1 /*
2 * Copyright (C) 2011-2012 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
19 *
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
22 *
23 * - A space map managing the metadata blocks.
24 *
25 * - A space map managing the data blocks.
26 *
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28 *
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
33 *
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
41 *
42 * Space maps have 2 btrees:
43 *
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
47 *
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
50 *
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
55 *
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
59 *
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
65 *
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
70 *
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83 * For btree insert:
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
86 * For btree remove:
87 * 2 for shadow spine +
88 * 4 for rebalance 3 child node
89 */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96 * Little endian on-disk superblock and device details.
97 */
98 struct thin_disk_superblock {
99 __le32 csum; /* Checksum of superblock except for this field. */
100 __le32 flags;
101 __le64 blocknr; /* This block number, dm_block_t. */
102
103 __u8 uuid[16];
104 __le64 magic;
105 __le32 version;
106 __le32 time;
107
108 __le64 trans_id;
109
110 /*
111 * Root held by userspace transactions.
112 */
113 __le64 held_root;
114
115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118 /*
119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 */
121 __le64 data_mapping_root;
122
123 /*
124 * Device detail root mapping dev_id -> device_details
125 */
126 __le64 device_details_root;
127
128 __le32 data_block_size; /* In 512-byte sectors. */
129
130 __le32 metadata_block_size; /* In 512-byte sectors. */
131 __le64 metadata_nr_blocks;
132
133 __le32 compat_flags;
134 __le32 compat_ro_flags;
135 __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139 __le64 mapped_blocks;
140 __le64 transaction_id; /* When created. */
141 __le32 creation_time;
142 __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146 struct hlist_node hash;
147
148 struct block_device *bdev;
149 struct dm_block_manager *bm;
150 struct dm_space_map *metadata_sm;
151 struct dm_space_map *data_sm;
152 struct dm_transaction_manager *tm;
153 struct dm_transaction_manager *nb_tm;
154
155 /*
156 * Two-level btree.
157 * First level holds thin_dev_t.
158 * Second level holds mappings.
159 */
160 struct dm_btree_info info;
161
162 /*
163 * Non-blocking version of the above.
164 */
165 struct dm_btree_info nb_info;
166
167 /*
168 * Just the top level for deleting whole devices.
169 */
170 struct dm_btree_info tl_info;
171
172 /*
173 * Just the bottom level for creating new devices.
174 */
175 struct dm_btree_info bl_info;
176
177 /*
178 * Describes the device details btree.
179 */
180 struct dm_btree_info details_info;
181
182 struct rw_semaphore root_lock;
183 uint32_t time;
184 dm_block_t root;
185 dm_block_t details_root;
186 struct list_head thin_devices;
187 uint64_t trans_id;
188 unsigned long flags;
189 sector_t data_block_size;
190
191 /*
192 * We reserve a section of the metadata for commit overhead.
193 * All reported space does *not* include this.
194 */
195 dm_block_t metadata_reserve;
196
197 /*
198 * Set if a transaction has to be aborted but the attempt to roll back
199 * to the previous (good) transaction failed. The only pool metadata
200 * operation possible in this state is the closing of the device.
201 */
202 bool fail_io:1;
203
204 /*
205 * Set once a thin-pool has been accessed through one of the interfaces
206 * that imply the pool is in-service (e.g. thin devices created/deleted,
207 * thin-pool message, metadata snapshots, etc).
208 */
209 bool in_service:1;
210
211 /*
212 * Reading the space map roots can fail, so we read it into these
213 * buffers before the superblock is locked and updated.
214 */
215 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
216 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
217 };
218
219 struct dm_thin_device {
220 struct list_head list;
221 struct dm_pool_metadata *pmd;
222 dm_thin_id id;
223
224 int open_count;
225 bool changed:1;
226 bool aborted_with_changes:1;
227 uint64_t mapped_blocks;
228 uint64_t transaction_id;
229 uint32_t creation_time;
230 uint32_t snapshotted_time;
231 };
232
233 /*----------------------------------------------------------------
234 * superblock validator
235 *--------------------------------------------------------------*/
236
237 #define SUPERBLOCK_CSUM_XOR 160774
238
sb_prepare_for_write(struct dm_block_validator * v,struct dm_block * b,size_t block_size)239 static void sb_prepare_for_write(struct dm_block_validator *v,
240 struct dm_block *b,
241 size_t block_size)
242 {
243 struct thin_disk_superblock *disk_super = dm_block_data(b);
244
245 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
246 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
247 block_size - sizeof(__le32),
248 SUPERBLOCK_CSUM_XOR));
249 }
250
sb_check(struct dm_block_validator * v,struct dm_block * b,size_t block_size)251 static int sb_check(struct dm_block_validator *v,
252 struct dm_block *b,
253 size_t block_size)
254 {
255 struct thin_disk_superblock *disk_super = dm_block_data(b);
256 __le32 csum_le;
257
258 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
259 DMERR("sb_check failed: blocknr %llu: "
260 "wanted %llu", le64_to_cpu(disk_super->blocknr),
261 (unsigned long long)dm_block_location(b));
262 return -ENOTBLK;
263 }
264
265 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
266 DMERR("sb_check failed: magic %llu: "
267 "wanted %llu", le64_to_cpu(disk_super->magic),
268 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
269 return -EILSEQ;
270 }
271
272 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
273 block_size - sizeof(__le32),
274 SUPERBLOCK_CSUM_XOR));
275 if (csum_le != disk_super->csum) {
276 DMERR("sb_check failed: csum %u: wanted %u",
277 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
278 return -EILSEQ;
279 }
280
281 return 0;
282 }
283
284 static struct dm_block_validator sb_validator = {
285 .name = "superblock",
286 .prepare_for_write = sb_prepare_for_write,
287 .check = sb_check
288 };
289
290 /*----------------------------------------------------------------
291 * Methods for the btree value types
292 *--------------------------------------------------------------*/
293
pack_block_time(dm_block_t b,uint32_t t)294 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
295 {
296 return (b << 24) | t;
297 }
298
unpack_block_time(uint64_t v,dm_block_t * b,uint32_t * t)299 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
300 {
301 *b = v >> 24;
302 *t = v & ((1 << 24) - 1);
303 }
304
data_block_inc(void * context,const void * value_le)305 static void data_block_inc(void *context, const void *value_le)
306 {
307 struct dm_space_map *sm = context;
308 __le64 v_le;
309 uint64_t b;
310 uint32_t t;
311
312 memcpy(&v_le, value_le, sizeof(v_le));
313 unpack_block_time(le64_to_cpu(v_le), &b, &t);
314 dm_sm_inc_block(sm, b);
315 }
316
data_block_dec(void * context,const void * value_le)317 static void data_block_dec(void *context, const void *value_le)
318 {
319 struct dm_space_map *sm = context;
320 __le64 v_le;
321 uint64_t b;
322 uint32_t t;
323
324 memcpy(&v_le, value_le, sizeof(v_le));
325 unpack_block_time(le64_to_cpu(v_le), &b, &t);
326 dm_sm_dec_block(sm, b);
327 }
328
data_block_equal(void * context,const void * value1_le,const void * value2_le)329 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
330 {
331 __le64 v1_le, v2_le;
332 uint64_t b1, b2;
333 uint32_t t;
334
335 memcpy(&v1_le, value1_le, sizeof(v1_le));
336 memcpy(&v2_le, value2_le, sizeof(v2_le));
337 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
338 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
339
340 return b1 == b2;
341 }
342
subtree_inc(void * context,const void * value)343 static void subtree_inc(void *context, const void *value)
344 {
345 struct dm_btree_info *info = context;
346 __le64 root_le;
347 uint64_t root;
348
349 memcpy(&root_le, value, sizeof(root_le));
350 root = le64_to_cpu(root_le);
351 dm_tm_inc(info->tm, root);
352 }
353
subtree_dec(void * context,const void * value)354 static void subtree_dec(void *context, const void *value)
355 {
356 struct dm_btree_info *info = context;
357 __le64 root_le;
358 uint64_t root;
359
360 memcpy(&root_le, value, sizeof(root_le));
361 root = le64_to_cpu(root_le);
362 if (dm_btree_del(info, root))
363 DMERR("btree delete failed");
364 }
365
subtree_equal(void * context,const void * value1_le,const void * value2_le)366 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
367 {
368 __le64 v1_le, v2_le;
369 memcpy(&v1_le, value1_le, sizeof(v1_le));
370 memcpy(&v2_le, value2_le, sizeof(v2_le));
371
372 return v1_le == v2_le;
373 }
374
375 /*----------------------------------------------------------------*/
376
377 /*
378 * Variant that is used for in-core only changes or code that
379 * shouldn't put the pool in service on its own (e.g. commit).
380 */
__pmd_write_lock(struct dm_pool_metadata * pmd)381 static inline void __pmd_write_lock(struct dm_pool_metadata *pmd)
382 __acquires(pmd->root_lock)
383 {
384 down_write(&pmd->root_lock);
385 }
386 #define pmd_write_lock_in_core(pmd) __pmd_write_lock((pmd))
387
pmd_write_lock(struct dm_pool_metadata * pmd)388 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
389 {
390 __pmd_write_lock(pmd);
391 if (unlikely(!pmd->in_service))
392 pmd->in_service = true;
393 }
394
pmd_write_unlock(struct dm_pool_metadata * pmd)395 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
396 __releases(pmd->root_lock)
397 {
398 up_write(&pmd->root_lock);
399 }
400
401 /*----------------------------------------------------------------*/
402
superblock_lock_zero(struct dm_pool_metadata * pmd,struct dm_block ** sblock)403 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
404 struct dm_block **sblock)
405 {
406 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
407 &sb_validator, sblock);
408 }
409
superblock_lock(struct dm_pool_metadata * pmd,struct dm_block ** sblock)410 static int superblock_lock(struct dm_pool_metadata *pmd,
411 struct dm_block **sblock)
412 {
413 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
414 &sb_validator, sblock);
415 }
416
__superblock_all_zeroes(struct dm_block_manager * bm,int * result)417 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
418 {
419 int r;
420 unsigned i;
421 struct dm_block *b;
422 __le64 *data_le, zero = cpu_to_le64(0);
423 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
424
425 /*
426 * We can't use a validator here - it may be all zeroes.
427 */
428 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
429 if (r)
430 return r;
431
432 data_le = dm_block_data(b);
433 *result = 1;
434 for (i = 0; i < block_size; i++) {
435 if (data_le[i] != zero) {
436 *result = 0;
437 break;
438 }
439 }
440
441 dm_bm_unlock(b);
442
443 return 0;
444 }
445
__setup_btree_details(struct dm_pool_metadata * pmd)446 static void __setup_btree_details(struct dm_pool_metadata *pmd)
447 {
448 pmd->info.tm = pmd->tm;
449 pmd->info.levels = 2;
450 pmd->info.value_type.context = pmd->data_sm;
451 pmd->info.value_type.size = sizeof(__le64);
452 pmd->info.value_type.inc = data_block_inc;
453 pmd->info.value_type.dec = data_block_dec;
454 pmd->info.value_type.equal = data_block_equal;
455
456 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
457 pmd->nb_info.tm = pmd->nb_tm;
458
459 pmd->tl_info.tm = pmd->tm;
460 pmd->tl_info.levels = 1;
461 pmd->tl_info.value_type.context = &pmd->bl_info;
462 pmd->tl_info.value_type.size = sizeof(__le64);
463 pmd->tl_info.value_type.inc = subtree_inc;
464 pmd->tl_info.value_type.dec = subtree_dec;
465 pmd->tl_info.value_type.equal = subtree_equal;
466
467 pmd->bl_info.tm = pmd->tm;
468 pmd->bl_info.levels = 1;
469 pmd->bl_info.value_type.context = pmd->data_sm;
470 pmd->bl_info.value_type.size = sizeof(__le64);
471 pmd->bl_info.value_type.inc = data_block_inc;
472 pmd->bl_info.value_type.dec = data_block_dec;
473 pmd->bl_info.value_type.equal = data_block_equal;
474
475 pmd->details_info.tm = pmd->tm;
476 pmd->details_info.levels = 1;
477 pmd->details_info.value_type.context = NULL;
478 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
479 pmd->details_info.value_type.inc = NULL;
480 pmd->details_info.value_type.dec = NULL;
481 pmd->details_info.value_type.equal = NULL;
482 }
483
save_sm_roots(struct dm_pool_metadata * pmd)484 static int save_sm_roots(struct dm_pool_metadata *pmd)
485 {
486 int r;
487 size_t len;
488
489 r = dm_sm_root_size(pmd->metadata_sm, &len);
490 if (r < 0)
491 return r;
492
493 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
494 if (r < 0)
495 return r;
496
497 r = dm_sm_root_size(pmd->data_sm, &len);
498 if (r < 0)
499 return r;
500
501 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
502 }
503
copy_sm_roots(struct dm_pool_metadata * pmd,struct thin_disk_superblock * disk)504 static void copy_sm_roots(struct dm_pool_metadata *pmd,
505 struct thin_disk_superblock *disk)
506 {
507 memcpy(&disk->metadata_space_map_root,
508 &pmd->metadata_space_map_root,
509 sizeof(pmd->metadata_space_map_root));
510
511 memcpy(&disk->data_space_map_root,
512 &pmd->data_space_map_root,
513 sizeof(pmd->data_space_map_root));
514 }
515
__write_initial_superblock(struct dm_pool_metadata * pmd)516 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
517 {
518 int r;
519 struct dm_block *sblock;
520 struct thin_disk_superblock *disk_super;
521 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
522
523 if (bdev_size > THIN_METADATA_MAX_SECTORS)
524 bdev_size = THIN_METADATA_MAX_SECTORS;
525
526 r = dm_sm_commit(pmd->data_sm);
527 if (r < 0)
528 return r;
529
530 r = dm_tm_pre_commit(pmd->tm);
531 if (r < 0)
532 return r;
533
534 r = save_sm_roots(pmd);
535 if (r < 0)
536 return r;
537
538 r = superblock_lock_zero(pmd, &sblock);
539 if (r)
540 return r;
541
542 disk_super = dm_block_data(sblock);
543 disk_super->flags = 0;
544 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
545 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
546 disk_super->version = cpu_to_le32(THIN_VERSION);
547 disk_super->time = 0;
548 disk_super->trans_id = 0;
549 disk_super->held_root = 0;
550
551 copy_sm_roots(pmd, disk_super);
552
553 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
554 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
555 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
556 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
557 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
558
559 return dm_tm_commit(pmd->tm, sblock);
560 }
561
__format_metadata(struct dm_pool_metadata * pmd)562 static int __format_metadata(struct dm_pool_metadata *pmd)
563 {
564 int r;
565
566 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
567 &pmd->tm, &pmd->metadata_sm);
568 if (r < 0) {
569 DMERR("tm_create_with_sm failed");
570 return r;
571 }
572
573 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
574 if (IS_ERR(pmd->data_sm)) {
575 DMERR("sm_disk_create failed");
576 r = PTR_ERR(pmd->data_sm);
577 goto bad_cleanup_tm;
578 }
579
580 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
581 if (!pmd->nb_tm) {
582 DMERR("could not create non-blocking clone tm");
583 r = -ENOMEM;
584 goto bad_cleanup_data_sm;
585 }
586
587 __setup_btree_details(pmd);
588
589 r = dm_btree_empty(&pmd->info, &pmd->root);
590 if (r < 0)
591 goto bad_cleanup_nb_tm;
592
593 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
594 if (r < 0) {
595 DMERR("couldn't create devices root");
596 goto bad_cleanup_nb_tm;
597 }
598
599 r = __write_initial_superblock(pmd);
600 if (r)
601 goto bad_cleanup_nb_tm;
602
603 return 0;
604
605 bad_cleanup_nb_tm:
606 dm_tm_destroy(pmd->nb_tm);
607 bad_cleanup_data_sm:
608 dm_sm_destroy(pmd->data_sm);
609 bad_cleanup_tm:
610 dm_tm_destroy(pmd->tm);
611 dm_sm_destroy(pmd->metadata_sm);
612
613 return r;
614 }
615
__check_incompat_features(struct thin_disk_superblock * disk_super,struct dm_pool_metadata * pmd)616 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
617 struct dm_pool_metadata *pmd)
618 {
619 uint32_t features;
620
621 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
622 if (features) {
623 DMERR("could not access metadata due to unsupported optional features (%lx).",
624 (unsigned long)features);
625 return -EINVAL;
626 }
627
628 /*
629 * Check for read-only metadata to skip the following RDWR checks.
630 */
631 if (get_disk_ro(pmd->bdev->bd_disk))
632 return 0;
633
634 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
635 if (features) {
636 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
637 (unsigned long)features);
638 return -EINVAL;
639 }
640
641 return 0;
642 }
643
__open_metadata(struct dm_pool_metadata * pmd)644 static int __open_metadata(struct dm_pool_metadata *pmd)
645 {
646 int r;
647 struct dm_block *sblock;
648 struct thin_disk_superblock *disk_super;
649
650 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
651 &sb_validator, &sblock);
652 if (r < 0) {
653 DMERR("couldn't read superblock");
654 return r;
655 }
656
657 disk_super = dm_block_data(sblock);
658
659 /* Verify the data block size hasn't changed */
660 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
661 DMERR("changing the data block size (from %u to %llu) is not supported",
662 le32_to_cpu(disk_super->data_block_size),
663 (unsigned long long)pmd->data_block_size);
664 r = -EINVAL;
665 goto bad_unlock_sblock;
666 }
667
668 r = __check_incompat_features(disk_super, pmd);
669 if (r < 0)
670 goto bad_unlock_sblock;
671
672 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
673 disk_super->metadata_space_map_root,
674 sizeof(disk_super->metadata_space_map_root),
675 &pmd->tm, &pmd->metadata_sm);
676 if (r < 0) {
677 DMERR("tm_open_with_sm failed");
678 goto bad_unlock_sblock;
679 }
680
681 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
682 sizeof(disk_super->data_space_map_root));
683 if (IS_ERR(pmd->data_sm)) {
684 DMERR("sm_disk_open failed");
685 r = PTR_ERR(pmd->data_sm);
686 goto bad_cleanup_tm;
687 }
688
689 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
690 if (!pmd->nb_tm) {
691 DMERR("could not create non-blocking clone tm");
692 r = -ENOMEM;
693 goto bad_cleanup_data_sm;
694 }
695
696 __setup_btree_details(pmd);
697 dm_bm_unlock(sblock);
698
699 return 0;
700
701 bad_cleanup_data_sm:
702 dm_sm_destroy(pmd->data_sm);
703 bad_cleanup_tm:
704 dm_tm_destroy(pmd->tm);
705 dm_sm_destroy(pmd->metadata_sm);
706 bad_unlock_sblock:
707 dm_bm_unlock(sblock);
708
709 return r;
710 }
711
__open_or_format_metadata(struct dm_pool_metadata * pmd,bool format_device)712 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
713 {
714 int r, unformatted;
715
716 r = __superblock_all_zeroes(pmd->bm, &unformatted);
717 if (r)
718 return r;
719
720 if (unformatted)
721 return format_device ? __format_metadata(pmd) : -EPERM;
722
723 return __open_metadata(pmd);
724 }
725
__create_persistent_data_objects(struct dm_pool_metadata * pmd,bool format_device)726 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
727 {
728 int r;
729
730 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
731 THIN_MAX_CONCURRENT_LOCKS);
732 if (IS_ERR(pmd->bm)) {
733 DMERR("could not create block manager");
734 return PTR_ERR(pmd->bm);
735 }
736
737 r = __open_or_format_metadata(pmd, format_device);
738 if (r)
739 dm_block_manager_destroy(pmd->bm);
740
741 return r;
742 }
743
__destroy_persistent_data_objects(struct dm_pool_metadata * pmd)744 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
745 {
746 dm_sm_destroy(pmd->data_sm);
747 dm_sm_destroy(pmd->metadata_sm);
748 dm_tm_destroy(pmd->nb_tm);
749 dm_tm_destroy(pmd->tm);
750 dm_block_manager_destroy(pmd->bm);
751 }
752
__begin_transaction(struct dm_pool_metadata * pmd)753 static int __begin_transaction(struct dm_pool_metadata *pmd)
754 {
755 int r;
756 struct thin_disk_superblock *disk_super;
757 struct dm_block *sblock;
758
759 /*
760 * We re-read the superblock every time. Shouldn't need to do this
761 * really.
762 */
763 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
764 &sb_validator, &sblock);
765 if (r)
766 return r;
767
768 disk_super = dm_block_data(sblock);
769 pmd->time = le32_to_cpu(disk_super->time);
770 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
771 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
772 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
773 pmd->flags = le32_to_cpu(disk_super->flags);
774 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
775
776 dm_bm_unlock(sblock);
777 return 0;
778 }
779
__write_changed_details(struct dm_pool_metadata * pmd)780 static int __write_changed_details(struct dm_pool_metadata *pmd)
781 {
782 int r;
783 struct dm_thin_device *td, *tmp;
784 struct disk_device_details details;
785 uint64_t key;
786
787 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
788 if (!td->changed)
789 continue;
790
791 key = td->id;
792
793 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
794 details.transaction_id = cpu_to_le64(td->transaction_id);
795 details.creation_time = cpu_to_le32(td->creation_time);
796 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
797 __dm_bless_for_disk(&details);
798
799 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
800 &key, &details, &pmd->details_root);
801 if (r)
802 return r;
803
804 if (td->open_count)
805 td->changed = 0;
806 else {
807 list_del(&td->list);
808 kfree(td);
809 }
810 }
811
812 return 0;
813 }
814
__commit_transaction(struct dm_pool_metadata * pmd)815 static int __commit_transaction(struct dm_pool_metadata *pmd)
816 {
817 int r;
818 struct thin_disk_superblock *disk_super;
819 struct dm_block *sblock;
820
821 /*
822 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
823 */
824 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
825
826 if (unlikely(!pmd->in_service))
827 return 0;
828
829 r = __write_changed_details(pmd);
830 if (r < 0)
831 return r;
832
833 r = dm_sm_commit(pmd->data_sm);
834 if (r < 0)
835 return r;
836
837 r = dm_tm_pre_commit(pmd->tm);
838 if (r < 0)
839 return r;
840
841 r = save_sm_roots(pmd);
842 if (r < 0)
843 return r;
844
845 r = superblock_lock(pmd, &sblock);
846 if (r)
847 return r;
848
849 disk_super = dm_block_data(sblock);
850 disk_super->time = cpu_to_le32(pmd->time);
851 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
852 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
853 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
854 disk_super->flags = cpu_to_le32(pmd->flags);
855
856 copy_sm_roots(pmd, disk_super);
857
858 return dm_tm_commit(pmd->tm, sblock);
859 }
860
__set_metadata_reserve(struct dm_pool_metadata * pmd)861 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
862 {
863 int r;
864 dm_block_t total;
865 dm_block_t max_blocks = 4096; /* 16M */
866
867 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
868 if (r) {
869 DMERR("could not get size of metadata device");
870 pmd->metadata_reserve = max_blocks;
871 } else
872 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
873 }
874
dm_pool_metadata_open(struct block_device * bdev,sector_t data_block_size,bool format_device)875 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
876 sector_t data_block_size,
877 bool format_device)
878 {
879 int r;
880 struct dm_pool_metadata *pmd;
881
882 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
883 if (!pmd) {
884 DMERR("could not allocate metadata struct");
885 return ERR_PTR(-ENOMEM);
886 }
887
888 init_rwsem(&pmd->root_lock);
889 pmd->time = 0;
890 INIT_LIST_HEAD(&pmd->thin_devices);
891 pmd->fail_io = false;
892 pmd->in_service = false;
893 pmd->bdev = bdev;
894 pmd->data_block_size = data_block_size;
895
896 r = __create_persistent_data_objects(pmd, format_device);
897 if (r) {
898 kfree(pmd);
899 return ERR_PTR(r);
900 }
901
902 r = __begin_transaction(pmd);
903 if (r < 0) {
904 if (dm_pool_metadata_close(pmd) < 0)
905 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
906 return ERR_PTR(r);
907 }
908
909 __set_metadata_reserve(pmd);
910
911 return pmd;
912 }
913
dm_pool_metadata_close(struct dm_pool_metadata * pmd)914 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
915 {
916 int r;
917 unsigned open_devices = 0;
918 struct dm_thin_device *td, *tmp;
919
920 down_read(&pmd->root_lock);
921 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
922 if (td->open_count)
923 open_devices++;
924 else {
925 list_del(&td->list);
926 kfree(td);
927 }
928 }
929 up_read(&pmd->root_lock);
930
931 if (open_devices) {
932 DMERR("attempt to close pmd when %u device(s) are still open",
933 open_devices);
934 return -EBUSY;
935 }
936
937 if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
938 r = __commit_transaction(pmd);
939 if (r < 0)
940 DMWARN("%s: __commit_transaction() failed, error = %d",
941 __func__, r);
942 }
943 if (!pmd->fail_io)
944 __destroy_persistent_data_objects(pmd);
945
946 kfree(pmd);
947 return 0;
948 }
949
950 /*
951 * __open_device: Returns @td corresponding to device with id @dev,
952 * creating it if @create is set and incrementing @td->open_count.
953 * On failure, @td is undefined.
954 */
__open_device(struct dm_pool_metadata * pmd,dm_thin_id dev,int create,struct dm_thin_device ** td)955 static int __open_device(struct dm_pool_metadata *pmd,
956 dm_thin_id dev, int create,
957 struct dm_thin_device **td)
958 {
959 int r, changed = 0;
960 struct dm_thin_device *td2;
961 uint64_t key = dev;
962 struct disk_device_details details_le;
963
964 /*
965 * If the device is already open, return it.
966 */
967 list_for_each_entry(td2, &pmd->thin_devices, list)
968 if (td2->id == dev) {
969 /*
970 * May not create an already-open device.
971 */
972 if (create)
973 return -EEXIST;
974
975 td2->open_count++;
976 *td = td2;
977 return 0;
978 }
979
980 /*
981 * Check the device exists.
982 */
983 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
984 &key, &details_le);
985 if (r) {
986 if (r != -ENODATA || !create)
987 return r;
988
989 /*
990 * Create new device.
991 */
992 changed = 1;
993 details_le.mapped_blocks = 0;
994 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
995 details_le.creation_time = cpu_to_le32(pmd->time);
996 details_le.snapshotted_time = cpu_to_le32(pmd->time);
997 }
998
999 *td = kmalloc(sizeof(**td), GFP_NOIO);
1000 if (!*td)
1001 return -ENOMEM;
1002
1003 (*td)->pmd = pmd;
1004 (*td)->id = dev;
1005 (*td)->open_count = 1;
1006 (*td)->changed = changed;
1007 (*td)->aborted_with_changes = false;
1008 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1009 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1010 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
1011 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1012
1013 list_add(&(*td)->list, &pmd->thin_devices);
1014
1015 return 0;
1016 }
1017
__close_device(struct dm_thin_device * td)1018 static void __close_device(struct dm_thin_device *td)
1019 {
1020 --td->open_count;
1021 }
1022
__create_thin(struct dm_pool_metadata * pmd,dm_thin_id dev)1023 static int __create_thin(struct dm_pool_metadata *pmd,
1024 dm_thin_id dev)
1025 {
1026 int r;
1027 dm_block_t dev_root;
1028 uint64_t key = dev;
1029 struct disk_device_details details_le;
1030 struct dm_thin_device *td;
1031 __le64 value;
1032
1033 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1034 &key, &details_le);
1035 if (!r)
1036 return -EEXIST;
1037
1038 /*
1039 * Create an empty btree for the mappings.
1040 */
1041 r = dm_btree_empty(&pmd->bl_info, &dev_root);
1042 if (r)
1043 return r;
1044
1045 /*
1046 * Insert it into the main mapping tree.
1047 */
1048 value = cpu_to_le64(dev_root);
1049 __dm_bless_for_disk(&value);
1050 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1051 if (r) {
1052 dm_btree_del(&pmd->bl_info, dev_root);
1053 return r;
1054 }
1055
1056 r = __open_device(pmd, dev, 1, &td);
1057 if (r) {
1058 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1059 dm_btree_del(&pmd->bl_info, dev_root);
1060 return r;
1061 }
1062 __close_device(td);
1063
1064 return r;
1065 }
1066
dm_pool_create_thin(struct dm_pool_metadata * pmd,dm_thin_id dev)1067 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1068 {
1069 int r = -EINVAL;
1070
1071 pmd_write_lock(pmd);
1072 if (!pmd->fail_io)
1073 r = __create_thin(pmd, dev);
1074 pmd_write_unlock(pmd);
1075
1076 return r;
1077 }
1078
__set_snapshot_details(struct dm_pool_metadata * pmd,struct dm_thin_device * snap,dm_thin_id origin,uint32_t time)1079 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1080 struct dm_thin_device *snap,
1081 dm_thin_id origin, uint32_t time)
1082 {
1083 int r;
1084 struct dm_thin_device *td;
1085
1086 r = __open_device(pmd, origin, 0, &td);
1087 if (r)
1088 return r;
1089
1090 td->changed = 1;
1091 td->snapshotted_time = time;
1092
1093 snap->mapped_blocks = td->mapped_blocks;
1094 snap->snapshotted_time = time;
1095 __close_device(td);
1096
1097 return 0;
1098 }
1099
__create_snap(struct dm_pool_metadata * pmd,dm_thin_id dev,dm_thin_id origin)1100 static int __create_snap(struct dm_pool_metadata *pmd,
1101 dm_thin_id dev, dm_thin_id origin)
1102 {
1103 int r;
1104 dm_block_t origin_root;
1105 uint64_t key = origin, dev_key = dev;
1106 struct dm_thin_device *td;
1107 struct disk_device_details details_le;
1108 __le64 value;
1109
1110 /* check this device is unused */
1111 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1112 &dev_key, &details_le);
1113 if (!r)
1114 return -EEXIST;
1115
1116 /* find the mapping tree for the origin */
1117 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1118 if (r)
1119 return r;
1120 origin_root = le64_to_cpu(value);
1121
1122 /* clone the origin, an inc will do */
1123 dm_tm_inc(pmd->tm, origin_root);
1124
1125 /* insert into the main mapping tree */
1126 value = cpu_to_le64(origin_root);
1127 __dm_bless_for_disk(&value);
1128 key = dev;
1129 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1130 if (r) {
1131 dm_tm_dec(pmd->tm, origin_root);
1132 return r;
1133 }
1134
1135 pmd->time++;
1136
1137 r = __open_device(pmd, dev, 1, &td);
1138 if (r)
1139 goto bad;
1140
1141 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1142 __close_device(td);
1143
1144 if (r)
1145 goto bad;
1146
1147 return 0;
1148
1149 bad:
1150 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1151 dm_btree_remove(&pmd->details_info, pmd->details_root,
1152 &key, &pmd->details_root);
1153 return r;
1154 }
1155
dm_pool_create_snap(struct dm_pool_metadata * pmd,dm_thin_id dev,dm_thin_id origin)1156 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1157 dm_thin_id dev,
1158 dm_thin_id origin)
1159 {
1160 int r = -EINVAL;
1161
1162 pmd_write_lock(pmd);
1163 if (!pmd->fail_io)
1164 r = __create_snap(pmd, dev, origin);
1165 pmd_write_unlock(pmd);
1166
1167 return r;
1168 }
1169
__delete_device(struct dm_pool_metadata * pmd,dm_thin_id dev)1170 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1171 {
1172 int r;
1173 uint64_t key = dev;
1174 struct dm_thin_device *td;
1175
1176 /* TODO: failure should mark the transaction invalid */
1177 r = __open_device(pmd, dev, 0, &td);
1178 if (r)
1179 return r;
1180
1181 if (td->open_count > 1) {
1182 __close_device(td);
1183 return -EBUSY;
1184 }
1185
1186 list_del(&td->list);
1187 kfree(td);
1188 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1189 &key, &pmd->details_root);
1190 if (r)
1191 return r;
1192
1193 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1194 if (r)
1195 return r;
1196
1197 return 0;
1198 }
1199
dm_pool_delete_thin_device(struct dm_pool_metadata * pmd,dm_thin_id dev)1200 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1201 dm_thin_id dev)
1202 {
1203 int r = -EINVAL;
1204
1205 pmd_write_lock(pmd);
1206 if (!pmd->fail_io)
1207 r = __delete_device(pmd, dev);
1208 pmd_write_unlock(pmd);
1209
1210 return r;
1211 }
1212
dm_pool_set_metadata_transaction_id(struct dm_pool_metadata * pmd,uint64_t current_id,uint64_t new_id)1213 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1214 uint64_t current_id,
1215 uint64_t new_id)
1216 {
1217 int r = -EINVAL;
1218
1219 pmd_write_lock(pmd);
1220
1221 if (pmd->fail_io)
1222 goto out;
1223
1224 if (pmd->trans_id != current_id) {
1225 DMERR("mismatched transaction id");
1226 goto out;
1227 }
1228
1229 pmd->trans_id = new_id;
1230 r = 0;
1231
1232 out:
1233 pmd_write_unlock(pmd);
1234
1235 return r;
1236 }
1237
dm_pool_get_metadata_transaction_id(struct dm_pool_metadata * pmd,uint64_t * result)1238 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1239 uint64_t *result)
1240 {
1241 int r = -EINVAL;
1242
1243 down_read(&pmd->root_lock);
1244 if (!pmd->fail_io) {
1245 *result = pmd->trans_id;
1246 r = 0;
1247 }
1248 up_read(&pmd->root_lock);
1249
1250 return r;
1251 }
1252
__reserve_metadata_snap(struct dm_pool_metadata * pmd)1253 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1254 {
1255 int r, inc;
1256 struct thin_disk_superblock *disk_super;
1257 struct dm_block *copy, *sblock;
1258 dm_block_t held_root;
1259
1260 /*
1261 * We commit to ensure the btree roots which we increment in a
1262 * moment are up to date.
1263 */
1264 r = __commit_transaction(pmd);
1265 if (r < 0) {
1266 DMWARN("%s: __commit_transaction() failed, error = %d",
1267 __func__, r);
1268 return r;
1269 }
1270
1271 /*
1272 * Copy the superblock.
1273 */
1274 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1275 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1276 &sb_validator, ©, &inc);
1277 if (r)
1278 return r;
1279
1280 BUG_ON(!inc);
1281
1282 held_root = dm_block_location(copy);
1283 disk_super = dm_block_data(copy);
1284
1285 if (le64_to_cpu(disk_super->held_root)) {
1286 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1287
1288 dm_tm_dec(pmd->tm, held_root);
1289 dm_tm_unlock(pmd->tm, copy);
1290 return -EBUSY;
1291 }
1292
1293 /*
1294 * Wipe the spacemap since we're not publishing this.
1295 */
1296 memset(&disk_super->data_space_map_root, 0,
1297 sizeof(disk_super->data_space_map_root));
1298 memset(&disk_super->metadata_space_map_root, 0,
1299 sizeof(disk_super->metadata_space_map_root));
1300
1301 /*
1302 * Increment the data structures that need to be preserved.
1303 */
1304 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1305 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1306 dm_tm_unlock(pmd->tm, copy);
1307
1308 /*
1309 * Write the held root into the superblock.
1310 */
1311 r = superblock_lock(pmd, &sblock);
1312 if (r) {
1313 dm_tm_dec(pmd->tm, held_root);
1314 return r;
1315 }
1316
1317 disk_super = dm_block_data(sblock);
1318 disk_super->held_root = cpu_to_le64(held_root);
1319 dm_bm_unlock(sblock);
1320 return 0;
1321 }
1322
dm_pool_reserve_metadata_snap(struct dm_pool_metadata * pmd)1323 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1324 {
1325 int r = -EINVAL;
1326
1327 pmd_write_lock(pmd);
1328 if (!pmd->fail_io)
1329 r = __reserve_metadata_snap(pmd);
1330 pmd_write_unlock(pmd);
1331
1332 return r;
1333 }
1334
__release_metadata_snap(struct dm_pool_metadata * pmd)1335 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1336 {
1337 int r;
1338 struct thin_disk_superblock *disk_super;
1339 struct dm_block *sblock, *copy;
1340 dm_block_t held_root;
1341
1342 r = superblock_lock(pmd, &sblock);
1343 if (r)
1344 return r;
1345
1346 disk_super = dm_block_data(sblock);
1347 held_root = le64_to_cpu(disk_super->held_root);
1348 disk_super->held_root = cpu_to_le64(0);
1349
1350 dm_bm_unlock(sblock);
1351
1352 if (!held_root) {
1353 DMWARN("No pool metadata snapshot found: nothing to release.");
1354 return -EINVAL;
1355 }
1356
1357 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©);
1358 if (r)
1359 return r;
1360
1361 disk_super = dm_block_data(copy);
1362 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1363 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1364 dm_sm_dec_block(pmd->metadata_sm, held_root);
1365
1366 dm_tm_unlock(pmd->tm, copy);
1367
1368 return 0;
1369 }
1370
dm_pool_release_metadata_snap(struct dm_pool_metadata * pmd)1371 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1372 {
1373 int r = -EINVAL;
1374
1375 pmd_write_lock(pmd);
1376 if (!pmd->fail_io)
1377 r = __release_metadata_snap(pmd);
1378 pmd_write_unlock(pmd);
1379
1380 return r;
1381 }
1382
__get_metadata_snap(struct dm_pool_metadata * pmd,dm_block_t * result)1383 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1384 dm_block_t *result)
1385 {
1386 int r;
1387 struct thin_disk_superblock *disk_super;
1388 struct dm_block *sblock;
1389
1390 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1391 &sb_validator, &sblock);
1392 if (r)
1393 return r;
1394
1395 disk_super = dm_block_data(sblock);
1396 *result = le64_to_cpu(disk_super->held_root);
1397
1398 dm_bm_unlock(sblock);
1399
1400 return 0;
1401 }
1402
dm_pool_get_metadata_snap(struct dm_pool_metadata * pmd,dm_block_t * result)1403 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1404 dm_block_t *result)
1405 {
1406 int r = -EINVAL;
1407
1408 down_read(&pmd->root_lock);
1409 if (!pmd->fail_io)
1410 r = __get_metadata_snap(pmd, result);
1411 up_read(&pmd->root_lock);
1412
1413 return r;
1414 }
1415
dm_pool_open_thin_device(struct dm_pool_metadata * pmd,dm_thin_id dev,struct dm_thin_device ** td)1416 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1417 struct dm_thin_device **td)
1418 {
1419 int r = -EINVAL;
1420
1421 pmd_write_lock_in_core(pmd);
1422 if (!pmd->fail_io)
1423 r = __open_device(pmd, dev, 0, td);
1424 pmd_write_unlock(pmd);
1425
1426 return r;
1427 }
1428
dm_pool_close_thin_device(struct dm_thin_device * td)1429 int dm_pool_close_thin_device(struct dm_thin_device *td)
1430 {
1431 pmd_write_lock_in_core(td->pmd);
1432 __close_device(td);
1433 pmd_write_unlock(td->pmd);
1434
1435 return 0;
1436 }
1437
dm_thin_dev_id(struct dm_thin_device * td)1438 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1439 {
1440 return td->id;
1441 }
1442
1443 /*
1444 * Check whether @time (of block creation) is older than @td's last snapshot.
1445 * If so then the associated block is shared with the last snapshot device.
1446 * Any block on a device created *after* the device last got snapshotted is
1447 * necessarily not shared.
1448 */
__snapshotted_since(struct dm_thin_device * td,uint32_t time)1449 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1450 {
1451 return td->snapshotted_time > time;
1452 }
1453
unpack_lookup_result(struct dm_thin_device * td,__le64 value,struct dm_thin_lookup_result * result)1454 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1455 struct dm_thin_lookup_result *result)
1456 {
1457 uint64_t block_time = 0;
1458 dm_block_t exception_block;
1459 uint32_t exception_time;
1460
1461 block_time = le64_to_cpu(value);
1462 unpack_block_time(block_time, &exception_block, &exception_time);
1463 result->block = exception_block;
1464 result->shared = __snapshotted_since(td, exception_time);
1465 }
1466
__find_block(struct dm_thin_device * td,dm_block_t block,int can_issue_io,struct dm_thin_lookup_result * result)1467 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1468 int can_issue_io, struct dm_thin_lookup_result *result)
1469 {
1470 int r;
1471 __le64 value;
1472 struct dm_pool_metadata *pmd = td->pmd;
1473 dm_block_t keys[2] = { td->id, block };
1474 struct dm_btree_info *info;
1475
1476 if (can_issue_io) {
1477 info = &pmd->info;
1478 } else
1479 info = &pmd->nb_info;
1480
1481 r = dm_btree_lookup(info, pmd->root, keys, &value);
1482 if (!r)
1483 unpack_lookup_result(td, value, result);
1484
1485 return r;
1486 }
1487
dm_thin_find_block(struct dm_thin_device * td,dm_block_t block,int can_issue_io,struct dm_thin_lookup_result * result)1488 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1489 int can_issue_io, struct dm_thin_lookup_result *result)
1490 {
1491 int r;
1492 struct dm_pool_metadata *pmd = td->pmd;
1493
1494 down_read(&pmd->root_lock);
1495 if (pmd->fail_io) {
1496 up_read(&pmd->root_lock);
1497 return -EINVAL;
1498 }
1499
1500 r = __find_block(td, block, can_issue_io, result);
1501
1502 up_read(&pmd->root_lock);
1503 return r;
1504 }
1505
__find_next_mapped_block(struct dm_thin_device * td,dm_block_t block,dm_block_t * vblock,struct dm_thin_lookup_result * result)1506 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1507 dm_block_t *vblock,
1508 struct dm_thin_lookup_result *result)
1509 {
1510 int r;
1511 __le64 value;
1512 struct dm_pool_metadata *pmd = td->pmd;
1513 dm_block_t keys[2] = { td->id, block };
1514
1515 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1516 if (!r)
1517 unpack_lookup_result(td, value, result);
1518
1519 return r;
1520 }
1521
__find_mapped_range(struct dm_thin_device * td,dm_block_t begin,dm_block_t end,dm_block_t * thin_begin,dm_block_t * thin_end,dm_block_t * pool_begin,bool * maybe_shared)1522 static int __find_mapped_range(struct dm_thin_device *td,
1523 dm_block_t begin, dm_block_t end,
1524 dm_block_t *thin_begin, dm_block_t *thin_end,
1525 dm_block_t *pool_begin, bool *maybe_shared)
1526 {
1527 int r;
1528 dm_block_t pool_end;
1529 struct dm_thin_lookup_result lookup;
1530
1531 if (end < begin)
1532 return -ENODATA;
1533
1534 r = __find_next_mapped_block(td, begin, &begin, &lookup);
1535 if (r)
1536 return r;
1537
1538 if (begin >= end)
1539 return -ENODATA;
1540
1541 *thin_begin = begin;
1542 *pool_begin = lookup.block;
1543 *maybe_shared = lookup.shared;
1544
1545 begin++;
1546 pool_end = *pool_begin + 1;
1547 while (begin != end) {
1548 r = __find_block(td, begin, true, &lookup);
1549 if (r) {
1550 if (r == -ENODATA)
1551 break;
1552 else
1553 return r;
1554 }
1555
1556 if ((lookup.block != pool_end) ||
1557 (lookup.shared != *maybe_shared))
1558 break;
1559
1560 pool_end++;
1561 begin++;
1562 }
1563
1564 *thin_end = begin;
1565 return 0;
1566 }
1567
dm_thin_find_mapped_range(struct dm_thin_device * td,dm_block_t begin,dm_block_t end,dm_block_t * thin_begin,dm_block_t * thin_end,dm_block_t * pool_begin,bool * maybe_shared)1568 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1569 dm_block_t begin, dm_block_t end,
1570 dm_block_t *thin_begin, dm_block_t *thin_end,
1571 dm_block_t *pool_begin, bool *maybe_shared)
1572 {
1573 int r = -EINVAL;
1574 struct dm_pool_metadata *pmd = td->pmd;
1575
1576 down_read(&pmd->root_lock);
1577 if (!pmd->fail_io) {
1578 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1579 pool_begin, maybe_shared);
1580 }
1581 up_read(&pmd->root_lock);
1582
1583 return r;
1584 }
1585
__insert(struct dm_thin_device * td,dm_block_t block,dm_block_t data_block)1586 static int __insert(struct dm_thin_device *td, dm_block_t block,
1587 dm_block_t data_block)
1588 {
1589 int r, inserted;
1590 __le64 value;
1591 struct dm_pool_metadata *pmd = td->pmd;
1592 dm_block_t keys[2] = { td->id, block };
1593
1594 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1595 __dm_bless_for_disk(&value);
1596
1597 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1598 &pmd->root, &inserted);
1599 if (r)
1600 return r;
1601
1602 td->changed = 1;
1603 if (inserted)
1604 td->mapped_blocks++;
1605
1606 return 0;
1607 }
1608
dm_thin_insert_block(struct dm_thin_device * td,dm_block_t block,dm_block_t data_block)1609 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1610 dm_block_t data_block)
1611 {
1612 int r = -EINVAL;
1613
1614 pmd_write_lock(td->pmd);
1615 if (!td->pmd->fail_io)
1616 r = __insert(td, block, data_block);
1617 pmd_write_unlock(td->pmd);
1618
1619 return r;
1620 }
1621
__remove(struct dm_thin_device * td,dm_block_t block)1622 static int __remove(struct dm_thin_device *td, dm_block_t block)
1623 {
1624 int r;
1625 struct dm_pool_metadata *pmd = td->pmd;
1626 dm_block_t keys[2] = { td->id, block };
1627
1628 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1629 if (r)
1630 return r;
1631
1632 td->mapped_blocks--;
1633 td->changed = 1;
1634
1635 return 0;
1636 }
1637
__remove_range(struct dm_thin_device * td,dm_block_t begin,dm_block_t end)1638 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1639 {
1640 int r;
1641 unsigned count, total_count = 0;
1642 struct dm_pool_metadata *pmd = td->pmd;
1643 dm_block_t keys[1] = { td->id };
1644 __le64 value;
1645 dm_block_t mapping_root;
1646
1647 /*
1648 * Find the mapping tree
1649 */
1650 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1651 if (r)
1652 return r;
1653
1654 /*
1655 * Remove from the mapping tree, taking care to inc the
1656 * ref count so it doesn't get deleted.
1657 */
1658 mapping_root = le64_to_cpu(value);
1659 dm_tm_inc(pmd->tm, mapping_root);
1660 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1661 if (r)
1662 return r;
1663
1664 /*
1665 * Remove leaves stops at the first unmapped entry, so we have to
1666 * loop round finding mapped ranges.
1667 */
1668 while (begin < end) {
1669 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1670 if (r == -ENODATA)
1671 break;
1672
1673 if (r)
1674 return r;
1675
1676 if (begin >= end)
1677 break;
1678
1679 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1680 if (r)
1681 return r;
1682
1683 total_count += count;
1684 }
1685
1686 td->mapped_blocks -= total_count;
1687 td->changed = 1;
1688
1689 /*
1690 * Reinsert the mapping tree.
1691 */
1692 value = cpu_to_le64(mapping_root);
1693 __dm_bless_for_disk(&value);
1694 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1695 }
1696
dm_thin_remove_block(struct dm_thin_device * td,dm_block_t block)1697 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1698 {
1699 int r = -EINVAL;
1700
1701 pmd_write_lock(td->pmd);
1702 if (!td->pmd->fail_io)
1703 r = __remove(td, block);
1704 pmd_write_unlock(td->pmd);
1705
1706 return r;
1707 }
1708
dm_thin_remove_range(struct dm_thin_device * td,dm_block_t begin,dm_block_t end)1709 int dm_thin_remove_range(struct dm_thin_device *td,
1710 dm_block_t begin, dm_block_t end)
1711 {
1712 int r = -EINVAL;
1713
1714 pmd_write_lock(td->pmd);
1715 if (!td->pmd->fail_io)
1716 r = __remove_range(td, begin, end);
1717 pmd_write_unlock(td->pmd);
1718
1719 return r;
1720 }
1721
dm_pool_block_is_shared(struct dm_pool_metadata * pmd,dm_block_t b,bool * result)1722 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1723 {
1724 int r;
1725 uint32_t ref_count;
1726
1727 down_read(&pmd->root_lock);
1728 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1729 if (!r)
1730 *result = (ref_count > 1);
1731 up_read(&pmd->root_lock);
1732
1733 return r;
1734 }
1735
dm_pool_inc_data_range(struct dm_pool_metadata * pmd,dm_block_t b,dm_block_t e)1736 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1737 {
1738 int r = 0;
1739
1740 pmd_write_lock(pmd);
1741 for (; b != e; b++) {
1742 r = dm_sm_inc_block(pmd->data_sm, b);
1743 if (r)
1744 break;
1745 }
1746 pmd_write_unlock(pmd);
1747
1748 return r;
1749 }
1750
dm_pool_dec_data_range(struct dm_pool_metadata * pmd,dm_block_t b,dm_block_t e)1751 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1752 {
1753 int r = 0;
1754
1755 pmd_write_lock(pmd);
1756 for (; b != e; b++) {
1757 r = dm_sm_dec_block(pmd->data_sm, b);
1758 if (r)
1759 break;
1760 }
1761 pmd_write_unlock(pmd);
1762
1763 return r;
1764 }
1765
dm_thin_changed_this_transaction(struct dm_thin_device * td)1766 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1767 {
1768 int r;
1769
1770 down_read(&td->pmd->root_lock);
1771 r = td->changed;
1772 up_read(&td->pmd->root_lock);
1773
1774 return r;
1775 }
1776
dm_pool_changed_this_transaction(struct dm_pool_metadata * pmd)1777 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1778 {
1779 bool r = false;
1780 struct dm_thin_device *td, *tmp;
1781
1782 down_read(&pmd->root_lock);
1783 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1784 if (td->changed) {
1785 r = td->changed;
1786 break;
1787 }
1788 }
1789 up_read(&pmd->root_lock);
1790
1791 return r;
1792 }
1793
dm_thin_aborted_changes(struct dm_thin_device * td)1794 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1795 {
1796 bool r;
1797
1798 down_read(&td->pmd->root_lock);
1799 r = td->aborted_with_changes;
1800 up_read(&td->pmd->root_lock);
1801
1802 return r;
1803 }
1804
dm_pool_alloc_data_block(struct dm_pool_metadata * pmd,dm_block_t * result)1805 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1806 {
1807 int r = -EINVAL;
1808
1809 pmd_write_lock(pmd);
1810 if (!pmd->fail_io)
1811 r = dm_sm_new_block(pmd->data_sm, result);
1812 pmd_write_unlock(pmd);
1813
1814 return r;
1815 }
1816
dm_pool_commit_metadata(struct dm_pool_metadata * pmd)1817 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1818 {
1819 int r = -EINVAL;
1820
1821 /*
1822 * Care is taken to not have commit be what
1823 * triggers putting the thin-pool in-service.
1824 */
1825 __pmd_write_lock(pmd);
1826 if (pmd->fail_io)
1827 goto out;
1828
1829 r = __commit_transaction(pmd);
1830 if (r < 0)
1831 goto out;
1832
1833 /*
1834 * Open the next transaction.
1835 */
1836 r = __begin_transaction(pmd);
1837 out:
1838 pmd_write_unlock(pmd);
1839 return r;
1840 }
1841
__set_abort_with_changes_flags(struct dm_pool_metadata * pmd)1842 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1843 {
1844 struct dm_thin_device *td;
1845
1846 list_for_each_entry(td, &pmd->thin_devices, list)
1847 td->aborted_with_changes = td->changed;
1848 }
1849
dm_pool_abort_metadata(struct dm_pool_metadata * pmd)1850 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1851 {
1852 int r = -EINVAL;
1853
1854 pmd_write_lock(pmd);
1855 if (pmd->fail_io)
1856 goto out;
1857
1858 __set_abort_with_changes_flags(pmd);
1859 __destroy_persistent_data_objects(pmd);
1860 r = __create_persistent_data_objects(pmd, false);
1861 if (r)
1862 pmd->fail_io = true;
1863
1864 out:
1865 pmd_write_unlock(pmd);
1866
1867 return r;
1868 }
1869
dm_pool_get_free_block_count(struct dm_pool_metadata * pmd,dm_block_t * result)1870 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1871 {
1872 int r = -EINVAL;
1873
1874 down_read(&pmd->root_lock);
1875 if (!pmd->fail_io)
1876 r = dm_sm_get_nr_free(pmd->data_sm, result);
1877 up_read(&pmd->root_lock);
1878
1879 return r;
1880 }
1881
dm_pool_get_free_metadata_block_count(struct dm_pool_metadata * pmd,dm_block_t * result)1882 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1883 dm_block_t *result)
1884 {
1885 int r = -EINVAL;
1886
1887 down_read(&pmd->root_lock);
1888 if (!pmd->fail_io)
1889 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1890
1891 if (!r) {
1892 if (*result < pmd->metadata_reserve)
1893 *result = 0;
1894 else
1895 *result -= pmd->metadata_reserve;
1896 }
1897 up_read(&pmd->root_lock);
1898
1899 return r;
1900 }
1901
dm_pool_get_metadata_dev_size(struct dm_pool_metadata * pmd,dm_block_t * result)1902 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1903 dm_block_t *result)
1904 {
1905 int r = -EINVAL;
1906
1907 down_read(&pmd->root_lock);
1908 if (!pmd->fail_io)
1909 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1910 up_read(&pmd->root_lock);
1911
1912 return r;
1913 }
1914
dm_pool_get_data_dev_size(struct dm_pool_metadata * pmd,dm_block_t * result)1915 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1916 {
1917 int r = -EINVAL;
1918
1919 down_read(&pmd->root_lock);
1920 if (!pmd->fail_io)
1921 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1922 up_read(&pmd->root_lock);
1923
1924 return r;
1925 }
1926
dm_thin_get_mapped_count(struct dm_thin_device * td,dm_block_t * result)1927 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1928 {
1929 int r = -EINVAL;
1930 struct dm_pool_metadata *pmd = td->pmd;
1931
1932 down_read(&pmd->root_lock);
1933 if (!pmd->fail_io) {
1934 *result = td->mapped_blocks;
1935 r = 0;
1936 }
1937 up_read(&pmd->root_lock);
1938
1939 return r;
1940 }
1941
__highest_block(struct dm_thin_device * td,dm_block_t * result)1942 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1943 {
1944 int r;
1945 __le64 value_le;
1946 dm_block_t thin_root;
1947 struct dm_pool_metadata *pmd = td->pmd;
1948
1949 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1950 if (r)
1951 return r;
1952
1953 thin_root = le64_to_cpu(value_le);
1954
1955 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1956 }
1957
dm_thin_get_highest_mapped_block(struct dm_thin_device * td,dm_block_t * result)1958 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1959 dm_block_t *result)
1960 {
1961 int r = -EINVAL;
1962 struct dm_pool_metadata *pmd = td->pmd;
1963
1964 down_read(&pmd->root_lock);
1965 if (!pmd->fail_io)
1966 r = __highest_block(td, result);
1967 up_read(&pmd->root_lock);
1968
1969 return r;
1970 }
1971
__resize_space_map(struct dm_space_map * sm,dm_block_t new_count)1972 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1973 {
1974 int r;
1975 dm_block_t old_count;
1976
1977 r = dm_sm_get_nr_blocks(sm, &old_count);
1978 if (r)
1979 return r;
1980
1981 if (new_count == old_count)
1982 return 0;
1983
1984 if (new_count < old_count) {
1985 DMERR("cannot reduce size of space map");
1986 return -EINVAL;
1987 }
1988
1989 return dm_sm_extend(sm, new_count - old_count);
1990 }
1991
dm_pool_resize_data_dev(struct dm_pool_metadata * pmd,dm_block_t new_count)1992 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1993 {
1994 int r = -EINVAL;
1995
1996 pmd_write_lock(pmd);
1997 if (!pmd->fail_io)
1998 r = __resize_space_map(pmd->data_sm, new_count);
1999 pmd_write_unlock(pmd);
2000
2001 return r;
2002 }
2003
dm_pool_resize_metadata_dev(struct dm_pool_metadata * pmd,dm_block_t new_count)2004 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2005 {
2006 int r = -EINVAL;
2007
2008 pmd_write_lock(pmd);
2009 if (!pmd->fail_io) {
2010 r = __resize_space_map(pmd->metadata_sm, new_count);
2011 if (!r)
2012 __set_metadata_reserve(pmd);
2013 }
2014 pmd_write_unlock(pmd);
2015
2016 return r;
2017 }
2018
dm_pool_metadata_read_only(struct dm_pool_metadata * pmd)2019 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2020 {
2021 pmd_write_lock_in_core(pmd);
2022 dm_bm_set_read_only(pmd->bm);
2023 pmd_write_unlock(pmd);
2024 }
2025
dm_pool_metadata_read_write(struct dm_pool_metadata * pmd)2026 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2027 {
2028 pmd_write_lock_in_core(pmd);
2029 dm_bm_set_read_write(pmd->bm);
2030 pmd_write_unlock(pmd);
2031 }
2032
dm_pool_register_metadata_threshold(struct dm_pool_metadata * pmd,dm_block_t threshold,dm_sm_threshold_fn fn,void * context)2033 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2034 dm_block_t threshold,
2035 dm_sm_threshold_fn fn,
2036 void *context)
2037 {
2038 int r;
2039
2040 pmd_write_lock_in_core(pmd);
2041 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2042 pmd_write_unlock(pmd);
2043
2044 return r;
2045 }
2046
dm_pool_metadata_set_needs_check(struct dm_pool_metadata * pmd)2047 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2048 {
2049 int r = -EINVAL;
2050 struct dm_block *sblock;
2051 struct thin_disk_superblock *disk_super;
2052
2053 pmd_write_lock(pmd);
2054 if (pmd->fail_io)
2055 goto out;
2056
2057 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2058
2059 r = superblock_lock(pmd, &sblock);
2060 if (r) {
2061 DMERR("couldn't lock superblock");
2062 goto out;
2063 }
2064
2065 disk_super = dm_block_data(sblock);
2066 disk_super->flags = cpu_to_le32(pmd->flags);
2067
2068 dm_bm_unlock(sblock);
2069 out:
2070 pmd_write_unlock(pmd);
2071 return r;
2072 }
2073
dm_pool_metadata_needs_check(struct dm_pool_metadata * pmd)2074 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2075 {
2076 bool needs_check;
2077
2078 down_read(&pmd->root_lock);
2079 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2080 up_read(&pmd->root_lock);
2081
2082 return needs_check;
2083 }
2084
dm_pool_issue_prefetches(struct dm_pool_metadata * pmd)2085 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2086 {
2087 down_read(&pmd->root_lock);
2088 if (!pmd->fail_io)
2089 dm_tm_issue_prefetches(pmd->tm);
2090 up_read(&pmd->root_lock);
2091 }
2092