1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2013-2014, Intel Corporation. All rights reserved.
4 * Intel Management Engine Interface (Intel MEI) Linux driver
5 */
6
7 #include <linux/pci.h>
8 #include <linux/jiffies.h>
9 #include <linux/ktime.h>
10 #include <linux/delay.h>
11 #include <linux/kthread.h>
12 #include <linux/interrupt.h>
13 #include <linux/pm_runtime.h>
14
15 #include <linux/mei.h>
16
17 #include "mei_dev.h"
18 #include "hw-txe.h"
19 #include "client.h"
20 #include "hbm.h"
21
22 #include "mei-trace.h"
23
24 #define TXE_HBUF_DEPTH (PAYLOAD_SIZE / MEI_SLOT_SIZE)
25
26 /**
27 * mei_txe_reg_read - Reads 32bit data from the txe device
28 *
29 * @base_addr: registers base address
30 * @offset: register offset
31 *
32 * Return: register value
33 */
mei_txe_reg_read(void __iomem * base_addr,unsigned long offset)34 static inline u32 mei_txe_reg_read(void __iomem *base_addr,
35 unsigned long offset)
36 {
37 return ioread32(base_addr + offset);
38 }
39
40 /**
41 * mei_txe_reg_write - Writes 32bit data to the txe device
42 *
43 * @base_addr: registers base address
44 * @offset: register offset
45 * @value: the value to write
46 */
mei_txe_reg_write(void __iomem * base_addr,unsigned long offset,u32 value)47 static inline void mei_txe_reg_write(void __iomem *base_addr,
48 unsigned long offset, u32 value)
49 {
50 iowrite32(value, base_addr + offset);
51 }
52
53 /**
54 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
55 *
56 * @hw: the txe hardware structure
57 * @offset: register offset
58 *
59 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
60 *
61 * Return: register value
62 */
mei_txe_sec_reg_read_silent(struct mei_txe_hw * hw,unsigned long offset)63 static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
64 unsigned long offset)
65 {
66 return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
67 }
68
69 /**
70 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
71 *
72 * @hw: the txe hardware structure
73 * @offset: register offset
74 *
75 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
76 *
77 * Return: register value
78 */
mei_txe_sec_reg_read(struct mei_txe_hw * hw,unsigned long offset)79 static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
80 unsigned long offset)
81 {
82 WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
83 return mei_txe_sec_reg_read_silent(hw, offset);
84 }
85 /**
86 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
87 * doesn't check for aliveness
88 *
89 * @hw: the txe hardware structure
90 * @offset: register offset
91 * @value: value to write
92 *
93 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
94 */
mei_txe_sec_reg_write_silent(struct mei_txe_hw * hw,unsigned long offset,u32 value)95 static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
96 unsigned long offset, u32 value)
97 {
98 mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
99 }
100
101 /**
102 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
103 *
104 * @hw: the txe hardware structure
105 * @offset: register offset
106 * @value: value to write
107 *
108 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
109 */
mei_txe_sec_reg_write(struct mei_txe_hw * hw,unsigned long offset,u32 value)110 static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
111 unsigned long offset, u32 value)
112 {
113 WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
114 mei_txe_sec_reg_write_silent(hw, offset, value);
115 }
116 /**
117 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
118 *
119 * @hw: the txe hardware structure
120 * @offset: offset from which to read the data
121 *
122 * Return: the byte read.
123 */
mei_txe_br_reg_read(struct mei_txe_hw * hw,unsigned long offset)124 static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
125 unsigned long offset)
126 {
127 return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
128 }
129
130 /**
131 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
132 *
133 * @hw: the txe hardware structure
134 * @offset: offset from which to write the data
135 * @value: the byte to write
136 */
mei_txe_br_reg_write(struct mei_txe_hw * hw,unsigned long offset,u32 value)137 static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
138 unsigned long offset, u32 value)
139 {
140 mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
141 }
142
143 /**
144 * mei_txe_aliveness_set - request for aliveness change
145 *
146 * @dev: the device structure
147 * @req: requested aliveness value
148 *
149 * Request for aliveness change and returns true if the change is
150 * really needed and false if aliveness is already
151 * in the requested state
152 *
153 * Locking: called under "dev->device_lock" lock
154 *
155 * Return: true if request was send
156 */
mei_txe_aliveness_set(struct mei_device * dev,u32 req)157 static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
158 {
159
160 struct mei_txe_hw *hw = to_txe_hw(dev);
161 bool do_req = hw->aliveness != req;
162
163 dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
164 hw->aliveness, req);
165 if (do_req) {
166 dev->pg_event = MEI_PG_EVENT_WAIT;
167 mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
168 }
169 return do_req;
170 }
171
172
173 /**
174 * mei_txe_aliveness_req_get - get aliveness requested register value
175 *
176 * @dev: the device structure
177 *
178 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
179 * from HICR_HOST_ALIVENESS_REQ register value
180 *
181 * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
182 */
mei_txe_aliveness_req_get(struct mei_device * dev)183 static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
184 {
185 struct mei_txe_hw *hw = to_txe_hw(dev);
186 u32 reg;
187
188 reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
189 return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
190 }
191
192 /**
193 * mei_txe_aliveness_get - get aliveness response register value
194 *
195 * @dev: the device structure
196 *
197 * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
198 * register
199 */
mei_txe_aliveness_get(struct mei_device * dev)200 static u32 mei_txe_aliveness_get(struct mei_device *dev)
201 {
202 struct mei_txe_hw *hw = to_txe_hw(dev);
203 u32 reg;
204
205 reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
206 return reg & HICR_HOST_ALIVENESS_RESP_ACK;
207 }
208
209 /**
210 * mei_txe_aliveness_poll - waits for aliveness to settle
211 *
212 * @dev: the device structure
213 * @expected: expected aliveness value
214 *
215 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
216 *
217 * Return: 0 if the expected value was received, -ETIME otherwise
218 */
mei_txe_aliveness_poll(struct mei_device * dev,u32 expected)219 static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
220 {
221 struct mei_txe_hw *hw = to_txe_hw(dev);
222 ktime_t stop, start;
223
224 start = ktime_get();
225 stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT));
226 do {
227 hw->aliveness = mei_txe_aliveness_get(dev);
228 if (hw->aliveness == expected) {
229 dev->pg_event = MEI_PG_EVENT_IDLE;
230 dev_dbg(dev->dev, "aliveness settled after %lld usecs\n",
231 ktime_to_us(ktime_sub(ktime_get(), start)));
232 return 0;
233 }
234 usleep_range(20, 50);
235 } while (ktime_before(ktime_get(), stop));
236
237 dev->pg_event = MEI_PG_EVENT_IDLE;
238 dev_err(dev->dev, "aliveness timed out\n");
239 return -ETIME;
240 }
241
242 /**
243 * mei_txe_aliveness_wait - waits for aliveness to settle
244 *
245 * @dev: the device structure
246 * @expected: expected aliveness value
247 *
248 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
249 *
250 * Return: 0 on success and < 0 otherwise
251 */
mei_txe_aliveness_wait(struct mei_device * dev,u32 expected)252 static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
253 {
254 struct mei_txe_hw *hw = to_txe_hw(dev);
255 const unsigned long timeout =
256 msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
257 long err;
258 int ret;
259
260 hw->aliveness = mei_txe_aliveness_get(dev);
261 if (hw->aliveness == expected)
262 return 0;
263
264 mutex_unlock(&dev->device_lock);
265 err = wait_event_timeout(hw->wait_aliveness_resp,
266 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
267 mutex_lock(&dev->device_lock);
268
269 hw->aliveness = mei_txe_aliveness_get(dev);
270 ret = hw->aliveness == expected ? 0 : -ETIME;
271
272 if (ret)
273 dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
274 err, hw->aliveness, dev->pg_event);
275 else
276 dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
277 jiffies_to_msecs(timeout - err),
278 hw->aliveness, dev->pg_event);
279
280 dev->pg_event = MEI_PG_EVENT_IDLE;
281 return ret;
282 }
283
284 /**
285 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
286 *
287 * @dev: the device structure
288 * @req: requested aliveness value
289 *
290 * Return: 0 on success and < 0 otherwise
291 */
mei_txe_aliveness_set_sync(struct mei_device * dev,u32 req)292 int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
293 {
294 if (mei_txe_aliveness_set(dev, req))
295 return mei_txe_aliveness_wait(dev, req);
296 return 0;
297 }
298
299 /**
300 * mei_txe_pg_in_transition - is device now in pg transition
301 *
302 * @dev: the device structure
303 *
304 * Return: true if in pg transition, false otherwise
305 */
mei_txe_pg_in_transition(struct mei_device * dev)306 static bool mei_txe_pg_in_transition(struct mei_device *dev)
307 {
308 return dev->pg_event == MEI_PG_EVENT_WAIT;
309 }
310
311 /**
312 * mei_txe_pg_is_enabled - detect if PG is supported by HW
313 *
314 * @dev: the device structure
315 *
316 * Return: true is pg supported, false otherwise
317 */
mei_txe_pg_is_enabled(struct mei_device * dev)318 static bool mei_txe_pg_is_enabled(struct mei_device *dev)
319 {
320 return true;
321 }
322
323 /**
324 * mei_txe_pg_state - translate aliveness register value
325 * to the mei power gating state
326 *
327 * @dev: the device structure
328 *
329 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
330 */
mei_txe_pg_state(struct mei_device * dev)331 static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
332 {
333 struct mei_txe_hw *hw = to_txe_hw(dev);
334
335 return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
336 }
337
338 /**
339 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
340 *
341 * @dev: the device structure
342 */
mei_txe_input_ready_interrupt_enable(struct mei_device * dev)343 static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
344 {
345 struct mei_txe_hw *hw = to_txe_hw(dev);
346 u32 hintmsk;
347 /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
348 hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
349 hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
350 mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
351 }
352
353 /**
354 * mei_txe_input_doorbell_set - sets bit 0 in
355 * SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
356 *
357 * @hw: the txe hardware structure
358 */
mei_txe_input_doorbell_set(struct mei_txe_hw * hw)359 static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
360 {
361 /* Clear the interrupt cause */
362 clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
363 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
364 }
365
366 /**
367 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
368 *
369 * @hw: the txe hardware structure
370 */
mei_txe_output_ready_set(struct mei_txe_hw * hw)371 static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
372 {
373 mei_txe_br_reg_write(hw,
374 SICR_SEC_IPC_OUTPUT_STATUS_REG,
375 SEC_IPC_OUTPUT_STATUS_RDY);
376 }
377
378 /**
379 * mei_txe_is_input_ready - check if TXE is ready for receiving data
380 *
381 * @dev: the device structure
382 *
383 * Return: true if INPUT STATUS READY bit is set
384 */
mei_txe_is_input_ready(struct mei_device * dev)385 static bool mei_txe_is_input_ready(struct mei_device *dev)
386 {
387 struct mei_txe_hw *hw = to_txe_hw(dev);
388 u32 status;
389
390 status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
391 return !!(SEC_IPC_INPUT_STATUS_RDY & status);
392 }
393
394 /**
395 * mei_txe_intr_clear - clear all interrupts
396 *
397 * @dev: the device structure
398 */
mei_txe_intr_clear(struct mei_device * dev)399 static inline void mei_txe_intr_clear(struct mei_device *dev)
400 {
401 struct mei_txe_hw *hw = to_txe_hw(dev);
402
403 mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
404 SEC_IPC_HOST_INT_STATUS_PENDING);
405 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
406 mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
407 }
408
409 /**
410 * mei_txe_intr_disable - disable all interrupts
411 *
412 * @dev: the device structure
413 */
mei_txe_intr_disable(struct mei_device * dev)414 static void mei_txe_intr_disable(struct mei_device *dev)
415 {
416 struct mei_txe_hw *hw = to_txe_hw(dev);
417
418 mei_txe_br_reg_write(hw, HHIER_REG, 0);
419 mei_txe_br_reg_write(hw, HIER_REG, 0);
420 }
421 /**
422 * mei_txe_intr_enable - enable all interrupts
423 *
424 * @dev: the device structure
425 */
mei_txe_intr_enable(struct mei_device * dev)426 static void mei_txe_intr_enable(struct mei_device *dev)
427 {
428 struct mei_txe_hw *hw = to_txe_hw(dev);
429
430 mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
431 mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
432 }
433
434 /**
435 * mei_txe_synchronize_irq - wait for pending IRQ handlers
436 *
437 * @dev: the device structure
438 */
mei_txe_synchronize_irq(struct mei_device * dev)439 static void mei_txe_synchronize_irq(struct mei_device *dev)
440 {
441 struct pci_dev *pdev = to_pci_dev(dev->dev);
442
443 synchronize_irq(pdev->irq);
444 }
445
446 /**
447 * mei_txe_pending_interrupts - check if there are pending interrupts
448 * only Aliveness, Input ready, and output doorbell are of relevance
449 *
450 * @dev: the device structure
451 *
452 * Checks if there are pending interrupts
453 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
454 *
455 * Return: true if there are pending interrupts
456 */
mei_txe_pending_interrupts(struct mei_device * dev)457 static bool mei_txe_pending_interrupts(struct mei_device *dev)
458 {
459
460 struct mei_txe_hw *hw = to_txe_hw(dev);
461 bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
462 TXE_INTR_ALIVENESS |
463 TXE_INTR_IN_READY |
464 TXE_INTR_OUT_DB));
465
466 if (ret) {
467 dev_dbg(dev->dev,
468 "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
469 !!(hw->intr_cause & TXE_INTR_IN_READY),
470 !!(hw->intr_cause & TXE_INTR_READINESS),
471 !!(hw->intr_cause & TXE_INTR_ALIVENESS),
472 !!(hw->intr_cause & TXE_INTR_OUT_DB));
473 }
474 return ret;
475 }
476
477 /**
478 * mei_txe_input_payload_write - write a dword to the host buffer
479 * at offset idx
480 *
481 * @dev: the device structure
482 * @idx: index in the host buffer
483 * @value: value
484 */
mei_txe_input_payload_write(struct mei_device * dev,unsigned long idx,u32 value)485 static void mei_txe_input_payload_write(struct mei_device *dev,
486 unsigned long idx, u32 value)
487 {
488 struct mei_txe_hw *hw = to_txe_hw(dev);
489
490 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
491 (idx * sizeof(u32)), value);
492 }
493
494 /**
495 * mei_txe_out_data_read - read dword from the device buffer
496 * at offset idx
497 *
498 * @dev: the device structure
499 * @idx: index in the device buffer
500 *
501 * Return: register value at index
502 */
mei_txe_out_data_read(const struct mei_device * dev,unsigned long idx)503 static u32 mei_txe_out_data_read(const struct mei_device *dev,
504 unsigned long idx)
505 {
506 struct mei_txe_hw *hw = to_txe_hw(dev);
507
508 return mei_txe_br_reg_read(hw,
509 BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
510 }
511
512 /* Readiness */
513
514 /**
515 * mei_txe_readiness_set_host_rdy - set host readiness bit
516 *
517 * @dev: the device structure
518 */
mei_txe_readiness_set_host_rdy(struct mei_device * dev)519 static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
520 {
521 struct mei_txe_hw *hw = to_txe_hw(dev);
522
523 mei_txe_br_reg_write(hw,
524 SICR_HOST_IPC_READINESS_REQ_REG,
525 SICR_HOST_IPC_READINESS_HOST_RDY);
526 }
527
528 /**
529 * mei_txe_readiness_clear - clear host readiness bit
530 *
531 * @dev: the device structure
532 */
mei_txe_readiness_clear(struct mei_device * dev)533 static void mei_txe_readiness_clear(struct mei_device *dev)
534 {
535 struct mei_txe_hw *hw = to_txe_hw(dev);
536
537 mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
538 SICR_HOST_IPC_READINESS_RDY_CLR);
539 }
540 /**
541 * mei_txe_readiness_get - Reads and returns
542 * the HICR_SEC_IPC_READINESS register value
543 *
544 * @dev: the device structure
545 *
546 * Return: the HICR_SEC_IPC_READINESS register value
547 */
mei_txe_readiness_get(struct mei_device * dev)548 static u32 mei_txe_readiness_get(struct mei_device *dev)
549 {
550 struct mei_txe_hw *hw = to_txe_hw(dev);
551
552 return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
553 }
554
555
556 /**
557 * mei_txe_readiness_is_sec_rdy - check readiness
558 * for HICR_SEC_IPC_READINESS_SEC_RDY
559 *
560 * @readiness: cached readiness state
561 *
562 * Return: true if readiness bit is set
563 */
mei_txe_readiness_is_sec_rdy(u32 readiness)564 static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
565 {
566 return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
567 }
568
569 /**
570 * mei_txe_hw_is_ready - check if the hw is ready
571 *
572 * @dev: the device structure
573 *
574 * Return: true if sec is ready
575 */
mei_txe_hw_is_ready(struct mei_device * dev)576 static bool mei_txe_hw_is_ready(struct mei_device *dev)
577 {
578 u32 readiness = mei_txe_readiness_get(dev);
579
580 return mei_txe_readiness_is_sec_rdy(readiness);
581 }
582
583 /**
584 * mei_txe_host_is_ready - check if the host is ready
585 *
586 * @dev: the device structure
587 *
588 * Return: true if host is ready
589 */
mei_txe_host_is_ready(struct mei_device * dev)590 static inline bool mei_txe_host_is_ready(struct mei_device *dev)
591 {
592 struct mei_txe_hw *hw = to_txe_hw(dev);
593 u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
594
595 return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
596 }
597
598 /**
599 * mei_txe_readiness_wait - wait till readiness settles
600 *
601 * @dev: the device structure
602 *
603 * Return: 0 on success and -ETIME on timeout
604 */
mei_txe_readiness_wait(struct mei_device * dev)605 static int mei_txe_readiness_wait(struct mei_device *dev)
606 {
607 if (mei_txe_hw_is_ready(dev))
608 return 0;
609
610 mutex_unlock(&dev->device_lock);
611 wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
612 msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
613 mutex_lock(&dev->device_lock);
614 if (!dev->recvd_hw_ready) {
615 dev_err(dev->dev, "wait for readiness failed\n");
616 return -ETIME;
617 }
618
619 dev->recvd_hw_ready = false;
620 return 0;
621 }
622
623 static const struct mei_fw_status mei_txe_fw_sts = {
624 .count = 2,
625 .status[0] = PCI_CFG_TXE_FW_STS0,
626 .status[1] = PCI_CFG_TXE_FW_STS1
627 };
628
629 /**
630 * mei_txe_fw_status - read fw status register from pci config space
631 *
632 * @dev: mei device
633 * @fw_status: fw status register values
634 *
635 * Return: 0 on success, error otherwise
636 */
mei_txe_fw_status(struct mei_device * dev,struct mei_fw_status * fw_status)637 static int mei_txe_fw_status(struct mei_device *dev,
638 struct mei_fw_status *fw_status)
639 {
640 const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
641 struct pci_dev *pdev = to_pci_dev(dev->dev);
642 int ret;
643 int i;
644
645 if (!fw_status)
646 return -EINVAL;
647
648 fw_status->count = fw_src->count;
649 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
650 ret = pci_read_config_dword(pdev, fw_src->status[i],
651 &fw_status->status[i]);
652 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
653 fw_src->status[i],
654 fw_status->status[i]);
655 if (ret)
656 return ret;
657 }
658
659 return 0;
660 }
661
662 /**
663 * mei_txe_hw_config - configure hardware at the start of the devices
664 *
665 * @dev: the device structure
666 *
667 * Configure hardware at the start of the device should be done only
668 * once at the device probe time
669 */
mei_txe_hw_config(struct mei_device * dev)670 static void mei_txe_hw_config(struct mei_device *dev)
671 {
672
673 struct mei_txe_hw *hw = to_txe_hw(dev);
674
675 hw->aliveness = mei_txe_aliveness_get(dev);
676 hw->readiness = mei_txe_readiness_get(dev);
677
678 dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
679 hw->aliveness, hw->readiness);
680 }
681
682 /**
683 * mei_txe_write - writes a message to device.
684 *
685 * @dev: the device structure
686 * @hdr: header of message
687 * @hdr_len: header length in bytes - must multiplication of a slot (4bytes)
688 * @data: payload
689 * @data_len: paylead length in bytes
690 *
691 * Return: 0 if success, < 0 - otherwise.
692 */
mei_txe_write(struct mei_device * dev,const void * hdr,size_t hdr_len,const void * data,size_t data_len)693 static int mei_txe_write(struct mei_device *dev,
694 const void *hdr, size_t hdr_len,
695 const void *data, size_t data_len)
696 {
697 struct mei_txe_hw *hw = to_txe_hw(dev);
698 unsigned long rem;
699 const u32 *reg_buf;
700 u32 slots = TXE_HBUF_DEPTH;
701 u32 dw_cnt;
702 unsigned long i, j;
703
704 if (WARN_ON(!hdr || !data || hdr_len & 0x3))
705 return -EINVAL;
706
707 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
708
709 dw_cnt = mei_data2slots(hdr_len + data_len);
710 if (dw_cnt > slots)
711 return -EMSGSIZE;
712
713 if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
714 return -EAGAIN;
715
716 /* Enable Input Ready Interrupt. */
717 mei_txe_input_ready_interrupt_enable(dev);
718
719 if (!mei_txe_is_input_ready(dev)) {
720 char fw_sts_str[MEI_FW_STATUS_STR_SZ];
721
722 mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ);
723 dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
724 return -EAGAIN;
725 }
726
727 reg_buf = hdr;
728 for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
729 mei_txe_input_payload_write(dev, i, reg_buf[i]);
730
731 reg_buf = data;
732 for (j = 0; j < data_len / MEI_SLOT_SIZE; j++)
733 mei_txe_input_payload_write(dev, i + j, reg_buf[j]);
734
735 rem = data_len & 0x3;
736 if (rem > 0) {
737 u32 reg = 0;
738
739 memcpy(®, (const u8 *)data + data_len - rem, rem);
740 mei_txe_input_payload_write(dev, i + j, reg);
741 }
742
743 /* after each write the whole buffer is consumed */
744 hw->slots = 0;
745
746 /* Set Input-Doorbell */
747 mei_txe_input_doorbell_set(hw);
748
749 return 0;
750 }
751
752 /**
753 * mei_txe_hbuf_depth - mimics the me hbuf circular buffer
754 *
755 * @dev: the device structure
756 *
757 * Return: the TXE_HBUF_DEPTH
758 */
mei_txe_hbuf_depth(const struct mei_device * dev)759 static u32 mei_txe_hbuf_depth(const struct mei_device *dev)
760 {
761 return TXE_HBUF_DEPTH;
762 }
763
764 /**
765 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
766 *
767 * @dev: the device structure
768 *
769 * Return: always TXE_HBUF_DEPTH
770 */
mei_txe_hbuf_empty_slots(struct mei_device * dev)771 static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
772 {
773 struct mei_txe_hw *hw = to_txe_hw(dev);
774
775 return hw->slots;
776 }
777
778 /**
779 * mei_txe_count_full_read_slots - mimics the me device circular buffer
780 *
781 * @dev: the device structure
782 *
783 * Return: always buffer size in dwords count
784 */
mei_txe_count_full_read_slots(struct mei_device * dev)785 static int mei_txe_count_full_read_slots(struct mei_device *dev)
786 {
787 /* read buffers has static size */
788 return TXE_HBUF_DEPTH;
789 }
790
791 /**
792 * mei_txe_read_hdr - read message header which is always in 4 first bytes
793 *
794 * @dev: the device structure
795 *
796 * Return: mei message header
797 */
798
mei_txe_read_hdr(const struct mei_device * dev)799 static u32 mei_txe_read_hdr(const struct mei_device *dev)
800 {
801 return mei_txe_out_data_read(dev, 0);
802 }
803 /**
804 * mei_txe_read - reads a message from the txe device.
805 *
806 * @dev: the device structure
807 * @buf: message buffer will be written
808 * @len: message size will be read
809 *
810 * Return: -EINVAL on error wrong argument and 0 on success
811 */
mei_txe_read(struct mei_device * dev,unsigned char * buf,unsigned long len)812 static int mei_txe_read(struct mei_device *dev,
813 unsigned char *buf, unsigned long len)
814 {
815
816 struct mei_txe_hw *hw = to_txe_hw(dev);
817 u32 *reg_buf, reg;
818 u32 rem;
819 u32 i;
820
821 if (WARN_ON(!buf || !len))
822 return -EINVAL;
823
824 reg_buf = (u32 *)buf;
825 rem = len & 0x3;
826
827 dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
828 len, mei_txe_out_data_read(dev, 0));
829
830 for (i = 0; i < len / MEI_SLOT_SIZE; i++) {
831 /* skip header: index starts from 1 */
832 reg = mei_txe_out_data_read(dev, i + 1);
833 dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
834 *reg_buf++ = reg;
835 }
836
837 if (rem) {
838 reg = mei_txe_out_data_read(dev, i + 1);
839 memcpy(reg_buf, ®, rem);
840 }
841
842 mei_txe_output_ready_set(hw);
843 return 0;
844 }
845
846 /**
847 * mei_txe_hw_reset - resets host and fw.
848 *
849 * @dev: the device structure
850 * @intr_enable: if interrupt should be enabled after reset.
851 *
852 * Return: 0 on success and < 0 in case of error
853 */
mei_txe_hw_reset(struct mei_device * dev,bool intr_enable)854 static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
855 {
856 struct mei_txe_hw *hw = to_txe_hw(dev);
857
858 u32 aliveness_req;
859 /*
860 * read input doorbell to ensure consistency between Bridge and SeC
861 * return value might be garbage return
862 */
863 (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
864
865 aliveness_req = mei_txe_aliveness_req_get(dev);
866 hw->aliveness = mei_txe_aliveness_get(dev);
867
868 /* Disable interrupts in this stage we will poll */
869 mei_txe_intr_disable(dev);
870
871 /*
872 * If Aliveness Request and Aliveness Response are not equal then
873 * wait for them to be equal
874 * Since we might have interrupts disabled - poll for it
875 */
876 if (aliveness_req != hw->aliveness)
877 if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
878 dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
879 return -EIO;
880 }
881
882 /*
883 * If Aliveness Request and Aliveness Response are set then clear them
884 */
885 if (aliveness_req) {
886 mei_txe_aliveness_set(dev, 0);
887 if (mei_txe_aliveness_poll(dev, 0) < 0) {
888 dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
889 return -EIO;
890 }
891 }
892
893 /*
894 * Set readiness RDY_CLR bit
895 */
896 mei_txe_readiness_clear(dev);
897
898 return 0;
899 }
900
901 /**
902 * mei_txe_hw_start - start the hardware after reset
903 *
904 * @dev: the device structure
905 *
906 * Return: 0 on success an error code otherwise
907 */
mei_txe_hw_start(struct mei_device * dev)908 static int mei_txe_hw_start(struct mei_device *dev)
909 {
910 struct mei_txe_hw *hw = to_txe_hw(dev);
911 int ret;
912
913 u32 hisr;
914
915 /* bring back interrupts */
916 mei_txe_intr_enable(dev);
917
918 ret = mei_txe_readiness_wait(dev);
919 if (ret < 0) {
920 dev_err(dev->dev, "waiting for readiness failed\n");
921 return ret;
922 }
923
924 /*
925 * If HISR.INT2_STS interrupt status bit is set then clear it.
926 */
927 hisr = mei_txe_br_reg_read(hw, HISR_REG);
928 if (hisr & HISR_INT_2_STS)
929 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
930
931 /* Clear the interrupt cause of OutputDoorbell */
932 clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
933
934 ret = mei_txe_aliveness_set_sync(dev, 1);
935 if (ret < 0) {
936 dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
937 return ret;
938 }
939
940 pm_runtime_set_active(dev->dev);
941
942 /* enable input ready interrupts:
943 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
944 */
945 mei_txe_input_ready_interrupt_enable(dev);
946
947
948 /* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
949 mei_txe_output_ready_set(hw);
950
951 /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
952 */
953 mei_txe_readiness_set_host_rdy(dev);
954
955 return 0;
956 }
957
958 /**
959 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
960 * single bit mask and acknowledge the interrupts
961 *
962 * @dev: the device structure
963 * @do_ack: acknowledge interrupts
964 *
965 * Return: true if found interrupts to process.
966 */
mei_txe_check_and_ack_intrs(struct mei_device * dev,bool do_ack)967 static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
968 {
969 struct mei_txe_hw *hw = to_txe_hw(dev);
970 u32 hisr;
971 u32 hhisr;
972 u32 ipc_isr;
973 u32 aliveness;
974 bool generated;
975
976 /* read interrupt registers */
977 hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
978 generated = (hhisr & IPC_HHIER_MSK);
979 if (!generated)
980 goto out;
981
982 hisr = mei_txe_br_reg_read(hw, HISR_REG);
983
984 aliveness = mei_txe_aliveness_get(dev);
985 if (hhisr & IPC_HHIER_SEC && aliveness) {
986 ipc_isr = mei_txe_sec_reg_read_silent(hw,
987 SEC_IPC_HOST_INT_STATUS_REG);
988 } else {
989 ipc_isr = 0;
990 hhisr &= ~IPC_HHIER_SEC;
991 }
992
993 generated = generated ||
994 (hisr & HISR_INT_STS_MSK) ||
995 (ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
996
997 if (generated && do_ack) {
998 /* Save the interrupt causes */
999 hw->intr_cause |= hisr & HISR_INT_STS_MSK;
1000 if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
1001 hw->intr_cause |= TXE_INTR_IN_READY;
1002
1003
1004 mei_txe_intr_disable(dev);
1005 /* Clear the interrupts in hierarchy:
1006 * IPC and Bridge, than the High Level */
1007 mei_txe_sec_reg_write_silent(hw,
1008 SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
1009 mei_txe_br_reg_write(hw, HISR_REG, hisr);
1010 mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
1011 }
1012
1013 out:
1014 return generated;
1015 }
1016
1017 /**
1018 * mei_txe_irq_quick_handler - The ISR of the MEI device
1019 *
1020 * @irq: The irq number
1021 * @dev_id: pointer to the device structure
1022 *
1023 * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1024 * IRQ_NONE otherwise
1025 */
mei_txe_irq_quick_handler(int irq,void * dev_id)1026 irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
1027 {
1028 struct mei_device *dev = dev_id;
1029
1030 if (mei_txe_check_and_ack_intrs(dev, true))
1031 return IRQ_WAKE_THREAD;
1032 return IRQ_NONE;
1033 }
1034
1035
1036 /**
1037 * mei_txe_irq_thread_handler - txe interrupt thread
1038 *
1039 * @irq: The irq number
1040 * @dev_id: pointer to the device structure
1041 *
1042 * Return: IRQ_HANDLED
1043 */
mei_txe_irq_thread_handler(int irq,void * dev_id)1044 irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
1045 {
1046 struct mei_device *dev = (struct mei_device *) dev_id;
1047 struct mei_txe_hw *hw = to_txe_hw(dev);
1048 struct list_head cmpl_list;
1049 s32 slots;
1050 int rets = 0;
1051
1052 dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1053 mei_txe_br_reg_read(hw, HHISR_REG),
1054 mei_txe_br_reg_read(hw, HISR_REG),
1055 mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
1056
1057
1058 /* initialize our complete list */
1059 mutex_lock(&dev->device_lock);
1060 INIT_LIST_HEAD(&cmpl_list);
1061
1062 if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
1063 mei_txe_check_and_ack_intrs(dev, true);
1064
1065 /* show irq events */
1066 mei_txe_pending_interrupts(dev);
1067
1068 hw->aliveness = mei_txe_aliveness_get(dev);
1069 hw->readiness = mei_txe_readiness_get(dev);
1070
1071 /* Readiness:
1072 * Detection of TXE driver going through reset
1073 * or TXE driver resetting the HECI interface.
1074 */
1075 if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
1076 dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
1077
1078 /* Check if SeC is going through reset */
1079 if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
1080 dev_dbg(dev->dev, "we need to start the dev.\n");
1081 dev->recvd_hw_ready = true;
1082 } else {
1083 dev->recvd_hw_ready = false;
1084 if (dev->dev_state != MEI_DEV_RESETTING) {
1085
1086 dev_warn(dev->dev, "FW not ready: resetting.\n");
1087 schedule_work(&dev->reset_work);
1088 goto end;
1089
1090 }
1091 }
1092 wake_up(&dev->wait_hw_ready);
1093 }
1094
1095 /************************************************************/
1096 /* Check interrupt cause:
1097 * Aliveness: Detection of SeC acknowledge of host request that
1098 * it remain alive or host cancellation of that request.
1099 */
1100
1101 if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
1102 /* Clear the interrupt cause */
1103 dev_dbg(dev->dev,
1104 "Aliveness Interrupt: Status: %d\n", hw->aliveness);
1105 dev->pg_event = MEI_PG_EVENT_RECEIVED;
1106 if (waitqueue_active(&hw->wait_aliveness_resp))
1107 wake_up(&hw->wait_aliveness_resp);
1108 }
1109
1110
1111 /* Output Doorbell:
1112 * Detection of SeC having sent output to host
1113 */
1114 slots = mei_count_full_read_slots(dev);
1115 if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1116 /* Read from TXE */
1117 rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1118 if (rets &&
1119 (dev->dev_state != MEI_DEV_RESETTING &&
1120 dev->dev_state != MEI_DEV_POWER_DOWN)) {
1121 dev_err(dev->dev,
1122 "mei_irq_read_handler ret = %d.\n", rets);
1123
1124 schedule_work(&dev->reset_work);
1125 goto end;
1126 }
1127 }
1128 /* Input Ready: Detection if host can write to SeC */
1129 if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
1130 dev->hbuf_is_ready = true;
1131 hw->slots = TXE_HBUF_DEPTH;
1132 }
1133
1134 if (hw->aliveness && dev->hbuf_is_ready) {
1135 /* get the real register value */
1136 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1137 rets = mei_irq_write_handler(dev, &cmpl_list);
1138 if (rets && rets != -EMSGSIZE)
1139 dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
1140 rets);
1141 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1142 }
1143
1144 mei_irq_compl_handler(dev, &cmpl_list);
1145
1146 end:
1147 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1148
1149 mutex_unlock(&dev->device_lock);
1150
1151 mei_enable_interrupts(dev);
1152 return IRQ_HANDLED;
1153 }
1154
1155 static const struct mei_hw_ops mei_txe_hw_ops = {
1156
1157 .host_is_ready = mei_txe_host_is_ready,
1158
1159 .fw_status = mei_txe_fw_status,
1160 .pg_state = mei_txe_pg_state,
1161
1162 .hw_is_ready = mei_txe_hw_is_ready,
1163 .hw_reset = mei_txe_hw_reset,
1164 .hw_config = mei_txe_hw_config,
1165 .hw_start = mei_txe_hw_start,
1166
1167 .pg_in_transition = mei_txe_pg_in_transition,
1168 .pg_is_enabled = mei_txe_pg_is_enabled,
1169
1170 .intr_clear = mei_txe_intr_clear,
1171 .intr_enable = mei_txe_intr_enable,
1172 .intr_disable = mei_txe_intr_disable,
1173 .synchronize_irq = mei_txe_synchronize_irq,
1174
1175 .hbuf_free_slots = mei_txe_hbuf_empty_slots,
1176 .hbuf_is_ready = mei_txe_is_input_ready,
1177 .hbuf_depth = mei_txe_hbuf_depth,
1178
1179 .write = mei_txe_write,
1180
1181 .rdbuf_full_slots = mei_txe_count_full_read_slots,
1182 .read_hdr = mei_txe_read_hdr,
1183
1184 .read = mei_txe_read,
1185
1186 };
1187
1188 /**
1189 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1190 *
1191 * @pdev: pci device
1192 *
1193 * Return: struct mei_device * on success or NULL
1194 */
mei_txe_dev_init(struct pci_dev * pdev)1195 struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1196 {
1197 struct mei_device *dev;
1198 struct mei_txe_hw *hw;
1199
1200 dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
1201 sizeof(struct mei_txe_hw), GFP_KERNEL);
1202 if (!dev)
1203 return NULL;
1204
1205 mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
1206
1207 hw = to_txe_hw(dev);
1208
1209 init_waitqueue_head(&hw->wait_aliveness_resp);
1210
1211 return dev;
1212 }
1213
1214 /**
1215 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1216 *
1217 * @dev: the device structure
1218 * @addr: physical address start of the range
1219 * @range: physical range size
1220 *
1221 * Return: 0 on success an error code otherwise
1222 */
mei_txe_setup_satt2(struct mei_device * dev,phys_addr_t addr,u32 range)1223 int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1224 {
1225 struct mei_txe_hw *hw = to_txe_hw(dev);
1226
1227 u32 lo32 = lower_32_bits(addr);
1228 u32 hi32 = upper_32_bits(addr);
1229 u32 ctrl;
1230
1231 /* SATT is limited to 36 Bits */
1232 if (hi32 & ~0xF)
1233 return -EINVAL;
1234
1235 /* SATT has to be 16Byte aligned */
1236 if (lo32 & 0xF)
1237 return -EINVAL;
1238
1239 /* SATT range has to be 4Bytes aligned */
1240 if (range & 0x4)
1241 return -EINVAL;
1242
1243 /* SATT is limited to 32 MB range*/
1244 if (range > SATT_RANGE_MAX)
1245 return -EINVAL;
1246
1247 ctrl = SATT2_CTRL_VALID_MSK;
1248 ctrl |= hi32 << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1249
1250 mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1251 mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1252 mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1253 dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1254 range, lo32, ctrl);
1255
1256 return 0;
1257 }
1258