1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
15 *
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17 *
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19 *
20 * This code is GPL
21 */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
29
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
35 #include <linux/of.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
41
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
44
45 #define MAX_RETRIES 3
46
47 #define SST49LF004B 0x0060
48 #define SST49LF040B 0x0050
49 #define SST49LF008A 0x005a
50 #define AT49BV6416 0x00d6
51
52 /*
53 * Status Register bit description. Used by flash devices that don't
54 * support DQ polling (e.g. HyperFlash)
55 */
56 #define CFI_SR_DRB BIT(7)
57 #define CFI_SR_ESB BIT(5)
58 #define CFI_SR_PSB BIT(4)
59 #define CFI_SR_WBASB BIT(3)
60 #define CFI_SR_SLSB BIT(1)
61
62 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
63 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
64 #if !FORCE_WORD_WRITE
65 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
66 #endif
67 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
68 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
69 static void cfi_amdstd_sync (struct mtd_info *);
70 static int cfi_amdstd_suspend (struct mtd_info *);
71 static void cfi_amdstd_resume (struct mtd_info *);
72 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
73 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
74 size_t *, struct otp_info *);
75 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
76 size_t *, struct otp_info *);
77 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
78 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
79 size_t *, u_char *);
80 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
81 size_t *, u_char *);
82 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
83 size_t *, u_char *);
84 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
85
86 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
87 size_t *retlen, const u_char *buf);
88
89 static void cfi_amdstd_destroy(struct mtd_info *);
90
91 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
92 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
93
94 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
95 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
96 #include "fwh_lock.h"
97
98 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
99 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
100
101 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
102 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
103 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
104
105 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
106 .probe = NULL, /* Not usable directly */
107 .destroy = cfi_amdstd_destroy,
108 .name = "cfi_cmdset_0002",
109 .module = THIS_MODULE
110 };
111
112 /*
113 * Use status register to poll for Erase/write completion when DQ is not
114 * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in
115 * CFI Primary Vendor-Specific Extended Query table 1.5
116 */
cfi_use_status_reg(struct cfi_private * cfi)117 static int cfi_use_status_reg(struct cfi_private *cfi)
118 {
119 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
120 u8 poll_mask = CFI_POLL_STATUS_REG | CFI_POLL_DQ;
121
122 return extp->MinorVersion >= '5' &&
123 (extp->SoftwareFeatures & poll_mask) == CFI_POLL_STATUS_REG;
124 }
125
cfi_check_err_status(struct map_info * map,struct flchip * chip,unsigned long adr)126 static void cfi_check_err_status(struct map_info *map, struct flchip *chip,
127 unsigned long adr)
128 {
129 struct cfi_private *cfi = map->fldrv_priv;
130 map_word status;
131
132 if (!cfi_use_status_reg(cfi))
133 return;
134
135 cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
136 cfi->device_type, NULL);
137 status = map_read(map, adr);
138
139 if (map_word_bitsset(map, status, CMD(0x3a))) {
140 unsigned long chipstatus = MERGESTATUS(status);
141
142 if (chipstatus & CFI_SR_ESB)
143 pr_err("%s erase operation failed, status %lx\n",
144 map->name, chipstatus);
145 if (chipstatus & CFI_SR_PSB)
146 pr_err("%s program operation failed, status %lx\n",
147 map->name, chipstatus);
148 if (chipstatus & CFI_SR_WBASB)
149 pr_err("%s buffer program command aborted, status %lx\n",
150 map->name, chipstatus);
151 if (chipstatus & CFI_SR_SLSB)
152 pr_err("%s sector write protected, status %lx\n",
153 map->name, chipstatus);
154 }
155 }
156
157 /* #define DEBUG_CFI_FEATURES */
158
159
160 #ifdef DEBUG_CFI_FEATURES
cfi_tell_features(struct cfi_pri_amdstd * extp)161 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
162 {
163 const char* erase_suspend[3] = {
164 "Not supported", "Read only", "Read/write"
165 };
166 const char* top_bottom[6] = {
167 "No WP", "8x8KiB sectors at top & bottom, no WP",
168 "Bottom boot", "Top boot",
169 "Uniform, Bottom WP", "Uniform, Top WP"
170 };
171
172 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
173 printk(" Address sensitive unlock: %s\n",
174 (extp->SiliconRevision & 1) ? "Not required" : "Required");
175
176 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
177 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
178 else
179 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
180
181 if (extp->BlkProt == 0)
182 printk(" Block protection: Not supported\n");
183 else
184 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
185
186
187 printk(" Temporary block unprotect: %s\n",
188 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
189 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
190 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
191 printk(" Burst mode: %s\n",
192 extp->BurstMode ? "Supported" : "Not supported");
193 if (extp->PageMode == 0)
194 printk(" Page mode: Not supported\n");
195 else
196 printk(" Page mode: %d word page\n", extp->PageMode << 2);
197
198 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
199 extp->VppMin >> 4, extp->VppMin & 0xf);
200 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
201 extp->VppMax >> 4, extp->VppMax & 0xf);
202
203 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
204 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
205 else
206 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
207 }
208 #endif
209
210 #ifdef AMD_BOOTLOC_BUG
211 /* Wheee. Bring me the head of someone at AMD. */
fixup_amd_bootblock(struct mtd_info * mtd)212 static void fixup_amd_bootblock(struct mtd_info *mtd)
213 {
214 struct map_info *map = mtd->priv;
215 struct cfi_private *cfi = map->fldrv_priv;
216 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
217 __u8 major = extp->MajorVersion;
218 __u8 minor = extp->MinorVersion;
219
220 if (((major << 8) | minor) < 0x3131) {
221 /* CFI version 1.0 => don't trust bootloc */
222
223 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
224 map->name, cfi->mfr, cfi->id);
225
226 /* AFAICS all 29LV400 with a bottom boot block have a device ID
227 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
228 * These were badly detected as they have the 0x80 bit set
229 * so treat them as a special case.
230 */
231 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
232
233 /* Macronix added CFI to their 2nd generation
234 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
235 * Fujitsu, Spansion, EON, ESI and older Macronix)
236 * has CFI.
237 *
238 * Therefore also check the manufacturer.
239 * This reduces the risk of false detection due to
240 * the 8-bit device ID.
241 */
242 (cfi->mfr == CFI_MFR_MACRONIX)) {
243 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
244 " detected\n", map->name);
245 extp->TopBottom = 2; /* bottom boot */
246 } else
247 if (cfi->id & 0x80) {
248 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
249 extp->TopBottom = 3; /* top boot */
250 } else {
251 extp->TopBottom = 2; /* bottom boot */
252 }
253
254 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
255 " deduced %s from Device ID\n", map->name, major, minor,
256 extp->TopBottom == 2 ? "bottom" : "top");
257 }
258 }
259 #endif
260
261 #if !FORCE_WORD_WRITE
fixup_use_write_buffers(struct mtd_info * mtd)262 static void fixup_use_write_buffers(struct mtd_info *mtd)
263 {
264 struct map_info *map = mtd->priv;
265 struct cfi_private *cfi = map->fldrv_priv;
266 if (cfi->cfiq->BufWriteTimeoutTyp) {
267 pr_debug("Using buffer write method\n");
268 mtd->_write = cfi_amdstd_write_buffers;
269 }
270 }
271 #endif /* !FORCE_WORD_WRITE */
272
273 /* Atmel chips don't use the same PRI format as AMD chips */
fixup_convert_atmel_pri(struct mtd_info * mtd)274 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
275 {
276 struct map_info *map = mtd->priv;
277 struct cfi_private *cfi = map->fldrv_priv;
278 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
279 struct cfi_pri_atmel atmel_pri;
280
281 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
282 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
283
284 if (atmel_pri.Features & 0x02)
285 extp->EraseSuspend = 2;
286
287 /* Some chips got it backwards... */
288 if (cfi->id == AT49BV6416) {
289 if (atmel_pri.BottomBoot)
290 extp->TopBottom = 3;
291 else
292 extp->TopBottom = 2;
293 } else {
294 if (atmel_pri.BottomBoot)
295 extp->TopBottom = 2;
296 else
297 extp->TopBottom = 3;
298 }
299
300 /* burst write mode not supported */
301 cfi->cfiq->BufWriteTimeoutTyp = 0;
302 cfi->cfiq->BufWriteTimeoutMax = 0;
303 }
304
fixup_use_secsi(struct mtd_info * mtd)305 static void fixup_use_secsi(struct mtd_info *mtd)
306 {
307 /* Setup for chips with a secsi area */
308 mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
309 mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
310 }
311
fixup_use_erase_chip(struct mtd_info * mtd)312 static void fixup_use_erase_chip(struct mtd_info *mtd)
313 {
314 struct map_info *map = mtd->priv;
315 struct cfi_private *cfi = map->fldrv_priv;
316 if ((cfi->cfiq->NumEraseRegions == 1) &&
317 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
318 mtd->_erase = cfi_amdstd_erase_chip;
319 }
320
321 }
322
323 /*
324 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
325 * locked by default.
326 */
fixup_use_atmel_lock(struct mtd_info * mtd)327 static void fixup_use_atmel_lock(struct mtd_info *mtd)
328 {
329 mtd->_lock = cfi_atmel_lock;
330 mtd->_unlock = cfi_atmel_unlock;
331 mtd->flags |= MTD_POWERUP_LOCK;
332 }
333
fixup_old_sst_eraseregion(struct mtd_info * mtd)334 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
335 {
336 struct map_info *map = mtd->priv;
337 struct cfi_private *cfi = map->fldrv_priv;
338
339 /*
340 * These flashes report two separate eraseblock regions based on the
341 * sector_erase-size and block_erase-size, although they both operate on the
342 * same memory. This is not allowed according to CFI, so we just pick the
343 * sector_erase-size.
344 */
345 cfi->cfiq->NumEraseRegions = 1;
346 }
347
fixup_sst39vf(struct mtd_info * mtd)348 static void fixup_sst39vf(struct mtd_info *mtd)
349 {
350 struct map_info *map = mtd->priv;
351 struct cfi_private *cfi = map->fldrv_priv;
352
353 fixup_old_sst_eraseregion(mtd);
354
355 cfi->addr_unlock1 = 0x5555;
356 cfi->addr_unlock2 = 0x2AAA;
357 }
358
fixup_sst39vf_rev_b(struct mtd_info * mtd)359 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
360 {
361 struct map_info *map = mtd->priv;
362 struct cfi_private *cfi = map->fldrv_priv;
363
364 fixup_old_sst_eraseregion(mtd);
365
366 cfi->addr_unlock1 = 0x555;
367 cfi->addr_unlock2 = 0x2AA;
368
369 cfi->sector_erase_cmd = CMD(0x50);
370 }
371
fixup_sst38vf640x_sectorsize(struct mtd_info * mtd)372 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
373 {
374 struct map_info *map = mtd->priv;
375 struct cfi_private *cfi = map->fldrv_priv;
376
377 fixup_sst39vf_rev_b(mtd);
378
379 /*
380 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
381 * it should report a size of 8KBytes (0x0020*256).
382 */
383 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
384 pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
385 mtd->name);
386 }
387
fixup_s29gl064n_sectors(struct mtd_info * mtd)388 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
389 {
390 struct map_info *map = mtd->priv;
391 struct cfi_private *cfi = map->fldrv_priv;
392
393 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
394 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
395 pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
396 mtd->name);
397 }
398 }
399
fixup_s29gl032n_sectors(struct mtd_info * mtd)400 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
401 {
402 struct map_info *map = mtd->priv;
403 struct cfi_private *cfi = map->fldrv_priv;
404
405 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
406 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
407 pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
408 mtd->name);
409 }
410 }
411
fixup_s29ns512p_sectors(struct mtd_info * mtd)412 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
413 {
414 struct map_info *map = mtd->priv;
415 struct cfi_private *cfi = map->fldrv_priv;
416
417 /*
418 * S29NS512P flash uses more than 8bits to report number of sectors,
419 * which is not permitted by CFI.
420 */
421 cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
422 pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
423 mtd->name);
424 }
425
426 /* Used to fix CFI-Tables of chips without Extended Query Tables */
427 static struct cfi_fixup cfi_nopri_fixup_table[] = {
428 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
429 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
430 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
431 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
432 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
433 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
434 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
435 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
436 { 0, 0, NULL }
437 };
438
439 static struct cfi_fixup cfi_fixup_table[] = {
440 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
441 #ifdef AMD_BOOTLOC_BUG
442 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
443 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
444 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
445 #endif
446 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
447 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
448 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
449 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
450 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
451 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
452 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
453 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
454 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
455 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
456 { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
457 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
458 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
459 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
460 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
461 #if !FORCE_WORD_WRITE
462 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
463 #endif
464 { 0, 0, NULL }
465 };
466 static struct cfi_fixup jedec_fixup_table[] = {
467 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
468 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
469 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
470 { 0, 0, NULL }
471 };
472
473 static struct cfi_fixup fixup_table[] = {
474 /* The CFI vendor ids and the JEDEC vendor IDs appear
475 * to be common. It is like the devices id's are as
476 * well. This table is to pick all cases where
477 * we know that is the case.
478 */
479 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
480 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
481 { 0, 0, NULL }
482 };
483
484
cfi_fixup_major_minor(struct cfi_private * cfi,struct cfi_pri_amdstd * extp)485 static void cfi_fixup_major_minor(struct cfi_private *cfi,
486 struct cfi_pri_amdstd *extp)
487 {
488 if (cfi->mfr == CFI_MFR_SAMSUNG) {
489 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
490 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
491 /*
492 * Samsung K8P2815UQB and K8D6x16UxM chips
493 * report major=0 / minor=0.
494 * K8D3x16UxC chips report major=3 / minor=3.
495 */
496 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
497 " Extended Query version to 1.%c\n",
498 extp->MinorVersion);
499 extp->MajorVersion = '1';
500 }
501 }
502
503 /*
504 * SST 38VF640x chips report major=0xFF / minor=0xFF.
505 */
506 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
507 extp->MajorVersion = '1';
508 extp->MinorVersion = '0';
509 }
510 }
511
is_m29ew(struct cfi_private * cfi)512 static int is_m29ew(struct cfi_private *cfi)
513 {
514 if (cfi->mfr == CFI_MFR_INTEL &&
515 ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
516 (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
517 return 1;
518 return 0;
519 }
520
521 /*
522 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
523 * Some revisions of the M29EW suffer from erase suspend hang ups. In
524 * particular, it can occur when the sequence
525 * Erase Confirm -> Suspend -> Program -> Resume
526 * causes a lockup due to internal timing issues. The consequence is that the
527 * erase cannot be resumed without inserting a dummy command after programming
528 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
529 * that writes an F0 command code before the RESUME command.
530 */
cfi_fixup_m29ew_erase_suspend(struct map_info * map,unsigned long adr)531 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
532 unsigned long adr)
533 {
534 struct cfi_private *cfi = map->fldrv_priv;
535 /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
536 if (is_m29ew(cfi))
537 map_write(map, CMD(0xF0), adr);
538 }
539
540 /*
541 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
542 *
543 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
544 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
545 * command is issued after an ERASE RESUME operation without waiting for a
546 * minimum delay. The result is that once the ERASE seems to be completed
547 * (no bits are toggling), the contents of the Flash memory block on which
548 * the erase was ongoing could be inconsistent with the expected values
549 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
550 * values), causing a consequent failure of the ERASE operation.
551 * The occurrence of this issue could be high, especially when file system
552 * operations on the Flash are intensive. As a result, it is recommended
553 * that a patch be applied. Intensive file system operations can cause many
554 * calls to the garbage routine to free Flash space (also by erasing physical
555 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
556 * commands can occur. The problem disappears when a delay is inserted after
557 * the RESUME command by using the udelay() function available in Linux.
558 * The DELAY value must be tuned based on the customer's platform.
559 * The maximum value that fixes the problem in all cases is 500us.
560 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
561 * in most cases.
562 * We have chosen 500µs because this latency is acceptable.
563 */
cfi_fixup_m29ew_delay_after_resume(struct cfi_private * cfi)564 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
565 {
566 /*
567 * Resolving the Delay After Resume Issue see Micron TN-13-07
568 * Worst case delay must be 500µs but 30-50µs should be ok as well
569 */
570 if (is_m29ew(cfi))
571 cfi_udelay(500);
572 }
573
cfi_cmdset_0002(struct map_info * map,int primary)574 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
575 {
576 struct cfi_private *cfi = map->fldrv_priv;
577 struct device_node __maybe_unused *np = map->device_node;
578 struct mtd_info *mtd;
579 int i;
580
581 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
582 if (!mtd)
583 return NULL;
584 mtd->priv = map;
585 mtd->type = MTD_NORFLASH;
586
587 /* Fill in the default mtd operations */
588 mtd->_erase = cfi_amdstd_erase_varsize;
589 mtd->_write = cfi_amdstd_write_words;
590 mtd->_read = cfi_amdstd_read;
591 mtd->_sync = cfi_amdstd_sync;
592 mtd->_suspend = cfi_amdstd_suspend;
593 mtd->_resume = cfi_amdstd_resume;
594 mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
595 mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
596 mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
597 mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
598 mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
599 mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
600 mtd->flags = MTD_CAP_NORFLASH;
601 mtd->name = map->name;
602 mtd->writesize = 1;
603 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
604
605 pr_debug("MTD %s(): write buffer size %d\n", __func__,
606 mtd->writebufsize);
607
608 mtd->_panic_write = cfi_amdstd_panic_write;
609 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
610
611 if (cfi->cfi_mode==CFI_MODE_CFI){
612 unsigned char bootloc;
613 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
614 struct cfi_pri_amdstd *extp;
615
616 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
617 if (extp) {
618 /*
619 * It's a real CFI chip, not one for which the probe
620 * routine faked a CFI structure.
621 */
622 cfi_fixup_major_minor(cfi, extp);
623
624 /*
625 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
626 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
627 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
628 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
629 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
630 */
631 if (extp->MajorVersion != '1' ||
632 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
633 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
634 "version %c.%c (%#02x/%#02x).\n",
635 extp->MajorVersion, extp->MinorVersion,
636 extp->MajorVersion, extp->MinorVersion);
637 kfree(extp);
638 kfree(mtd);
639 return NULL;
640 }
641
642 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
643 extp->MajorVersion, extp->MinorVersion);
644
645 /* Install our own private info structure */
646 cfi->cmdset_priv = extp;
647
648 /* Apply cfi device specific fixups */
649 cfi_fixup(mtd, cfi_fixup_table);
650
651 #ifdef DEBUG_CFI_FEATURES
652 /* Tell the user about it in lots of lovely detail */
653 cfi_tell_features(extp);
654 #endif
655
656 #ifdef CONFIG_OF
657 if (np && of_property_read_bool(
658 np, "use-advanced-sector-protection")
659 && extp->BlkProtUnprot == 8) {
660 printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n");
661 mtd->_lock = cfi_ppb_lock;
662 mtd->_unlock = cfi_ppb_unlock;
663 mtd->_is_locked = cfi_ppb_is_locked;
664 }
665 #endif
666
667 bootloc = extp->TopBottom;
668 if ((bootloc < 2) || (bootloc > 5)) {
669 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
670 "bank location (%d). Assuming bottom.\n",
671 map->name, bootloc);
672 bootloc = 2;
673 }
674
675 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
676 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
677
678 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
679 int j = (cfi->cfiq->NumEraseRegions-1)-i;
680
681 swap(cfi->cfiq->EraseRegionInfo[i],
682 cfi->cfiq->EraseRegionInfo[j]);
683 }
684 }
685 /* Set the default CFI lock/unlock addresses */
686 cfi->addr_unlock1 = 0x555;
687 cfi->addr_unlock2 = 0x2aa;
688 }
689 cfi_fixup(mtd, cfi_nopri_fixup_table);
690
691 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
692 kfree(mtd);
693 return NULL;
694 }
695
696 } /* CFI mode */
697 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
698 /* Apply jedec specific fixups */
699 cfi_fixup(mtd, jedec_fixup_table);
700 }
701 /* Apply generic fixups */
702 cfi_fixup(mtd, fixup_table);
703
704 for (i=0; i< cfi->numchips; i++) {
705 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
706 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
707 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
708 /*
709 * First calculate the timeout max according to timeout field
710 * of struct cfi_ident that probed from chip's CFI aera, if
711 * available. Specify a minimum of 2000us, in case the CFI data
712 * is wrong.
713 */
714 if (cfi->cfiq->BufWriteTimeoutTyp &&
715 cfi->cfiq->BufWriteTimeoutMax)
716 cfi->chips[i].buffer_write_time_max =
717 1 << (cfi->cfiq->BufWriteTimeoutTyp +
718 cfi->cfiq->BufWriteTimeoutMax);
719 else
720 cfi->chips[i].buffer_write_time_max = 0;
721
722 cfi->chips[i].buffer_write_time_max =
723 max(cfi->chips[i].buffer_write_time_max, 2000);
724
725 cfi->chips[i].ref_point_counter = 0;
726 init_waitqueue_head(&(cfi->chips[i].wq));
727 }
728
729 map->fldrv = &cfi_amdstd_chipdrv;
730
731 return cfi_amdstd_setup(mtd);
732 }
733 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
734 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
735 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
736 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
737 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
738
cfi_amdstd_setup(struct mtd_info * mtd)739 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
740 {
741 struct map_info *map = mtd->priv;
742 struct cfi_private *cfi = map->fldrv_priv;
743 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
744 unsigned long offset = 0;
745 int i,j;
746
747 printk(KERN_NOTICE "number of %s chips: %d\n",
748 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
749 /* Select the correct geometry setup */
750 mtd->size = devsize * cfi->numchips;
751
752 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
753 mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
754 sizeof(struct mtd_erase_region_info),
755 GFP_KERNEL);
756 if (!mtd->eraseregions)
757 goto setup_err;
758
759 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
760 unsigned long ernum, ersize;
761 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
762 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
763
764 if (mtd->erasesize < ersize) {
765 mtd->erasesize = ersize;
766 }
767 for (j=0; j<cfi->numchips; j++) {
768 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
769 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
770 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
771 }
772 offset += (ersize * ernum);
773 }
774 if (offset != devsize) {
775 /* Argh */
776 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
777 goto setup_err;
778 }
779
780 __module_get(THIS_MODULE);
781 register_reboot_notifier(&mtd->reboot_notifier);
782 return mtd;
783
784 setup_err:
785 kfree(mtd->eraseregions);
786 kfree(mtd);
787 kfree(cfi->cmdset_priv);
788 kfree(cfi->cfiq);
789 return NULL;
790 }
791
792 /*
793 * Return true if the chip is ready.
794 *
795 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
796 * non-suspended sector) and is indicated by no toggle bits toggling.
797 *
798 * Note that anything more complicated than checking if no bits are toggling
799 * (including checking DQ5 for an error status) is tricky to get working
800 * correctly and is therefore not done (particularly with interleaved chips
801 * as each chip must be checked independently of the others).
802 */
chip_ready(struct map_info * map,struct flchip * chip,unsigned long addr)803 static int __xipram chip_ready(struct map_info *map, struct flchip *chip,
804 unsigned long addr)
805 {
806 struct cfi_private *cfi = map->fldrv_priv;
807 map_word d, t;
808
809 if (cfi_use_status_reg(cfi)) {
810 map_word ready = CMD(CFI_SR_DRB);
811 /*
812 * For chips that support status register, check device
813 * ready bit
814 */
815 cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
816 cfi->device_type, NULL);
817 d = map_read(map, addr);
818
819 return map_word_andequal(map, d, ready, ready);
820 }
821
822 d = map_read(map, addr);
823 t = map_read(map, addr);
824
825 return map_word_equal(map, d, t);
826 }
827
828 /*
829 * Return true if the chip is ready and has the correct value.
830 *
831 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
832 * non-suspended sector) and it is indicated by no bits toggling.
833 *
834 * Error are indicated by toggling bits or bits held with the wrong value,
835 * or with bits toggling.
836 *
837 * Note that anything more complicated than checking if no bits are toggling
838 * (including checking DQ5 for an error status) is tricky to get working
839 * correctly and is therefore not done (particularly with interleaved chips
840 * as each chip must be checked independently of the others).
841 *
842 */
chip_good(struct map_info * map,struct flchip * chip,unsigned long addr,map_word expected)843 static int __xipram chip_good(struct map_info *map, struct flchip *chip,
844 unsigned long addr, map_word expected)
845 {
846 struct cfi_private *cfi = map->fldrv_priv;
847 map_word oldd, curd;
848
849 if (cfi_use_status_reg(cfi)) {
850 map_word ready = CMD(CFI_SR_DRB);
851 map_word err = CMD(CFI_SR_PSB | CFI_SR_ESB);
852 /*
853 * For chips that support status register, check device
854 * ready bit and Erase/Program status bit to know if
855 * operation succeeded.
856 */
857 cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
858 cfi->device_type, NULL);
859 curd = map_read(map, addr);
860
861 if (map_word_andequal(map, curd, ready, ready))
862 return !map_word_bitsset(map, curd, err);
863
864 return 0;
865 }
866
867 oldd = map_read(map, addr);
868 curd = map_read(map, addr);
869
870 return map_word_equal(map, oldd, curd) &&
871 map_word_equal(map, curd, expected);
872 }
873
get_chip(struct map_info * map,struct flchip * chip,unsigned long adr,int mode)874 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
875 {
876 DECLARE_WAITQUEUE(wait, current);
877 struct cfi_private *cfi = map->fldrv_priv;
878 unsigned long timeo;
879 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
880
881 resettime:
882 timeo = jiffies + HZ;
883 retry:
884 switch (chip->state) {
885
886 case FL_STATUS:
887 for (;;) {
888 if (chip_ready(map, chip, adr))
889 break;
890
891 if (time_after(jiffies, timeo)) {
892 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
893 return -EIO;
894 }
895 mutex_unlock(&chip->mutex);
896 cfi_udelay(1);
897 mutex_lock(&chip->mutex);
898 /* Someone else might have been playing with it. */
899 goto retry;
900 }
901
902 case FL_READY:
903 case FL_CFI_QUERY:
904 case FL_JEDEC_QUERY:
905 return 0;
906
907 case FL_ERASING:
908 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
909 !(mode == FL_READY || mode == FL_POINT ||
910 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
911 goto sleep;
912
913 /* Do not allow suspend iff read/write to EB address */
914 if ((adr & chip->in_progress_block_mask) ==
915 chip->in_progress_block_addr)
916 goto sleep;
917
918 /* Erase suspend */
919 /* It's harmless to issue the Erase-Suspend and Erase-Resume
920 * commands when the erase algorithm isn't in progress. */
921 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
922 chip->oldstate = FL_ERASING;
923 chip->state = FL_ERASE_SUSPENDING;
924 chip->erase_suspended = 1;
925 for (;;) {
926 if (chip_ready(map, chip, adr))
927 break;
928
929 if (time_after(jiffies, timeo)) {
930 /* Should have suspended the erase by now.
931 * Send an Erase-Resume command as either
932 * there was an error (so leave the erase
933 * routine to recover from it) or we trying to
934 * use the erase-in-progress sector. */
935 put_chip(map, chip, adr);
936 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
937 return -EIO;
938 }
939
940 mutex_unlock(&chip->mutex);
941 cfi_udelay(1);
942 mutex_lock(&chip->mutex);
943 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
944 So we can just loop here. */
945 }
946 chip->state = FL_READY;
947 return 0;
948
949 case FL_XIP_WHILE_ERASING:
950 if (mode != FL_READY && mode != FL_POINT &&
951 (!cfip || !(cfip->EraseSuspend&2)))
952 goto sleep;
953 chip->oldstate = chip->state;
954 chip->state = FL_READY;
955 return 0;
956
957 case FL_SHUTDOWN:
958 /* The machine is rebooting */
959 return -EIO;
960
961 case FL_POINT:
962 /* Only if there's no operation suspended... */
963 if (mode == FL_READY && chip->oldstate == FL_READY)
964 return 0;
965 /* fall through */
966
967 default:
968 sleep:
969 set_current_state(TASK_UNINTERRUPTIBLE);
970 add_wait_queue(&chip->wq, &wait);
971 mutex_unlock(&chip->mutex);
972 schedule();
973 remove_wait_queue(&chip->wq, &wait);
974 mutex_lock(&chip->mutex);
975 goto resettime;
976 }
977 }
978
979
put_chip(struct map_info * map,struct flchip * chip,unsigned long adr)980 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
981 {
982 struct cfi_private *cfi = map->fldrv_priv;
983
984 switch(chip->oldstate) {
985 case FL_ERASING:
986 cfi_fixup_m29ew_erase_suspend(map,
987 chip->in_progress_block_addr);
988 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
989 cfi_fixup_m29ew_delay_after_resume(cfi);
990 chip->oldstate = FL_READY;
991 chip->state = FL_ERASING;
992 break;
993
994 case FL_XIP_WHILE_ERASING:
995 chip->state = chip->oldstate;
996 chip->oldstate = FL_READY;
997 break;
998
999 case FL_READY:
1000 case FL_STATUS:
1001 break;
1002 default:
1003 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
1004 }
1005 wake_up(&chip->wq);
1006 }
1007
1008 #ifdef CONFIG_MTD_XIP
1009
1010 /*
1011 * No interrupt what so ever can be serviced while the flash isn't in array
1012 * mode. This is ensured by the xip_disable() and xip_enable() functions
1013 * enclosing any code path where the flash is known not to be in array mode.
1014 * And within a XIP disabled code path, only functions marked with __xipram
1015 * may be called and nothing else (it's a good thing to inspect generated
1016 * assembly to make sure inline functions were actually inlined and that gcc
1017 * didn't emit calls to its own support functions). Also configuring MTD CFI
1018 * support to a single buswidth and a single interleave is also recommended.
1019 */
1020
xip_disable(struct map_info * map,struct flchip * chip,unsigned long adr)1021 static void xip_disable(struct map_info *map, struct flchip *chip,
1022 unsigned long adr)
1023 {
1024 /* TODO: chips with no XIP use should ignore and return */
1025 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1026 local_irq_disable();
1027 }
1028
xip_enable(struct map_info * map,struct flchip * chip,unsigned long adr)1029 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1030 unsigned long adr)
1031 {
1032 struct cfi_private *cfi = map->fldrv_priv;
1033
1034 if (chip->state != FL_POINT && chip->state != FL_READY) {
1035 map_write(map, CMD(0xf0), adr);
1036 chip->state = FL_READY;
1037 }
1038 (void) map_read(map, adr);
1039 xip_iprefetch();
1040 local_irq_enable();
1041 }
1042
1043 /*
1044 * When a delay is required for the flash operation to complete, the
1045 * xip_udelay() function is polling for both the given timeout and pending
1046 * (but still masked) hardware interrupts. Whenever there is an interrupt
1047 * pending then the flash erase operation is suspended, array mode restored
1048 * and interrupts unmasked. Task scheduling might also happen at that
1049 * point. The CPU eventually returns from the interrupt or the call to
1050 * schedule() and the suspended flash operation is resumed for the remaining
1051 * of the delay period.
1052 *
1053 * Warning: this function _will_ fool interrupt latency tracing tools.
1054 */
1055
xip_udelay(struct map_info * map,struct flchip * chip,unsigned long adr,int usec)1056 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
1057 unsigned long adr, int usec)
1058 {
1059 struct cfi_private *cfi = map->fldrv_priv;
1060 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
1061 map_word status, OK = CMD(0x80);
1062 unsigned long suspended, start = xip_currtime();
1063 flstate_t oldstate;
1064
1065 do {
1066 cpu_relax();
1067 if (xip_irqpending() && extp &&
1068 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
1069 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1070 /*
1071 * Let's suspend the erase operation when supported.
1072 * Note that we currently don't try to suspend
1073 * interleaved chips if there is already another
1074 * operation suspended (imagine what happens
1075 * when one chip was already done with the current
1076 * operation while another chip suspended it, then
1077 * we resume the whole thing at once). Yes, it
1078 * can happen!
1079 */
1080 map_write(map, CMD(0xb0), adr);
1081 usec -= xip_elapsed_since(start);
1082 suspended = xip_currtime();
1083 do {
1084 if (xip_elapsed_since(suspended) > 100000) {
1085 /*
1086 * The chip doesn't want to suspend
1087 * after waiting for 100 msecs.
1088 * This is a critical error but there
1089 * is not much we can do here.
1090 */
1091 return;
1092 }
1093 status = map_read(map, adr);
1094 } while (!map_word_andequal(map, status, OK, OK));
1095
1096 /* Suspend succeeded */
1097 oldstate = chip->state;
1098 if (!map_word_bitsset(map, status, CMD(0x40)))
1099 break;
1100 chip->state = FL_XIP_WHILE_ERASING;
1101 chip->erase_suspended = 1;
1102 map_write(map, CMD(0xf0), adr);
1103 (void) map_read(map, adr);
1104 xip_iprefetch();
1105 local_irq_enable();
1106 mutex_unlock(&chip->mutex);
1107 xip_iprefetch();
1108 cond_resched();
1109
1110 /*
1111 * We're back. However someone else might have
1112 * decided to go write to the chip if we are in
1113 * a suspended erase state. If so let's wait
1114 * until it's done.
1115 */
1116 mutex_lock(&chip->mutex);
1117 while (chip->state != FL_XIP_WHILE_ERASING) {
1118 DECLARE_WAITQUEUE(wait, current);
1119 set_current_state(TASK_UNINTERRUPTIBLE);
1120 add_wait_queue(&chip->wq, &wait);
1121 mutex_unlock(&chip->mutex);
1122 schedule();
1123 remove_wait_queue(&chip->wq, &wait);
1124 mutex_lock(&chip->mutex);
1125 }
1126 /* Disallow XIP again */
1127 local_irq_disable();
1128
1129 /* Correct Erase Suspend Hangups for M29EW */
1130 cfi_fixup_m29ew_erase_suspend(map, adr);
1131 /* Resume the write or erase operation */
1132 map_write(map, cfi->sector_erase_cmd, adr);
1133 chip->state = oldstate;
1134 start = xip_currtime();
1135 } else if (usec >= 1000000/HZ) {
1136 /*
1137 * Try to save on CPU power when waiting delay
1138 * is at least a system timer tick period.
1139 * No need to be extremely accurate here.
1140 */
1141 xip_cpu_idle();
1142 }
1143 status = map_read(map, adr);
1144 } while (!map_word_andequal(map, status, OK, OK)
1145 && xip_elapsed_since(start) < usec);
1146 }
1147
1148 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
1149
1150 /*
1151 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1152 * the flash is actively programming or erasing since we have to poll for
1153 * the operation to complete anyway. We can't do that in a generic way with
1154 * a XIP setup so do it before the actual flash operation in this case
1155 * and stub it out from INVALIDATE_CACHE_UDELAY.
1156 */
1157 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1158 INVALIDATE_CACHED_RANGE(map, from, size)
1159
1160 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1161 UDELAY(map, chip, adr, usec)
1162
1163 /*
1164 * Extra notes:
1165 *
1166 * Activating this XIP support changes the way the code works a bit. For
1167 * example the code to suspend the current process when concurrent access
1168 * happens is never executed because xip_udelay() will always return with the
1169 * same chip state as it was entered with. This is why there is no care for
1170 * the presence of add_wait_queue() or schedule() calls from within a couple
1171 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
1172 * The queueing and scheduling are always happening within xip_udelay().
1173 *
1174 * Similarly, get_chip() and put_chip() just happen to always be executed
1175 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1176 * is in array mode, therefore never executing many cases therein and not
1177 * causing any problem with XIP.
1178 */
1179
1180 #else
1181
1182 #define xip_disable(map, chip, adr)
1183 #define xip_enable(map, chip, adr)
1184 #define XIP_INVAL_CACHED_RANGE(x...)
1185
1186 #define UDELAY(map, chip, adr, usec) \
1187 do { \
1188 mutex_unlock(&chip->mutex); \
1189 cfi_udelay(usec); \
1190 mutex_lock(&chip->mutex); \
1191 } while (0)
1192
1193 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1194 do { \
1195 mutex_unlock(&chip->mutex); \
1196 INVALIDATE_CACHED_RANGE(map, adr, len); \
1197 cfi_udelay(usec); \
1198 mutex_lock(&chip->mutex); \
1199 } while (0)
1200
1201 #endif
1202
do_read_onechip(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf)1203 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1204 {
1205 unsigned long cmd_addr;
1206 struct cfi_private *cfi = map->fldrv_priv;
1207 int ret;
1208
1209 adr += chip->start;
1210
1211 /* Ensure cmd read/writes are aligned. */
1212 cmd_addr = adr & ~(map_bankwidth(map)-1);
1213
1214 mutex_lock(&chip->mutex);
1215 ret = get_chip(map, chip, cmd_addr, FL_READY);
1216 if (ret) {
1217 mutex_unlock(&chip->mutex);
1218 return ret;
1219 }
1220
1221 if (chip->state != FL_POINT && chip->state != FL_READY) {
1222 map_write(map, CMD(0xf0), cmd_addr);
1223 chip->state = FL_READY;
1224 }
1225
1226 map_copy_from(map, buf, adr, len);
1227
1228 put_chip(map, chip, cmd_addr);
1229
1230 mutex_unlock(&chip->mutex);
1231 return 0;
1232 }
1233
1234
cfi_amdstd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1235 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1236 {
1237 struct map_info *map = mtd->priv;
1238 struct cfi_private *cfi = map->fldrv_priv;
1239 unsigned long ofs;
1240 int chipnum;
1241 int ret = 0;
1242
1243 /* ofs: offset within the first chip that the first read should start */
1244 chipnum = (from >> cfi->chipshift);
1245 ofs = from - (chipnum << cfi->chipshift);
1246
1247 while (len) {
1248 unsigned long thislen;
1249
1250 if (chipnum >= cfi->numchips)
1251 break;
1252
1253 if ((len + ofs -1) >> cfi->chipshift)
1254 thislen = (1<<cfi->chipshift) - ofs;
1255 else
1256 thislen = len;
1257
1258 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1259 if (ret)
1260 break;
1261
1262 *retlen += thislen;
1263 len -= thislen;
1264 buf += thislen;
1265
1266 ofs = 0;
1267 chipnum++;
1268 }
1269 return ret;
1270 }
1271
1272 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1273 loff_t adr, size_t len, u_char *buf, size_t grouplen);
1274
otp_enter(struct map_info * map,struct flchip * chip,loff_t adr,size_t len)1275 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1276 loff_t adr, size_t len)
1277 {
1278 struct cfi_private *cfi = map->fldrv_priv;
1279
1280 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1281 cfi->device_type, NULL);
1282 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1283 cfi->device_type, NULL);
1284 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1285 cfi->device_type, NULL);
1286
1287 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1288 }
1289
otp_exit(struct map_info * map,struct flchip * chip,loff_t adr,size_t len)1290 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1291 loff_t adr, size_t len)
1292 {
1293 struct cfi_private *cfi = map->fldrv_priv;
1294
1295 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1296 cfi->device_type, NULL);
1297 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1298 cfi->device_type, NULL);
1299 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1300 cfi->device_type, NULL);
1301 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1302 cfi->device_type, NULL);
1303
1304 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1305 }
1306
do_read_secsi_onechip(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1307 static inline int do_read_secsi_onechip(struct map_info *map,
1308 struct flchip *chip, loff_t adr,
1309 size_t len, u_char *buf,
1310 size_t grouplen)
1311 {
1312 DECLARE_WAITQUEUE(wait, current);
1313
1314 retry:
1315 mutex_lock(&chip->mutex);
1316
1317 if (chip->state != FL_READY){
1318 set_current_state(TASK_UNINTERRUPTIBLE);
1319 add_wait_queue(&chip->wq, &wait);
1320
1321 mutex_unlock(&chip->mutex);
1322
1323 schedule();
1324 remove_wait_queue(&chip->wq, &wait);
1325
1326 goto retry;
1327 }
1328
1329 adr += chip->start;
1330
1331 chip->state = FL_READY;
1332
1333 otp_enter(map, chip, adr, len);
1334 map_copy_from(map, buf, adr, len);
1335 otp_exit(map, chip, adr, len);
1336
1337 wake_up(&chip->wq);
1338 mutex_unlock(&chip->mutex);
1339
1340 return 0;
1341 }
1342
cfi_amdstd_secsi_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1343 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1344 {
1345 struct map_info *map = mtd->priv;
1346 struct cfi_private *cfi = map->fldrv_priv;
1347 unsigned long ofs;
1348 int chipnum;
1349 int ret = 0;
1350
1351 /* ofs: offset within the first chip that the first read should start */
1352 /* 8 secsi bytes per chip */
1353 chipnum=from>>3;
1354 ofs=from & 7;
1355
1356 while (len) {
1357 unsigned long thislen;
1358
1359 if (chipnum >= cfi->numchips)
1360 break;
1361
1362 if ((len + ofs -1) >> 3)
1363 thislen = (1<<3) - ofs;
1364 else
1365 thislen = len;
1366
1367 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1368 thislen, buf, 0);
1369 if (ret)
1370 break;
1371
1372 *retlen += thislen;
1373 len -= thislen;
1374 buf += thislen;
1375
1376 ofs = 0;
1377 chipnum++;
1378 }
1379 return ret;
1380 }
1381
1382 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1383 unsigned long adr, map_word datum,
1384 int mode);
1385
do_otp_write(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1386 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1387 size_t len, u_char *buf, size_t grouplen)
1388 {
1389 int ret;
1390 while (len) {
1391 unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1392 int gap = adr - bus_ofs;
1393 int n = min_t(int, len, map_bankwidth(map) - gap);
1394 map_word datum = map_word_ff(map);
1395
1396 if (n != map_bankwidth(map)) {
1397 /* partial write of a word, load old contents */
1398 otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1399 datum = map_read(map, bus_ofs);
1400 otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1401 }
1402
1403 datum = map_word_load_partial(map, datum, buf, gap, n);
1404 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1405 if (ret)
1406 return ret;
1407
1408 adr += n;
1409 buf += n;
1410 len -= n;
1411 }
1412
1413 return 0;
1414 }
1415
do_otp_lock(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1416 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1417 size_t len, u_char *buf, size_t grouplen)
1418 {
1419 struct cfi_private *cfi = map->fldrv_priv;
1420 uint8_t lockreg;
1421 unsigned long timeo;
1422 int ret;
1423
1424 /* make sure area matches group boundaries */
1425 if ((adr != 0) || (len != grouplen))
1426 return -EINVAL;
1427
1428 mutex_lock(&chip->mutex);
1429 ret = get_chip(map, chip, chip->start, FL_LOCKING);
1430 if (ret) {
1431 mutex_unlock(&chip->mutex);
1432 return ret;
1433 }
1434 chip->state = FL_LOCKING;
1435
1436 /* Enter lock register command */
1437 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1438 cfi->device_type, NULL);
1439 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1440 cfi->device_type, NULL);
1441 cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1442 cfi->device_type, NULL);
1443
1444 /* read lock register */
1445 lockreg = cfi_read_query(map, 0);
1446
1447 /* set bit 0 to protect extended memory block */
1448 lockreg &= ~0x01;
1449
1450 /* set bit 0 to protect extended memory block */
1451 /* write lock register */
1452 map_write(map, CMD(0xA0), chip->start);
1453 map_write(map, CMD(lockreg), chip->start);
1454
1455 /* wait for chip to become ready */
1456 timeo = jiffies + msecs_to_jiffies(2);
1457 for (;;) {
1458 if (chip_ready(map, chip, adr))
1459 break;
1460
1461 if (time_after(jiffies, timeo)) {
1462 pr_err("Waiting for chip to be ready timed out.\n");
1463 ret = -EIO;
1464 break;
1465 }
1466 UDELAY(map, chip, 0, 1);
1467 }
1468
1469 /* exit protection commands */
1470 map_write(map, CMD(0x90), chip->start);
1471 map_write(map, CMD(0x00), chip->start);
1472
1473 chip->state = FL_READY;
1474 put_chip(map, chip, chip->start);
1475 mutex_unlock(&chip->mutex);
1476
1477 return ret;
1478 }
1479
cfi_amdstd_otp_walk(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf,otp_op_t action,int user_regs)1480 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1481 size_t *retlen, u_char *buf,
1482 otp_op_t action, int user_regs)
1483 {
1484 struct map_info *map = mtd->priv;
1485 struct cfi_private *cfi = map->fldrv_priv;
1486 int ofs_factor = cfi->interleave * cfi->device_type;
1487 unsigned long base;
1488 int chipnum;
1489 struct flchip *chip;
1490 uint8_t otp, lockreg;
1491 int ret;
1492
1493 size_t user_size, factory_size, otpsize;
1494 loff_t user_offset, factory_offset, otpoffset;
1495 int user_locked = 0, otplocked;
1496
1497 *retlen = 0;
1498
1499 for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1500 chip = &cfi->chips[chipnum];
1501 factory_size = 0;
1502 user_size = 0;
1503
1504 /* Micron M29EW family */
1505 if (is_m29ew(cfi)) {
1506 base = chip->start;
1507
1508 /* check whether secsi area is factory locked
1509 or user lockable */
1510 mutex_lock(&chip->mutex);
1511 ret = get_chip(map, chip, base, FL_CFI_QUERY);
1512 if (ret) {
1513 mutex_unlock(&chip->mutex);
1514 return ret;
1515 }
1516 cfi_qry_mode_on(base, map, cfi);
1517 otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1518 cfi_qry_mode_off(base, map, cfi);
1519 put_chip(map, chip, base);
1520 mutex_unlock(&chip->mutex);
1521
1522 if (otp & 0x80) {
1523 /* factory locked */
1524 factory_offset = 0;
1525 factory_size = 0x100;
1526 } else {
1527 /* customer lockable */
1528 user_offset = 0;
1529 user_size = 0x100;
1530
1531 mutex_lock(&chip->mutex);
1532 ret = get_chip(map, chip, base, FL_LOCKING);
1533 if (ret) {
1534 mutex_unlock(&chip->mutex);
1535 return ret;
1536 }
1537
1538 /* Enter lock register command */
1539 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1540 chip->start, map, cfi,
1541 cfi->device_type, NULL);
1542 cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1543 chip->start, map, cfi,
1544 cfi->device_type, NULL);
1545 cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1546 chip->start, map, cfi,
1547 cfi->device_type, NULL);
1548 /* read lock register */
1549 lockreg = cfi_read_query(map, 0);
1550 /* exit protection commands */
1551 map_write(map, CMD(0x90), chip->start);
1552 map_write(map, CMD(0x00), chip->start);
1553 put_chip(map, chip, chip->start);
1554 mutex_unlock(&chip->mutex);
1555
1556 user_locked = ((lockreg & 0x01) == 0x00);
1557 }
1558 }
1559
1560 otpsize = user_regs ? user_size : factory_size;
1561 if (!otpsize)
1562 continue;
1563 otpoffset = user_regs ? user_offset : factory_offset;
1564 otplocked = user_regs ? user_locked : 1;
1565
1566 if (!action) {
1567 /* return otpinfo */
1568 struct otp_info *otpinfo;
1569 len -= sizeof(*otpinfo);
1570 if (len <= 0)
1571 return -ENOSPC;
1572 otpinfo = (struct otp_info *)buf;
1573 otpinfo->start = from;
1574 otpinfo->length = otpsize;
1575 otpinfo->locked = otplocked;
1576 buf += sizeof(*otpinfo);
1577 *retlen += sizeof(*otpinfo);
1578 from += otpsize;
1579 } else if ((from < otpsize) && (len > 0)) {
1580 size_t size;
1581 size = (len < otpsize - from) ? len : otpsize - from;
1582 ret = action(map, chip, otpoffset + from, size, buf,
1583 otpsize);
1584 if (ret < 0)
1585 return ret;
1586
1587 buf += size;
1588 len -= size;
1589 *retlen += size;
1590 from = 0;
1591 } else {
1592 from -= otpsize;
1593 }
1594 }
1595 return 0;
1596 }
1597
cfi_amdstd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1598 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1599 size_t *retlen, struct otp_info *buf)
1600 {
1601 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1602 NULL, 0);
1603 }
1604
cfi_amdstd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1605 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1606 size_t *retlen, struct otp_info *buf)
1607 {
1608 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1609 NULL, 1);
1610 }
1611
cfi_amdstd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1612 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1613 size_t len, size_t *retlen,
1614 u_char *buf)
1615 {
1616 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1617 buf, do_read_secsi_onechip, 0);
1618 }
1619
cfi_amdstd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1620 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1621 size_t len, size_t *retlen,
1622 u_char *buf)
1623 {
1624 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1625 buf, do_read_secsi_onechip, 1);
1626 }
1627
cfi_amdstd_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1628 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1629 size_t len, size_t *retlen,
1630 u_char *buf)
1631 {
1632 return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1633 do_otp_write, 1);
1634 }
1635
cfi_amdstd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1636 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1637 size_t len)
1638 {
1639 size_t retlen;
1640 return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1641 do_otp_lock, 1);
1642 }
1643
do_write_oneword_once(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum,int mode,struct cfi_private * cfi)1644 static int __xipram do_write_oneword_once(struct map_info *map,
1645 struct flchip *chip,
1646 unsigned long adr, map_word datum,
1647 int mode, struct cfi_private *cfi)
1648 {
1649 unsigned long timeo = jiffies + HZ;
1650 /*
1651 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1652 * have a max write time of a few hundreds usec). However, we should
1653 * use the maximum timeout value given by the chip at probe time
1654 * instead. Unfortunately, struct flchip does have a field for
1655 * maximum timeout, only for typical which can be far too short
1656 * depending of the conditions. The ' + 1' is to avoid having a
1657 * timeout of 0 jiffies if HZ is smaller than 1000.
1658 */
1659 unsigned long uWriteTimeout = (HZ / 1000) + 1;
1660 int ret = 0;
1661
1662 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1663 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1664 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1665 map_write(map, datum, adr);
1666 chip->state = mode;
1667
1668 INVALIDATE_CACHE_UDELAY(map, chip,
1669 adr, map_bankwidth(map),
1670 chip->word_write_time);
1671
1672 /* See comment above for timeout value. */
1673 timeo = jiffies + uWriteTimeout;
1674 for (;;) {
1675 if (chip->state != mode) {
1676 /* Someone's suspended the write. Sleep */
1677 DECLARE_WAITQUEUE(wait, current);
1678
1679 set_current_state(TASK_UNINTERRUPTIBLE);
1680 add_wait_queue(&chip->wq, &wait);
1681 mutex_unlock(&chip->mutex);
1682 schedule();
1683 remove_wait_queue(&chip->wq, &wait);
1684 timeo = jiffies + (HZ / 2); /* FIXME */
1685 mutex_lock(&chip->mutex);
1686 continue;
1687 }
1688
1689 /*
1690 * We check "time_after" and "!chip_good" before checking
1691 * "chip_good" to avoid the failure due to scheduling.
1692 */
1693 if (time_after(jiffies, timeo) &&
1694 !chip_good(map, chip, adr, datum)) {
1695 xip_enable(map, chip, adr);
1696 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1697 xip_disable(map, chip, adr);
1698 ret = -EIO;
1699 break;
1700 }
1701
1702 if (chip_good(map, chip, adr, datum))
1703 break;
1704
1705 /* Latency issues. Drop the lock, wait a while and retry */
1706 UDELAY(map, chip, adr, 1);
1707 }
1708
1709 return ret;
1710 }
1711
do_write_oneword_start(struct map_info * map,struct flchip * chip,unsigned long adr,int mode)1712 static int __xipram do_write_oneword_start(struct map_info *map,
1713 struct flchip *chip,
1714 unsigned long adr, int mode)
1715 {
1716 int ret = 0;
1717
1718 mutex_lock(&chip->mutex);
1719
1720 ret = get_chip(map, chip, adr, mode);
1721 if (ret) {
1722 mutex_unlock(&chip->mutex);
1723 return ret;
1724 }
1725
1726 if (mode == FL_OTP_WRITE)
1727 otp_enter(map, chip, adr, map_bankwidth(map));
1728
1729 return ret;
1730 }
1731
do_write_oneword_done(struct map_info * map,struct flchip * chip,unsigned long adr,int mode)1732 static void __xipram do_write_oneword_done(struct map_info *map,
1733 struct flchip *chip,
1734 unsigned long adr, int mode)
1735 {
1736 if (mode == FL_OTP_WRITE)
1737 otp_exit(map, chip, adr, map_bankwidth(map));
1738
1739 chip->state = FL_READY;
1740 DISABLE_VPP(map);
1741 put_chip(map, chip, adr);
1742
1743 mutex_unlock(&chip->mutex);
1744 }
1745
do_write_oneword_retry(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum,int mode)1746 static int __xipram do_write_oneword_retry(struct map_info *map,
1747 struct flchip *chip,
1748 unsigned long adr, map_word datum,
1749 int mode)
1750 {
1751 struct cfi_private *cfi = map->fldrv_priv;
1752 int ret = 0;
1753 map_word oldd;
1754 int retry_cnt = 0;
1755
1756 /*
1757 * Check for a NOP for the case when the datum to write is already
1758 * present - it saves time and works around buggy chips that corrupt
1759 * data at other locations when 0xff is written to a location that
1760 * already contains 0xff.
1761 */
1762 oldd = map_read(map, adr);
1763 if (map_word_equal(map, oldd, datum)) {
1764 pr_debug("MTD %s(): NOP\n", __func__);
1765 return ret;
1766 }
1767
1768 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1769 ENABLE_VPP(map);
1770 xip_disable(map, chip, adr);
1771
1772 retry:
1773 ret = do_write_oneword_once(map, chip, adr, datum, mode, cfi);
1774 if (ret) {
1775 /* reset on all failures. */
1776 cfi_check_err_status(map, chip, adr);
1777 map_write(map, CMD(0xF0), chip->start);
1778 /* FIXME - should have reset delay before continuing */
1779
1780 if (++retry_cnt <= MAX_RETRIES) {
1781 ret = 0;
1782 goto retry;
1783 }
1784 }
1785 xip_enable(map, chip, adr);
1786
1787 return ret;
1788 }
1789
do_write_oneword(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum,int mode)1790 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1791 unsigned long adr, map_word datum,
1792 int mode)
1793 {
1794 int ret = 0;
1795
1796 adr += chip->start;
1797
1798 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr,
1799 datum.x[0]);
1800
1801 ret = do_write_oneword_start(map, chip, adr, mode);
1802 if (ret)
1803 return ret;
1804
1805 ret = do_write_oneword_retry(map, chip, adr, datum, mode);
1806
1807 do_write_oneword_done(map, chip, adr, mode);
1808
1809 return ret;
1810 }
1811
1812
cfi_amdstd_write_words(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1813 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1814 size_t *retlen, const u_char *buf)
1815 {
1816 struct map_info *map = mtd->priv;
1817 struct cfi_private *cfi = map->fldrv_priv;
1818 int ret = 0;
1819 int chipnum;
1820 unsigned long ofs, chipstart;
1821 DECLARE_WAITQUEUE(wait, current);
1822
1823 chipnum = to >> cfi->chipshift;
1824 ofs = to - (chipnum << cfi->chipshift);
1825 chipstart = cfi->chips[chipnum].start;
1826
1827 /* If it's not bus-aligned, do the first byte write */
1828 if (ofs & (map_bankwidth(map)-1)) {
1829 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1830 int i = ofs - bus_ofs;
1831 int n = 0;
1832 map_word tmp_buf;
1833
1834 retry:
1835 mutex_lock(&cfi->chips[chipnum].mutex);
1836
1837 if (cfi->chips[chipnum].state != FL_READY) {
1838 set_current_state(TASK_UNINTERRUPTIBLE);
1839 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1840
1841 mutex_unlock(&cfi->chips[chipnum].mutex);
1842
1843 schedule();
1844 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1845 goto retry;
1846 }
1847
1848 /* Load 'tmp_buf' with old contents of flash */
1849 tmp_buf = map_read(map, bus_ofs+chipstart);
1850
1851 mutex_unlock(&cfi->chips[chipnum].mutex);
1852
1853 /* Number of bytes to copy from buffer */
1854 n = min_t(int, len, map_bankwidth(map)-i);
1855
1856 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1857
1858 ret = do_write_oneword(map, &cfi->chips[chipnum],
1859 bus_ofs, tmp_buf, FL_WRITING);
1860 if (ret)
1861 return ret;
1862
1863 ofs += n;
1864 buf += n;
1865 (*retlen) += n;
1866 len -= n;
1867
1868 if (ofs >> cfi->chipshift) {
1869 chipnum ++;
1870 ofs = 0;
1871 if (chipnum == cfi->numchips)
1872 return 0;
1873 }
1874 }
1875
1876 /* We are now aligned, write as much as possible */
1877 while(len >= map_bankwidth(map)) {
1878 map_word datum;
1879
1880 datum = map_word_load(map, buf);
1881
1882 ret = do_write_oneword(map, &cfi->chips[chipnum],
1883 ofs, datum, FL_WRITING);
1884 if (ret)
1885 return ret;
1886
1887 ofs += map_bankwidth(map);
1888 buf += map_bankwidth(map);
1889 (*retlen) += map_bankwidth(map);
1890 len -= map_bankwidth(map);
1891
1892 if (ofs >> cfi->chipshift) {
1893 chipnum ++;
1894 ofs = 0;
1895 if (chipnum == cfi->numchips)
1896 return 0;
1897 chipstart = cfi->chips[chipnum].start;
1898 }
1899 }
1900
1901 /* Write the trailing bytes if any */
1902 if (len & (map_bankwidth(map)-1)) {
1903 map_word tmp_buf;
1904
1905 retry1:
1906 mutex_lock(&cfi->chips[chipnum].mutex);
1907
1908 if (cfi->chips[chipnum].state != FL_READY) {
1909 set_current_state(TASK_UNINTERRUPTIBLE);
1910 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1911
1912 mutex_unlock(&cfi->chips[chipnum].mutex);
1913
1914 schedule();
1915 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1916 goto retry1;
1917 }
1918
1919 tmp_buf = map_read(map, ofs + chipstart);
1920
1921 mutex_unlock(&cfi->chips[chipnum].mutex);
1922
1923 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1924
1925 ret = do_write_oneword(map, &cfi->chips[chipnum],
1926 ofs, tmp_buf, FL_WRITING);
1927 if (ret)
1928 return ret;
1929
1930 (*retlen) += len;
1931 }
1932
1933 return 0;
1934 }
1935
1936 #if !FORCE_WORD_WRITE
do_write_buffer_wait(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum)1937 static int __xipram do_write_buffer_wait(struct map_info *map,
1938 struct flchip *chip, unsigned long adr,
1939 map_word datum)
1940 {
1941 unsigned long timeo;
1942 unsigned long u_write_timeout;
1943 int ret = 0;
1944
1945 /*
1946 * Timeout is calculated according to CFI data, if available.
1947 * See more comments in cfi_cmdset_0002().
1948 */
1949 u_write_timeout = usecs_to_jiffies(chip->buffer_write_time_max);
1950 timeo = jiffies + u_write_timeout;
1951
1952 for (;;) {
1953 if (chip->state != FL_WRITING) {
1954 /* Someone's suspended the write. Sleep */
1955 DECLARE_WAITQUEUE(wait, current);
1956
1957 set_current_state(TASK_UNINTERRUPTIBLE);
1958 add_wait_queue(&chip->wq, &wait);
1959 mutex_unlock(&chip->mutex);
1960 schedule();
1961 remove_wait_queue(&chip->wq, &wait);
1962 timeo = jiffies + (HZ / 2); /* FIXME */
1963 mutex_lock(&chip->mutex);
1964 continue;
1965 }
1966
1967 /*
1968 * We check "time_after" and "!chip_good" before checking
1969 * "chip_good" to avoid the failure due to scheduling.
1970 */
1971 if (time_after(jiffies, timeo) &&
1972 !chip_good(map, chip, adr, datum)) {
1973 ret = -EIO;
1974 break;
1975 }
1976
1977 if (chip_good(map, chip, adr, datum))
1978 break;
1979
1980 /* Latency issues. Drop the lock, wait a while and retry */
1981 UDELAY(map, chip, adr, 1);
1982 }
1983
1984 return ret;
1985 }
1986
do_write_buffer_reset(struct map_info * map,struct flchip * chip,struct cfi_private * cfi)1987 static void __xipram do_write_buffer_reset(struct map_info *map,
1988 struct flchip *chip,
1989 struct cfi_private *cfi)
1990 {
1991 /*
1992 * Recovery from write-buffer programming failures requires
1993 * the write-to-buffer-reset sequence. Since the last part
1994 * of the sequence also works as a normal reset, we can run
1995 * the same commands regardless of why we are here.
1996 * See e.g.
1997 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1998 */
1999 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2000 cfi->device_type, NULL);
2001 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2002 cfi->device_type, NULL);
2003 cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
2004 cfi->device_type, NULL);
2005
2006 /* FIXME - should have reset delay before continuing */
2007 }
2008
2009 /*
2010 * FIXME: interleaved mode not tested, and probably not supported!
2011 */
do_write_buffer(struct map_info * map,struct flchip * chip,unsigned long adr,const u_char * buf,int len)2012 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
2013 unsigned long adr, const u_char *buf,
2014 int len)
2015 {
2016 struct cfi_private *cfi = map->fldrv_priv;
2017 int ret = -EIO;
2018 unsigned long cmd_adr;
2019 int z, words;
2020 map_word datum;
2021
2022 adr += chip->start;
2023 cmd_adr = adr;
2024
2025 mutex_lock(&chip->mutex);
2026 ret = get_chip(map, chip, adr, FL_WRITING);
2027 if (ret) {
2028 mutex_unlock(&chip->mutex);
2029 return ret;
2030 }
2031
2032 datum = map_word_load(map, buf);
2033
2034 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
2035 __func__, adr, datum.x[0]);
2036
2037 XIP_INVAL_CACHED_RANGE(map, adr, len);
2038 ENABLE_VPP(map);
2039 xip_disable(map, chip, cmd_adr);
2040
2041 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2042 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2043
2044 /* Write Buffer Load */
2045 map_write(map, CMD(0x25), cmd_adr);
2046
2047 chip->state = FL_WRITING_TO_BUFFER;
2048
2049 /* Write length of data to come */
2050 words = len / map_bankwidth(map);
2051 map_write(map, CMD(words - 1), cmd_adr);
2052 /* Write data */
2053 z = 0;
2054 while(z < words * map_bankwidth(map)) {
2055 datum = map_word_load(map, buf);
2056 map_write(map, datum, adr + z);
2057
2058 z += map_bankwidth(map);
2059 buf += map_bankwidth(map);
2060 }
2061 z -= map_bankwidth(map);
2062
2063 adr += z;
2064
2065 /* Write Buffer Program Confirm: GO GO GO */
2066 map_write(map, CMD(0x29), cmd_adr);
2067 chip->state = FL_WRITING;
2068
2069 INVALIDATE_CACHE_UDELAY(map, chip,
2070 adr, map_bankwidth(map),
2071 chip->word_write_time);
2072
2073 ret = do_write_buffer_wait(map, chip, adr, datum);
2074 if (ret) {
2075 cfi_check_err_status(map, chip, adr);
2076 do_write_buffer_reset(map, chip, cfi);
2077 pr_err("MTD %s(): software timeout, address:0x%.8lx.\n",
2078 __func__, adr);
2079 }
2080
2081 xip_enable(map, chip, adr);
2082
2083 chip->state = FL_READY;
2084 DISABLE_VPP(map);
2085 put_chip(map, chip, adr);
2086 mutex_unlock(&chip->mutex);
2087
2088 return ret;
2089 }
2090
2091
cfi_amdstd_write_buffers(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2092 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
2093 size_t *retlen, const u_char *buf)
2094 {
2095 struct map_info *map = mtd->priv;
2096 struct cfi_private *cfi = map->fldrv_priv;
2097 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
2098 int ret = 0;
2099 int chipnum;
2100 unsigned long ofs;
2101
2102 chipnum = to >> cfi->chipshift;
2103 ofs = to - (chipnum << cfi->chipshift);
2104
2105 /* If it's not bus-aligned, do the first word write */
2106 if (ofs & (map_bankwidth(map)-1)) {
2107 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
2108 if (local_len > len)
2109 local_len = len;
2110 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2111 local_len, retlen, buf);
2112 if (ret)
2113 return ret;
2114 ofs += local_len;
2115 buf += local_len;
2116 len -= local_len;
2117
2118 if (ofs >> cfi->chipshift) {
2119 chipnum ++;
2120 ofs = 0;
2121 if (chipnum == cfi->numchips)
2122 return 0;
2123 }
2124 }
2125
2126 /* Write buffer is worth it only if more than one word to write... */
2127 while (len >= map_bankwidth(map) * 2) {
2128 /* We must not cross write block boundaries */
2129 int size = wbufsize - (ofs & (wbufsize-1));
2130
2131 if (size > len)
2132 size = len;
2133 if (size % map_bankwidth(map))
2134 size -= size % map_bankwidth(map);
2135
2136 ret = do_write_buffer(map, &cfi->chips[chipnum],
2137 ofs, buf, size);
2138 if (ret)
2139 return ret;
2140
2141 ofs += size;
2142 buf += size;
2143 (*retlen) += size;
2144 len -= size;
2145
2146 if (ofs >> cfi->chipshift) {
2147 chipnum ++;
2148 ofs = 0;
2149 if (chipnum == cfi->numchips)
2150 return 0;
2151 }
2152 }
2153
2154 if (len) {
2155 size_t retlen_dregs = 0;
2156
2157 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2158 len, &retlen_dregs, buf);
2159
2160 *retlen += retlen_dregs;
2161 return ret;
2162 }
2163
2164 return 0;
2165 }
2166 #endif /* !FORCE_WORD_WRITE */
2167
2168 /*
2169 * Wait for the flash chip to become ready to write data
2170 *
2171 * This is only called during the panic_write() path. When panic_write()
2172 * is called, the kernel is in the process of a panic, and will soon be
2173 * dead. Therefore we don't take any locks, and attempt to get access
2174 * to the chip as soon as possible.
2175 */
cfi_amdstd_panic_wait(struct map_info * map,struct flchip * chip,unsigned long adr)2176 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2177 unsigned long adr)
2178 {
2179 struct cfi_private *cfi = map->fldrv_priv;
2180 int retries = 10;
2181 int i;
2182
2183 /*
2184 * If the driver thinks the chip is idle, and no toggle bits
2185 * are changing, then the chip is actually idle for sure.
2186 */
2187 if (chip->state == FL_READY && chip_ready(map, chip, adr))
2188 return 0;
2189
2190 /*
2191 * Try several times to reset the chip and then wait for it
2192 * to become idle. The upper limit of a few milliseconds of
2193 * delay isn't a big problem: the kernel is dying anyway. It
2194 * is more important to save the messages.
2195 */
2196 while (retries > 0) {
2197 const unsigned long timeo = (HZ / 1000) + 1;
2198
2199 /* send the reset command */
2200 map_write(map, CMD(0xF0), chip->start);
2201
2202 /* wait for the chip to become ready */
2203 for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2204 if (chip_ready(map, chip, adr))
2205 return 0;
2206
2207 udelay(1);
2208 }
2209
2210 retries--;
2211 }
2212
2213 /* the chip never became ready */
2214 return -EBUSY;
2215 }
2216
2217 /*
2218 * Write out one word of data to a single flash chip during a kernel panic
2219 *
2220 * This is only called during the panic_write() path. When panic_write()
2221 * is called, the kernel is in the process of a panic, and will soon be
2222 * dead. Therefore we don't take any locks, and attempt to get access
2223 * to the chip as soon as possible.
2224 *
2225 * The implementation of this routine is intentionally similar to
2226 * do_write_oneword(), in order to ease code maintenance.
2227 */
do_panic_write_oneword(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum)2228 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2229 unsigned long adr, map_word datum)
2230 {
2231 const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2232 struct cfi_private *cfi = map->fldrv_priv;
2233 int retry_cnt = 0;
2234 map_word oldd;
2235 int ret = 0;
2236 int i;
2237
2238 adr += chip->start;
2239
2240 ret = cfi_amdstd_panic_wait(map, chip, adr);
2241 if (ret)
2242 return ret;
2243
2244 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2245 __func__, adr, datum.x[0]);
2246
2247 /*
2248 * Check for a NOP for the case when the datum to write is already
2249 * present - it saves time and works around buggy chips that corrupt
2250 * data at other locations when 0xff is written to a location that
2251 * already contains 0xff.
2252 */
2253 oldd = map_read(map, adr);
2254 if (map_word_equal(map, oldd, datum)) {
2255 pr_debug("MTD %s(): NOP\n", __func__);
2256 goto op_done;
2257 }
2258
2259 ENABLE_VPP(map);
2260
2261 retry:
2262 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2263 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2264 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2265 map_write(map, datum, adr);
2266
2267 for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2268 if (chip_ready(map, chip, adr))
2269 break;
2270
2271 udelay(1);
2272 }
2273
2274 if (!chip_good(map, chip, adr, datum)) {
2275 /* reset on all failures. */
2276 cfi_check_err_status(map, chip, adr);
2277 map_write(map, CMD(0xF0), chip->start);
2278 /* FIXME - should have reset delay before continuing */
2279
2280 if (++retry_cnt <= MAX_RETRIES)
2281 goto retry;
2282
2283 ret = -EIO;
2284 }
2285
2286 op_done:
2287 DISABLE_VPP(map);
2288 return ret;
2289 }
2290
2291 /*
2292 * Write out some data during a kernel panic
2293 *
2294 * This is used by the mtdoops driver to save the dying messages from a
2295 * kernel which has panic'd.
2296 *
2297 * This routine ignores all of the locking used throughout the rest of the
2298 * driver, in order to ensure that the data gets written out no matter what
2299 * state this driver (and the flash chip itself) was in when the kernel crashed.
2300 *
2301 * The implementation of this routine is intentionally similar to
2302 * cfi_amdstd_write_words(), in order to ease code maintenance.
2303 */
cfi_amdstd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2304 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2305 size_t *retlen, const u_char *buf)
2306 {
2307 struct map_info *map = mtd->priv;
2308 struct cfi_private *cfi = map->fldrv_priv;
2309 unsigned long ofs, chipstart;
2310 int ret = 0;
2311 int chipnum;
2312
2313 chipnum = to >> cfi->chipshift;
2314 ofs = to - (chipnum << cfi->chipshift);
2315 chipstart = cfi->chips[chipnum].start;
2316
2317 /* If it's not bus aligned, do the first byte write */
2318 if (ofs & (map_bankwidth(map) - 1)) {
2319 unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2320 int i = ofs - bus_ofs;
2321 int n = 0;
2322 map_word tmp_buf;
2323
2324 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2325 if (ret)
2326 return ret;
2327
2328 /* Load 'tmp_buf' with old contents of flash */
2329 tmp_buf = map_read(map, bus_ofs + chipstart);
2330
2331 /* Number of bytes to copy from buffer */
2332 n = min_t(int, len, map_bankwidth(map) - i);
2333
2334 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2335
2336 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2337 bus_ofs, tmp_buf);
2338 if (ret)
2339 return ret;
2340
2341 ofs += n;
2342 buf += n;
2343 (*retlen) += n;
2344 len -= n;
2345
2346 if (ofs >> cfi->chipshift) {
2347 chipnum++;
2348 ofs = 0;
2349 if (chipnum == cfi->numchips)
2350 return 0;
2351 }
2352 }
2353
2354 /* We are now aligned, write as much as possible */
2355 while (len >= map_bankwidth(map)) {
2356 map_word datum;
2357
2358 datum = map_word_load(map, buf);
2359
2360 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2361 ofs, datum);
2362 if (ret)
2363 return ret;
2364
2365 ofs += map_bankwidth(map);
2366 buf += map_bankwidth(map);
2367 (*retlen) += map_bankwidth(map);
2368 len -= map_bankwidth(map);
2369
2370 if (ofs >> cfi->chipshift) {
2371 chipnum++;
2372 ofs = 0;
2373 if (chipnum == cfi->numchips)
2374 return 0;
2375
2376 chipstart = cfi->chips[chipnum].start;
2377 }
2378 }
2379
2380 /* Write the trailing bytes if any */
2381 if (len & (map_bankwidth(map) - 1)) {
2382 map_word tmp_buf;
2383
2384 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2385 if (ret)
2386 return ret;
2387
2388 tmp_buf = map_read(map, ofs + chipstart);
2389
2390 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2391
2392 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2393 ofs, tmp_buf);
2394 if (ret)
2395 return ret;
2396
2397 (*retlen) += len;
2398 }
2399
2400 return 0;
2401 }
2402
2403
2404 /*
2405 * Handle devices with one erase region, that only implement
2406 * the chip erase command.
2407 */
do_erase_chip(struct map_info * map,struct flchip * chip)2408 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2409 {
2410 struct cfi_private *cfi = map->fldrv_priv;
2411 unsigned long timeo = jiffies + HZ;
2412 unsigned long int adr;
2413 DECLARE_WAITQUEUE(wait, current);
2414 int ret = 0;
2415 int retry_cnt = 0;
2416
2417 adr = cfi->addr_unlock1;
2418
2419 mutex_lock(&chip->mutex);
2420 ret = get_chip(map, chip, adr, FL_ERASING);
2421 if (ret) {
2422 mutex_unlock(&chip->mutex);
2423 return ret;
2424 }
2425
2426 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2427 __func__, chip->start);
2428
2429 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2430 ENABLE_VPP(map);
2431 xip_disable(map, chip, adr);
2432
2433 retry:
2434 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2435 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2436 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2437 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2438 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2439 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2440
2441 chip->state = FL_ERASING;
2442 chip->erase_suspended = 0;
2443 chip->in_progress_block_addr = adr;
2444 chip->in_progress_block_mask = ~(map->size - 1);
2445
2446 INVALIDATE_CACHE_UDELAY(map, chip,
2447 adr, map->size,
2448 chip->erase_time*500);
2449
2450 timeo = jiffies + (HZ*20);
2451
2452 for (;;) {
2453 if (chip->state != FL_ERASING) {
2454 /* Someone's suspended the erase. Sleep */
2455 set_current_state(TASK_UNINTERRUPTIBLE);
2456 add_wait_queue(&chip->wq, &wait);
2457 mutex_unlock(&chip->mutex);
2458 schedule();
2459 remove_wait_queue(&chip->wq, &wait);
2460 mutex_lock(&chip->mutex);
2461 continue;
2462 }
2463 if (chip->erase_suspended) {
2464 /* This erase was suspended and resumed.
2465 Adjust the timeout */
2466 timeo = jiffies + (HZ*20); /* FIXME */
2467 chip->erase_suspended = 0;
2468 }
2469
2470 if (chip_good(map, chip, adr, map_word_ff(map)))
2471 break;
2472
2473 if (time_after(jiffies, timeo)) {
2474 printk(KERN_WARNING "MTD %s(): software timeout\n",
2475 __func__);
2476 ret = -EIO;
2477 break;
2478 }
2479
2480 /* Latency issues. Drop the lock, wait a while and retry */
2481 UDELAY(map, chip, adr, 1000000/HZ);
2482 }
2483 /* Did we succeed? */
2484 if (ret) {
2485 /* reset on all failures. */
2486 cfi_check_err_status(map, chip, adr);
2487 map_write(map, CMD(0xF0), chip->start);
2488 /* FIXME - should have reset delay before continuing */
2489
2490 if (++retry_cnt <= MAX_RETRIES) {
2491 ret = 0;
2492 goto retry;
2493 }
2494 }
2495
2496 chip->state = FL_READY;
2497 xip_enable(map, chip, adr);
2498 DISABLE_VPP(map);
2499 put_chip(map, chip, adr);
2500 mutex_unlock(&chip->mutex);
2501
2502 return ret;
2503 }
2504
2505
do_erase_oneblock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2506 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2507 {
2508 struct cfi_private *cfi = map->fldrv_priv;
2509 unsigned long timeo = jiffies + HZ;
2510 DECLARE_WAITQUEUE(wait, current);
2511 int ret = 0;
2512 int retry_cnt = 0;
2513
2514 adr += chip->start;
2515
2516 mutex_lock(&chip->mutex);
2517 ret = get_chip(map, chip, adr, FL_ERASING);
2518 if (ret) {
2519 mutex_unlock(&chip->mutex);
2520 return ret;
2521 }
2522
2523 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2524 __func__, adr);
2525
2526 XIP_INVAL_CACHED_RANGE(map, adr, len);
2527 ENABLE_VPP(map);
2528 xip_disable(map, chip, adr);
2529
2530 retry:
2531 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2532 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2533 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2534 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2535 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2536 map_write(map, cfi->sector_erase_cmd, adr);
2537
2538 chip->state = FL_ERASING;
2539 chip->erase_suspended = 0;
2540 chip->in_progress_block_addr = adr;
2541 chip->in_progress_block_mask = ~(len - 1);
2542
2543 INVALIDATE_CACHE_UDELAY(map, chip,
2544 adr, len,
2545 chip->erase_time*500);
2546
2547 timeo = jiffies + (HZ*20);
2548
2549 for (;;) {
2550 if (chip->state != FL_ERASING) {
2551 /* Someone's suspended the erase. Sleep */
2552 set_current_state(TASK_UNINTERRUPTIBLE);
2553 add_wait_queue(&chip->wq, &wait);
2554 mutex_unlock(&chip->mutex);
2555 schedule();
2556 remove_wait_queue(&chip->wq, &wait);
2557 mutex_lock(&chip->mutex);
2558 continue;
2559 }
2560 if (chip->erase_suspended) {
2561 /* This erase was suspended and resumed.
2562 Adjust the timeout */
2563 timeo = jiffies + (HZ*20); /* FIXME */
2564 chip->erase_suspended = 0;
2565 }
2566
2567 if (chip_good(map, chip, adr, map_word_ff(map)))
2568 break;
2569
2570 if (time_after(jiffies, timeo)) {
2571 printk(KERN_WARNING "MTD %s(): software timeout\n",
2572 __func__);
2573 ret = -EIO;
2574 break;
2575 }
2576
2577 /* Latency issues. Drop the lock, wait a while and retry */
2578 UDELAY(map, chip, adr, 1000000/HZ);
2579 }
2580 /* Did we succeed? */
2581 if (ret) {
2582 /* reset on all failures. */
2583 cfi_check_err_status(map, chip, adr);
2584 map_write(map, CMD(0xF0), chip->start);
2585 /* FIXME - should have reset delay before continuing */
2586
2587 if (++retry_cnt <= MAX_RETRIES) {
2588 ret = 0;
2589 goto retry;
2590 }
2591 }
2592
2593 chip->state = FL_READY;
2594 xip_enable(map, chip, adr);
2595 DISABLE_VPP(map);
2596 put_chip(map, chip, adr);
2597 mutex_unlock(&chip->mutex);
2598 return ret;
2599 }
2600
2601
cfi_amdstd_erase_varsize(struct mtd_info * mtd,struct erase_info * instr)2602 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2603 {
2604 return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2605 instr->len, NULL);
2606 }
2607
2608
cfi_amdstd_erase_chip(struct mtd_info * mtd,struct erase_info * instr)2609 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2610 {
2611 struct map_info *map = mtd->priv;
2612 struct cfi_private *cfi = map->fldrv_priv;
2613
2614 if (instr->addr != 0)
2615 return -EINVAL;
2616
2617 if (instr->len != mtd->size)
2618 return -EINVAL;
2619
2620 return do_erase_chip(map, &cfi->chips[0]);
2621 }
2622
do_atmel_lock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2623 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2624 unsigned long adr, int len, void *thunk)
2625 {
2626 struct cfi_private *cfi = map->fldrv_priv;
2627 int ret;
2628
2629 mutex_lock(&chip->mutex);
2630 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2631 if (ret)
2632 goto out_unlock;
2633 chip->state = FL_LOCKING;
2634
2635 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2636
2637 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2638 cfi->device_type, NULL);
2639 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2640 cfi->device_type, NULL);
2641 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2642 cfi->device_type, NULL);
2643 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2644 cfi->device_type, NULL);
2645 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2646 cfi->device_type, NULL);
2647 map_write(map, CMD(0x40), chip->start + adr);
2648
2649 chip->state = FL_READY;
2650 put_chip(map, chip, adr + chip->start);
2651 ret = 0;
2652
2653 out_unlock:
2654 mutex_unlock(&chip->mutex);
2655 return ret;
2656 }
2657
do_atmel_unlock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2658 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2659 unsigned long adr, int len, void *thunk)
2660 {
2661 struct cfi_private *cfi = map->fldrv_priv;
2662 int ret;
2663
2664 mutex_lock(&chip->mutex);
2665 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2666 if (ret)
2667 goto out_unlock;
2668 chip->state = FL_UNLOCKING;
2669
2670 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2671
2672 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2673 cfi->device_type, NULL);
2674 map_write(map, CMD(0x70), adr);
2675
2676 chip->state = FL_READY;
2677 put_chip(map, chip, adr + chip->start);
2678 ret = 0;
2679
2680 out_unlock:
2681 mutex_unlock(&chip->mutex);
2682 return ret;
2683 }
2684
cfi_atmel_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2685 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2686 {
2687 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2688 }
2689
cfi_atmel_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2690 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2691 {
2692 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2693 }
2694
2695 /*
2696 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2697 */
2698
2699 struct ppb_lock {
2700 struct flchip *chip;
2701 unsigned long adr;
2702 int locked;
2703 };
2704
2705 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
2706 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
2707 #define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
2708
do_ppb_xxlock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2709 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2710 struct flchip *chip,
2711 unsigned long adr, int len, void *thunk)
2712 {
2713 struct cfi_private *cfi = map->fldrv_priv;
2714 unsigned long timeo;
2715 int ret;
2716
2717 adr += chip->start;
2718 mutex_lock(&chip->mutex);
2719 ret = get_chip(map, chip, adr, FL_LOCKING);
2720 if (ret) {
2721 mutex_unlock(&chip->mutex);
2722 return ret;
2723 }
2724
2725 pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2726
2727 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2728 cfi->device_type, NULL);
2729 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2730 cfi->device_type, NULL);
2731 /* PPB entry command */
2732 cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2733 cfi->device_type, NULL);
2734
2735 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2736 chip->state = FL_LOCKING;
2737 map_write(map, CMD(0xA0), adr);
2738 map_write(map, CMD(0x00), adr);
2739 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2740 /*
2741 * Unlocking of one specific sector is not supported, so we
2742 * have to unlock all sectors of this device instead
2743 */
2744 chip->state = FL_UNLOCKING;
2745 map_write(map, CMD(0x80), chip->start);
2746 map_write(map, CMD(0x30), chip->start);
2747 } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2748 chip->state = FL_JEDEC_QUERY;
2749 /* Return locked status: 0->locked, 1->unlocked */
2750 ret = !cfi_read_query(map, adr);
2751 } else
2752 BUG();
2753
2754 /*
2755 * Wait for some time as unlocking of all sectors takes quite long
2756 */
2757 timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */
2758 for (;;) {
2759 if (chip_ready(map, chip, adr))
2760 break;
2761
2762 if (time_after(jiffies, timeo)) {
2763 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2764 ret = -EIO;
2765 break;
2766 }
2767
2768 UDELAY(map, chip, adr, 1);
2769 }
2770
2771 /* Exit BC commands */
2772 map_write(map, CMD(0x90), chip->start);
2773 map_write(map, CMD(0x00), chip->start);
2774
2775 chip->state = FL_READY;
2776 put_chip(map, chip, adr);
2777 mutex_unlock(&chip->mutex);
2778
2779 return ret;
2780 }
2781
cfi_ppb_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2782 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2783 uint64_t len)
2784 {
2785 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2786 DO_XXLOCK_ONEBLOCK_LOCK);
2787 }
2788
cfi_ppb_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2789 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2790 uint64_t len)
2791 {
2792 struct mtd_erase_region_info *regions = mtd->eraseregions;
2793 struct map_info *map = mtd->priv;
2794 struct cfi_private *cfi = map->fldrv_priv;
2795 struct ppb_lock *sect;
2796 unsigned long adr;
2797 loff_t offset;
2798 uint64_t length;
2799 int chipnum;
2800 int i;
2801 int sectors;
2802 int ret;
2803 int max_sectors;
2804
2805 /*
2806 * PPB unlocking always unlocks all sectors of the flash chip.
2807 * We need to re-lock all previously locked sectors. So lets
2808 * first check the locking status of all sectors and save
2809 * it for future use.
2810 */
2811 max_sectors = 0;
2812 for (i = 0; i < mtd->numeraseregions; i++)
2813 max_sectors += regions[i].numblocks;
2814
2815 sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL);
2816 if (!sect)
2817 return -ENOMEM;
2818
2819 /*
2820 * This code to walk all sectors is a slightly modified version
2821 * of the cfi_varsize_frob() code.
2822 */
2823 i = 0;
2824 chipnum = 0;
2825 adr = 0;
2826 sectors = 0;
2827 offset = 0;
2828 length = mtd->size;
2829
2830 while (length) {
2831 int size = regions[i].erasesize;
2832
2833 /*
2834 * Only test sectors that shall not be unlocked. The other
2835 * sectors shall be unlocked, so lets keep their locking
2836 * status at "unlocked" (locked=0) for the final re-locking.
2837 */
2838 if ((offset < ofs) || (offset >= (ofs + len))) {
2839 sect[sectors].chip = &cfi->chips[chipnum];
2840 sect[sectors].adr = adr;
2841 sect[sectors].locked = do_ppb_xxlock(
2842 map, &cfi->chips[chipnum], adr, 0,
2843 DO_XXLOCK_ONEBLOCK_GETLOCK);
2844 }
2845
2846 adr += size;
2847 offset += size;
2848 length -= size;
2849
2850 if (offset == regions[i].offset + size * regions[i].numblocks)
2851 i++;
2852
2853 if (adr >> cfi->chipshift) {
2854 if (offset >= (ofs + len))
2855 break;
2856 adr = 0;
2857 chipnum++;
2858
2859 if (chipnum >= cfi->numchips)
2860 break;
2861 }
2862
2863 sectors++;
2864 if (sectors >= max_sectors) {
2865 printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2866 max_sectors);
2867 kfree(sect);
2868 return -EINVAL;
2869 }
2870 }
2871
2872 /* Now unlock the whole chip */
2873 ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2874 DO_XXLOCK_ONEBLOCK_UNLOCK);
2875 if (ret) {
2876 kfree(sect);
2877 return ret;
2878 }
2879
2880 /*
2881 * PPB unlocking always unlocks all sectors of the flash chip.
2882 * We need to re-lock all previously locked sectors.
2883 */
2884 for (i = 0; i < sectors; i++) {
2885 if (sect[i].locked)
2886 do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2887 DO_XXLOCK_ONEBLOCK_LOCK);
2888 }
2889
2890 kfree(sect);
2891 return ret;
2892 }
2893
cfi_ppb_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2894 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2895 uint64_t len)
2896 {
2897 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2898 DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2899 }
2900
cfi_amdstd_sync(struct mtd_info * mtd)2901 static void cfi_amdstd_sync (struct mtd_info *mtd)
2902 {
2903 struct map_info *map = mtd->priv;
2904 struct cfi_private *cfi = map->fldrv_priv;
2905 int i;
2906 struct flchip *chip;
2907 int ret = 0;
2908 DECLARE_WAITQUEUE(wait, current);
2909
2910 for (i=0; !ret && i<cfi->numchips; i++) {
2911 chip = &cfi->chips[i];
2912
2913 retry:
2914 mutex_lock(&chip->mutex);
2915
2916 switch(chip->state) {
2917 case FL_READY:
2918 case FL_STATUS:
2919 case FL_CFI_QUERY:
2920 case FL_JEDEC_QUERY:
2921 chip->oldstate = chip->state;
2922 chip->state = FL_SYNCING;
2923 /* No need to wake_up() on this state change -
2924 * as the whole point is that nobody can do anything
2925 * with the chip now anyway.
2926 */
2927 /* fall through */
2928 case FL_SYNCING:
2929 mutex_unlock(&chip->mutex);
2930 break;
2931
2932 default:
2933 /* Not an idle state */
2934 set_current_state(TASK_UNINTERRUPTIBLE);
2935 add_wait_queue(&chip->wq, &wait);
2936
2937 mutex_unlock(&chip->mutex);
2938
2939 schedule();
2940
2941 remove_wait_queue(&chip->wq, &wait);
2942
2943 goto retry;
2944 }
2945 }
2946
2947 /* Unlock the chips again */
2948
2949 for (i--; i >=0; i--) {
2950 chip = &cfi->chips[i];
2951
2952 mutex_lock(&chip->mutex);
2953
2954 if (chip->state == FL_SYNCING) {
2955 chip->state = chip->oldstate;
2956 wake_up(&chip->wq);
2957 }
2958 mutex_unlock(&chip->mutex);
2959 }
2960 }
2961
2962
cfi_amdstd_suspend(struct mtd_info * mtd)2963 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2964 {
2965 struct map_info *map = mtd->priv;
2966 struct cfi_private *cfi = map->fldrv_priv;
2967 int i;
2968 struct flchip *chip;
2969 int ret = 0;
2970
2971 for (i=0; !ret && i<cfi->numchips; i++) {
2972 chip = &cfi->chips[i];
2973
2974 mutex_lock(&chip->mutex);
2975
2976 switch(chip->state) {
2977 case FL_READY:
2978 case FL_STATUS:
2979 case FL_CFI_QUERY:
2980 case FL_JEDEC_QUERY:
2981 chip->oldstate = chip->state;
2982 chip->state = FL_PM_SUSPENDED;
2983 /* No need to wake_up() on this state change -
2984 * as the whole point is that nobody can do anything
2985 * with the chip now anyway.
2986 */
2987 case FL_PM_SUSPENDED:
2988 break;
2989
2990 default:
2991 ret = -EAGAIN;
2992 break;
2993 }
2994 mutex_unlock(&chip->mutex);
2995 }
2996
2997 /* Unlock the chips again */
2998
2999 if (ret) {
3000 for (i--; i >=0; i--) {
3001 chip = &cfi->chips[i];
3002
3003 mutex_lock(&chip->mutex);
3004
3005 if (chip->state == FL_PM_SUSPENDED) {
3006 chip->state = chip->oldstate;
3007 wake_up(&chip->wq);
3008 }
3009 mutex_unlock(&chip->mutex);
3010 }
3011 }
3012
3013 return ret;
3014 }
3015
3016
cfi_amdstd_resume(struct mtd_info * mtd)3017 static void cfi_amdstd_resume(struct mtd_info *mtd)
3018 {
3019 struct map_info *map = mtd->priv;
3020 struct cfi_private *cfi = map->fldrv_priv;
3021 int i;
3022 struct flchip *chip;
3023
3024 for (i=0; i<cfi->numchips; i++) {
3025
3026 chip = &cfi->chips[i];
3027
3028 mutex_lock(&chip->mutex);
3029
3030 if (chip->state == FL_PM_SUSPENDED) {
3031 chip->state = FL_READY;
3032 map_write(map, CMD(0xF0), chip->start);
3033 wake_up(&chip->wq);
3034 }
3035 else
3036 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
3037
3038 mutex_unlock(&chip->mutex);
3039 }
3040 }
3041
3042
3043 /*
3044 * Ensure that the flash device is put back into read array mode before
3045 * unloading the driver or rebooting. On some systems, rebooting while
3046 * the flash is in query/program/erase mode will prevent the CPU from
3047 * fetching the bootloader code, requiring a hard reset or power cycle.
3048 */
cfi_amdstd_reset(struct mtd_info * mtd)3049 static int cfi_amdstd_reset(struct mtd_info *mtd)
3050 {
3051 struct map_info *map = mtd->priv;
3052 struct cfi_private *cfi = map->fldrv_priv;
3053 int i, ret;
3054 struct flchip *chip;
3055
3056 for (i = 0; i < cfi->numchips; i++) {
3057
3058 chip = &cfi->chips[i];
3059
3060 mutex_lock(&chip->mutex);
3061
3062 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
3063 if (!ret) {
3064 map_write(map, CMD(0xF0), chip->start);
3065 chip->state = FL_SHUTDOWN;
3066 put_chip(map, chip, chip->start);
3067 }
3068
3069 mutex_unlock(&chip->mutex);
3070 }
3071
3072 return 0;
3073 }
3074
3075
cfi_amdstd_reboot(struct notifier_block * nb,unsigned long val,void * v)3076 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
3077 void *v)
3078 {
3079 struct mtd_info *mtd;
3080
3081 mtd = container_of(nb, struct mtd_info, reboot_notifier);
3082 cfi_amdstd_reset(mtd);
3083 return NOTIFY_DONE;
3084 }
3085
3086
cfi_amdstd_destroy(struct mtd_info * mtd)3087 static void cfi_amdstd_destroy(struct mtd_info *mtd)
3088 {
3089 struct map_info *map = mtd->priv;
3090 struct cfi_private *cfi = map->fldrv_priv;
3091
3092 cfi_amdstd_reset(mtd);
3093 unregister_reboot_notifier(&mtd->reboot_notifier);
3094 kfree(cfi->cmdset_priv);
3095 kfree(cfi->cfiq);
3096 kfree(cfi);
3097 kfree(mtd->eraseregions);
3098 }
3099
3100 MODULE_LICENSE("GPL");
3101 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
3102 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
3103 MODULE_ALIAS("cfi_cmdset_0006");
3104 MODULE_ALIAS("cfi_cmdset_0701");
3105