1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28
29 #define DM_MSG_PREFIX "core"
30
31 /*
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
34 */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37
38 static const char *_name = DM_NAME;
39
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42
43 static DEFINE_IDR(_minor_idr);
44
45 static DEFINE_SPINLOCK(_minor_lock);
46
47 static void do_deferred_remove(struct work_struct *w);
48
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50
51 static struct workqueue_struct *deferred_remove_workqueue;
52
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55
dm_issue_global_event(void)56 void dm_issue_global_event(void)
57 {
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
60 }
61
62 /*
63 * One of these is allocated (on-stack) per original bio.
64 */
65 struct clone_info {
66 struct dm_table *map;
67 struct bio *bio;
68 struct dm_io *io;
69 sector_t sector;
70 unsigned sector_count;
71 };
72
73 /*
74 * One of these is allocated per clone bio.
75 */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 unsigned magic;
79 struct dm_io *io;
80 struct dm_target *ti;
81 unsigned target_bio_nr;
82 unsigned *len_ptr;
83 bool inside_dm_io;
84 struct bio clone;
85 };
86
87 /*
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
90 */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 unsigned magic;
94 struct mapped_device *md;
95 blk_status_t status;
96 atomic_t io_count;
97 struct bio *orig_bio;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
103 };
104
dm_per_bio_data(struct bio * bio,size_t data_size)105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113
dm_bio_from_per_bio_data(void * data,size_t data_size)114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123
dm_bio_get_target_bio_nr(const struct bio * bio)124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129
130 #define MINOR_ALLOCED ((void *)-1)
131
132 /*
133 * Bits for the md->flags field.
134 */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146
147 /*
148 * For mempools pre-allocation at the table loading time.
149 */
150 struct dm_md_mempools {
151 struct bio_set bs;
152 struct bio_set io_bs;
153 };
154
155 struct table_device {
156 struct list_head list;
157 refcount_t count;
158 struct dm_dev dm_dev;
159 };
160
161 /*
162 * Bio-based DM's mempools' reserved IOs set by the user.
163 */
164 #define RESERVED_BIO_BASED_IOS 16
165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
166
__dm_get_module_param_int(int * module_param,int min,int max)167 static int __dm_get_module_param_int(int *module_param, int min, int max)
168 {
169 int param = READ_ONCE(*module_param);
170 int modified_param = 0;
171 bool modified = true;
172
173 if (param < min)
174 modified_param = min;
175 else if (param > max)
176 modified_param = max;
177 else
178 modified = false;
179
180 if (modified) {
181 (void)cmpxchg(module_param, param, modified_param);
182 param = modified_param;
183 }
184
185 return param;
186 }
187
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)188 unsigned __dm_get_module_param(unsigned *module_param,
189 unsigned def, unsigned max)
190 {
191 unsigned param = READ_ONCE(*module_param);
192 unsigned modified_param = 0;
193
194 if (!param)
195 modified_param = def;
196 else if (param > max)
197 modified_param = max;
198
199 if (modified_param) {
200 (void)cmpxchg(module_param, param, modified_param);
201 param = modified_param;
202 }
203
204 return param;
205 }
206
dm_get_reserved_bio_based_ios(void)207 unsigned dm_get_reserved_bio_based_ios(void)
208 {
209 return __dm_get_module_param(&reserved_bio_based_ios,
210 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
211 }
212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
213
dm_get_numa_node(void)214 static unsigned dm_get_numa_node(void)
215 {
216 return __dm_get_module_param_int(&dm_numa_node,
217 DM_NUMA_NODE, num_online_nodes() - 1);
218 }
219
local_init(void)220 static int __init local_init(void)
221 {
222 int r;
223
224 r = dm_uevent_init();
225 if (r)
226 return r;
227
228 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
229 if (!deferred_remove_workqueue) {
230 r = -ENOMEM;
231 goto out_uevent_exit;
232 }
233
234 _major = major;
235 r = register_blkdev(_major, _name);
236 if (r < 0)
237 goto out_free_workqueue;
238
239 if (!_major)
240 _major = r;
241
242 return 0;
243
244 out_free_workqueue:
245 destroy_workqueue(deferred_remove_workqueue);
246 out_uevent_exit:
247 dm_uevent_exit();
248
249 return r;
250 }
251
local_exit(void)252 static void local_exit(void)
253 {
254 flush_scheduled_work();
255 destroy_workqueue(deferred_remove_workqueue);
256
257 unregister_blkdev(_major, _name);
258 dm_uevent_exit();
259
260 _major = 0;
261
262 DMINFO("cleaned up");
263 }
264
265 static int (*_inits[])(void) __initdata = {
266 local_init,
267 dm_target_init,
268 dm_linear_init,
269 dm_stripe_init,
270 dm_io_init,
271 dm_kcopyd_init,
272 dm_interface_init,
273 dm_statistics_init,
274 };
275
276 static void (*_exits[])(void) = {
277 local_exit,
278 dm_target_exit,
279 dm_linear_exit,
280 dm_stripe_exit,
281 dm_io_exit,
282 dm_kcopyd_exit,
283 dm_interface_exit,
284 dm_statistics_exit,
285 };
286
dm_init(void)287 static int __init dm_init(void)
288 {
289 const int count = ARRAY_SIZE(_inits);
290
291 int r, i;
292
293 for (i = 0; i < count; i++) {
294 r = _inits[i]();
295 if (r)
296 goto bad;
297 }
298
299 return 0;
300
301 bad:
302 while (i--)
303 _exits[i]();
304
305 return r;
306 }
307
dm_exit(void)308 static void __exit dm_exit(void)
309 {
310 int i = ARRAY_SIZE(_exits);
311
312 while (i--)
313 _exits[i]();
314
315 /*
316 * Should be empty by this point.
317 */
318 idr_destroy(&_minor_idr);
319 }
320
321 /*
322 * Block device functions
323 */
dm_deleting_md(struct mapped_device * md)324 int dm_deleting_md(struct mapped_device *md)
325 {
326 return test_bit(DMF_DELETING, &md->flags);
327 }
328
dm_blk_open(struct block_device * bdev,fmode_t mode)329 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
330 {
331 struct mapped_device *md;
332
333 spin_lock(&_minor_lock);
334
335 md = bdev->bd_disk->private_data;
336 if (!md)
337 goto out;
338
339 if (test_bit(DMF_FREEING, &md->flags) ||
340 dm_deleting_md(md)) {
341 md = NULL;
342 goto out;
343 }
344
345 dm_get(md);
346 atomic_inc(&md->open_count);
347 out:
348 spin_unlock(&_minor_lock);
349
350 return md ? 0 : -ENXIO;
351 }
352
dm_blk_close(struct gendisk * disk,fmode_t mode)353 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
354 {
355 struct mapped_device *md;
356
357 spin_lock(&_minor_lock);
358
359 md = disk->private_data;
360 if (WARN_ON(!md))
361 goto out;
362
363 if (atomic_dec_and_test(&md->open_count) &&
364 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
365 queue_work(deferred_remove_workqueue, &deferred_remove_work);
366
367 dm_put(md);
368 out:
369 spin_unlock(&_minor_lock);
370 }
371
dm_open_count(struct mapped_device * md)372 int dm_open_count(struct mapped_device *md)
373 {
374 return atomic_read(&md->open_count);
375 }
376
377 /*
378 * Guarantees nothing is using the device before it's deleted.
379 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
381 {
382 int r = 0;
383
384 spin_lock(&_minor_lock);
385
386 if (dm_open_count(md)) {
387 r = -EBUSY;
388 if (mark_deferred)
389 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
390 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
391 r = -EEXIST;
392 else
393 set_bit(DMF_DELETING, &md->flags);
394
395 spin_unlock(&_minor_lock);
396
397 return r;
398 }
399
dm_cancel_deferred_remove(struct mapped_device * md)400 int dm_cancel_deferred_remove(struct mapped_device *md)
401 {
402 int r = 0;
403
404 spin_lock(&_minor_lock);
405
406 if (test_bit(DMF_DELETING, &md->flags))
407 r = -EBUSY;
408 else
409 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
410
411 spin_unlock(&_minor_lock);
412
413 return r;
414 }
415
do_deferred_remove(struct work_struct * w)416 static void do_deferred_remove(struct work_struct *w)
417 {
418 dm_deferred_remove();
419 }
420
dm_get_size(struct mapped_device * md)421 sector_t dm_get_size(struct mapped_device *md)
422 {
423 return get_capacity(md->disk);
424 }
425
dm_get_md_queue(struct mapped_device * md)426 struct request_queue *dm_get_md_queue(struct mapped_device *md)
427 {
428 return md->queue;
429 }
430
dm_get_stats(struct mapped_device * md)431 struct dm_stats *dm_get_stats(struct mapped_device *md)
432 {
433 return &md->stats;
434 }
435
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
437 {
438 struct mapped_device *md = bdev->bd_disk->private_data;
439
440 return dm_get_geometry(md, geo);
441 }
442
dm_blk_report_zones(struct gendisk * disk,sector_t sector,struct blk_zone * zones,unsigned int * nr_zones)443 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
444 struct blk_zone *zones, unsigned int *nr_zones)
445 {
446 #ifdef CONFIG_BLK_DEV_ZONED
447 struct mapped_device *md = disk->private_data;
448 struct dm_target *tgt;
449 struct dm_table *map;
450 int srcu_idx, ret;
451
452 if (dm_suspended_md(md))
453 return -EAGAIN;
454
455 map = dm_get_live_table(md, &srcu_idx);
456 if (!map)
457 return -EIO;
458
459 tgt = dm_table_find_target(map, sector);
460 if (!tgt) {
461 ret = -EIO;
462 goto out;
463 }
464
465 /*
466 * If we are executing this, we already know that the block device
467 * is a zoned device and so each target should have support for that
468 * type of drive. A missing report_zones method means that the target
469 * driver has a problem.
470 */
471 if (WARN_ON(!tgt->type->report_zones)) {
472 ret = -EIO;
473 goto out;
474 }
475
476 /*
477 * blkdev_report_zones() will loop and call this again to cover all the
478 * zones of the target, eventually moving on to the next target.
479 * So there is no need to loop here trying to fill the entire array
480 * of zones.
481 */
482 ret = tgt->type->report_zones(tgt, sector, zones, nr_zones);
483
484 out:
485 dm_put_live_table(md, srcu_idx);
486 return ret;
487 #else
488 return -ENOTSUPP;
489 #endif
490 }
491
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)492 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
493 struct block_device **bdev)
494 __acquires(md->io_barrier)
495 {
496 struct dm_target *tgt;
497 struct dm_table *map;
498 int r;
499
500 retry:
501 r = -ENOTTY;
502 map = dm_get_live_table(md, srcu_idx);
503 if (!map || !dm_table_get_size(map))
504 return r;
505
506 /* We only support devices that have a single target */
507 if (dm_table_get_num_targets(map) != 1)
508 return r;
509
510 tgt = dm_table_get_target(map, 0);
511 if (!tgt->type->prepare_ioctl)
512 return r;
513
514 if (dm_suspended_md(md))
515 return -EAGAIN;
516
517 r = tgt->type->prepare_ioctl(tgt, bdev);
518 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
519 dm_put_live_table(md, *srcu_idx);
520 msleep(10);
521 goto retry;
522 }
523
524 return r;
525 }
526
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)527 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
528 __releases(md->io_barrier)
529 {
530 dm_put_live_table(md, srcu_idx);
531 }
532
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)533 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
534 unsigned int cmd, unsigned long arg)
535 {
536 struct mapped_device *md = bdev->bd_disk->private_data;
537 int r, srcu_idx;
538
539 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
540 if (r < 0)
541 goto out;
542
543 if (r > 0) {
544 /*
545 * Target determined this ioctl is being issued against a
546 * subset of the parent bdev; require extra privileges.
547 */
548 if (!capable(CAP_SYS_RAWIO)) {
549 DMWARN_LIMIT(
550 "%s: sending ioctl %x to DM device without required privilege.",
551 current->comm, cmd);
552 r = -ENOIOCTLCMD;
553 goto out;
554 }
555 }
556
557 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
558 out:
559 dm_unprepare_ioctl(md, srcu_idx);
560 return r;
561 }
562
563 static void start_io_acct(struct dm_io *io);
564
alloc_io(struct mapped_device * md,struct bio * bio)565 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
566 {
567 struct dm_io *io;
568 struct dm_target_io *tio;
569 struct bio *clone;
570
571 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
572 if (!clone)
573 return NULL;
574
575 tio = container_of(clone, struct dm_target_io, clone);
576 tio->inside_dm_io = true;
577 tio->io = NULL;
578
579 io = container_of(tio, struct dm_io, tio);
580 io->magic = DM_IO_MAGIC;
581 io->status = 0;
582 atomic_set(&io->io_count, 1);
583 io->orig_bio = bio;
584 io->md = md;
585 spin_lock_init(&io->endio_lock);
586
587 start_io_acct(io);
588
589 return io;
590 }
591
free_io(struct mapped_device * md,struct dm_io * io)592 static void free_io(struct mapped_device *md, struct dm_io *io)
593 {
594 bio_put(&io->tio.clone);
595 }
596
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)597 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
598 unsigned target_bio_nr, gfp_t gfp_mask)
599 {
600 struct dm_target_io *tio;
601
602 if (!ci->io->tio.io) {
603 /* the dm_target_io embedded in ci->io is available */
604 tio = &ci->io->tio;
605 } else {
606 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
607 if (!clone)
608 return NULL;
609
610 tio = container_of(clone, struct dm_target_io, clone);
611 tio->inside_dm_io = false;
612 }
613
614 tio->magic = DM_TIO_MAGIC;
615 tio->io = ci->io;
616 tio->ti = ti;
617 tio->target_bio_nr = target_bio_nr;
618
619 return tio;
620 }
621
free_tio(struct dm_target_io * tio)622 static void free_tio(struct dm_target_io *tio)
623 {
624 if (tio->inside_dm_io)
625 return;
626 bio_put(&tio->clone);
627 }
628
md_in_flight_bios(struct mapped_device * md)629 static bool md_in_flight_bios(struct mapped_device *md)
630 {
631 int cpu;
632 struct hd_struct *part = &dm_disk(md)->part0;
633 long sum = 0;
634
635 for_each_possible_cpu(cpu) {
636 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
637 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
638 }
639
640 return sum != 0;
641 }
642
md_in_flight(struct mapped_device * md)643 static bool md_in_flight(struct mapped_device *md)
644 {
645 if (queue_is_mq(md->queue))
646 return blk_mq_queue_inflight(md->queue);
647 else
648 return md_in_flight_bios(md);
649 }
650
start_io_acct(struct dm_io * io)651 static void start_io_acct(struct dm_io *io)
652 {
653 struct mapped_device *md = io->md;
654 struct bio *bio = io->orig_bio;
655
656 io->start_time = jiffies;
657
658 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
659 &dm_disk(md)->part0);
660
661 if (unlikely(dm_stats_used(&md->stats)))
662 dm_stats_account_io(&md->stats, bio_data_dir(bio),
663 bio->bi_iter.bi_sector, bio_sectors(bio),
664 false, 0, &io->stats_aux);
665 }
666
end_io_acct(struct dm_io * io)667 static void end_io_acct(struct dm_io *io)
668 {
669 struct mapped_device *md = io->md;
670 struct bio *bio = io->orig_bio;
671 unsigned long duration = jiffies - io->start_time;
672
673 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
674 io->start_time);
675
676 if (unlikely(dm_stats_used(&md->stats)))
677 dm_stats_account_io(&md->stats, bio_data_dir(bio),
678 bio->bi_iter.bi_sector, bio_sectors(bio),
679 true, duration, &io->stats_aux);
680
681 /* nudge anyone waiting on suspend queue */
682 if (unlikely(wq_has_sleeper(&md->wait)))
683 wake_up(&md->wait);
684 }
685
686 /*
687 * Add the bio to the list of deferred io.
688 */
queue_io(struct mapped_device * md,struct bio * bio)689 static void queue_io(struct mapped_device *md, struct bio *bio)
690 {
691 unsigned long flags;
692
693 spin_lock_irqsave(&md->deferred_lock, flags);
694 bio_list_add(&md->deferred, bio);
695 spin_unlock_irqrestore(&md->deferred_lock, flags);
696 queue_work(md->wq, &md->work);
697 }
698
699 /*
700 * Everyone (including functions in this file), should use this
701 * function to access the md->map field, and make sure they call
702 * dm_put_live_table() when finished.
703 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)704 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
705 {
706 *srcu_idx = srcu_read_lock(&md->io_barrier);
707
708 return srcu_dereference(md->map, &md->io_barrier);
709 }
710
dm_put_live_table(struct mapped_device * md,int srcu_idx)711 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
712 {
713 srcu_read_unlock(&md->io_barrier, srcu_idx);
714 }
715
dm_sync_table(struct mapped_device * md)716 void dm_sync_table(struct mapped_device *md)
717 {
718 synchronize_srcu(&md->io_barrier);
719 synchronize_rcu_expedited();
720 }
721
722 /*
723 * A fast alternative to dm_get_live_table/dm_put_live_table.
724 * The caller must not block between these two functions.
725 */
dm_get_live_table_fast(struct mapped_device * md)726 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
727 {
728 rcu_read_lock();
729 return rcu_dereference(md->map);
730 }
731
dm_put_live_table_fast(struct mapped_device * md)732 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
733 {
734 rcu_read_unlock();
735 }
736
737 static char *_dm_claim_ptr = "I belong to device-mapper";
738
739 /*
740 * Open a table device so we can use it as a map destination.
741 */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)742 static int open_table_device(struct table_device *td, dev_t dev,
743 struct mapped_device *md)
744 {
745 struct block_device *bdev;
746
747 int r;
748
749 BUG_ON(td->dm_dev.bdev);
750
751 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
752 if (IS_ERR(bdev))
753 return PTR_ERR(bdev);
754
755 r = bd_link_disk_holder(bdev, dm_disk(md));
756 if (r) {
757 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
758 return r;
759 }
760
761 td->dm_dev.bdev = bdev;
762 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
763 return 0;
764 }
765
766 /*
767 * Close a table device that we've been using.
768 */
close_table_device(struct table_device * td,struct mapped_device * md)769 static void close_table_device(struct table_device *td, struct mapped_device *md)
770 {
771 if (!td->dm_dev.bdev)
772 return;
773
774 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
775 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
776 put_dax(td->dm_dev.dax_dev);
777 td->dm_dev.bdev = NULL;
778 td->dm_dev.dax_dev = NULL;
779 }
780
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)781 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
782 fmode_t mode)
783 {
784 struct table_device *td;
785
786 list_for_each_entry(td, l, list)
787 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
788 return td;
789
790 return NULL;
791 }
792
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)793 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
794 struct dm_dev **result)
795 {
796 int r;
797 struct table_device *td;
798
799 mutex_lock(&md->table_devices_lock);
800 td = find_table_device(&md->table_devices, dev, mode);
801 if (!td) {
802 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
803 if (!td) {
804 mutex_unlock(&md->table_devices_lock);
805 return -ENOMEM;
806 }
807
808 td->dm_dev.mode = mode;
809 td->dm_dev.bdev = NULL;
810
811 if ((r = open_table_device(td, dev, md))) {
812 mutex_unlock(&md->table_devices_lock);
813 kfree(td);
814 return r;
815 }
816
817 format_dev_t(td->dm_dev.name, dev);
818
819 refcount_set(&td->count, 1);
820 list_add(&td->list, &md->table_devices);
821 } else {
822 refcount_inc(&td->count);
823 }
824 mutex_unlock(&md->table_devices_lock);
825
826 *result = &td->dm_dev;
827 return 0;
828 }
829 EXPORT_SYMBOL_GPL(dm_get_table_device);
830
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)831 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
832 {
833 struct table_device *td = container_of(d, struct table_device, dm_dev);
834
835 mutex_lock(&md->table_devices_lock);
836 if (refcount_dec_and_test(&td->count)) {
837 close_table_device(td, md);
838 list_del(&td->list);
839 kfree(td);
840 }
841 mutex_unlock(&md->table_devices_lock);
842 }
843 EXPORT_SYMBOL(dm_put_table_device);
844
free_table_devices(struct list_head * devices)845 static void free_table_devices(struct list_head *devices)
846 {
847 struct list_head *tmp, *next;
848
849 list_for_each_safe(tmp, next, devices) {
850 struct table_device *td = list_entry(tmp, struct table_device, list);
851
852 DMWARN("dm_destroy: %s still exists with %d references",
853 td->dm_dev.name, refcount_read(&td->count));
854 kfree(td);
855 }
856 }
857
858 /*
859 * Get the geometry associated with a dm device
860 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)861 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
862 {
863 *geo = md->geometry;
864
865 return 0;
866 }
867
868 /*
869 * Set the geometry of a device.
870 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)871 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
872 {
873 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
874
875 if (geo->start > sz) {
876 DMWARN("Start sector is beyond the geometry limits.");
877 return -EINVAL;
878 }
879
880 md->geometry = *geo;
881
882 return 0;
883 }
884
__noflush_suspending(struct mapped_device * md)885 static int __noflush_suspending(struct mapped_device *md)
886 {
887 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
888 }
889
890 /*
891 * Decrements the number of outstanding ios that a bio has been
892 * cloned into, completing the original io if necc.
893 */
dec_pending(struct dm_io * io,blk_status_t error)894 static void dec_pending(struct dm_io *io, blk_status_t error)
895 {
896 unsigned long flags;
897 blk_status_t io_error;
898 struct bio *bio;
899 struct mapped_device *md = io->md;
900
901 /* Push-back supersedes any I/O errors */
902 if (unlikely(error)) {
903 spin_lock_irqsave(&io->endio_lock, flags);
904 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
905 io->status = error;
906 spin_unlock_irqrestore(&io->endio_lock, flags);
907 }
908
909 if (atomic_dec_and_test(&io->io_count)) {
910 if (io->status == BLK_STS_DM_REQUEUE) {
911 /*
912 * Target requested pushing back the I/O.
913 */
914 spin_lock_irqsave(&md->deferred_lock, flags);
915 if (__noflush_suspending(md))
916 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
917 bio_list_add_head(&md->deferred, io->orig_bio);
918 else
919 /* noflush suspend was interrupted. */
920 io->status = BLK_STS_IOERR;
921 spin_unlock_irqrestore(&md->deferred_lock, flags);
922 }
923
924 io_error = io->status;
925 bio = io->orig_bio;
926 end_io_acct(io);
927 free_io(md, io);
928
929 if (io_error == BLK_STS_DM_REQUEUE)
930 return;
931
932 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
933 /*
934 * Preflush done for flush with data, reissue
935 * without REQ_PREFLUSH.
936 */
937 bio->bi_opf &= ~REQ_PREFLUSH;
938 queue_io(md, bio);
939 } else {
940 /* done with normal IO or empty flush */
941 if (io_error)
942 bio->bi_status = io_error;
943 bio_endio(bio);
944 }
945 }
946 }
947
disable_discard(struct mapped_device * md)948 void disable_discard(struct mapped_device *md)
949 {
950 struct queue_limits *limits = dm_get_queue_limits(md);
951
952 /* device doesn't really support DISCARD, disable it */
953 limits->max_discard_sectors = 0;
954 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
955 }
956
disable_write_same(struct mapped_device * md)957 void disable_write_same(struct mapped_device *md)
958 {
959 struct queue_limits *limits = dm_get_queue_limits(md);
960
961 /* device doesn't really support WRITE SAME, disable it */
962 limits->max_write_same_sectors = 0;
963 }
964
disable_write_zeroes(struct mapped_device * md)965 void disable_write_zeroes(struct mapped_device *md)
966 {
967 struct queue_limits *limits = dm_get_queue_limits(md);
968
969 /* device doesn't really support WRITE ZEROES, disable it */
970 limits->max_write_zeroes_sectors = 0;
971 }
972
clone_endio(struct bio * bio)973 static void clone_endio(struct bio *bio)
974 {
975 blk_status_t error = bio->bi_status;
976 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
977 struct dm_io *io = tio->io;
978 struct mapped_device *md = tio->io->md;
979 dm_endio_fn endio = tio->ti->type->end_io;
980
981 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
982 if (bio_op(bio) == REQ_OP_DISCARD &&
983 !bio->bi_disk->queue->limits.max_discard_sectors)
984 disable_discard(md);
985 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
986 !bio->bi_disk->queue->limits.max_write_same_sectors)
987 disable_write_same(md);
988 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
989 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
990 disable_write_zeroes(md);
991 }
992
993 if (endio) {
994 int r = endio(tio->ti, bio, &error);
995 switch (r) {
996 case DM_ENDIO_REQUEUE:
997 error = BLK_STS_DM_REQUEUE;
998 /*FALLTHRU*/
999 case DM_ENDIO_DONE:
1000 break;
1001 case DM_ENDIO_INCOMPLETE:
1002 /* The target will handle the io */
1003 return;
1004 default:
1005 DMWARN("unimplemented target endio return value: %d", r);
1006 BUG();
1007 }
1008 }
1009
1010 free_tio(tio);
1011 dec_pending(io, error);
1012 }
1013
1014 /*
1015 * Return maximum size of I/O possible at the supplied sector up to the current
1016 * target boundary.
1017 */
max_io_len_target_boundary(sector_t sector,struct dm_target * ti)1018 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1019 {
1020 sector_t target_offset = dm_target_offset(ti, sector);
1021
1022 return ti->len - target_offset;
1023 }
1024
max_io_len(sector_t sector,struct dm_target * ti)1025 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1026 {
1027 sector_t len = max_io_len_target_boundary(sector, ti);
1028 sector_t offset, max_len;
1029
1030 /*
1031 * Does the target need to split even further?
1032 */
1033 if (ti->max_io_len) {
1034 offset = dm_target_offset(ti, sector);
1035 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1036 max_len = sector_div(offset, ti->max_io_len);
1037 else
1038 max_len = offset & (ti->max_io_len - 1);
1039 max_len = ti->max_io_len - max_len;
1040
1041 if (len > max_len)
1042 len = max_len;
1043 }
1044
1045 return len;
1046 }
1047
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1048 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1049 {
1050 if (len > UINT_MAX) {
1051 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1052 (unsigned long long)len, UINT_MAX);
1053 ti->error = "Maximum size of target IO is too large";
1054 return -EINVAL;
1055 }
1056
1057 ti->max_io_len = (uint32_t) len;
1058
1059 return 0;
1060 }
1061 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1062
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1063 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1064 sector_t sector, int *srcu_idx)
1065 __acquires(md->io_barrier)
1066 {
1067 struct dm_table *map;
1068 struct dm_target *ti;
1069
1070 map = dm_get_live_table(md, srcu_idx);
1071 if (!map)
1072 return NULL;
1073
1074 ti = dm_table_find_target(map, sector);
1075 if (!ti)
1076 return NULL;
1077
1078 return ti;
1079 }
1080
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1081 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1082 long nr_pages, void **kaddr, pfn_t *pfn)
1083 {
1084 struct mapped_device *md = dax_get_private(dax_dev);
1085 sector_t sector = pgoff * PAGE_SECTORS;
1086 struct dm_target *ti;
1087 long len, ret = -EIO;
1088 int srcu_idx;
1089
1090 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1091
1092 if (!ti)
1093 goto out;
1094 if (!ti->type->direct_access)
1095 goto out;
1096 len = max_io_len(sector, ti) / PAGE_SECTORS;
1097 if (len < 1)
1098 goto out;
1099 nr_pages = min(len, nr_pages);
1100 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1101
1102 out:
1103 dm_put_live_table(md, srcu_idx);
1104
1105 return ret;
1106 }
1107
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1108 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1109 int blocksize, sector_t start, sector_t len)
1110 {
1111 struct mapped_device *md = dax_get_private(dax_dev);
1112 struct dm_table *map;
1113 int srcu_idx;
1114 bool ret;
1115
1116 map = dm_get_live_table(md, &srcu_idx);
1117 if (!map)
1118 return false;
1119
1120 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1121
1122 dm_put_live_table(md, srcu_idx);
1123
1124 return ret;
1125 }
1126
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1127 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1128 void *addr, size_t bytes, struct iov_iter *i)
1129 {
1130 struct mapped_device *md = dax_get_private(dax_dev);
1131 sector_t sector = pgoff * PAGE_SECTORS;
1132 struct dm_target *ti;
1133 long ret = 0;
1134 int srcu_idx;
1135
1136 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1137
1138 if (!ti)
1139 goto out;
1140 if (!ti->type->dax_copy_from_iter) {
1141 ret = copy_from_iter(addr, bytes, i);
1142 goto out;
1143 }
1144 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1145 out:
1146 dm_put_live_table(md, srcu_idx);
1147
1148 return ret;
1149 }
1150
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1151 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1152 void *addr, size_t bytes, struct iov_iter *i)
1153 {
1154 struct mapped_device *md = dax_get_private(dax_dev);
1155 sector_t sector = pgoff * PAGE_SECTORS;
1156 struct dm_target *ti;
1157 long ret = 0;
1158 int srcu_idx;
1159
1160 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1161
1162 if (!ti)
1163 goto out;
1164 if (!ti->type->dax_copy_to_iter) {
1165 ret = copy_to_iter(addr, bytes, i);
1166 goto out;
1167 }
1168 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1169 out:
1170 dm_put_live_table(md, srcu_idx);
1171
1172 return ret;
1173 }
1174
1175 /*
1176 * A target may call dm_accept_partial_bio only from the map routine. It is
1177 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1178 *
1179 * dm_accept_partial_bio informs the dm that the target only wants to process
1180 * additional n_sectors sectors of the bio and the rest of the data should be
1181 * sent in a next bio.
1182 *
1183 * A diagram that explains the arithmetics:
1184 * +--------------------+---------------+-------+
1185 * | 1 | 2 | 3 |
1186 * +--------------------+---------------+-------+
1187 *
1188 * <-------------- *tio->len_ptr --------------->
1189 * <------- bi_size ------->
1190 * <-- n_sectors -->
1191 *
1192 * Region 1 was already iterated over with bio_advance or similar function.
1193 * (it may be empty if the target doesn't use bio_advance)
1194 * Region 2 is the remaining bio size that the target wants to process.
1195 * (it may be empty if region 1 is non-empty, although there is no reason
1196 * to make it empty)
1197 * The target requires that region 3 is to be sent in the next bio.
1198 *
1199 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1200 * the partially processed part (the sum of regions 1+2) must be the same for all
1201 * copies of the bio.
1202 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1203 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1204 {
1205 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1206 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1207 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1208 BUG_ON(bi_size > *tio->len_ptr);
1209 BUG_ON(n_sectors > bi_size);
1210 *tio->len_ptr -= bi_size - n_sectors;
1211 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1212 }
1213 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1214
1215 /*
1216 * The zone descriptors obtained with a zone report indicate
1217 * zone positions within the underlying device of the target. The zone
1218 * descriptors must be remapped to match their position within the dm device.
1219 * The caller target should obtain the zones information using
1220 * blkdev_report_zones() to ensure that remapping for partition offset is
1221 * already handled.
1222 */
dm_remap_zone_report(struct dm_target * ti,sector_t start,struct blk_zone * zones,unsigned int * nr_zones)1223 void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1224 struct blk_zone *zones, unsigned int *nr_zones)
1225 {
1226 #ifdef CONFIG_BLK_DEV_ZONED
1227 struct blk_zone *zone;
1228 unsigned int nrz = *nr_zones;
1229 int i;
1230
1231 /*
1232 * Remap the start sector and write pointer position of the zones in
1233 * the array. Since we may have obtained from the target underlying
1234 * device more zones that the target size, also adjust the number
1235 * of zones.
1236 */
1237 for (i = 0; i < nrz; i++) {
1238 zone = zones + i;
1239 if (zone->start >= start + ti->len) {
1240 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1241 break;
1242 }
1243
1244 zone->start = zone->start + ti->begin - start;
1245 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1246 continue;
1247
1248 if (zone->cond == BLK_ZONE_COND_FULL)
1249 zone->wp = zone->start + zone->len;
1250 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1251 zone->wp = zone->start;
1252 else
1253 zone->wp = zone->wp + ti->begin - start;
1254 }
1255
1256 *nr_zones = i;
1257 #else /* !CONFIG_BLK_DEV_ZONED */
1258 *nr_zones = 0;
1259 #endif
1260 }
1261 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1262
__map_bio(struct dm_target_io * tio)1263 static blk_qc_t __map_bio(struct dm_target_io *tio)
1264 {
1265 int r;
1266 sector_t sector;
1267 struct bio *clone = &tio->clone;
1268 struct dm_io *io = tio->io;
1269 struct mapped_device *md = io->md;
1270 struct dm_target *ti = tio->ti;
1271 blk_qc_t ret = BLK_QC_T_NONE;
1272
1273 clone->bi_end_io = clone_endio;
1274
1275 /*
1276 * Map the clone. If r == 0 we don't need to do
1277 * anything, the target has assumed ownership of
1278 * this io.
1279 */
1280 atomic_inc(&io->io_count);
1281 sector = clone->bi_iter.bi_sector;
1282
1283 r = ti->type->map(ti, clone);
1284 switch (r) {
1285 case DM_MAPIO_SUBMITTED:
1286 break;
1287 case DM_MAPIO_REMAPPED:
1288 /* the bio has been remapped so dispatch it */
1289 trace_block_bio_remap(clone->bi_disk->queue, clone,
1290 bio_dev(io->orig_bio), sector);
1291 if (md->type == DM_TYPE_NVME_BIO_BASED)
1292 ret = direct_make_request(clone);
1293 else
1294 ret = generic_make_request(clone);
1295 break;
1296 case DM_MAPIO_KILL:
1297 free_tio(tio);
1298 dec_pending(io, BLK_STS_IOERR);
1299 break;
1300 case DM_MAPIO_REQUEUE:
1301 free_tio(tio);
1302 dec_pending(io, BLK_STS_DM_REQUEUE);
1303 break;
1304 default:
1305 DMWARN("unimplemented target map return value: %d", r);
1306 BUG();
1307 }
1308
1309 return ret;
1310 }
1311
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1312 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1313 {
1314 bio->bi_iter.bi_sector = sector;
1315 bio->bi_iter.bi_size = to_bytes(len);
1316 }
1317
1318 /*
1319 * Creates a bio that consists of range of complete bvecs.
1320 */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1321 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1322 sector_t sector, unsigned len)
1323 {
1324 struct bio *clone = &tio->clone;
1325
1326 __bio_clone_fast(clone, bio);
1327
1328 if (bio_integrity(bio)) {
1329 int r;
1330
1331 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1332 !dm_target_passes_integrity(tio->ti->type))) {
1333 DMWARN("%s: the target %s doesn't support integrity data.",
1334 dm_device_name(tio->io->md),
1335 tio->ti->type->name);
1336 return -EIO;
1337 }
1338
1339 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1340 if (r < 0)
1341 return r;
1342 }
1343
1344 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1345 clone->bi_iter.bi_size = to_bytes(len);
1346
1347 if (bio_integrity(bio))
1348 bio_integrity_trim(clone);
1349
1350 return 0;
1351 }
1352
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1353 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1354 struct dm_target *ti, unsigned num_bios)
1355 {
1356 struct dm_target_io *tio;
1357 int try;
1358
1359 if (!num_bios)
1360 return;
1361
1362 if (num_bios == 1) {
1363 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1364 bio_list_add(blist, &tio->clone);
1365 return;
1366 }
1367
1368 for (try = 0; try < 2; try++) {
1369 int bio_nr;
1370 struct bio *bio;
1371
1372 if (try)
1373 mutex_lock(&ci->io->md->table_devices_lock);
1374 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1375 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1376 if (!tio)
1377 break;
1378
1379 bio_list_add(blist, &tio->clone);
1380 }
1381 if (try)
1382 mutex_unlock(&ci->io->md->table_devices_lock);
1383 if (bio_nr == num_bios)
1384 return;
1385
1386 while ((bio = bio_list_pop(blist))) {
1387 tio = container_of(bio, struct dm_target_io, clone);
1388 free_tio(tio);
1389 }
1390 }
1391 }
1392
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1393 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1394 struct dm_target_io *tio, unsigned *len)
1395 {
1396 struct bio *clone = &tio->clone;
1397
1398 tio->len_ptr = len;
1399
1400 __bio_clone_fast(clone, ci->bio);
1401 if (len)
1402 bio_setup_sector(clone, ci->sector, *len);
1403
1404 return __map_bio(tio);
1405 }
1406
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1407 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1408 unsigned num_bios, unsigned *len)
1409 {
1410 struct bio_list blist = BIO_EMPTY_LIST;
1411 struct bio *bio;
1412 struct dm_target_io *tio;
1413
1414 alloc_multiple_bios(&blist, ci, ti, num_bios);
1415
1416 while ((bio = bio_list_pop(&blist))) {
1417 tio = container_of(bio, struct dm_target_io, clone);
1418 (void) __clone_and_map_simple_bio(ci, tio, len);
1419 }
1420 }
1421
__send_empty_flush(struct clone_info * ci)1422 static int __send_empty_flush(struct clone_info *ci)
1423 {
1424 unsigned target_nr = 0;
1425 struct dm_target *ti;
1426
1427 /*
1428 * Empty flush uses a statically initialized bio, as the base for
1429 * cloning. However, blkg association requires that a bdev is
1430 * associated with a gendisk, which doesn't happen until the bdev is
1431 * opened. So, blkg association is done at issue time of the flush
1432 * rather than when the device is created in alloc_dev().
1433 */
1434 bio_set_dev(ci->bio, ci->io->md->bdev);
1435
1436 BUG_ON(bio_has_data(ci->bio));
1437 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1438 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1439
1440 bio_disassociate_blkg(ci->bio);
1441
1442 return 0;
1443 }
1444
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1445 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1446 sector_t sector, unsigned *len)
1447 {
1448 struct bio *bio = ci->bio;
1449 struct dm_target_io *tio;
1450 int r;
1451
1452 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1453 tio->len_ptr = len;
1454 r = clone_bio(tio, bio, sector, *len);
1455 if (r < 0) {
1456 free_tio(tio);
1457 return r;
1458 }
1459 (void) __map_bio(tio);
1460
1461 return 0;
1462 }
1463
1464 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1465
get_num_discard_bios(struct dm_target * ti)1466 static unsigned get_num_discard_bios(struct dm_target *ti)
1467 {
1468 return ti->num_discard_bios;
1469 }
1470
get_num_secure_erase_bios(struct dm_target * ti)1471 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1472 {
1473 return ti->num_secure_erase_bios;
1474 }
1475
get_num_write_same_bios(struct dm_target * ti)1476 static unsigned get_num_write_same_bios(struct dm_target *ti)
1477 {
1478 return ti->num_write_same_bios;
1479 }
1480
get_num_write_zeroes_bios(struct dm_target * ti)1481 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1482 {
1483 return ti->num_write_zeroes_bios;
1484 }
1485
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1486 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1487 unsigned num_bios)
1488 {
1489 unsigned len;
1490
1491 /*
1492 * Even though the device advertised support for this type of
1493 * request, that does not mean every target supports it, and
1494 * reconfiguration might also have changed that since the
1495 * check was performed.
1496 */
1497 if (!num_bios)
1498 return -EOPNOTSUPP;
1499
1500 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1501
1502 __send_duplicate_bios(ci, ti, num_bios, &len);
1503
1504 ci->sector += len;
1505 ci->sector_count -= len;
1506
1507 return 0;
1508 }
1509
__send_discard(struct clone_info * ci,struct dm_target * ti)1510 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1511 {
1512 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1513 }
1514
__send_secure_erase(struct clone_info * ci,struct dm_target * ti)1515 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1516 {
1517 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1518 }
1519
__send_write_same(struct clone_info * ci,struct dm_target * ti)1520 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1521 {
1522 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1523 }
1524
__send_write_zeroes(struct clone_info * ci,struct dm_target * ti)1525 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1526 {
1527 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1528 }
1529
is_abnormal_io(struct bio * bio)1530 static bool is_abnormal_io(struct bio *bio)
1531 {
1532 bool r = false;
1533
1534 switch (bio_op(bio)) {
1535 case REQ_OP_DISCARD:
1536 case REQ_OP_SECURE_ERASE:
1537 case REQ_OP_WRITE_SAME:
1538 case REQ_OP_WRITE_ZEROES:
1539 r = true;
1540 break;
1541 }
1542
1543 return r;
1544 }
1545
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1546 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1547 int *result)
1548 {
1549 struct bio *bio = ci->bio;
1550
1551 if (bio_op(bio) == REQ_OP_DISCARD)
1552 *result = __send_discard(ci, ti);
1553 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1554 *result = __send_secure_erase(ci, ti);
1555 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1556 *result = __send_write_same(ci, ti);
1557 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1558 *result = __send_write_zeroes(ci, ti);
1559 else
1560 return false;
1561
1562 return true;
1563 }
1564
1565 /*
1566 * Select the correct strategy for processing a non-flush bio.
1567 */
__split_and_process_non_flush(struct clone_info * ci)1568 static int __split_and_process_non_flush(struct clone_info *ci)
1569 {
1570 struct dm_target *ti;
1571 unsigned len;
1572 int r;
1573
1574 ti = dm_table_find_target(ci->map, ci->sector);
1575 if (!ti)
1576 return -EIO;
1577
1578 if (__process_abnormal_io(ci, ti, &r))
1579 return r;
1580
1581 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1582
1583 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1584 if (r < 0)
1585 return r;
1586
1587 ci->sector += len;
1588 ci->sector_count -= len;
1589
1590 return 0;
1591 }
1592
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1593 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1594 struct dm_table *map, struct bio *bio)
1595 {
1596 ci->map = map;
1597 ci->io = alloc_io(md, bio);
1598 ci->sector = bio->bi_iter.bi_sector;
1599 }
1600
1601 #define __dm_part_stat_sub(part, field, subnd) \
1602 (part_stat_get(part, field) -= (subnd))
1603
1604 /*
1605 * Entry point to split a bio into clones and submit them to the targets.
1606 */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1607 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1608 struct dm_table *map, struct bio *bio)
1609 {
1610 struct clone_info ci;
1611 blk_qc_t ret = BLK_QC_T_NONE;
1612 int error = 0;
1613
1614 init_clone_info(&ci, md, map, bio);
1615
1616 if (bio->bi_opf & REQ_PREFLUSH) {
1617 struct bio flush_bio;
1618
1619 /*
1620 * Use an on-stack bio for this, it's safe since we don't
1621 * need to reference it after submit. It's just used as
1622 * the basis for the clone(s).
1623 */
1624 bio_init(&flush_bio, NULL, 0);
1625 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1626 ci.bio = &flush_bio;
1627 ci.sector_count = 0;
1628 error = __send_empty_flush(&ci);
1629 /* dec_pending submits any data associated with flush */
1630 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1631 ci.bio = bio;
1632 ci.sector_count = 0;
1633 error = __split_and_process_non_flush(&ci);
1634 } else {
1635 ci.bio = bio;
1636 ci.sector_count = bio_sectors(bio);
1637 while (ci.sector_count && !error) {
1638 error = __split_and_process_non_flush(&ci);
1639 if (current->bio_list && ci.sector_count && !error) {
1640 /*
1641 * Remainder must be passed to generic_make_request()
1642 * so that it gets handled *after* bios already submitted
1643 * have been completely processed.
1644 * We take a clone of the original to store in
1645 * ci.io->orig_bio to be used by end_io_acct() and
1646 * for dec_pending to use for completion handling.
1647 */
1648 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1649 GFP_NOIO, &md->queue->bio_split);
1650 ci.io->orig_bio = b;
1651
1652 /*
1653 * Adjust IO stats for each split, otherwise upon queue
1654 * reentry there will be redundant IO accounting.
1655 * NOTE: this is a stop-gap fix, a proper fix involves
1656 * significant refactoring of DM core's bio splitting
1657 * (by eliminating DM's splitting and just using bio_split)
1658 */
1659 part_stat_lock();
1660 __dm_part_stat_sub(&dm_disk(md)->part0,
1661 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1662 part_stat_unlock();
1663
1664 bio_chain(b, bio);
1665 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1666 ret = generic_make_request(bio);
1667 break;
1668 }
1669 }
1670 }
1671
1672 /* drop the extra reference count */
1673 dec_pending(ci.io, errno_to_blk_status(error));
1674 return ret;
1675 }
1676
1677 /*
1678 * Optimized variant of __split_and_process_bio that leverages the
1679 * fact that targets that use it do _not_ have a need to split bios.
1680 */
__process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio,struct dm_target * ti)1681 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1682 struct bio *bio, struct dm_target *ti)
1683 {
1684 struct clone_info ci;
1685 blk_qc_t ret = BLK_QC_T_NONE;
1686 int error = 0;
1687
1688 init_clone_info(&ci, md, map, bio);
1689
1690 if (bio->bi_opf & REQ_PREFLUSH) {
1691 struct bio flush_bio;
1692
1693 /*
1694 * Use an on-stack bio for this, it's safe since we don't
1695 * need to reference it after submit. It's just used as
1696 * the basis for the clone(s).
1697 */
1698 bio_init(&flush_bio, NULL, 0);
1699 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1700 ci.bio = &flush_bio;
1701 ci.sector_count = 0;
1702 error = __send_empty_flush(&ci);
1703 /* dec_pending submits any data associated with flush */
1704 } else {
1705 struct dm_target_io *tio;
1706
1707 ci.bio = bio;
1708 ci.sector_count = bio_sectors(bio);
1709 if (__process_abnormal_io(&ci, ti, &error))
1710 goto out;
1711
1712 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1713 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1714 }
1715 out:
1716 /* drop the extra reference count */
1717 dec_pending(ci.io, errno_to_blk_status(error));
1718 return ret;
1719 }
1720
dm_queue_split(struct mapped_device * md,struct dm_target * ti,struct bio ** bio)1721 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1722 {
1723 unsigned len, sector_count;
1724
1725 sector_count = bio_sectors(*bio);
1726 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1727
1728 if (sector_count > len) {
1729 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1730
1731 bio_chain(split, *bio);
1732 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1733 generic_make_request(*bio);
1734 *bio = split;
1735 }
1736 }
1737
dm_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1738 static blk_qc_t dm_process_bio(struct mapped_device *md,
1739 struct dm_table *map, struct bio *bio)
1740 {
1741 blk_qc_t ret = BLK_QC_T_NONE;
1742 struct dm_target *ti = md->immutable_target;
1743
1744 if (unlikely(!map)) {
1745 bio_io_error(bio);
1746 return ret;
1747 }
1748
1749 if (!ti) {
1750 ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1751 if (unlikely(!ti)) {
1752 bio_io_error(bio);
1753 return ret;
1754 }
1755 }
1756
1757 /*
1758 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1759 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1760 * won't be imposed.
1761 */
1762 if (current->bio_list) {
1763 blk_queue_split(md->queue, &bio);
1764 if (!is_abnormal_io(bio))
1765 dm_queue_split(md, ti, &bio);
1766 }
1767
1768 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1769 return __process_bio(md, map, bio, ti);
1770 else
1771 return __split_and_process_bio(md, map, bio);
1772 }
1773
dm_make_request(struct request_queue * q,struct bio * bio)1774 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1775 {
1776 struct mapped_device *md = q->queuedata;
1777 blk_qc_t ret = BLK_QC_T_NONE;
1778 int srcu_idx;
1779 struct dm_table *map;
1780
1781 map = dm_get_live_table(md, &srcu_idx);
1782
1783 /* if we're suspended, we have to queue this io for later */
1784 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1785 dm_put_live_table(md, srcu_idx);
1786
1787 if (!(bio->bi_opf & REQ_RAHEAD))
1788 queue_io(md, bio);
1789 else
1790 bio_io_error(bio);
1791 return ret;
1792 }
1793
1794 ret = dm_process_bio(md, map, bio);
1795
1796 dm_put_live_table(md, srcu_idx);
1797 return ret;
1798 }
1799
dm_any_congested(void * congested_data,int bdi_bits)1800 static int dm_any_congested(void *congested_data, int bdi_bits)
1801 {
1802 int r = bdi_bits;
1803 struct mapped_device *md = congested_data;
1804 struct dm_table *map;
1805
1806 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1807 if (dm_request_based(md)) {
1808 /*
1809 * With request-based DM we only need to check the
1810 * top-level queue for congestion.
1811 */
1812 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1813 } else {
1814 map = dm_get_live_table_fast(md);
1815 if (map)
1816 r = dm_table_any_congested(map, bdi_bits);
1817 dm_put_live_table_fast(md);
1818 }
1819 }
1820
1821 return r;
1822 }
1823
1824 /*-----------------------------------------------------------------
1825 * An IDR is used to keep track of allocated minor numbers.
1826 *---------------------------------------------------------------*/
free_minor(int minor)1827 static void free_minor(int minor)
1828 {
1829 spin_lock(&_minor_lock);
1830 idr_remove(&_minor_idr, minor);
1831 spin_unlock(&_minor_lock);
1832 }
1833
1834 /*
1835 * See if the device with a specific minor # is free.
1836 */
specific_minor(int minor)1837 static int specific_minor(int minor)
1838 {
1839 int r;
1840
1841 if (minor >= (1 << MINORBITS))
1842 return -EINVAL;
1843
1844 idr_preload(GFP_KERNEL);
1845 spin_lock(&_minor_lock);
1846
1847 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1848
1849 spin_unlock(&_minor_lock);
1850 idr_preload_end();
1851 if (r < 0)
1852 return r == -ENOSPC ? -EBUSY : r;
1853 return 0;
1854 }
1855
next_free_minor(int * minor)1856 static int next_free_minor(int *minor)
1857 {
1858 int r;
1859
1860 idr_preload(GFP_KERNEL);
1861 spin_lock(&_minor_lock);
1862
1863 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1864
1865 spin_unlock(&_minor_lock);
1866 idr_preload_end();
1867 if (r < 0)
1868 return r;
1869 *minor = r;
1870 return 0;
1871 }
1872
1873 static const struct block_device_operations dm_blk_dops;
1874 static const struct dax_operations dm_dax_ops;
1875
1876 static void dm_wq_work(struct work_struct *work);
1877
dm_init_normal_md_queue(struct mapped_device * md)1878 static void dm_init_normal_md_queue(struct mapped_device *md)
1879 {
1880 /*
1881 * Initialize aspects of queue that aren't relevant for blk-mq
1882 */
1883 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1884 }
1885
cleanup_mapped_device(struct mapped_device * md)1886 static void cleanup_mapped_device(struct mapped_device *md)
1887 {
1888 if (md->wq)
1889 destroy_workqueue(md->wq);
1890 bioset_exit(&md->bs);
1891 bioset_exit(&md->io_bs);
1892
1893 if (md->dax_dev) {
1894 kill_dax(md->dax_dev);
1895 put_dax(md->dax_dev);
1896 md->dax_dev = NULL;
1897 }
1898
1899 if (md->disk) {
1900 spin_lock(&_minor_lock);
1901 md->disk->private_data = NULL;
1902 spin_unlock(&_minor_lock);
1903 del_gendisk(md->disk);
1904 put_disk(md->disk);
1905 }
1906
1907 if (md->queue)
1908 blk_cleanup_queue(md->queue);
1909
1910 cleanup_srcu_struct(&md->io_barrier);
1911
1912 if (md->bdev) {
1913 bdput(md->bdev);
1914 md->bdev = NULL;
1915 }
1916
1917 mutex_destroy(&md->suspend_lock);
1918 mutex_destroy(&md->type_lock);
1919 mutex_destroy(&md->table_devices_lock);
1920
1921 dm_mq_cleanup_mapped_device(md);
1922 }
1923
1924 /*
1925 * Allocate and initialise a blank device with a given minor.
1926 */
alloc_dev(int minor)1927 static struct mapped_device *alloc_dev(int minor)
1928 {
1929 int r, numa_node_id = dm_get_numa_node();
1930 struct mapped_device *md;
1931 void *old_md;
1932
1933 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1934 if (!md) {
1935 DMWARN("unable to allocate device, out of memory.");
1936 return NULL;
1937 }
1938
1939 if (!try_module_get(THIS_MODULE))
1940 goto bad_module_get;
1941
1942 /* get a minor number for the dev */
1943 if (minor == DM_ANY_MINOR)
1944 r = next_free_minor(&minor);
1945 else
1946 r = specific_minor(minor);
1947 if (r < 0)
1948 goto bad_minor;
1949
1950 r = init_srcu_struct(&md->io_barrier);
1951 if (r < 0)
1952 goto bad_io_barrier;
1953
1954 md->numa_node_id = numa_node_id;
1955 md->init_tio_pdu = false;
1956 md->type = DM_TYPE_NONE;
1957 mutex_init(&md->suspend_lock);
1958 mutex_init(&md->type_lock);
1959 mutex_init(&md->table_devices_lock);
1960 spin_lock_init(&md->deferred_lock);
1961 atomic_set(&md->holders, 1);
1962 atomic_set(&md->open_count, 0);
1963 atomic_set(&md->event_nr, 0);
1964 atomic_set(&md->uevent_seq, 0);
1965 INIT_LIST_HEAD(&md->uevent_list);
1966 INIT_LIST_HEAD(&md->table_devices);
1967 spin_lock_init(&md->uevent_lock);
1968
1969 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1970 if (!md->queue)
1971 goto bad;
1972 md->queue->queuedata = md;
1973 md->queue->backing_dev_info->congested_data = md;
1974
1975 md->disk = alloc_disk_node(1, md->numa_node_id);
1976 if (!md->disk)
1977 goto bad;
1978
1979 init_waitqueue_head(&md->wait);
1980 INIT_WORK(&md->work, dm_wq_work);
1981 init_waitqueue_head(&md->eventq);
1982 init_completion(&md->kobj_holder.completion);
1983
1984 md->disk->major = _major;
1985 md->disk->first_minor = minor;
1986 md->disk->fops = &dm_blk_dops;
1987 md->disk->queue = md->queue;
1988 md->disk->private_data = md;
1989 sprintf(md->disk->disk_name, "dm-%d", minor);
1990
1991 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1992 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1993 &dm_dax_ops, 0);
1994 if (!md->dax_dev)
1995 goto bad;
1996 }
1997
1998 add_disk_no_queue_reg(md->disk);
1999 format_dev_t(md->name, MKDEV(_major, minor));
2000
2001 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2002 if (!md->wq)
2003 goto bad;
2004
2005 md->bdev = bdget_disk(md->disk, 0);
2006 if (!md->bdev)
2007 goto bad;
2008
2009 dm_stats_init(&md->stats);
2010
2011 /* Populate the mapping, nobody knows we exist yet */
2012 spin_lock(&_minor_lock);
2013 old_md = idr_replace(&_minor_idr, md, minor);
2014 spin_unlock(&_minor_lock);
2015
2016 BUG_ON(old_md != MINOR_ALLOCED);
2017
2018 return md;
2019
2020 bad:
2021 cleanup_mapped_device(md);
2022 bad_io_barrier:
2023 free_minor(minor);
2024 bad_minor:
2025 module_put(THIS_MODULE);
2026 bad_module_get:
2027 kvfree(md);
2028 return NULL;
2029 }
2030
2031 static void unlock_fs(struct mapped_device *md);
2032
free_dev(struct mapped_device * md)2033 static void free_dev(struct mapped_device *md)
2034 {
2035 int minor = MINOR(disk_devt(md->disk));
2036
2037 unlock_fs(md);
2038
2039 cleanup_mapped_device(md);
2040
2041 free_table_devices(&md->table_devices);
2042 dm_stats_cleanup(&md->stats);
2043 free_minor(minor);
2044
2045 module_put(THIS_MODULE);
2046 kvfree(md);
2047 }
2048
__bind_mempools(struct mapped_device * md,struct dm_table * t)2049 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2050 {
2051 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2052 int ret = 0;
2053
2054 if (dm_table_bio_based(t)) {
2055 /*
2056 * The md may already have mempools that need changing.
2057 * If so, reload bioset because front_pad may have changed
2058 * because a different table was loaded.
2059 */
2060 bioset_exit(&md->bs);
2061 bioset_exit(&md->io_bs);
2062
2063 } else if (bioset_initialized(&md->bs)) {
2064 /*
2065 * There's no need to reload with request-based dm
2066 * because the size of front_pad doesn't change.
2067 * Note for future: If you are to reload bioset,
2068 * prep-ed requests in the queue may refer
2069 * to bio from the old bioset, so you must walk
2070 * through the queue to unprep.
2071 */
2072 goto out;
2073 }
2074
2075 BUG_ON(!p ||
2076 bioset_initialized(&md->bs) ||
2077 bioset_initialized(&md->io_bs));
2078
2079 ret = bioset_init_from_src(&md->bs, &p->bs);
2080 if (ret)
2081 goto out;
2082 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2083 if (ret)
2084 bioset_exit(&md->bs);
2085 out:
2086 /* mempool bind completed, no longer need any mempools in the table */
2087 dm_table_free_md_mempools(t);
2088 return ret;
2089 }
2090
2091 /*
2092 * Bind a table to the device.
2093 */
event_callback(void * context)2094 static void event_callback(void *context)
2095 {
2096 unsigned long flags;
2097 LIST_HEAD(uevents);
2098 struct mapped_device *md = (struct mapped_device *) context;
2099
2100 spin_lock_irqsave(&md->uevent_lock, flags);
2101 list_splice_init(&md->uevent_list, &uevents);
2102 spin_unlock_irqrestore(&md->uevent_lock, flags);
2103
2104 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2105
2106 atomic_inc(&md->event_nr);
2107 wake_up(&md->eventq);
2108 dm_issue_global_event();
2109 }
2110
2111 /*
2112 * Protected by md->suspend_lock obtained by dm_swap_table().
2113 */
__set_size(struct mapped_device * md,sector_t size)2114 static void __set_size(struct mapped_device *md, sector_t size)
2115 {
2116 lockdep_assert_held(&md->suspend_lock);
2117
2118 set_capacity(md->disk, size);
2119
2120 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2121 }
2122
2123 /*
2124 * Returns old map, which caller must destroy.
2125 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2126 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2127 struct queue_limits *limits)
2128 {
2129 struct dm_table *old_map;
2130 struct request_queue *q = md->queue;
2131 bool request_based = dm_table_request_based(t);
2132 sector_t size;
2133 int ret;
2134
2135 lockdep_assert_held(&md->suspend_lock);
2136
2137 size = dm_table_get_size(t);
2138
2139 /*
2140 * Wipe any geometry if the size of the table changed.
2141 */
2142 if (size != dm_get_size(md))
2143 memset(&md->geometry, 0, sizeof(md->geometry));
2144
2145 __set_size(md, size);
2146
2147 dm_table_event_callback(t, event_callback, md);
2148
2149 /*
2150 * The queue hasn't been stopped yet, if the old table type wasn't
2151 * for request-based during suspension. So stop it to prevent
2152 * I/O mapping before resume.
2153 * This must be done before setting the queue restrictions,
2154 * because request-based dm may be run just after the setting.
2155 */
2156 if (request_based)
2157 dm_stop_queue(q);
2158
2159 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2160 /*
2161 * Leverage the fact that request-based DM targets and
2162 * NVMe bio based targets are immutable singletons
2163 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2164 * and __process_bio.
2165 */
2166 md->immutable_target = dm_table_get_immutable_target(t);
2167 }
2168
2169 ret = __bind_mempools(md, t);
2170 if (ret) {
2171 old_map = ERR_PTR(ret);
2172 goto out;
2173 }
2174
2175 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2176 rcu_assign_pointer(md->map, (void *)t);
2177 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2178
2179 dm_table_set_restrictions(t, q, limits);
2180 if (old_map)
2181 dm_sync_table(md);
2182
2183 out:
2184 return old_map;
2185 }
2186
2187 /*
2188 * Returns unbound table for the caller to free.
2189 */
__unbind(struct mapped_device * md)2190 static struct dm_table *__unbind(struct mapped_device *md)
2191 {
2192 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2193
2194 if (!map)
2195 return NULL;
2196
2197 dm_table_event_callback(map, NULL, NULL);
2198 RCU_INIT_POINTER(md->map, NULL);
2199 dm_sync_table(md);
2200
2201 return map;
2202 }
2203
2204 /*
2205 * Constructor for a new device.
2206 */
dm_create(int minor,struct mapped_device ** result)2207 int dm_create(int minor, struct mapped_device **result)
2208 {
2209 int r;
2210 struct mapped_device *md;
2211
2212 md = alloc_dev(minor);
2213 if (!md)
2214 return -ENXIO;
2215
2216 r = dm_sysfs_init(md);
2217 if (r) {
2218 free_dev(md);
2219 return r;
2220 }
2221
2222 *result = md;
2223 return 0;
2224 }
2225
2226 /*
2227 * Functions to manage md->type.
2228 * All are required to hold md->type_lock.
2229 */
dm_lock_md_type(struct mapped_device * md)2230 void dm_lock_md_type(struct mapped_device *md)
2231 {
2232 mutex_lock(&md->type_lock);
2233 }
2234
dm_unlock_md_type(struct mapped_device * md)2235 void dm_unlock_md_type(struct mapped_device *md)
2236 {
2237 mutex_unlock(&md->type_lock);
2238 }
2239
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2240 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2241 {
2242 BUG_ON(!mutex_is_locked(&md->type_lock));
2243 md->type = type;
2244 }
2245
dm_get_md_type(struct mapped_device * md)2246 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2247 {
2248 return md->type;
2249 }
2250
dm_get_immutable_target_type(struct mapped_device * md)2251 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2252 {
2253 return md->immutable_target_type;
2254 }
2255
2256 /*
2257 * The queue_limits are only valid as long as you have a reference
2258 * count on 'md'.
2259 */
dm_get_queue_limits(struct mapped_device * md)2260 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2261 {
2262 BUG_ON(!atomic_read(&md->holders));
2263 return &md->queue->limits;
2264 }
2265 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2266
2267 /*
2268 * Setup the DM device's queue based on md's type
2269 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2270 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2271 {
2272 int r;
2273 struct queue_limits limits;
2274 enum dm_queue_mode type = dm_get_md_type(md);
2275
2276 switch (type) {
2277 case DM_TYPE_REQUEST_BASED:
2278 r = dm_mq_init_request_queue(md, t);
2279 if (r) {
2280 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2281 return r;
2282 }
2283 break;
2284 case DM_TYPE_BIO_BASED:
2285 case DM_TYPE_DAX_BIO_BASED:
2286 case DM_TYPE_NVME_BIO_BASED:
2287 dm_init_normal_md_queue(md);
2288 blk_queue_make_request(md->queue, dm_make_request);
2289 break;
2290 case DM_TYPE_NONE:
2291 WARN_ON_ONCE(true);
2292 break;
2293 }
2294
2295 r = dm_calculate_queue_limits(t, &limits);
2296 if (r) {
2297 DMERR("Cannot calculate initial queue limits");
2298 return r;
2299 }
2300 dm_table_set_restrictions(t, md->queue, &limits);
2301 blk_register_queue(md->disk);
2302
2303 return 0;
2304 }
2305
dm_get_md(dev_t dev)2306 struct mapped_device *dm_get_md(dev_t dev)
2307 {
2308 struct mapped_device *md;
2309 unsigned minor = MINOR(dev);
2310
2311 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2312 return NULL;
2313
2314 spin_lock(&_minor_lock);
2315
2316 md = idr_find(&_minor_idr, minor);
2317 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2318 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2319 md = NULL;
2320 goto out;
2321 }
2322 dm_get(md);
2323 out:
2324 spin_unlock(&_minor_lock);
2325
2326 return md;
2327 }
2328 EXPORT_SYMBOL_GPL(dm_get_md);
2329
dm_get_mdptr(struct mapped_device * md)2330 void *dm_get_mdptr(struct mapped_device *md)
2331 {
2332 return md->interface_ptr;
2333 }
2334
dm_set_mdptr(struct mapped_device * md,void * ptr)2335 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2336 {
2337 md->interface_ptr = ptr;
2338 }
2339
dm_get(struct mapped_device * md)2340 void dm_get(struct mapped_device *md)
2341 {
2342 atomic_inc(&md->holders);
2343 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2344 }
2345
dm_hold(struct mapped_device * md)2346 int dm_hold(struct mapped_device *md)
2347 {
2348 spin_lock(&_minor_lock);
2349 if (test_bit(DMF_FREEING, &md->flags)) {
2350 spin_unlock(&_minor_lock);
2351 return -EBUSY;
2352 }
2353 dm_get(md);
2354 spin_unlock(&_minor_lock);
2355 return 0;
2356 }
2357 EXPORT_SYMBOL_GPL(dm_hold);
2358
dm_device_name(struct mapped_device * md)2359 const char *dm_device_name(struct mapped_device *md)
2360 {
2361 return md->name;
2362 }
2363 EXPORT_SYMBOL_GPL(dm_device_name);
2364
__dm_destroy(struct mapped_device * md,bool wait)2365 static void __dm_destroy(struct mapped_device *md, bool wait)
2366 {
2367 struct dm_table *map;
2368 int srcu_idx;
2369
2370 might_sleep();
2371
2372 spin_lock(&_minor_lock);
2373 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2374 set_bit(DMF_FREEING, &md->flags);
2375 spin_unlock(&_minor_lock);
2376
2377 blk_set_queue_dying(md->queue);
2378
2379 /*
2380 * Take suspend_lock so that presuspend and postsuspend methods
2381 * do not race with internal suspend.
2382 */
2383 mutex_lock(&md->suspend_lock);
2384 map = dm_get_live_table(md, &srcu_idx);
2385 if (!dm_suspended_md(md)) {
2386 dm_table_presuspend_targets(map);
2387 dm_table_postsuspend_targets(map);
2388 }
2389 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2390 dm_put_live_table(md, srcu_idx);
2391 mutex_unlock(&md->suspend_lock);
2392
2393 /*
2394 * Rare, but there may be I/O requests still going to complete,
2395 * for example. Wait for all references to disappear.
2396 * No one should increment the reference count of the mapped_device,
2397 * after the mapped_device state becomes DMF_FREEING.
2398 */
2399 if (wait)
2400 while (atomic_read(&md->holders))
2401 msleep(1);
2402 else if (atomic_read(&md->holders))
2403 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2404 dm_device_name(md), atomic_read(&md->holders));
2405
2406 dm_sysfs_exit(md);
2407 dm_table_destroy(__unbind(md));
2408 free_dev(md);
2409 }
2410
dm_destroy(struct mapped_device * md)2411 void dm_destroy(struct mapped_device *md)
2412 {
2413 __dm_destroy(md, true);
2414 }
2415
dm_destroy_immediate(struct mapped_device * md)2416 void dm_destroy_immediate(struct mapped_device *md)
2417 {
2418 __dm_destroy(md, false);
2419 }
2420
dm_put(struct mapped_device * md)2421 void dm_put(struct mapped_device *md)
2422 {
2423 atomic_dec(&md->holders);
2424 }
2425 EXPORT_SYMBOL_GPL(dm_put);
2426
dm_wait_for_completion(struct mapped_device * md,long task_state)2427 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2428 {
2429 int r = 0;
2430 DEFINE_WAIT(wait);
2431
2432 while (1) {
2433 prepare_to_wait(&md->wait, &wait, task_state);
2434
2435 if (!md_in_flight(md))
2436 break;
2437
2438 if (signal_pending_state(task_state, current)) {
2439 r = -EINTR;
2440 break;
2441 }
2442
2443 io_schedule();
2444 }
2445 finish_wait(&md->wait, &wait);
2446
2447 return r;
2448 }
2449
2450 /*
2451 * Process the deferred bios
2452 */
dm_wq_work(struct work_struct * work)2453 static void dm_wq_work(struct work_struct *work)
2454 {
2455 struct mapped_device *md = container_of(work, struct mapped_device,
2456 work);
2457 struct bio *c;
2458 int srcu_idx;
2459 struct dm_table *map;
2460
2461 map = dm_get_live_table(md, &srcu_idx);
2462
2463 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2464 spin_lock_irq(&md->deferred_lock);
2465 c = bio_list_pop(&md->deferred);
2466 spin_unlock_irq(&md->deferred_lock);
2467
2468 if (!c)
2469 break;
2470
2471 if (dm_request_based(md))
2472 (void) generic_make_request(c);
2473 else
2474 (void) dm_process_bio(md, map, c);
2475 }
2476
2477 dm_put_live_table(md, srcu_idx);
2478 }
2479
dm_queue_flush(struct mapped_device * md)2480 static void dm_queue_flush(struct mapped_device *md)
2481 {
2482 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2483 smp_mb__after_atomic();
2484 queue_work(md->wq, &md->work);
2485 }
2486
2487 /*
2488 * Swap in a new table, returning the old one for the caller to destroy.
2489 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2490 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2491 {
2492 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2493 struct queue_limits limits;
2494 int r;
2495
2496 mutex_lock(&md->suspend_lock);
2497
2498 /* device must be suspended */
2499 if (!dm_suspended_md(md))
2500 goto out;
2501
2502 /*
2503 * If the new table has no data devices, retain the existing limits.
2504 * This helps multipath with queue_if_no_path if all paths disappear,
2505 * then new I/O is queued based on these limits, and then some paths
2506 * reappear.
2507 */
2508 if (dm_table_has_no_data_devices(table)) {
2509 live_map = dm_get_live_table_fast(md);
2510 if (live_map)
2511 limits = md->queue->limits;
2512 dm_put_live_table_fast(md);
2513 }
2514
2515 if (!live_map) {
2516 r = dm_calculate_queue_limits(table, &limits);
2517 if (r) {
2518 map = ERR_PTR(r);
2519 goto out;
2520 }
2521 }
2522
2523 map = __bind(md, table, &limits);
2524 dm_issue_global_event();
2525
2526 out:
2527 mutex_unlock(&md->suspend_lock);
2528 return map;
2529 }
2530
2531 /*
2532 * Functions to lock and unlock any filesystem running on the
2533 * device.
2534 */
lock_fs(struct mapped_device * md)2535 static int lock_fs(struct mapped_device *md)
2536 {
2537 int r;
2538
2539 WARN_ON(md->frozen_sb);
2540
2541 md->frozen_sb = freeze_bdev(md->bdev);
2542 if (IS_ERR(md->frozen_sb)) {
2543 r = PTR_ERR(md->frozen_sb);
2544 md->frozen_sb = NULL;
2545 return r;
2546 }
2547
2548 set_bit(DMF_FROZEN, &md->flags);
2549
2550 return 0;
2551 }
2552
unlock_fs(struct mapped_device * md)2553 static void unlock_fs(struct mapped_device *md)
2554 {
2555 if (!test_bit(DMF_FROZEN, &md->flags))
2556 return;
2557
2558 thaw_bdev(md->bdev, md->frozen_sb);
2559 md->frozen_sb = NULL;
2560 clear_bit(DMF_FROZEN, &md->flags);
2561 }
2562
2563 /*
2564 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2565 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2566 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2567 *
2568 * If __dm_suspend returns 0, the device is completely quiescent
2569 * now. There is no request-processing activity. All new requests
2570 * are being added to md->deferred list.
2571 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,long task_state,int dmf_suspended_flag)2572 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2573 unsigned suspend_flags, long task_state,
2574 int dmf_suspended_flag)
2575 {
2576 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2577 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2578 int r;
2579
2580 lockdep_assert_held(&md->suspend_lock);
2581
2582 /*
2583 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2584 * This flag is cleared before dm_suspend returns.
2585 */
2586 if (noflush)
2587 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2588 else
2589 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2590
2591 /*
2592 * This gets reverted if there's an error later and the targets
2593 * provide the .presuspend_undo hook.
2594 */
2595 dm_table_presuspend_targets(map);
2596
2597 /*
2598 * Flush I/O to the device.
2599 * Any I/O submitted after lock_fs() may not be flushed.
2600 * noflush takes precedence over do_lockfs.
2601 * (lock_fs() flushes I/Os and waits for them to complete.)
2602 */
2603 if (!noflush && do_lockfs) {
2604 r = lock_fs(md);
2605 if (r) {
2606 dm_table_presuspend_undo_targets(map);
2607 return r;
2608 }
2609 }
2610
2611 /*
2612 * Here we must make sure that no processes are submitting requests
2613 * to target drivers i.e. no one may be executing
2614 * __split_and_process_bio. This is called from dm_request and
2615 * dm_wq_work.
2616 *
2617 * To get all processes out of __split_and_process_bio in dm_request,
2618 * we take the write lock. To prevent any process from reentering
2619 * __split_and_process_bio from dm_request and quiesce the thread
2620 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2621 * flush_workqueue(md->wq).
2622 */
2623 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2624 if (map)
2625 synchronize_srcu(&md->io_barrier);
2626
2627 /*
2628 * Stop md->queue before flushing md->wq in case request-based
2629 * dm defers requests to md->wq from md->queue.
2630 */
2631 if (dm_request_based(md))
2632 dm_stop_queue(md->queue);
2633
2634 flush_workqueue(md->wq);
2635
2636 /*
2637 * At this point no more requests are entering target request routines.
2638 * We call dm_wait_for_completion to wait for all existing requests
2639 * to finish.
2640 */
2641 r = dm_wait_for_completion(md, task_state);
2642 if (!r)
2643 set_bit(dmf_suspended_flag, &md->flags);
2644
2645 if (noflush)
2646 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2647 if (map)
2648 synchronize_srcu(&md->io_barrier);
2649
2650 /* were we interrupted ? */
2651 if (r < 0) {
2652 dm_queue_flush(md);
2653
2654 if (dm_request_based(md))
2655 dm_start_queue(md->queue);
2656
2657 unlock_fs(md);
2658 dm_table_presuspend_undo_targets(map);
2659 /* pushback list is already flushed, so skip flush */
2660 }
2661
2662 return r;
2663 }
2664
2665 /*
2666 * We need to be able to change a mapping table under a mounted
2667 * filesystem. For example we might want to move some data in
2668 * the background. Before the table can be swapped with
2669 * dm_bind_table, dm_suspend must be called to flush any in
2670 * flight bios and ensure that any further io gets deferred.
2671 */
2672 /*
2673 * Suspend mechanism in request-based dm.
2674 *
2675 * 1. Flush all I/Os by lock_fs() if needed.
2676 * 2. Stop dispatching any I/O by stopping the request_queue.
2677 * 3. Wait for all in-flight I/Os to be completed or requeued.
2678 *
2679 * To abort suspend, start the request_queue.
2680 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2681 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2682 {
2683 struct dm_table *map = NULL;
2684 int r = 0;
2685
2686 retry:
2687 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2688
2689 if (dm_suspended_md(md)) {
2690 r = -EINVAL;
2691 goto out_unlock;
2692 }
2693
2694 if (dm_suspended_internally_md(md)) {
2695 /* already internally suspended, wait for internal resume */
2696 mutex_unlock(&md->suspend_lock);
2697 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2698 if (r)
2699 return r;
2700 goto retry;
2701 }
2702
2703 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2704
2705 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2706 if (r)
2707 goto out_unlock;
2708
2709 dm_table_postsuspend_targets(map);
2710
2711 out_unlock:
2712 mutex_unlock(&md->suspend_lock);
2713 return r;
2714 }
2715
__dm_resume(struct mapped_device * md,struct dm_table * map)2716 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2717 {
2718 if (map) {
2719 int r = dm_table_resume_targets(map);
2720 if (r)
2721 return r;
2722 }
2723
2724 dm_queue_flush(md);
2725
2726 /*
2727 * Flushing deferred I/Os must be done after targets are resumed
2728 * so that mapping of targets can work correctly.
2729 * Request-based dm is queueing the deferred I/Os in its request_queue.
2730 */
2731 if (dm_request_based(md))
2732 dm_start_queue(md->queue);
2733
2734 unlock_fs(md);
2735
2736 return 0;
2737 }
2738
dm_resume(struct mapped_device * md)2739 int dm_resume(struct mapped_device *md)
2740 {
2741 int r;
2742 struct dm_table *map = NULL;
2743
2744 retry:
2745 r = -EINVAL;
2746 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2747
2748 if (!dm_suspended_md(md))
2749 goto out;
2750
2751 if (dm_suspended_internally_md(md)) {
2752 /* already internally suspended, wait for internal resume */
2753 mutex_unlock(&md->suspend_lock);
2754 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2755 if (r)
2756 return r;
2757 goto retry;
2758 }
2759
2760 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2761 if (!map || !dm_table_get_size(map))
2762 goto out;
2763
2764 r = __dm_resume(md, map);
2765 if (r)
2766 goto out;
2767
2768 clear_bit(DMF_SUSPENDED, &md->flags);
2769 out:
2770 mutex_unlock(&md->suspend_lock);
2771
2772 return r;
2773 }
2774
2775 /*
2776 * Internal suspend/resume works like userspace-driven suspend. It waits
2777 * until all bios finish and prevents issuing new bios to the target drivers.
2778 * It may be used only from the kernel.
2779 */
2780
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2781 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2782 {
2783 struct dm_table *map = NULL;
2784
2785 lockdep_assert_held(&md->suspend_lock);
2786
2787 if (md->internal_suspend_count++)
2788 return; /* nested internal suspend */
2789
2790 if (dm_suspended_md(md)) {
2791 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2792 return; /* nest suspend */
2793 }
2794
2795 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2796
2797 /*
2798 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2799 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2800 * would require changing .presuspend to return an error -- avoid this
2801 * until there is a need for more elaborate variants of internal suspend.
2802 */
2803 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2804 DMF_SUSPENDED_INTERNALLY);
2805
2806 dm_table_postsuspend_targets(map);
2807 }
2808
__dm_internal_resume(struct mapped_device * md)2809 static void __dm_internal_resume(struct mapped_device *md)
2810 {
2811 BUG_ON(!md->internal_suspend_count);
2812
2813 if (--md->internal_suspend_count)
2814 return; /* resume from nested internal suspend */
2815
2816 if (dm_suspended_md(md))
2817 goto done; /* resume from nested suspend */
2818
2819 /*
2820 * NOTE: existing callers don't need to call dm_table_resume_targets
2821 * (which may fail -- so best to avoid it for now by passing NULL map)
2822 */
2823 (void) __dm_resume(md, NULL);
2824
2825 done:
2826 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2827 smp_mb__after_atomic();
2828 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2829 }
2830
dm_internal_suspend_noflush(struct mapped_device * md)2831 void dm_internal_suspend_noflush(struct mapped_device *md)
2832 {
2833 mutex_lock(&md->suspend_lock);
2834 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2835 mutex_unlock(&md->suspend_lock);
2836 }
2837 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2838
dm_internal_resume(struct mapped_device * md)2839 void dm_internal_resume(struct mapped_device *md)
2840 {
2841 mutex_lock(&md->suspend_lock);
2842 __dm_internal_resume(md);
2843 mutex_unlock(&md->suspend_lock);
2844 }
2845 EXPORT_SYMBOL_GPL(dm_internal_resume);
2846
2847 /*
2848 * Fast variants of internal suspend/resume hold md->suspend_lock,
2849 * which prevents interaction with userspace-driven suspend.
2850 */
2851
dm_internal_suspend_fast(struct mapped_device * md)2852 void dm_internal_suspend_fast(struct mapped_device *md)
2853 {
2854 mutex_lock(&md->suspend_lock);
2855 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2856 return;
2857
2858 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2859 synchronize_srcu(&md->io_barrier);
2860 flush_workqueue(md->wq);
2861 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2862 }
2863 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2864
dm_internal_resume_fast(struct mapped_device * md)2865 void dm_internal_resume_fast(struct mapped_device *md)
2866 {
2867 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2868 goto done;
2869
2870 dm_queue_flush(md);
2871
2872 done:
2873 mutex_unlock(&md->suspend_lock);
2874 }
2875 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2876
2877 /*-----------------------------------------------------------------
2878 * Event notification.
2879 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2880 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2881 unsigned cookie)
2882 {
2883 char udev_cookie[DM_COOKIE_LENGTH];
2884 char *envp[] = { udev_cookie, NULL };
2885
2886 if (!cookie)
2887 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2888 else {
2889 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2890 DM_COOKIE_ENV_VAR_NAME, cookie);
2891 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2892 action, envp);
2893 }
2894 }
2895
dm_next_uevent_seq(struct mapped_device * md)2896 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2897 {
2898 return atomic_add_return(1, &md->uevent_seq);
2899 }
2900
dm_get_event_nr(struct mapped_device * md)2901 uint32_t dm_get_event_nr(struct mapped_device *md)
2902 {
2903 return atomic_read(&md->event_nr);
2904 }
2905
dm_wait_event(struct mapped_device * md,int event_nr)2906 int dm_wait_event(struct mapped_device *md, int event_nr)
2907 {
2908 return wait_event_interruptible(md->eventq,
2909 (event_nr != atomic_read(&md->event_nr)));
2910 }
2911
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2912 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2913 {
2914 unsigned long flags;
2915
2916 spin_lock_irqsave(&md->uevent_lock, flags);
2917 list_add(elist, &md->uevent_list);
2918 spin_unlock_irqrestore(&md->uevent_lock, flags);
2919 }
2920
2921 /*
2922 * The gendisk is only valid as long as you have a reference
2923 * count on 'md'.
2924 */
dm_disk(struct mapped_device * md)2925 struct gendisk *dm_disk(struct mapped_device *md)
2926 {
2927 return md->disk;
2928 }
2929 EXPORT_SYMBOL_GPL(dm_disk);
2930
dm_kobject(struct mapped_device * md)2931 struct kobject *dm_kobject(struct mapped_device *md)
2932 {
2933 return &md->kobj_holder.kobj;
2934 }
2935
dm_get_from_kobject(struct kobject * kobj)2936 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2937 {
2938 struct mapped_device *md;
2939
2940 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2941
2942 spin_lock(&_minor_lock);
2943 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2944 md = NULL;
2945 goto out;
2946 }
2947 dm_get(md);
2948 out:
2949 spin_unlock(&_minor_lock);
2950
2951 return md;
2952 }
2953
dm_suspended_md(struct mapped_device * md)2954 int dm_suspended_md(struct mapped_device *md)
2955 {
2956 return test_bit(DMF_SUSPENDED, &md->flags);
2957 }
2958
dm_suspended_internally_md(struct mapped_device * md)2959 int dm_suspended_internally_md(struct mapped_device *md)
2960 {
2961 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2962 }
2963
dm_test_deferred_remove_flag(struct mapped_device * md)2964 int dm_test_deferred_remove_flag(struct mapped_device *md)
2965 {
2966 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2967 }
2968
dm_suspended(struct dm_target * ti)2969 int dm_suspended(struct dm_target *ti)
2970 {
2971 return dm_suspended_md(dm_table_get_md(ti->table));
2972 }
2973 EXPORT_SYMBOL_GPL(dm_suspended);
2974
dm_noflush_suspending(struct dm_target * ti)2975 int dm_noflush_suspending(struct dm_target *ti)
2976 {
2977 return __noflush_suspending(dm_table_get_md(ti->table));
2978 }
2979 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2980
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)2981 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2982 unsigned integrity, unsigned per_io_data_size,
2983 unsigned min_pool_size)
2984 {
2985 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2986 unsigned int pool_size = 0;
2987 unsigned int front_pad, io_front_pad;
2988 int ret;
2989
2990 if (!pools)
2991 return NULL;
2992
2993 switch (type) {
2994 case DM_TYPE_BIO_BASED:
2995 case DM_TYPE_DAX_BIO_BASED:
2996 case DM_TYPE_NVME_BIO_BASED:
2997 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2998 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2999 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3000 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3001 if (ret)
3002 goto out;
3003 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3004 goto out;
3005 break;
3006 case DM_TYPE_REQUEST_BASED:
3007 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3008 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3009 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3010 break;
3011 default:
3012 BUG();
3013 }
3014
3015 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3016 if (ret)
3017 goto out;
3018
3019 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3020 goto out;
3021
3022 return pools;
3023
3024 out:
3025 dm_free_md_mempools(pools);
3026
3027 return NULL;
3028 }
3029
dm_free_md_mempools(struct dm_md_mempools * pools)3030 void dm_free_md_mempools(struct dm_md_mempools *pools)
3031 {
3032 if (!pools)
3033 return;
3034
3035 bioset_exit(&pools->bs);
3036 bioset_exit(&pools->io_bs);
3037
3038 kfree(pools);
3039 }
3040
3041 struct dm_pr {
3042 u64 old_key;
3043 u64 new_key;
3044 u32 flags;
3045 bool fail_early;
3046 };
3047
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)3048 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3049 void *data)
3050 {
3051 struct mapped_device *md = bdev->bd_disk->private_data;
3052 struct dm_table *table;
3053 struct dm_target *ti;
3054 int ret = -ENOTTY, srcu_idx;
3055
3056 table = dm_get_live_table(md, &srcu_idx);
3057 if (!table || !dm_table_get_size(table))
3058 goto out;
3059
3060 /* We only support devices that have a single target */
3061 if (dm_table_get_num_targets(table) != 1)
3062 goto out;
3063 ti = dm_table_get_target(table, 0);
3064
3065 ret = -EINVAL;
3066 if (!ti->type->iterate_devices)
3067 goto out;
3068
3069 ret = ti->type->iterate_devices(ti, fn, data);
3070 out:
3071 dm_put_live_table(md, srcu_idx);
3072 return ret;
3073 }
3074
3075 /*
3076 * For register / unregister we need to manually call out to every path.
3077 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3078 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3079 sector_t start, sector_t len, void *data)
3080 {
3081 struct dm_pr *pr = data;
3082 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3083
3084 if (!ops || !ops->pr_register)
3085 return -EOPNOTSUPP;
3086 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3087 }
3088
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3089 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3090 u32 flags)
3091 {
3092 struct dm_pr pr = {
3093 .old_key = old_key,
3094 .new_key = new_key,
3095 .flags = flags,
3096 .fail_early = true,
3097 };
3098 int ret;
3099
3100 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3101 if (ret && new_key) {
3102 /* unregister all paths if we failed to register any path */
3103 pr.old_key = new_key;
3104 pr.new_key = 0;
3105 pr.flags = 0;
3106 pr.fail_early = false;
3107 dm_call_pr(bdev, __dm_pr_register, &pr);
3108 }
3109
3110 return ret;
3111 }
3112
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3113 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3114 u32 flags)
3115 {
3116 struct mapped_device *md = bdev->bd_disk->private_data;
3117 const struct pr_ops *ops;
3118 int r, srcu_idx;
3119
3120 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3121 if (r < 0)
3122 goto out;
3123
3124 ops = bdev->bd_disk->fops->pr_ops;
3125 if (ops && ops->pr_reserve)
3126 r = ops->pr_reserve(bdev, key, type, flags);
3127 else
3128 r = -EOPNOTSUPP;
3129 out:
3130 dm_unprepare_ioctl(md, srcu_idx);
3131 return r;
3132 }
3133
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3134 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3135 {
3136 struct mapped_device *md = bdev->bd_disk->private_data;
3137 const struct pr_ops *ops;
3138 int r, srcu_idx;
3139
3140 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3141 if (r < 0)
3142 goto out;
3143
3144 ops = bdev->bd_disk->fops->pr_ops;
3145 if (ops && ops->pr_release)
3146 r = ops->pr_release(bdev, key, type);
3147 else
3148 r = -EOPNOTSUPP;
3149 out:
3150 dm_unprepare_ioctl(md, srcu_idx);
3151 return r;
3152 }
3153
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3154 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3155 enum pr_type type, bool abort)
3156 {
3157 struct mapped_device *md = bdev->bd_disk->private_data;
3158 const struct pr_ops *ops;
3159 int r, srcu_idx;
3160
3161 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3162 if (r < 0)
3163 goto out;
3164
3165 ops = bdev->bd_disk->fops->pr_ops;
3166 if (ops && ops->pr_preempt)
3167 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3168 else
3169 r = -EOPNOTSUPP;
3170 out:
3171 dm_unprepare_ioctl(md, srcu_idx);
3172 return r;
3173 }
3174
dm_pr_clear(struct block_device * bdev,u64 key)3175 static int dm_pr_clear(struct block_device *bdev, u64 key)
3176 {
3177 struct mapped_device *md = bdev->bd_disk->private_data;
3178 const struct pr_ops *ops;
3179 int r, srcu_idx;
3180
3181 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3182 if (r < 0)
3183 goto out;
3184
3185 ops = bdev->bd_disk->fops->pr_ops;
3186 if (ops && ops->pr_clear)
3187 r = ops->pr_clear(bdev, key);
3188 else
3189 r = -EOPNOTSUPP;
3190 out:
3191 dm_unprepare_ioctl(md, srcu_idx);
3192 return r;
3193 }
3194
3195 static const struct pr_ops dm_pr_ops = {
3196 .pr_register = dm_pr_register,
3197 .pr_reserve = dm_pr_reserve,
3198 .pr_release = dm_pr_release,
3199 .pr_preempt = dm_pr_preempt,
3200 .pr_clear = dm_pr_clear,
3201 };
3202
3203 static const struct block_device_operations dm_blk_dops = {
3204 .open = dm_blk_open,
3205 .release = dm_blk_close,
3206 .ioctl = dm_blk_ioctl,
3207 .getgeo = dm_blk_getgeo,
3208 .report_zones = dm_blk_report_zones,
3209 .pr_ops = &dm_pr_ops,
3210 .owner = THIS_MODULE
3211 };
3212
3213 static const struct dax_operations dm_dax_ops = {
3214 .direct_access = dm_dax_direct_access,
3215 .dax_supported = dm_dax_supported,
3216 .copy_from_iter = dm_dax_copy_from_iter,
3217 .copy_to_iter = dm_dax_copy_to_iter,
3218 };
3219
3220 /*
3221 * module hooks
3222 */
3223 module_init(dm_init);
3224 module_exit(dm_exit);
3225
3226 module_param(major, uint, 0);
3227 MODULE_PARM_DESC(major, "The major number of the device mapper");
3228
3229 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3230 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3231
3232 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3233 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3234
3235 MODULE_DESCRIPTION(DM_NAME " driver");
3236 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3237 MODULE_LICENSE("GPL");
3238