1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	unsigned long flags;		/* Multipath state flags */
68 
69 	spinlock_t lock;
70 	enum dm_queue_mode queue_mode;
71 
72 	struct pgpath *current_pgpath;
73 	struct priority_group *current_pg;
74 	struct priority_group *next_pg;	/* Switch to this PG if set */
75 
76 	atomic_t nr_valid_paths;	/* Total number of usable paths */
77 	unsigned nr_priority_groups;
78 	struct list_head priority_groups;
79 
80 	const char *hw_handler_name;
81 	char *hw_handler_params;
82 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
83 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
84 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
85 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
86 	atomic_t pg_init_count;		/* Number of times pg_init called */
87 
88 	struct mutex work_mutex;
89 	struct work_struct trigger_event;
90 	struct dm_target *ti;
91 
92 	struct work_struct process_queued_bios;
93 	struct bio_list queued_bios;
94 };
95 
96 /*
97  * Context information attached to each io we process.
98  */
99 struct dm_mpath_io {
100 	struct pgpath *pgpath;
101 	size_t nr_bytes;
102 };
103 
104 typedef int (*action_fn) (struct pgpath *pgpath);
105 
106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
107 static void trigger_event(struct work_struct *work);
108 static void activate_or_offline_path(struct pgpath *pgpath);
109 static void activate_path_work(struct work_struct *work);
110 static void process_queued_bios(struct work_struct *work);
111 
112 /*-----------------------------------------------
113  * Multipath state flags.
114  *-----------------------------------------------*/
115 
116 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
117 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
120 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
121 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
122 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
123 
124 /*-----------------------------------------------
125  * Allocation routines
126  *-----------------------------------------------*/
127 
alloc_pgpath(void)128 static struct pgpath *alloc_pgpath(void)
129 {
130 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
131 
132 	if (!pgpath)
133 		return NULL;
134 
135 	pgpath->is_active = true;
136 
137 	return pgpath;
138 }
139 
free_pgpath(struct pgpath * pgpath)140 static void free_pgpath(struct pgpath *pgpath)
141 {
142 	kfree(pgpath);
143 }
144 
alloc_priority_group(void)145 static struct priority_group *alloc_priority_group(void)
146 {
147 	struct priority_group *pg;
148 
149 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
150 
151 	if (pg)
152 		INIT_LIST_HEAD(&pg->pgpaths);
153 
154 	return pg;
155 }
156 
free_pgpaths(struct list_head * pgpaths,struct dm_target * ti)157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
158 {
159 	struct pgpath *pgpath, *tmp;
160 
161 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
162 		list_del(&pgpath->list);
163 		dm_put_device(ti, pgpath->path.dev);
164 		free_pgpath(pgpath);
165 	}
166 }
167 
free_priority_group(struct priority_group * pg,struct dm_target * ti)168 static void free_priority_group(struct priority_group *pg,
169 				struct dm_target *ti)
170 {
171 	struct path_selector *ps = &pg->ps;
172 
173 	if (ps->type) {
174 		ps->type->destroy(ps);
175 		dm_put_path_selector(ps->type);
176 	}
177 
178 	free_pgpaths(&pg->pgpaths, ti);
179 	kfree(pg);
180 }
181 
alloc_multipath(struct dm_target * ti)182 static struct multipath *alloc_multipath(struct dm_target *ti)
183 {
184 	struct multipath *m;
185 
186 	m = kzalloc(sizeof(*m), GFP_KERNEL);
187 	if (m) {
188 		INIT_LIST_HEAD(&m->priority_groups);
189 		spin_lock_init(&m->lock);
190 		atomic_set(&m->nr_valid_paths, 0);
191 		INIT_WORK(&m->trigger_event, trigger_event);
192 		mutex_init(&m->work_mutex);
193 
194 		m->queue_mode = DM_TYPE_NONE;
195 
196 		m->ti = ti;
197 		ti->private = m;
198 	}
199 
200 	return m;
201 }
202 
alloc_multipath_stage2(struct dm_target * ti,struct multipath * m)203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
204 {
205 	if (m->queue_mode == DM_TYPE_NONE) {
206 		m->queue_mode = DM_TYPE_REQUEST_BASED;
207 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
208 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
209 		/*
210 		 * bio-based doesn't support any direct scsi_dh management;
211 		 * it just discovers if a scsi_dh is attached.
212 		 */
213 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
214 	}
215 
216 	dm_table_set_type(ti->table, m->queue_mode);
217 
218 	/*
219 	 * Init fields that are only used when a scsi_dh is attached
220 	 * - must do this unconditionally (really doesn't hurt non-SCSI uses)
221 	 */
222 	set_bit(MPATHF_QUEUE_IO, &m->flags);
223 	atomic_set(&m->pg_init_in_progress, 0);
224 	atomic_set(&m->pg_init_count, 0);
225 	m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
226 	init_waitqueue_head(&m->pg_init_wait);
227 
228 	return 0;
229 }
230 
free_multipath(struct multipath * m)231 static void free_multipath(struct multipath *m)
232 {
233 	struct priority_group *pg, *tmp;
234 
235 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
236 		list_del(&pg->list);
237 		free_priority_group(pg, m->ti);
238 	}
239 
240 	kfree(m->hw_handler_name);
241 	kfree(m->hw_handler_params);
242 	mutex_destroy(&m->work_mutex);
243 	kfree(m);
244 }
245 
get_mpio(union map_info * info)246 static struct dm_mpath_io *get_mpio(union map_info *info)
247 {
248 	return info->ptr;
249 }
250 
multipath_per_bio_data_size(void)251 static size_t multipath_per_bio_data_size(void)
252 {
253 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
254 }
255 
get_mpio_from_bio(struct bio * bio)256 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
257 {
258 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
259 }
260 
get_bio_details_from_mpio(struct dm_mpath_io * mpio)261 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
262 {
263 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
264 	void *bio_details = mpio + 1;
265 	return bio_details;
266 }
267 
multipath_init_per_bio_data(struct bio * bio,struct dm_mpath_io ** mpio_p)268 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
269 {
270 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
271 	struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
272 
273 	mpio->nr_bytes = bio->bi_iter.bi_size;
274 	mpio->pgpath = NULL;
275 	*mpio_p = mpio;
276 
277 	dm_bio_record(bio_details, bio);
278 }
279 
280 /*-----------------------------------------------
281  * Path selection
282  *-----------------------------------------------*/
283 
__pg_init_all_paths(struct multipath * m)284 static int __pg_init_all_paths(struct multipath *m)
285 {
286 	struct pgpath *pgpath;
287 	unsigned long pg_init_delay = 0;
288 
289 	lockdep_assert_held(&m->lock);
290 
291 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
292 		return 0;
293 
294 	atomic_inc(&m->pg_init_count);
295 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
296 
297 	/* Check here to reset pg_init_required */
298 	if (!m->current_pg)
299 		return 0;
300 
301 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
302 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
303 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
304 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
305 		/* Skip failed paths */
306 		if (!pgpath->is_active)
307 			continue;
308 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
309 				       pg_init_delay))
310 			atomic_inc(&m->pg_init_in_progress);
311 	}
312 	return atomic_read(&m->pg_init_in_progress);
313 }
314 
pg_init_all_paths(struct multipath * m)315 static int pg_init_all_paths(struct multipath *m)
316 {
317 	int ret;
318 	unsigned long flags;
319 
320 	spin_lock_irqsave(&m->lock, flags);
321 	ret = __pg_init_all_paths(m);
322 	spin_unlock_irqrestore(&m->lock, flags);
323 
324 	return ret;
325 }
326 
__switch_pg(struct multipath * m,struct priority_group * pg)327 static void __switch_pg(struct multipath *m, struct priority_group *pg)
328 {
329 	m->current_pg = pg;
330 
331 	/* Must we initialise the PG first, and queue I/O till it's ready? */
332 	if (m->hw_handler_name) {
333 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
334 		set_bit(MPATHF_QUEUE_IO, &m->flags);
335 	} else {
336 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
337 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
338 	}
339 
340 	atomic_set(&m->pg_init_count, 0);
341 }
342 
choose_path_in_pg(struct multipath * m,struct priority_group * pg,size_t nr_bytes)343 static struct pgpath *choose_path_in_pg(struct multipath *m,
344 					struct priority_group *pg,
345 					size_t nr_bytes)
346 {
347 	unsigned long flags;
348 	struct dm_path *path;
349 	struct pgpath *pgpath;
350 
351 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
352 	if (!path)
353 		return ERR_PTR(-ENXIO);
354 
355 	pgpath = path_to_pgpath(path);
356 
357 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
358 		/* Only update current_pgpath if pg changed */
359 		spin_lock_irqsave(&m->lock, flags);
360 		m->current_pgpath = pgpath;
361 		__switch_pg(m, pg);
362 		spin_unlock_irqrestore(&m->lock, flags);
363 	}
364 
365 	return pgpath;
366 }
367 
choose_pgpath(struct multipath * m,size_t nr_bytes)368 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
369 {
370 	unsigned long flags;
371 	struct priority_group *pg;
372 	struct pgpath *pgpath;
373 	unsigned bypassed = 1;
374 
375 	if (!atomic_read(&m->nr_valid_paths)) {
376 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
377 		goto failed;
378 	}
379 
380 	/* Were we instructed to switch PG? */
381 	if (READ_ONCE(m->next_pg)) {
382 		spin_lock_irqsave(&m->lock, flags);
383 		pg = m->next_pg;
384 		if (!pg) {
385 			spin_unlock_irqrestore(&m->lock, flags);
386 			goto check_current_pg;
387 		}
388 		m->next_pg = NULL;
389 		spin_unlock_irqrestore(&m->lock, flags);
390 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
391 		if (!IS_ERR_OR_NULL(pgpath))
392 			return pgpath;
393 	}
394 
395 	/* Don't change PG until it has no remaining paths */
396 check_current_pg:
397 	pg = READ_ONCE(m->current_pg);
398 	if (pg) {
399 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
400 		if (!IS_ERR_OR_NULL(pgpath))
401 			return pgpath;
402 	}
403 
404 	/*
405 	 * Loop through priority groups until we find a valid path.
406 	 * First time we skip PGs marked 'bypassed'.
407 	 * Second time we only try the ones we skipped, but set
408 	 * pg_init_delay_retry so we do not hammer controllers.
409 	 */
410 	do {
411 		list_for_each_entry(pg, &m->priority_groups, list) {
412 			if (pg->bypassed == !!bypassed)
413 				continue;
414 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
415 			if (!IS_ERR_OR_NULL(pgpath)) {
416 				if (!bypassed)
417 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
418 				return pgpath;
419 			}
420 		}
421 	} while (bypassed--);
422 
423 failed:
424 	spin_lock_irqsave(&m->lock, flags);
425 	m->current_pgpath = NULL;
426 	m->current_pg = NULL;
427 	spin_unlock_irqrestore(&m->lock, flags);
428 
429 	return NULL;
430 }
431 
432 /*
433  * dm_report_EIO() is a macro instead of a function to make pr_debug()
434  * report the function name and line number of the function from which
435  * it has been invoked.
436  */
437 #define dm_report_EIO(m)						\
438 do {									\
439 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
440 									\
441 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
442 		 dm_device_name(md),					\
443 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
444 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
445 		 dm_noflush_suspending((m)->ti));			\
446 } while (0)
447 
448 /*
449  * Check whether bios must be queued in the device-mapper core rather
450  * than here in the target.
451  *
452  * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold
453  * the same value then we are not between multipath_presuspend()
454  * and multipath_resume() calls and we have no need to check
455  * for the DMF_NOFLUSH_SUSPENDING flag.
456  */
__must_push_back(struct multipath * m,unsigned long flags)457 static bool __must_push_back(struct multipath *m, unsigned long flags)
458 {
459 	return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) !=
460 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) &&
461 		dm_noflush_suspending(m->ti));
462 }
463 
464 /*
465  * Following functions use READ_ONCE to get atomic access to
466  * all m->flags to avoid taking spinlock
467  */
must_push_back_rq(struct multipath * m)468 static bool must_push_back_rq(struct multipath *m)
469 {
470 	unsigned long flags = READ_ONCE(m->flags);
471 	return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags);
472 }
473 
must_push_back_bio(struct multipath * m)474 static bool must_push_back_bio(struct multipath *m)
475 {
476 	unsigned long flags = READ_ONCE(m->flags);
477 	return __must_push_back(m, flags);
478 }
479 
480 /*
481  * Map cloned requests (request-based multipath)
482  */
multipath_clone_and_map(struct dm_target * ti,struct request * rq,union map_info * map_context,struct request ** __clone)483 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
484 				   union map_info *map_context,
485 				   struct request **__clone)
486 {
487 	struct multipath *m = ti->private;
488 	size_t nr_bytes = blk_rq_bytes(rq);
489 	struct pgpath *pgpath;
490 	struct block_device *bdev;
491 	struct dm_mpath_io *mpio = get_mpio(map_context);
492 	struct request_queue *q;
493 	struct request *clone;
494 
495 	/* Do we need to select a new pgpath? */
496 	pgpath = READ_ONCE(m->current_pgpath);
497 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
498 		pgpath = choose_pgpath(m, nr_bytes);
499 
500 	if (!pgpath) {
501 		if (must_push_back_rq(m))
502 			return DM_MAPIO_DELAY_REQUEUE;
503 		dm_report_EIO(m);	/* Failed */
504 		return DM_MAPIO_KILL;
505 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
506 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
507 		pg_init_all_paths(m);
508 		return DM_MAPIO_DELAY_REQUEUE;
509 	}
510 
511 	mpio->pgpath = pgpath;
512 	mpio->nr_bytes = nr_bytes;
513 
514 	bdev = pgpath->path.dev->bdev;
515 	q = bdev_get_queue(bdev);
516 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE,
517 			BLK_MQ_REQ_NOWAIT);
518 	if (IS_ERR(clone)) {
519 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
520 		if (blk_queue_dying(q)) {
521 			atomic_inc(&m->pg_init_in_progress);
522 			activate_or_offline_path(pgpath);
523 			return DM_MAPIO_DELAY_REQUEUE;
524 		}
525 
526 		/*
527 		 * blk-mq's SCHED_RESTART can cover this requeue, so we
528 		 * needn't deal with it by DELAY_REQUEUE. More importantly,
529 		 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
530 		 * get the queue busy feedback (via BLK_STS_RESOURCE),
531 		 * otherwise I/O merging can suffer.
532 		 */
533 		return DM_MAPIO_REQUEUE;
534 	}
535 	clone->bio = clone->biotail = NULL;
536 	clone->rq_disk = bdev->bd_disk;
537 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
538 	*__clone = clone;
539 
540 	if (pgpath->pg->ps.type->start_io)
541 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
542 					      &pgpath->path,
543 					      nr_bytes);
544 	return DM_MAPIO_REMAPPED;
545 }
546 
multipath_release_clone(struct request * clone,union map_info * map_context)547 static void multipath_release_clone(struct request *clone,
548 				    union map_info *map_context)
549 {
550 	if (unlikely(map_context)) {
551 		/*
552 		 * non-NULL map_context means caller is still map
553 		 * method; must undo multipath_clone_and_map()
554 		 */
555 		struct dm_mpath_io *mpio = get_mpio(map_context);
556 		struct pgpath *pgpath = mpio->pgpath;
557 
558 		if (pgpath && pgpath->pg->ps.type->end_io)
559 			pgpath->pg->ps.type->end_io(&pgpath->pg->ps,
560 						    &pgpath->path,
561 						    mpio->nr_bytes);
562 	}
563 
564 	blk_put_request(clone);
565 }
566 
567 /*
568  * Map cloned bios (bio-based multipath)
569  */
570 
__map_bio(struct multipath * m,struct bio * bio)571 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
572 {
573 	struct pgpath *pgpath;
574 	unsigned long flags;
575 	bool queue_io;
576 
577 	/* Do we need to select a new pgpath? */
578 	pgpath = READ_ONCE(m->current_pgpath);
579 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
580 	if (!pgpath || !queue_io)
581 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
582 
583 	if ((pgpath && queue_io) ||
584 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
585 		/* Queue for the daemon to resubmit */
586 		spin_lock_irqsave(&m->lock, flags);
587 		bio_list_add(&m->queued_bios, bio);
588 		spin_unlock_irqrestore(&m->lock, flags);
589 
590 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
591 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
592 			pg_init_all_paths(m);
593 		else if (!queue_io)
594 			queue_work(kmultipathd, &m->process_queued_bios);
595 
596 		return ERR_PTR(-EAGAIN);
597 	}
598 
599 	return pgpath;
600 }
601 
__map_bio_fast(struct multipath * m,struct bio * bio)602 static struct pgpath *__map_bio_fast(struct multipath *m, struct bio *bio)
603 {
604 	struct pgpath *pgpath;
605 	unsigned long flags;
606 
607 	/* Do we need to select a new pgpath? */
608 	/*
609 	 * FIXME: currently only switching path if no path (due to failure, etc)
610 	 * - which negates the point of using a path selector
611 	 */
612 	pgpath = READ_ONCE(m->current_pgpath);
613 	if (!pgpath)
614 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
615 
616 	if (!pgpath) {
617 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
618 			/* Queue for the daemon to resubmit */
619 			spin_lock_irqsave(&m->lock, flags);
620 			bio_list_add(&m->queued_bios, bio);
621 			spin_unlock_irqrestore(&m->lock, flags);
622 			queue_work(kmultipathd, &m->process_queued_bios);
623 
624 			return ERR_PTR(-EAGAIN);
625 		}
626 		return NULL;
627 	}
628 
629 	return pgpath;
630 }
631 
__multipath_map_bio(struct multipath * m,struct bio * bio,struct dm_mpath_io * mpio)632 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
633 			       struct dm_mpath_io *mpio)
634 {
635 	struct pgpath *pgpath;
636 
637 	if (!m->hw_handler_name)
638 		pgpath = __map_bio_fast(m, bio);
639 	else
640 		pgpath = __map_bio(m, bio);
641 
642 	if (IS_ERR(pgpath))
643 		return DM_MAPIO_SUBMITTED;
644 
645 	if (!pgpath) {
646 		if (must_push_back_bio(m))
647 			return DM_MAPIO_REQUEUE;
648 		dm_report_EIO(m);
649 		return DM_MAPIO_KILL;
650 	}
651 
652 	mpio->pgpath = pgpath;
653 
654 	bio->bi_status = 0;
655 	bio_set_dev(bio, pgpath->path.dev->bdev);
656 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
657 
658 	if (pgpath->pg->ps.type->start_io)
659 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
660 					      &pgpath->path,
661 					      mpio->nr_bytes);
662 	return DM_MAPIO_REMAPPED;
663 }
664 
multipath_map_bio(struct dm_target * ti,struct bio * bio)665 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
666 {
667 	struct multipath *m = ti->private;
668 	struct dm_mpath_io *mpio = NULL;
669 
670 	multipath_init_per_bio_data(bio, &mpio);
671 	return __multipath_map_bio(m, bio, mpio);
672 }
673 
process_queued_io_list(struct multipath * m)674 static void process_queued_io_list(struct multipath *m)
675 {
676 	if (m->queue_mode == DM_TYPE_REQUEST_BASED)
677 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
678 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
679 		queue_work(kmultipathd, &m->process_queued_bios);
680 }
681 
process_queued_bios(struct work_struct * work)682 static void process_queued_bios(struct work_struct *work)
683 {
684 	int r;
685 	unsigned long flags;
686 	struct bio *bio;
687 	struct bio_list bios;
688 	struct blk_plug plug;
689 	struct multipath *m =
690 		container_of(work, struct multipath, process_queued_bios);
691 
692 	bio_list_init(&bios);
693 
694 	spin_lock_irqsave(&m->lock, flags);
695 
696 	if (bio_list_empty(&m->queued_bios)) {
697 		spin_unlock_irqrestore(&m->lock, flags);
698 		return;
699 	}
700 
701 	bio_list_merge(&bios, &m->queued_bios);
702 	bio_list_init(&m->queued_bios);
703 
704 	spin_unlock_irqrestore(&m->lock, flags);
705 
706 	blk_start_plug(&plug);
707 	while ((bio = bio_list_pop(&bios))) {
708 		struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
709 		dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
710 		r = __multipath_map_bio(m, bio, mpio);
711 		switch (r) {
712 		case DM_MAPIO_KILL:
713 			bio->bi_status = BLK_STS_IOERR;
714 			bio_endio(bio);
715 			break;
716 		case DM_MAPIO_REQUEUE:
717 			bio->bi_status = BLK_STS_DM_REQUEUE;
718 			bio_endio(bio);
719 			break;
720 		case DM_MAPIO_REMAPPED:
721 			generic_make_request(bio);
722 			break;
723 		case DM_MAPIO_SUBMITTED:
724 			break;
725 		default:
726 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
727 		}
728 	}
729 	blk_finish_plug(&plug);
730 }
731 
732 /*
733  * If we run out of usable paths, should we queue I/O or error it?
734  */
queue_if_no_path(struct multipath * m,bool queue_if_no_path,bool save_old_value)735 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
736 			    bool save_old_value)
737 {
738 	unsigned long flags;
739 
740 	spin_lock_irqsave(&m->lock, flags);
741 	assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
742 		   (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
743 		   (!save_old_value && queue_if_no_path));
744 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
745 	spin_unlock_irqrestore(&m->lock, flags);
746 
747 	if (!queue_if_no_path) {
748 		dm_table_run_md_queue_async(m->ti->table);
749 		process_queued_io_list(m);
750 	}
751 
752 	return 0;
753 }
754 
755 /*
756  * An event is triggered whenever a path is taken out of use.
757  * Includes path failure and PG bypass.
758  */
trigger_event(struct work_struct * work)759 static void trigger_event(struct work_struct *work)
760 {
761 	struct multipath *m =
762 		container_of(work, struct multipath, trigger_event);
763 
764 	dm_table_event(m->ti->table);
765 }
766 
767 /*-----------------------------------------------------------------
768  * Constructor/argument parsing:
769  * <#multipath feature args> [<arg>]*
770  * <#hw_handler args> [hw_handler [<arg>]*]
771  * <#priority groups>
772  * <initial priority group>
773  *     [<selector> <#selector args> [<arg>]*
774  *      <#paths> <#per-path selector args>
775  *         [<path> [<arg>]* ]+ ]+
776  *---------------------------------------------------------------*/
parse_path_selector(struct dm_arg_set * as,struct priority_group * pg,struct dm_target * ti)777 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
778 			       struct dm_target *ti)
779 {
780 	int r;
781 	struct path_selector_type *pst;
782 	unsigned ps_argc;
783 
784 	static const struct dm_arg _args[] = {
785 		{0, 1024, "invalid number of path selector args"},
786 	};
787 
788 	pst = dm_get_path_selector(dm_shift_arg(as));
789 	if (!pst) {
790 		ti->error = "unknown path selector type";
791 		return -EINVAL;
792 	}
793 
794 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
795 	if (r) {
796 		dm_put_path_selector(pst);
797 		return -EINVAL;
798 	}
799 
800 	r = pst->create(&pg->ps, ps_argc, as->argv);
801 	if (r) {
802 		dm_put_path_selector(pst);
803 		ti->error = "path selector constructor failed";
804 		return r;
805 	}
806 
807 	pg->ps.type = pst;
808 	dm_consume_args(as, ps_argc);
809 
810 	return 0;
811 }
812 
setup_scsi_dh(struct block_device * bdev,struct multipath * m,const char ** attached_handler_name,char ** error)813 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
814 			 const char **attached_handler_name, char **error)
815 {
816 	struct request_queue *q = bdev_get_queue(bdev);
817 	int r;
818 
819 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
820 retain:
821 		if (*attached_handler_name) {
822 			/*
823 			 * Clear any hw_handler_params associated with a
824 			 * handler that isn't already attached.
825 			 */
826 			if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) {
827 				kfree(m->hw_handler_params);
828 				m->hw_handler_params = NULL;
829 			}
830 
831 			/*
832 			 * Reset hw_handler_name to match the attached handler
833 			 *
834 			 * NB. This modifies the table line to show the actual
835 			 * handler instead of the original table passed in.
836 			 */
837 			kfree(m->hw_handler_name);
838 			m->hw_handler_name = *attached_handler_name;
839 			*attached_handler_name = NULL;
840 		}
841 	}
842 
843 	if (m->hw_handler_name) {
844 		r = scsi_dh_attach(q, m->hw_handler_name);
845 		if (r == -EBUSY) {
846 			char b[BDEVNAME_SIZE];
847 
848 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
849 			       bdevname(bdev, b));
850 			goto retain;
851 		}
852 		if (r < 0) {
853 			*error = "error attaching hardware handler";
854 			return r;
855 		}
856 
857 		if (m->hw_handler_params) {
858 			r = scsi_dh_set_params(q, m->hw_handler_params);
859 			if (r < 0) {
860 				*error = "unable to set hardware handler parameters";
861 				return r;
862 			}
863 		}
864 	}
865 
866 	return 0;
867 }
868 
parse_path(struct dm_arg_set * as,struct path_selector * ps,struct dm_target * ti)869 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
870 				 struct dm_target *ti)
871 {
872 	int r;
873 	struct pgpath *p;
874 	struct multipath *m = ti->private;
875 	struct request_queue *q;
876 	const char *attached_handler_name = NULL;
877 
878 	/* we need at least a path arg */
879 	if (as->argc < 1) {
880 		ti->error = "no device given";
881 		return ERR_PTR(-EINVAL);
882 	}
883 
884 	p = alloc_pgpath();
885 	if (!p)
886 		return ERR_PTR(-ENOMEM);
887 
888 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
889 			  &p->path.dev);
890 	if (r) {
891 		ti->error = "error getting device";
892 		goto bad;
893 	}
894 
895 	q = bdev_get_queue(p->path.dev->bdev);
896 	attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
897 	if (attached_handler_name || m->hw_handler_name) {
898 		INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
899 		r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error);
900 		kfree(attached_handler_name);
901 		if (r) {
902 			dm_put_device(ti, p->path.dev);
903 			goto bad;
904 		}
905 	}
906 
907 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
908 	if (r) {
909 		dm_put_device(ti, p->path.dev);
910 		goto bad;
911 	}
912 
913 	return p;
914  bad:
915 	free_pgpath(p);
916 	return ERR_PTR(r);
917 }
918 
parse_priority_group(struct dm_arg_set * as,struct multipath * m)919 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
920 						   struct multipath *m)
921 {
922 	static const struct dm_arg _args[] = {
923 		{1, 1024, "invalid number of paths"},
924 		{0, 1024, "invalid number of selector args"}
925 	};
926 
927 	int r;
928 	unsigned i, nr_selector_args, nr_args;
929 	struct priority_group *pg;
930 	struct dm_target *ti = m->ti;
931 
932 	if (as->argc < 2) {
933 		as->argc = 0;
934 		ti->error = "not enough priority group arguments";
935 		return ERR_PTR(-EINVAL);
936 	}
937 
938 	pg = alloc_priority_group();
939 	if (!pg) {
940 		ti->error = "couldn't allocate priority group";
941 		return ERR_PTR(-ENOMEM);
942 	}
943 	pg->m = m;
944 
945 	r = parse_path_selector(as, pg, ti);
946 	if (r)
947 		goto bad;
948 
949 	/*
950 	 * read the paths
951 	 */
952 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
953 	if (r)
954 		goto bad;
955 
956 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
957 	if (r)
958 		goto bad;
959 
960 	nr_args = 1 + nr_selector_args;
961 	for (i = 0; i < pg->nr_pgpaths; i++) {
962 		struct pgpath *pgpath;
963 		struct dm_arg_set path_args;
964 
965 		if (as->argc < nr_args) {
966 			ti->error = "not enough path parameters";
967 			r = -EINVAL;
968 			goto bad;
969 		}
970 
971 		path_args.argc = nr_args;
972 		path_args.argv = as->argv;
973 
974 		pgpath = parse_path(&path_args, &pg->ps, ti);
975 		if (IS_ERR(pgpath)) {
976 			r = PTR_ERR(pgpath);
977 			goto bad;
978 		}
979 
980 		pgpath->pg = pg;
981 		list_add_tail(&pgpath->list, &pg->pgpaths);
982 		dm_consume_args(as, nr_args);
983 	}
984 
985 	return pg;
986 
987  bad:
988 	free_priority_group(pg, ti);
989 	return ERR_PTR(r);
990 }
991 
parse_hw_handler(struct dm_arg_set * as,struct multipath * m)992 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
993 {
994 	unsigned hw_argc;
995 	int ret;
996 	struct dm_target *ti = m->ti;
997 
998 	static const struct dm_arg _args[] = {
999 		{0, 1024, "invalid number of hardware handler args"},
1000 	};
1001 
1002 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
1003 		return -EINVAL;
1004 
1005 	if (!hw_argc)
1006 		return 0;
1007 
1008 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
1009 		dm_consume_args(as, hw_argc);
1010 		DMERR("bio-based multipath doesn't allow hardware handler args");
1011 		return 0;
1012 	}
1013 
1014 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
1015 	if (!m->hw_handler_name)
1016 		return -EINVAL;
1017 
1018 	if (hw_argc > 1) {
1019 		char *p;
1020 		int i, j, len = 4;
1021 
1022 		for (i = 0; i <= hw_argc - 2; i++)
1023 			len += strlen(as->argv[i]) + 1;
1024 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1025 		if (!p) {
1026 			ti->error = "memory allocation failed";
1027 			ret = -ENOMEM;
1028 			goto fail;
1029 		}
1030 		j = sprintf(p, "%d", hw_argc - 1);
1031 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
1032 			j = sprintf(p, "%s", as->argv[i]);
1033 	}
1034 	dm_consume_args(as, hw_argc - 1);
1035 
1036 	return 0;
1037 fail:
1038 	kfree(m->hw_handler_name);
1039 	m->hw_handler_name = NULL;
1040 	return ret;
1041 }
1042 
parse_features(struct dm_arg_set * as,struct multipath * m)1043 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1044 {
1045 	int r;
1046 	unsigned argc;
1047 	struct dm_target *ti = m->ti;
1048 	const char *arg_name;
1049 
1050 	static const struct dm_arg _args[] = {
1051 		{0, 8, "invalid number of feature args"},
1052 		{1, 50, "pg_init_retries must be between 1 and 50"},
1053 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1054 	};
1055 
1056 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1057 	if (r)
1058 		return -EINVAL;
1059 
1060 	if (!argc)
1061 		return 0;
1062 
1063 	do {
1064 		arg_name = dm_shift_arg(as);
1065 		argc--;
1066 
1067 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1068 			r = queue_if_no_path(m, true, false);
1069 			continue;
1070 		}
1071 
1072 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1073 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1074 			continue;
1075 		}
1076 
1077 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1078 		    (argc >= 1)) {
1079 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1080 			argc--;
1081 			continue;
1082 		}
1083 
1084 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1085 		    (argc >= 1)) {
1086 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1087 			argc--;
1088 			continue;
1089 		}
1090 
1091 		if (!strcasecmp(arg_name, "queue_mode") &&
1092 		    (argc >= 1)) {
1093 			const char *queue_mode_name = dm_shift_arg(as);
1094 
1095 			if (!strcasecmp(queue_mode_name, "bio"))
1096 				m->queue_mode = DM_TYPE_BIO_BASED;
1097 			else if (!strcasecmp(queue_mode_name, "rq") ||
1098 				 !strcasecmp(queue_mode_name, "mq"))
1099 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1100 			else {
1101 				ti->error = "Unknown 'queue_mode' requested";
1102 				r = -EINVAL;
1103 			}
1104 			argc--;
1105 			continue;
1106 		}
1107 
1108 		ti->error = "Unrecognised multipath feature request";
1109 		r = -EINVAL;
1110 	} while (argc && !r);
1111 
1112 	return r;
1113 }
1114 
multipath_ctr(struct dm_target * ti,unsigned argc,char ** argv)1115 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1116 {
1117 	/* target arguments */
1118 	static const struct dm_arg _args[] = {
1119 		{0, 1024, "invalid number of priority groups"},
1120 		{0, 1024, "invalid initial priority group number"},
1121 	};
1122 
1123 	int r;
1124 	struct multipath *m;
1125 	struct dm_arg_set as;
1126 	unsigned pg_count = 0;
1127 	unsigned next_pg_num;
1128 
1129 	as.argc = argc;
1130 	as.argv = argv;
1131 
1132 	m = alloc_multipath(ti);
1133 	if (!m) {
1134 		ti->error = "can't allocate multipath";
1135 		return -EINVAL;
1136 	}
1137 
1138 	r = parse_features(&as, m);
1139 	if (r)
1140 		goto bad;
1141 
1142 	r = alloc_multipath_stage2(ti, m);
1143 	if (r)
1144 		goto bad;
1145 
1146 	r = parse_hw_handler(&as, m);
1147 	if (r)
1148 		goto bad;
1149 
1150 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1151 	if (r)
1152 		goto bad;
1153 
1154 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1155 	if (r)
1156 		goto bad;
1157 
1158 	if ((!m->nr_priority_groups && next_pg_num) ||
1159 	    (m->nr_priority_groups && !next_pg_num)) {
1160 		ti->error = "invalid initial priority group";
1161 		r = -EINVAL;
1162 		goto bad;
1163 	}
1164 
1165 	/* parse the priority groups */
1166 	while (as.argc) {
1167 		struct priority_group *pg;
1168 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1169 
1170 		pg = parse_priority_group(&as, m);
1171 		if (IS_ERR(pg)) {
1172 			r = PTR_ERR(pg);
1173 			goto bad;
1174 		}
1175 
1176 		nr_valid_paths += pg->nr_pgpaths;
1177 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1178 
1179 		list_add_tail(&pg->list, &m->priority_groups);
1180 		pg_count++;
1181 		pg->pg_num = pg_count;
1182 		if (!--next_pg_num)
1183 			m->next_pg = pg;
1184 	}
1185 
1186 	if (pg_count != m->nr_priority_groups) {
1187 		ti->error = "priority group count mismatch";
1188 		r = -EINVAL;
1189 		goto bad;
1190 	}
1191 
1192 	ti->num_flush_bios = 1;
1193 	ti->num_discard_bios = 1;
1194 	ti->num_write_same_bios = 1;
1195 	ti->num_write_zeroes_bios = 1;
1196 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1197 		ti->per_io_data_size = multipath_per_bio_data_size();
1198 	else
1199 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1200 
1201 	return 0;
1202 
1203  bad:
1204 	free_multipath(m);
1205 	return r;
1206 }
1207 
multipath_wait_for_pg_init_completion(struct multipath * m)1208 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1209 {
1210 	DEFINE_WAIT(wait);
1211 
1212 	while (1) {
1213 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1214 
1215 		if (!atomic_read(&m->pg_init_in_progress))
1216 			break;
1217 
1218 		io_schedule();
1219 	}
1220 	finish_wait(&m->pg_init_wait, &wait);
1221 }
1222 
flush_multipath_work(struct multipath * m)1223 static void flush_multipath_work(struct multipath *m)
1224 {
1225 	if (m->hw_handler_name) {
1226 		set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1227 		smp_mb__after_atomic();
1228 
1229 		if (atomic_read(&m->pg_init_in_progress))
1230 			flush_workqueue(kmpath_handlerd);
1231 		multipath_wait_for_pg_init_completion(m);
1232 
1233 		clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1234 		smp_mb__after_atomic();
1235 	}
1236 
1237 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1238 		flush_work(&m->process_queued_bios);
1239 	flush_work(&m->trigger_event);
1240 }
1241 
multipath_dtr(struct dm_target * ti)1242 static void multipath_dtr(struct dm_target *ti)
1243 {
1244 	struct multipath *m = ti->private;
1245 
1246 	flush_multipath_work(m);
1247 	free_multipath(m);
1248 }
1249 
1250 /*
1251  * Take a path out of use.
1252  */
fail_path(struct pgpath * pgpath)1253 static int fail_path(struct pgpath *pgpath)
1254 {
1255 	unsigned long flags;
1256 	struct multipath *m = pgpath->pg->m;
1257 
1258 	spin_lock_irqsave(&m->lock, flags);
1259 
1260 	if (!pgpath->is_active)
1261 		goto out;
1262 
1263 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1264 
1265 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1266 	pgpath->is_active = false;
1267 	pgpath->fail_count++;
1268 
1269 	atomic_dec(&m->nr_valid_paths);
1270 
1271 	if (pgpath == m->current_pgpath)
1272 		m->current_pgpath = NULL;
1273 
1274 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1275 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1276 
1277 	schedule_work(&m->trigger_event);
1278 
1279 out:
1280 	spin_unlock_irqrestore(&m->lock, flags);
1281 
1282 	return 0;
1283 }
1284 
1285 /*
1286  * Reinstate a previously-failed path
1287  */
reinstate_path(struct pgpath * pgpath)1288 static int reinstate_path(struct pgpath *pgpath)
1289 {
1290 	int r = 0, run_queue = 0;
1291 	unsigned long flags;
1292 	struct multipath *m = pgpath->pg->m;
1293 	unsigned nr_valid_paths;
1294 
1295 	spin_lock_irqsave(&m->lock, flags);
1296 
1297 	if (pgpath->is_active)
1298 		goto out;
1299 
1300 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1301 
1302 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1303 	if (r)
1304 		goto out;
1305 
1306 	pgpath->is_active = true;
1307 
1308 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1309 	if (nr_valid_paths == 1) {
1310 		m->current_pgpath = NULL;
1311 		run_queue = 1;
1312 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1313 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1314 			atomic_inc(&m->pg_init_in_progress);
1315 	}
1316 
1317 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1318 		       pgpath->path.dev->name, nr_valid_paths);
1319 
1320 	schedule_work(&m->trigger_event);
1321 
1322 out:
1323 	spin_unlock_irqrestore(&m->lock, flags);
1324 	if (run_queue) {
1325 		dm_table_run_md_queue_async(m->ti->table);
1326 		process_queued_io_list(m);
1327 	}
1328 
1329 	return r;
1330 }
1331 
1332 /*
1333  * Fail or reinstate all paths that match the provided struct dm_dev.
1334  */
action_dev(struct multipath * m,struct dm_dev * dev,action_fn action)1335 static int action_dev(struct multipath *m, struct dm_dev *dev,
1336 		      action_fn action)
1337 {
1338 	int r = -EINVAL;
1339 	struct pgpath *pgpath;
1340 	struct priority_group *pg;
1341 
1342 	list_for_each_entry(pg, &m->priority_groups, list) {
1343 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1344 			if (pgpath->path.dev == dev)
1345 				r = action(pgpath);
1346 		}
1347 	}
1348 
1349 	return r;
1350 }
1351 
1352 /*
1353  * Temporarily try to avoid having to use the specified PG
1354  */
bypass_pg(struct multipath * m,struct priority_group * pg,bool bypassed)1355 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1356 		      bool bypassed)
1357 {
1358 	unsigned long flags;
1359 
1360 	spin_lock_irqsave(&m->lock, flags);
1361 
1362 	pg->bypassed = bypassed;
1363 	m->current_pgpath = NULL;
1364 	m->current_pg = NULL;
1365 
1366 	spin_unlock_irqrestore(&m->lock, flags);
1367 
1368 	schedule_work(&m->trigger_event);
1369 }
1370 
1371 /*
1372  * Switch to using the specified PG from the next I/O that gets mapped
1373  */
switch_pg_num(struct multipath * m,const char * pgstr)1374 static int switch_pg_num(struct multipath *m, const char *pgstr)
1375 {
1376 	struct priority_group *pg;
1377 	unsigned pgnum;
1378 	unsigned long flags;
1379 	char dummy;
1380 
1381 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1382 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1383 		DMWARN("invalid PG number supplied to switch_pg_num");
1384 		return -EINVAL;
1385 	}
1386 
1387 	spin_lock_irqsave(&m->lock, flags);
1388 	list_for_each_entry(pg, &m->priority_groups, list) {
1389 		pg->bypassed = false;
1390 		if (--pgnum)
1391 			continue;
1392 
1393 		m->current_pgpath = NULL;
1394 		m->current_pg = NULL;
1395 		m->next_pg = pg;
1396 	}
1397 	spin_unlock_irqrestore(&m->lock, flags);
1398 
1399 	schedule_work(&m->trigger_event);
1400 	return 0;
1401 }
1402 
1403 /*
1404  * Set/clear bypassed status of a PG.
1405  * PGs are numbered upwards from 1 in the order they were declared.
1406  */
bypass_pg_num(struct multipath * m,const char * pgstr,bool bypassed)1407 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1408 {
1409 	struct priority_group *pg;
1410 	unsigned pgnum;
1411 	char dummy;
1412 
1413 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1414 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1415 		DMWARN("invalid PG number supplied to bypass_pg");
1416 		return -EINVAL;
1417 	}
1418 
1419 	list_for_each_entry(pg, &m->priority_groups, list) {
1420 		if (!--pgnum)
1421 			break;
1422 	}
1423 
1424 	bypass_pg(m, pg, bypassed);
1425 	return 0;
1426 }
1427 
1428 /*
1429  * Should we retry pg_init immediately?
1430  */
pg_init_limit_reached(struct multipath * m,struct pgpath * pgpath)1431 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1432 {
1433 	unsigned long flags;
1434 	bool limit_reached = false;
1435 
1436 	spin_lock_irqsave(&m->lock, flags);
1437 
1438 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1439 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1440 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1441 	else
1442 		limit_reached = true;
1443 
1444 	spin_unlock_irqrestore(&m->lock, flags);
1445 
1446 	return limit_reached;
1447 }
1448 
pg_init_done(void * data,int errors)1449 static void pg_init_done(void *data, int errors)
1450 {
1451 	struct pgpath *pgpath = data;
1452 	struct priority_group *pg = pgpath->pg;
1453 	struct multipath *m = pg->m;
1454 	unsigned long flags;
1455 	bool delay_retry = false;
1456 
1457 	/* device or driver problems */
1458 	switch (errors) {
1459 	case SCSI_DH_OK:
1460 		break;
1461 	case SCSI_DH_NOSYS:
1462 		if (!m->hw_handler_name) {
1463 			errors = 0;
1464 			break;
1465 		}
1466 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1467 		      "Error %d.", m->hw_handler_name, errors);
1468 		/*
1469 		 * Fail path for now, so we do not ping pong
1470 		 */
1471 		fail_path(pgpath);
1472 		break;
1473 	case SCSI_DH_DEV_TEMP_BUSY:
1474 		/*
1475 		 * Probably doing something like FW upgrade on the
1476 		 * controller so try the other pg.
1477 		 */
1478 		bypass_pg(m, pg, true);
1479 		break;
1480 	case SCSI_DH_RETRY:
1481 		/* Wait before retrying. */
1482 		delay_retry = 1;
1483 		/* fall through */
1484 	case SCSI_DH_IMM_RETRY:
1485 	case SCSI_DH_RES_TEMP_UNAVAIL:
1486 		if (pg_init_limit_reached(m, pgpath))
1487 			fail_path(pgpath);
1488 		errors = 0;
1489 		break;
1490 	case SCSI_DH_DEV_OFFLINED:
1491 	default:
1492 		/*
1493 		 * We probably do not want to fail the path for a device
1494 		 * error, but this is what the old dm did. In future
1495 		 * patches we can do more advanced handling.
1496 		 */
1497 		fail_path(pgpath);
1498 	}
1499 
1500 	spin_lock_irqsave(&m->lock, flags);
1501 	if (errors) {
1502 		if (pgpath == m->current_pgpath) {
1503 			DMERR("Could not failover device. Error %d.", errors);
1504 			m->current_pgpath = NULL;
1505 			m->current_pg = NULL;
1506 		}
1507 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1508 		pg->bypassed = false;
1509 
1510 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1511 		/* Activations of other paths are still on going */
1512 		goto out;
1513 
1514 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1515 		if (delay_retry)
1516 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1517 		else
1518 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1519 
1520 		if (__pg_init_all_paths(m))
1521 			goto out;
1522 	}
1523 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1524 
1525 	process_queued_io_list(m);
1526 
1527 	/*
1528 	 * Wake up any thread waiting to suspend.
1529 	 */
1530 	wake_up(&m->pg_init_wait);
1531 
1532 out:
1533 	spin_unlock_irqrestore(&m->lock, flags);
1534 }
1535 
activate_or_offline_path(struct pgpath * pgpath)1536 static void activate_or_offline_path(struct pgpath *pgpath)
1537 {
1538 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1539 
1540 	if (pgpath->is_active && !blk_queue_dying(q))
1541 		scsi_dh_activate(q, pg_init_done, pgpath);
1542 	else
1543 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1544 }
1545 
activate_path_work(struct work_struct * work)1546 static void activate_path_work(struct work_struct *work)
1547 {
1548 	struct pgpath *pgpath =
1549 		container_of(work, struct pgpath, activate_path.work);
1550 
1551 	activate_or_offline_path(pgpath);
1552 }
1553 
multipath_end_io(struct dm_target * ti,struct request * clone,blk_status_t error,union map_info * map_context)1554 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1555 			    blk_status_t error, union map_info *map_context)
1556 {
1557 	struct dm_mpath_io *mpio = get_mpio(map_context);
1558 	struct pgpath *pgpath = mpio->pgpath;
1559 	int r = DM_ENDIO_DONE;
1560 
1561 	/*
1562 	 * We don't queue any clone request inside the multipath target
1563 	 * during end I/O handling, since those clone requests don't have
1564 	 * bio clones.  If we queue them inside the multipath target,
1565 	 * we need to make bio clones, that requires memory allocation.
1566 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1567 	 *  don't have bio clones.)
1568 	 * Instead of queueing the clone request here, we queue the original
1569 	 * request into dm core, which will remake a clone request and
1570 	 * clone bios for it and resubmit it later.
1571 	 */
1572 	if (error && blk_path_error(error)) {
1573 		struct multipath *m = ti->private;
1574 
1575 		if (error == BLK_STS_RESOURCE)
1576 			r = DM_ENDIO_DELAY_REQUEUE;
1577 		else
1578 			r = DM_ENDIO_REQUEUE;
1579 
1580 		if (pgpath)
1581 			fail_path(pgpath);
1582 
1583 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1584 		    !must_push_back_rq(m)) {
1585 			if (error == BLK_STS_IOERR)
1586 				dm_report_EIO(m);
1587 			/* complete with the original error */
1588 			r = DM_ENDIO_DONE;
1589 		}
1590 	}
1591 
1592 	if (pgpath) {
1593 		struct path_selector *ps = &pgpath->pg->ps;
1594 
1595 		if (ps->type->end_io)
1596 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1597 	}
1598 
1599 	return r;
1600 }
1601 
multipath_end_io_bio(struct dm_target * ti,struct bio * clone,blk_status_t * error)1602 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1603 				blk_status_t *error)
1604 {
1605 	struct multipath *m = ti->private;
1606 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1607 	struct pgpath *pgpath = mpio->pgpath;
1608 	unsigned long flags;
1609 	int r = DM_ENDIO_DONE;
1610 
1611 	if (!*error || !blk_path_error(*error))
1612 		goto done;
1613 
1614 	if (pgpath)
1615 		fail_path(pgpath);
1616 
1617 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1618 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1619 		if (must_push_back_bio(m)) {
1620 			r = DM_ENDIO_REQUEUE;
1621 		} else {
1622 			dm_report_EIO(m);
1623 			*error = BLK_STS_IOERR;
1624 		}
1625 		goto done;
1626 	}
1627 
1628 	spin_lock_irqsave(&m->lock, flags);
1629 	bio_list_add(&m->queued_bios, clone);
1630 	spin_unlock_irqrestore(&m->lock, flags);
1631 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1632 		queue_work(kmultipathd, &m->process_queued_bios);
1633 
1634 	r = DM_ENDIO_INCOMPLETE;
1635 done:
1636 	if (pgpath) {
1637 		struct path_selector *ps = &pgpath->pg->ps;
1638 
1639 		if (ps->type->end_io)
1640 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1641 	}
1642 
1643 	return r;
1644 }
1645 
1646 /*
1647  * Suspend can't complete until all the I/O is processed so if
1648  * the last path fails we must error any remaining I/O.
1649  * Note that if the freeze_bdev fails while suspending, the
1650  * queue_if_no_path state is lost - userspace should reset it.
1651  */
multipath_presuspend(struct dm_target * ti)1652 static void multipath_presuspend(struct dm_target *ti)
1653 {
1654 	struct multipath *m = ti->private;
1655 
1656 	queue_if_no_path(m, false, true);
1657 }
1658 
multipath_postsuspend(struct dm_target * ti)1659 static void multipath_postsuspend(struct dm_target *ti)
1660 {
1661 	struct multipath *m = ti->private;
1662 
1663 	mutex_lock(&m->work_mutex);
1664 	flush_multipath_work(m);
1665 	mutex_unlock(&m->work_mutex);
1666 }
1667 
1668 /*
1669  * Restore the queue_if_no_path setting.
1670  */
multipath_resume(struct dm_target * ti)1671 static void multipath_resume(struct dm_target *ti)
1672 {
1673 	struct multipath *m = ti->private;
1674 	unsigned long flags;
1675 
1676 	spin_lock_irqsave(&m->lock, flags);
1677 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1678 		   test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1679 	spin_unlock_irqrestore(&m->lock, flags);
1680 }
1681 
1682 /*
1683  * Info output has the following format:
1684  * num_multipath_feature_args [multipath_feature_args]*
1685  * num_handler_status_args [handler_status_args]*
1686  * num_groups init_group_number
1687  *            [A|D|E num_ps_status_args [ps_status_args]*
1688  *             num_paths num_selector_args
1689  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1690  *
1691  * Table output has the following format (identical to the constructor string):
1692  * num_feature_args [features_args]*
1693  * num_handler_args hw_handler [hw_handler_args]*
1694  * num_groups init_group_number
1695  *     [priority selector-name num_ps_args [ps_args]*
1696  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1697  */
multipath_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)1698 static void multipath_status(struct dm_target *ti, status_type_t type,
1699 			     unsigned status_flags, char *result, unsigned maxlen)
1700 {
1701 	int sz = 0;
1702 	unsigned long flags;
1703 	struct multipath *m = ti->private;
1704 	struct priority_group *pg;
1705 	struct pgpath *p;
1706 	unsigned pg_num;
1707 	char state;
1708 
1709 	spin_lock_irqsave(&m->lock, flags);
1710 
1711 	/* Features */
1712 	if (type == STATUSTYPE_INFO)
1713 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1714 		       atomic_read(&m->pg_init_count));
1715 	else {
1716 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1717 			      (m->pg_init_retries > 0) * 2 +
1718 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1719 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1720 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1721 
1722 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1723 			DMEMIT("queue_if_no_path ");
1724 		if (m->pg_init_retries)
1725 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1726 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1727 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1728 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1729 			DMEMIT("retain_attached_hw_handler ");
1730 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1731 			switch(m->queue_mode) {
1732 			case DM_TYPE_BIO_BASED:
1733 				DMEMIT("queue_mode bio ");
1734 				break;
1735 			default:
1736 				WARN_ON_ONCE(true);
1737 				break;
1738 			}
1739 		}
1740 	}
1741 
1742 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1743 		DMEMIT("0 ");
1744 	else
1745 		DMEMIT("1 %s ", m->hw_handler_name);
1746 
1747 	DMEMIT("%u ", m->nr_priority_groups);
1748 
1749 	if (m->next_pg)
1750 		pg_num = m->next_pg->pg_num;
1751 	else if (m->current_pg)
1752 		pg_num = m->current_pg->pg_num;
1753 	else
1754 		pg_num = (m->nr_priority_groups ? 1 : 0);
1755 
1756 	DMEMIT("%u ", pg_num);
1757 
1758 	switch (type) {
1759 	case STATUSTYPE_INFO:
1760 		list_for_each_entry(pg, &m->priority_groups, list) {
1761 			if (pg->bypassed)
1762 				state = 'D';	/* Disabled */
1763 			else if (pg == m->current_pg)
1764 				state = 'A';	/* Currently Active */
1765 			else
1766 				state = 'E';	/* Enabled */
1767 
1768 			DMEMIT("%c ", state);
1769 
1770 			if (pg->ps.type->status)
1771 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1772 							  result + sz,
1773 							  maxlen - sz);
1774 			else
1775 				DMEMIT("0 ");
1776 
1777 			DMEMIT("%u %u ", pg->nr_pgpaths,
1778 			       pg->ps.type->info_args);
1779 
1780 			list_for_each_entry(p, &pg->pgpaths, list) {
1781 				DMEMIT("%s %s %u ", p->path.dev->name,
1782 				       p->is_active ? "A" : "F",
1783 				       p->fail_count);
1784 				if (pg->ps.type->status)
1785 					sz += pg->ps.type->status(&pg->ps,
1786 					      &p->path, type, result + sz,
1787 					      maxlen - sz);
1788 			}
1789 		}
1790 		break;
1791 
1792 	case STATUSTYPE_TABLE:
1793 		list_for_each_entry(pg, &m->priority_groups, list) {
1794 			DMEMIT("%s ", pg->ps.type->name);
1795 
1796 			if (pg->ps.type->status)
1797 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1798 							  result + sz,
1799 							  maxlen - sz);
1800 			else
1801 				DMEMIT("0 ");
1802 
1803 			DMEMIT("%u %u ", pg->nr_pgpaths,
1804 			       pg->ps.type->table_args);
1805 
1806 			list_for_each_entry(p, &pg->pgpaths, list) {
1807 				DMEMIT("%s ", p->path.dev->name);
1808 				if (pg->ps.type->status)
1809 					sz += pg->ps.type->status(&pg->ps,
1810 					      &p->path, type, result + sz,
1811 					      maxlen - sz);
1812 			}
1813 		}
1814 		break;
1815 	}
1816 
1817 	spin_unlock_irqrestore(&m->lock, flags);
1818 }
1819 
multipath_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)1820 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv,
1821 			     char *result, unsigned maxlen)
1822 {
1823 	int r = -EINVAL;
1824 	struct dm_dev *dev;
1825 	struct multipath *m = ti->private;
1826 	action_fn action;
1827 
1828 	mutex_lock(&m->work_mutex);
1829 
1830 	if (dm_suspended(ti)) {
1831 		r = -EBUSY;
1832 		goto out;
1833 	}
1834 
1835 	if (argc == 1) {
1836 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1837 			r = queue_if_no_path(m, true, false);
1838 			goto out;
1839 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1840 			r = queue_if_no_path(m, false, false);
1841 			goto out;
1842 		}
1843 	}
1844 
1845 	if (argc != 2) {
1846 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1847 		goto out;
1848 	}
1849 
1850 	if (!strcasecmp(argv[0], "disable_group")) {
1851 		r = bypass_pg_num(m, argv[1], true);
1852 		goto out;
1853 	} else if (!strcasecmp(argv[0], "enable_group")) {
1854 		r = bypass_pg_num(m, argv[1], false);
1855 		goto out;
1856 	} else if (!strcasecmp(argv[0], "switch_group")) {
1857 		r = switch_pg_num(m, argv[1]);
1858 		goto out;
1859 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1860 		action = reinstate_path;
1861 	else if (!strcasecmp(argv[0], "fail_path"))
1862 		action = fail_path;
1863 	else {
1864 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1865 		goto out;
1866 	}
1867 
1868 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1869 	if (r) {
1870 		DMWARN("message: error getting device %s",
1871 		       argv[1]);
1872 		goto out;
1873 	}
1874 
1875 	r = action_dev(m, dev, action);
1876 
1877 	dm_put_device(ti, dev);
1878 
1879 out:
1880 	mutex_unlock(&m->work_mutex);
1881 	return r;
1882 }
1883 
multipath_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev)1884 static int multipath_prepare_ioctl(struct dm_target *ti,
1885 				   struct block_device **bdev)
1886 {
1887 	struct multipath *m = ti->private;
1888 	struct pgpath *current_pgpath;
1889 	int r;
1890 
1891 	current_pgpath = READ_ONCE(m->current_pgpath);
1892 	if (!current_pgpath)
1893 		current_pgpath = choose_pgpath(m, 0);
1894 
1895 	if (current_pgpath) {
1896 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1897 			*bdev = current_pgpath->path.dev->bdev;
1898 			r = 0;
1899 		} else {
1900 			/* pg_init has not started or completed */
1901 			r = -ENOTCONN;
1902 		}
1903 	} else {
1904 		/* No path is available */
1905 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1906 			r = -ENOTCONN;
1907 		else
1908 			r = -EIO;
1909 	}
1910 
1911 	if (r == -ENOTCONN) {
1912 		if (!READ_ONCE(m->current_pg)) {
1913 			/* Path status changed, redo selection */
1914 			(void) choose_pgpath(m, 0);
1915 		}
1916 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1917 			pg_init_all_paths(m);
1918 		dm_table_run_md_queue_async(m->ti->table);
1919 		process_queued_io_list(m);
1920 	}
1921 
1922 	/*
1923 	 * Only pass ioctls through if the device sizes match exactly.
1924 	 */
1925 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1926 		return 1;
1927 	return r;
1928 }
1929 
multipath_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)1930 static int multipath_iterate_devices(struct dm_target *ti,
1931 				     iterate_devices_callout_fn fn, void *data)
1932 {
1933 	struct multipath *m = ti->private;
1934 	struct priority_group *pg;
1935 	struct pgpath *p;
1936 	int ret = 0;
1937 
1938 	list_for_each_entry(pg, &m->priority_groups, list) {
1939 		list_for_each_entry(p, &pg->pgpaths, list) {
1940 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1941 			if (ret)
1942 				goto out;
1943 		}
1944 	}
1945 
1946 out:
1947 	return ret;
1948 }
1949 
pgpath_busy(struct pgpath * pgpath)1950 static int pgpath_busy(struct pgpath *pgpath)
1951 {
1952 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1953 
1954 	return blk_lld_busy(q);
1955 }
1956 
1957 /*
1958  * We return "busy", only when we can map I/Os but underlying devices
1959  * are busy (so even if we map I/Os now, the I/Os will wait on
1960  * the underlying queue).
1961  * In other words, if we want to kill I/Os or queue them inside us
1962  * due to map unavailability, we don't return "busy".  Otherwise,
1963  * dm core won't give us the I/Os and we can't do what we want.
1964  */
multipath_busy(struct dm_target * ti)1965 static int multipath_busy(struct dm_target *ti)
1966 {
1967 	bool busy = false, has_active = false;
1968 	struct multipath *m = ti->private;
1969 	struct priority_group *pg, *next_pg;
1970 	struct pgpath *pgpath;
1971 
1972 	/* pg_init in progress */
1973 	if (atomic_read(&m->pg_init_in_progress))
1974 		return true;
1975 
1976 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1977 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1978 		return (m->queue_mode != DM_TYPE_REQUEST_BASED);
1979 
1980 	/* Guess which priority_group will be used at next mapping time */
1981 	pg = READ_ONCE(m->current_pg);
1982 	next_pg = READ_ONCE(m->next_pg);
1983 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
1984 		pg = next_pg;
1985 
1986 	if (!pg) {
1987 		/*
1988 		 * We don't know which pg will be used at next mapping time.
1989 		 * We don't call choose_pgpath() here to avoid to trigger
1990 		 * pg_init just by busy checking.
1991 		 * So we don't know whether underlying devices we will be using
1992 		 * at next mapping time are busy or not. Just try mapping.
1993 		 */
1994 		return busy;
1995 	}
1996 
1997 	/*
1998 	 * If there is one non-busy active path at least, the path selector
1999 	 * will be able to select it. So we consider such a pg as not busy.
2000 	 */
2001 	busy = true;
2002 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
2003 		if (pgpath->is_active) {
2004 			has_active = true;
2005 			if (!pgpath_busy(pgpath)) {
2006 				busy = false;
2007 				break;
2008 			}
2009 		}
2010 	}
2011 
2012 	if (!has_active) {
2013 		/*
2014 		 * No active path in this pg, so this pg won't be used and
2015 		 * the current_pg will be changed at next mapping time.
2016 		 * We need to try mapping to determine it.
2017 		 */
2018 		busy = false;
2019 	}
2020 
2021 	return busy;
2022 }
2023 
2024 /*-----------------------------------------------------------------
2025  * Module setup
2026  *---------------------------------------------------------------*/
2027 static struct target_type multipath_target = {
2028 	.name = "multipath",
2029 	.version = {1, 13, 0},
2030 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
2031 		    DM_TARGET_PASSES_INTEGRITY,
2032 	.module = THIS_MODULE,
2033 	.ctr = multipath_ctr,
2034 	.dtr = multipath_dtr,
2035 	.clone_and_map_rq = multipath_clone_and_map,
2036 	.release_clone_rq = multipath_release_clone,
2037 	.rq_end_io = multipath_end_io,
2038 	.map = multipath_map_bio,
2039 	.end_io = multipath_end_io_bio,
2040 	.presuspend = multipath_presuspend,
2041 	.postsuspend = multipath_postsuspend,
2042 	.resume = multipath_resume,
2043 	.status = multipath_status,
2044 	.message = multipath_message,
2045 	.prepare_ioctl = multipath_prepare_ioctl,
2046 	.iterate_devices = multipath_iterate_devices,
2047 	.busy = multipath_busy,
2048 };
2049 
dm_multipath_init(void)2050 static int __init dm_multipath_init(void)
2051 {
2052 	int r;
2053 
2054 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2055 	if (!kmultipathd) {
2056 		DMERR("failed to create workqueue kmpathd");
2057 		r = -ENOMEM;
2058 		goto bad_alloc_kmultipathd;
2059 	}
2060 
2061 	/*
2062 	 * A separate workqueue is used to handle the device handlers
2063 	 * to avoid overloading existing workqueue. Overloading the
2064 	 * old workqueue would also create a bottleneck in the
2065 	 * path of the storage hardware device activation.
2066 	 */
2067 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2068 						  WQ_MEM_RECLAIM);
2069 	if (!kmpath_handlerd) {
2070 		DMERR("failed to create workqueue kmpath_handlerd");
2071 		r = -ENOMEM;
2072 		goto bad_alloc_kmpath_handlerd;
2073 	}
2074 
2075 	r = dm_register_target(&multipath_target);
2076 	if (r < 0) {
2077 		DMERR("request-based register failed %d", r);
2078 		r = -EINVAL;
2079 		goto bad_register_target;
2080 	}
2081 
2082 	return 0;
2083 
2084 bad_register_target:
2085 	destroy_workqueue(kmpath_handlerd);
2086 bad_alloc_kmpath_handlerd:
2087 	destroy_workqueue(kmultipathd);
2088 bad_alloc_kmultipathd:
2089 	return r;
2090 }
2091 
dm_multipath_exit(void)2092 static void __exit dm_multipath_exit(void)
2093 {
2094 	destroy_workqueue(kmpath_handlerd);
2095 	destroy_workqueue(kmultipathd);
2096 
2097 	dm_unregister_target(&multipath_target);
2098 }
2099 
2100 module_init(dm_multipath_init);
2101 module_exit(dm_multipath_exit);
2102 
2103 MODULE_DESCRIPTION(DM_NAME " multipath target");
2104 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2105 MODULE_LICENSE("GPL");
2106