		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
795 		return ret;
796 	}
797 
798 	if (pdata->parts)
799 		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
800 	else
801 		ret = mtd_device_register(mtd, NULL, 0);
802 	if (ret < 0)
803 		goto err_cleanup_nand;
804 
805 	val = davinci_nand_readl(info, NRCSR_OFFSET);
806 	dev_info(&pdev->dev, "controller rev. %d.%d\n",
807 	       (val >> 8) & 0xff, val & 0xff);
808 
809 	return 0;
810 
811 err_cleanup_nand:
812 	nand_cleanup(&info->chip);
813 
814 	return ret;
815 }
816 
nand_davinci_remove(struct platform_device * pdev)817 static int nand_davinci_remove(struct platform_device *pdev)
818 {
819 	struct davinci_nand_info *info = platform_get_drvdata(pdev);
820 
821 	spin_lock_irq(&davinci_nand_lock);
822 	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
823 		ecc4_busy = false;
824 	spin_unlock_irq(&davinci_nand_lock);
825 
826 	nand_release(&info->chip);
827 
828 	return 0;
829 }
830 
831 static struct platform_driver nand_davinci_driver = {
832 	.probe		= nand_davinci_probe,
833 	.remove		= nand_davinci_remove,
834 	.driver		= {
835 		.name	= "davinci_nand",
836 		.of_match_table = of_match_ptr(davinci_nand_of_match),
837 	},
838 };
839 MODULE_ALIAS("platform:davinci_nand");
840 
841 module_platform_driver(nand_davinci_driver);
842 
843 MODULE_LICENSE("GPL");
844 MODULE_AUTHOR("Texas Instruments");
845 MODULE_DESCRIPTION("Davinci NAND flash driver");
846 
847