1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitmap.h>
10 #include <linux/cpu.h>
11 #include <linux/crash_dump.h>
12 #include <linux/delay.h>
13 #include <linux/dma-iommu.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/list.h>
18 #include <linux/log2.h>
19 #include <linux/memblock.h>
20 #include <linux/mm.h>
21 #include <linux/msi.h>
22 #include <linux/of.h>
23 #include <linux/of_address.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_pci.h>
26 #include <linux/of_platform.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/syscore_ops.h>
30 
31 #include <linux/irqchip.h>
32 #include <linux/irqchip/arm-gic-v3.h>
33 #include <linux/irqchip/arm-gic-v4.h>
34 
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 
38 #include "irq-gic-common.h"
39 
40 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
41 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
42 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
43 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
44 
45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
46 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
47 
48 static u32 lpi_id_bits;
49 
50 /*
51  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
52  * deal with (one configuration byte per interrupt). PENDBASE has to
53  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
54  */
55 #define LPI_NRBITS		lpi_id_bits
56 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
57 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
58 
59 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
60 
61 /*
62  * Collection structure - just an ID, and a redistributor address to
63  * ping. We use one per CPU as a bag of interrupts assigned to this
64  * CPU.
65  */
66 struct its_collection {
67 	u64			target_address;
68 	u16			col_id;
69 };
70 
71 /*
72  * The ITS_BASER structure - contains memory information, cached
73  * value of BASER register configuration and ITS page size.
74  */
75 struct its_baser {
76 	void		*base;
77 	u64		val;
78 	u32		order;
79 	u32		psz;
80 };
81 
82 struct its_device;
83 
84 /*
85  * The ITS structure - contains most of the infrastructure, with the
86  * top-level MSI domain, the command queue, the collections, and the
87  * list of devices writing to it.
88  *
89  * dev_alloc_lock has to be taken for device allocations, while the
90  * spinlock must be taken to parse data structures such as the device
91  * list.
92  */
93 struct its_node {
94 	raw_spinlock_t		lock;
95 	struct mutex		dev_alloc_lock;
96 	struct list_head	entry;
97 	void __iomem		*base;
98 	phys_addr_t		phys_base;
99 	struct its_cmd_block	*cmd_base;
100 	struct its_cmd_block	*cmd_write;
101 	struct its_baser	tables[GITS_BASER_NR_REGS];
102 	struct its_collection	*collections;
103 	struct fwnode_handle	*fwnode_handle;
104 	u64			(*get_msi_base)(struct its_device *its_dev);
105 	u64			cbaser_save;
106 	u32			ctlr_save;
107 	struct list_head	its_device_list;
108 	u64			flags;
109 	unsigned long		list_nr;
110 	u32			ite_size;
111 	u32			device_ids;
112 	int			numa_node;
113 	unsigned int		msi_domain_flags;
114 	u32			pre_its_base; /* for Socionext Synquacer */
115 	bool			is_v4;
116 	int			vlpi_redist_offset;
117 };
118 
119 #define ITS_ITT_ALIGN		SZ_256
120 
121 /* The maximum number of VPEID bits supported by VLPI commands */
122 #define ITS_MAX_VPEID_BITS	(16)
123 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
124 
125 /* Convert page order to size in bytes */
126 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
127 
128 struct event_lpi_map {
129 	unsigned long		*lpi_map;
130 	u16			*col_map;
131 	irq_hw_number_t		lpi_base;
132 	int			nr_lpis;
133 	struct mutex		vlpi_lock;
134 	struct its_vm		*vm;
135 	struct its_vlpi_map	*vlpi_maps;
136 	int			nr_vlpis;
137 };
138 
139 /*
140  * The ITS view of a device - belongs to an ITS, owns an interrupt
141  * translation table, and a list of interrupts.  If it some of its
142  * LPIs are injected into a guest (GICv4), the event_map.vm field
143  * indicates which one.
144  */
145 struct its_device {
146 	struct list_head	entry;
147 	struct its_node		*its;
148 	struct event_lpi_map	event_map;
149 	void			*itt;
150 	u32			nr_ites;
151 	u32			device_id;
152 	bool			shared;
153 };
154 
155 static struct {
156 	raw_spinlock_t		lock;
157 	struct its_device	*dev;
158 	struct its_vpe		**vpes;
159 	int			next_victim;
160 } vpe_proxy;
161 
162 static LIST_HEAD(its_nodes);
163 static DEFINE_RAW_SPINLOCK(its_lock);
164 static struct rdists *gic_rdists;
165 static struct irq_domain *its_parent;
166 
167 static unsigned long its_list_map;
168 static u16 vmovp_seq_num;
169 static DEFINE_RAW_SPINLOCK(vmovp_lock);
170 
171 static DEFINE_IDA(its_vpeid_ida);
172 
173 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
174 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
175 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
176 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
177 
get_its_list(struct its_vm * vm)178 static u16 get_its_list(struct its_vm *vm)
179 {
180 	struct its_node *its;
181 	unsigned long its_list = 0;
182 
183 	list_for_each_entry(its, &its_nodes, entry) {
184 		if (!its->is_v4)
185 			continue;
186 
187 		if (vm->vlpi_count[its->list_nr])
188 			__set_bit(its->list_nr, &its_list);
189 	}
190 
191 	return (u16)its_list;
192 }
193 
dev_event_to_col(struct its_device * its_dev,u32 event)194 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
195 					       u32 event)
196 {
197 	struct its_node *its = its_dev->its;
198 
199 	return its->collections + its_dev->event_map.col_map[event];
200 }
201 
valid_col(struct its_collection * col)202 static struct its_collection *valid_col(struct its_collection *col)
203 {
204 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
205 		return NULL;
206 
207 	return col;
208 }
209 
valid_vpe(struct its_node * its,struct its_vpe * vpe)210 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
211 {
212 	if (valid_col(its->collections + vpe->col_idx))
213 		return vpe;
214 
215 	return NULL;
216 }
217 
218 /*
219  * ITS command descriptors - parameters to be encoded in a command
220  * block.
221  */
222 struct its_cmd_desc {
223 	union {
224 		struct {
225 			struct its_device *dev;
226 			u32 event_id;
227 		} its_inv_cmd;
228 
229 		struct {
230 			struct its_device *dev;
231 			u32 event_id;
232 		} its_clear_cmd;
233 
234 		struct {
235 			struct its_device *dev;
236 			u32 event_id;
237 		} its_int_cmd;
238 
239 		struct {
240 			struct its_device *dev;
241 			int valid;
242 		} its_mapd_cmd;
243 
244 		struct {
245 			struct its_collection *col;
246 			int valid;
247 		} its_mapc_cmd;
248 
249 		struct {
250 			struct its_device *dev;
251 			u32 phys_id;
252 			u32 event_id;
253 		} its_mapti_cmd;
254 
255 		struct {
256 			struct its_device *dev;
257 			struct its_collection *col;
258 			u32 event_id;
259 		} its_movi_cmd;
260 
261 		struct {
262 			struct its_device *dev;
263 			u32 event_id;
264 		} its_discard_cmd;
265 
266 		struct {
267 			struct its_collection *col;
268 		} its_invall_cmd;
269 
270 		struct {
271 			struct its_vpe *vpe;
272 		} its_vinvall_cmd;
273 
274 		struct {
275 			struct its_vpe *vpe;
276 			struct its_collection *col;
277 			bool valid;
278 		} its_vmapp_cmd;
279 
280 		struct {
281 			struct its_vpe *vpe;
282 			struct its_device *dev;
283 			u32 virt_id;
284 			u32 event_id;
285 			bool db_enabled;
286 		} its_vmapti_cmd;
287 
288 		struct {
289 			struct its_vpe *vpe;
290 			struct its_device *dev;
291 			u32 event_id;
292 			bool db_enabled;
293 		} its_vmovi_cmd;
294 
295 		struct {
296 			struct its_vpe *vpe;
297 			struct its_collection *col;
298 			u16 seq_num;
299 			u16 its_list;
300 		} its_vmovp_cmd;
301 	};
302 };
303 
304 /*
305  * The ITS command block, which is what the ITS actually parses.
306  */
307 struct its_cmd_block {
308 	u64	raw_cmd[4];
309 };
310 
311 #define ITS_CMD_QUEUE_SZ		SZ_64K
312 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
313 
314 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
315 						    struct its_cmd_block *,
316 						    struct its_cmd_desc *);
317 
318 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
319 					      struct its_cmd_block *,
320 					      struct its_cmd_desc *);
321 
322 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
323 {
324 	u64 mask = GENMASK_ULL(h, l);
325 	*raw_cmd &= ~mask;
326 	*raw_cmd |= (val << l) & mask;
327 }
328 
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)329 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
330 {
331 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
332 }
333 
its_encode_devid(struct its_cmd_block * cmd,u32 devid)334 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
335 {
336 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
337 }
338 
its_encode_event_id(struct its_cmd_block * cmd,u32 id)339 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
340 {
341 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
342 }
343 
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)344 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
345 {
346 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
347 }
348 
its_encode_size(struct its_cmd_block * cmd,u8 size)349 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
350 {
351 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
352 }
353 
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)354 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
355 {
356 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
357 }
358 
its_encode_valid(struct its_cmd_block * cmd,int valid)359 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
360 {
361 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
362 }
363 
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)364 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
365 {
366 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
367 }
368 
its_encode_collection(struct its_cmd_block * cmd,u16 col)369 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
370 {
371 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
372 }
373 
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)374 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
375 {
376 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
377 }
378 
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)379 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
380 {
381 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
382 }
383 
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)384 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
385 {
386 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
387 }
388 
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)389 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
390 {
391 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
392 }
393 
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)394 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
395 {
396 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
397 }
398 
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)399 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
400 {
401 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
402 }
403 
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)404 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
405 {
406 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
407 }
408 
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)409 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
410 {
411 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
412 }
413 
its_fixup_cmd(struct its_cmd_block * cmd)414 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
415 {
416 	/* Let's fixup BE commands */
417 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
418 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
419 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
420 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
421 }
422 
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)423 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
424 						 struct its_cmd_block *cmd,
425 						 struct its_cmd_desc *desc)
426 {
427 	unsigned long itt_addr;
428 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
429 
430 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
431 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
432 
433 	its_encode_cmd(cmd, GITS_CMD_MAPD);
434 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
435 	its_encode_size(cmd, size - 1);
436 	its_encode_itt(cmd, itt_addr);
437 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
438 
439 	its_fixup_cmd(cmd);
440 
441 	return NULL;
442 }
443 
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)444 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
445 						 struct its_cmd_block *cmd,
446 						 struct its_cmd_desc *desc)
447 {
448 	its_encode_cmd(cmd, GITS_CMD_MAPC);
449 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
450 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
451 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
452 
453 	its_fixup_cmd(cmd);
454 
455 	return desc->its_mapc_cmd.col;
456 }
457 
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)458 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
459 						  struct its_cmd_block *cmd,
460 						  struct its_cmd_desc *desc)
461 {
462 	struct its_collection *col;
463 
464 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
465 			       desc->its_mapti_cmd.event_id);
466 
467 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
468 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
469 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
470 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
471 	its_encode_collection(cmd, col->col_id);
472 
473 	its_fixup_cmd(cmd);
474 
475 	return valid_col(col);
476 }
477 
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)478 static struct its_collection *its_build_movi_cmd(struct its_node *its,
479 						 struct its_cmd_block *cmd,
480 						 struct its_cmd_desc *desc)
481 {
482 	struct its_collection *col;
483 
484 	col = dev_event_to_col(desc->its_movi_cmd.dev,
485 			       desc->its_movi_cmd.event_id);
486 
487 	its_encode_cmd(cmd, GITS_CMD_MOVI);
488 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
489 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
490 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
491 
492 	its_fixup_cmd(cmd);
493 
494 	return valid_col(col);
495 }
496 
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)497 static struct its_collection *its_build_discard_cmd(struct its_node *its,
498 						    struct its_cmd_block *cmd,
499 						    struct its_cmd_desc *desc)
500 {
501 	struct its_collection *col;
502 
503 	col = dev_event_to_col(desc->its_discard_cmd.dev,
504 			       desc->its_discard_cmd.event_id);
505 
506 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
507 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
508 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
509 
510 	its_fixup_cmd(cmd);
511 
512 	return valid_col(col);
513 }
514 
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)515 static struct its_collection *its_build_inv_cmd(struct its_node *its,
516 						struct its_cmd_block *cmd,
517 						struct its_cmd_desc *desc)
518 {
519 	struct its_collection *col;
520 
521 	col = dev_event_to_col(desc->its_inv_cmd.dev,
522 			       desc->its_inv_cmd.event_id);
523 
524 	its_encode_cmd(cmd, GITS_CMD_INV);
525 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
526 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
527 
528 	its_fixup_cmd(cmd);
529 
530 	return valid_col(col);
531 }
532 
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)533 static struct its_collection *its_build_int_cmd(struct its_node *its,
534 						struct its_cmd_block *cmd,
535 						struct its_cmd_desc *desc)
536 {
537 	struct its_collection *col;
538 
539 	col = dev_event_to_col(desc->its_int_cmd.dev,
540 			       desc->its_int_cmd.event_id);
541 
542 	its_encode_cmd(cmd, GITS_CMD_INT);
543 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
544 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
545 
546 	its_fixup_cmd(cmd);
547 
548 	return valid_col(col);
549 }
550 
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)551 static struct its_collection *its_build_clear_cmd(struct its_node *its,
552 						  struct its_cmd_block *cmd,
553 						  struct its_cmd_desc *desc)
554 {
555 	struct its_collection *col;
556 
557 	col = dev_event_to_col(desc->its_clear_cmd.dev,
558 			       desc->its_clear_cmd.event_id);
559 
560 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
561 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
562 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
563 
564 	its_fixup_cmd(cmd);
565 
566 	return valid_col(col);
567 }
568 
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)569 static struct its_collection *its_build_invall_cmd(struct its_node *its,
570 						   struct its_cmd_block *cmd,
571 						   struct its_cmd_desc *desc)
572 {
573 	its_encode_cmd(cmd, GITS_CMD_INVALL);
574 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
575 
576 	its_fixup_cmd(cmd);
577 
578 	return NULL;
579 }
580 
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)581 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
582 					     struct its_cmd_block *cmd,
583 					     struct its_cmd_desc *desc)
584 {
585 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
586 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
587 
588 	its_fixup_cmd(cmd);
589 
590 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
591 }
592 
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)593 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
594 					   struct its_cmd_block *cmd,
595 					   struct its_cmd_desc *desc)
596 {
597 	unsigned long vpt_addr;
598 	u64 target;
599 
600 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
601 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
602 
603 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
604 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
605 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
606 	its_encode_target(cmd, target);
607 	its_encode_vpt_addr(cmd, vpt_addr);
608 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
609 
610 	its_fixup_cmd(cmd);
611 
612 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
613 }
614 
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)615 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
616 					    struct its_cmd_block *cmd,
617 					    struct its_cmd_desc *desc)
618 {
619 	u32 db;
620 
621 	if (desc->its_vmapti_cmd.db_enabled)
622 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
623 	else
624 		db = 1023;
625 
626 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
627 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
628 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
629 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
630 	its_encode_db_phys_id(cmd, db);
631 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
632 
633 	its_fixup_cmd(cmd);
634 
635 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
636 }
637 
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)638 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
639 					   struct its_cmd_block *cmd,
640 					   struct its_cmd_desc *desc)
641 {
642 	u32 db;
643 
644 	if (desc->its_vmovi_cmd.db_enabled)
645 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
646 	else
647 		db = 1023;
648 
649 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
650 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
651 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
652 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
653 	its_encode_db_phys_id(cmd, db);
654 	its_encode_db_valid(cmd, true);
655 
656 	its_fixup_cmd(cmd);
657 
658 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
659 }
660 
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)661 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
662 					   struct its_cmd_block *cmd,
663 					   struct its_cmd_desc *desc)
664 {
665 	u64 target;
666 
667 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
668 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
669 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
670 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
671 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
672 	its_encode_target(cmd, target);
673 
674 	its_fixup_cmd(cmd);
675 
676 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
677 }
678 
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)679 static u64 its_cmd_ptr_to_offset(struct its_node *its,
680 				 struct its_cmd_block *ptr)
681 {
682 	return (ptr - its->cmd_base) * sizeof(*ptr);
683 }
684 
its_queue_full(struct its_node * its)685 static int its_queue_full(struct its_node *its)
686 {
687 	int widx;
688 	int ridx;
689 
690 	widx = its->cmd_write - its->cmd_base;
691 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
692 
693 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
694 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
695 		return 1;
696 
697 	return 0;
698 }
699 
its_allocate_entry(struct its_node * its)700 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
701 {
702 	struct its_cmd_block *cmd;
703 	u32 count = 1000000;	/* 1s! */
704 
705 	while (its_queue_full(its)) {
706 		count--;
707 		if (!count) {
708 			pr_err_ratelimited("ITS queue not draining\n");
709 			return NULL;
710 		}
711 		cpu_relax();
712 		udelay(1);
713 	}
714 
715 	cmd = its->cmd_write++;
716 
717 	/* Handle queue wrapping */
718 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
719 		its->cmd_write = its->cmd_base;
720 
721 	/* Clear command  */
722 	cmd->raw_cmd[0] = 0;
723 	cmd->raw_cmd[1] = 0;
724 	cmd->raw_cmd[2] = 0;
725 	cmd->raw_cmd[3] = 0;
726 
727 	return cmd;
728 }
729 
its_post_commands(struct its_node * its)730 static struct its_cmd_block *its_post_commands(struct its_node *its)
731 {
732 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
733 
734 	writel_relaxed(wr, its->base + GITS_CWRITER);
735 
736 	return its->cmd_write;
737 }
738 
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)739 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
740 {
741 	/*
742 	 * Make sure the commands written to memory are observable by
743 	 * the ITS.
744 	 */
745 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
746 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
747 	else
748 		dsb(ishst);
749 }
750 
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)751 static int its_wait_for_range_completion(struct its_node *its,
752 					 u64	prev_idx,
753 					 struct its_cmd_block *to)
754 {
755 	u64 rd_idx, to_idx, linear_idx;
756 	u32 count = 1000000;	/* 1s! */
757 
758 	/* Linearize to_idx if the command set has wrapped around */
759 	to_idx = its_cmd_ptr_to_offset(its, to);
760 	if (to_idx < prev_idx)
761 		to_idx += ITS_CMD_QUEUE_SZ;
762 
763 	linear_idx = prev_idx;
764 
765 	while (1) {
766 		s64 delta;
767 
768 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
769 
770 		/*
771 		 * Compute the read pointer progress, taking the
772 		 * potential wrap-around into account.
773 		 */
774 		delta = rd_idx - prev_idx;
775 		if (rd_idx < prev_idx)
776 			delta += ITS_CMD_QUEUE_SZ;
777 
778 		linear_idx += delta;
779 		if (linear_idx >= to_idx)
780 			break;
781 
782 		count--;
783 		if (!count) {
784 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
785 					   to_idx, linear_idx);
786 			return -1;
787 		}
788 		prev_idx = rd_idx;
789 		cpu_relax();
790 		udelay(1);
791 	}
792 
793 	return 0;
794 }
795 
796 /* Warning, macro hell follows */
797 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
798 void name(struct its_node *its,						\
799 	  buildtype builder,						\
800 	  struct its_cmd_desc *desc)					\
801 {									\
802 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
803 	synctype *sync_obj;						\
804 	unsigned long flags;						\
805 	u64 rd_idx;							\
806 									\
807 	raw_spin_lock_irqsave(&its->lock, flags);			\
808 									\
809 	cmd = its_allocate_entry(its);					\
810 	if (!cmd) {		/* We're soooooo screewed... */		\
811 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
812 		return;							\
813 	}								\
814 	sync_obj = builder(its, cmd, desc);				\
815 	its_flush_cmd(its, cmd);					\
816 									\
817 	if (sync_obj) {							\
818 		sync_cmd = its_allocate_entry(its);			\
819 		if (!sync_cmd)						\
820 			goto post;					\
821 									\
822 		buildfn(its, sync_cmd, sync_obj);			\
823 		its_flush_cmd(its, sync_cmd);				\
824 	}								\
825 									\
826 post:									\
827 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
828 	next_cmd = its_post_commands(its);				\
829 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
830 									\
831 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
832 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
833 }
834 
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)835 static void its_build_sync_cmd(struct its_node *its,
836 			       struct its_cmd_block *sync_cmd,
837 			       struct its_collection *sync_col)
838 {
839 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
840 	its_encode_target(sync_cmd, sync_col->target_address);
841 
842 	its_fixup_cmd(sync_cmd);
843 }
844 
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)845 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
846 			     struct its_collection, its_build_sync_cmd)
847 
848 static void its_build_vsync_cmd(struct its_node *its,
849 				struct its_cmd_block *sync_cmd,
850 				struct its_vpe *sync_vpe)
851 {
852 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
853 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
854 
855 	its_fixup_cmd(sync_cmd);
856 }
857 
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)858 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
859 			     struct its_vpe, its_build_vsync_cmd)
860 
861 static void its_send_int(struct its_device *dev, u32 event_id)
862 {
863 	struct its_cmd_desc desc;
864 
865 	desc.its_int_cmd.dev = dev;
866 	desc.its_int_cmd.event_id = event_id;
867 
868 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
869 }
870 
its_send_clear(struct its_device * dev,u32 event_id)871 static void its_send_clear(struct its_device *dev, u32 event_id)
872 {
873 	struct its_cmd_desc desc;
874 
875 	desc.its_clear_cmd.dev = dev;
876 	desc.its_clear_cmd.event_id = event_id;
877 
878 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
879 }
880 
its_send_inv(struct its_device * dev,u32 event_id)881 static void its_send_inv(struct its_device *dev, u32 event_id)
882 {
883 	struct its_cmd_desc desc;
884 
885 	desc.its_inv_cmd.dev = dev;
886 	desc.its_inv_cmd.event_id = event_id;
887 
888 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
889 }
890 
its_send_mapd(struct its_device * dev,int valid)891 static void its_send_mapd(struct its_device *dev, int valid)
892 {
893 	struct its_cmd_desc desc;
894 
895 	desc.its_mapd_cmd.dev = dev;
896 	desc.its_mapd_cmd.valid = !!valid;
897 
898 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
899 }
900 
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)901 static void its_send_mapc(struct its_node *its, struct its_collection *col,
902 			  int valid)
903 {
904 	struct its_cmd_desc desc;
905 
906 	desc.its_mapc_cmd.col = col;
907 	desc.its_mapc_cmd.valid = !!valid;
908 
909 	its_send_single_command(its, its_build_mapc_cmd, &desc);
910 }
911 
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)912 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
913 {
914 	struct its_cmd_desc desc;
915 
916 	desc.its_mapti_cmd.dev = dev;
917 	desc.its_mapti_cmd.phys_id = irq_id;
918 	desc.its_mapti_cmd.event_id = id;
919 
920 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
921 }
922 
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)923 static void its_send_movi(struct its_device *dev,
924 			  struct its_collection *col, u32 id)
925 {
926 	struct its_cmd_desc desc;
927 
928 	desc.its_movi_cmd.dev = dev;
929 	desc.its_movi_cmd.col = col;
930 	desc.its_movi_cmd.event_id = id;
931 
932 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
933 }
934 
its_send_discard(struct its_device * dev,u32 id)935 static void its_send_discard(struct its_device *dev, u32 id)
936 {
937 	struct its_cmd_desc desc;
938 
939 	desc.its_discard_cmd.dev = dev;
940 	desc.its_discard_cmd.event_id = id;
941 
942 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
943 }
944 
its_send_invall(struct its_node * its,struct its_collection * col)945 static void its_send_invall(struct its_node *its, struct its_collection *col)
946 {
947 	struct its_cmd_desc desc;
948 
949 	desc.its_invall_cmd.col = col;
950 
951 	its_send_single_command(its, its_build_invall_cmd, &desc);
952 }
953 
its_send_vmapti(struct its_device * dev,u32 id)954 static void its_send_vmapti(struct its_device *dev, u32 id)
955 {
956 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
957 	struct its_cmd_desc desc;
958 
959 	desc.its_vmapti_cmd.vpe = map->vpe;
960 	desc.its_vmapti_cmd.dev = dev;
961 	desc.its_vmapti_cmd.virt_id = map->vintid;
962 	desc.its_vmapti_cmd.event_id = id;
963 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
964 
965 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
966 }
967 
its_send_vmovi(struct its_device * dev,u32 id)968 static void its_send_vmovi(struct its_device *dev, u32 id)
969 {
970 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
971 	struct its_cmd_desc desc;
972 
973 	desc.its_vmovi_cmd.vpe = map->vpe;
974 	desc.its_vmovi_cmd.dev = dev;
975 	desc.its_vmovi_cmd.event_id = id;
976 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
977 
978 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
979 }
980 
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)981 static void its_send_vmapp(struct its_node *its,
982 			   struct its_vpe *vpe, bool valid)
983 {
984 	struct its_cmd_desc desc;
985 
986 	desc.its_vmapp_cmd.vpe = vpe;
987 	desc.its_vmapp_cmd.valid = valid;
988 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
989 
990 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
991 }
992 
its_send_vmovp(struct its_vpe * vpe)993 static void its_send_vmovp(struct its_vpe *vpe)
994 {
995 	struct its_cmd_desc desc = {};
996 	struct its_node *its;
997 	unsigned long flags;
998 	int col_id = vpe->col_idx;
999 
1000 	desc.its_vmovp_cmd.vpe = vpe;
1001 
1002 	if (!its_list_map) {
1003 		its = list_first_entry(&its_nodes, struct its_node, entry);
1004 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1005 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1006 		return;
1007 	}
1008 
1009 	/*
1010 	 * Yet another marvel of the architecture. If using the
1011 	 * its_list "feature", we need to make sure that all ITSs
1012 	 * receive all VMOVP commands in the same order. The only way
1013 	 * to guarantee this is to make vmovp a serialization point.
1014 	 *
1015 	 * Wall <-- Head.
1016 	 */
1017 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1018 
1019 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1020 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1021 
1022 	/* Emit VMOVPs */
1023 	list_for_each_entry(its, &its_nodes, entry) {
1024 		if (!its->is_v4)
1025 			continue;
1026 
1027 		if (!vpe->its_vm->vlpi_count[its->list_nr])
1028 			continue;
1029 
1030 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1031 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1032 	}
1033 
1034 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1035 }
1036 
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1037 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1038 {
1039 	struct its_cmd_desc desc;
1040 
1041 	desc.its_vinvall_cmd.vpe = vpe;
1042 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1043 }
1044 
1045 /*
1046  * irqchip functions - assumes MSI, mostly.
1047  */
1048 
its_get_event_id(struct irq_data * d)1049 static inline u32 its_get_event_id(struct irq_data *d)
1050 {
1051 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1052 	return d->hwirq - its_dev->event_map.lpi_base;
1053 }
1054 
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1055 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1056 {
1057 	irq_hw_number_t hwirq;
1058 	void *va;
1059 	u8 *cfg;
1060 
1061 	if (irqd_is_forwarded_to_vcpu(d)) {
1062 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1063 		u32 event = its_get_event_id(d);
1064 		struct its_vlpi_map *map;
1065 
1066 		va = page_address(its_dev->event_map.vm->vprop_page);
1067 		map = &its_dev->event_map.vlpi_maps[event];
1068 		hwirq = map->vintid;
1069 
1070 		/* Remember the updated property */
1071 		map->properties &= ~clr;
1072 		map->properties |= set | LPI_PROP_GROUP1;
1073 	} else {
1074 		va = gic_rdists->prop_table_va;
1075 		hwirq = d->hwirq;
1076 	}
1077 
1078 	cfg = va + hwirq - 8192;
1079 	*cfg &= ~clr;
1080 	*cfg |= set | LPI_PROP_GROUP1;
1081 
1082 	/*
1083 	 * Make the above write visible to the redistributors.
1084 	 * And yes, we're flushing exactly: One. Single. Byte.
1085 	 * Humpf...
1086 	 */
1087 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1088 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1089 	else
1090 		dsb(ishst);
1091 }
1092 
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1093 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1094 {
1095 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1096 
1097 	lpi_write_config(d, clr, set);
1098 	its_send_inv(its_dev, its_get_event_id(d));
1099 }
1100 
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1101 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1102 {
1103 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1104 	u32 event = its_get_event_id(d);
1105 
1106 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1107 		return;
1108 
1109 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1110 
1111 	/*
1112 	 * More fun with the architecture:
1113 	 *
1114 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1115 	 * value or to 1023, depending on the enable bit. But that
1116 	 * would be issueing a mapping for an /existing/ DevID+EventID
1117 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1118 	 * to the /same/ vPE, using this opportunity to adjust the
1119 	 * doorbell. Mouahahahaha. We loves it, Precious.
1120 	 */
1121 	its_send_vmovi(its_dev, event);
1122 }
1123 
its_mask_irq(struct irq_data * d)1124 static void its_mask_irq(struct irq_data *d)
1125 {
1126 	if (irqd_is_forwarded_to_vcpu(d))
1127 		its_vlpi_set_doorbell(d, false);
1128 
1129 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1130 }
1131 
its_unmask_irq(struct irq_data * d)1132 static void its_unmask_irq(struct irq_data *d)
1133 {
1134 	if (irqd_is_forwarded_to_vcpu(d))
1135 		its_vlpi_set_doorbell(d, true);
1136 
1137 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1138 }
1139 
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1140 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1141 			    bool force)
1142 {
1143 	unsigned int cpu;
1144 	const struct cpumask *cpu_mask = cpu_online_mask;
1145 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1146 	struct its_collection *target_col;
1147 	u32 id = its_get_event_id(d);
1148 
1149 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1150 	if (irqd_is_forwarded_to_vcpu(d))
1151 		return -EINVAL;
1152 
1153        /* lpi cannot be routed to a redistributor that is on a foreign node */
1154 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1155 		if (its_dev->its->numa_node >= 0) {
1156 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1157 			if (!cpumask_intersects(mask_val, cpu_mask))
1158 				return -EINVAL;
1159 		}
1160 	}
1161 
1162 	cpu = cpumask_any_and(mask_val, cpu_mask);
1163 
1164 	if (cpu >= nr_cpu_ids)
1165 		return -EINVAL;
1166 
1167 	/* don't set the affinity when the target cpu is same as current one */
1168 	if (cpu != its_dev->event_map.col_map[id]) {
1169 		target_col = &its_dev->its->collections[cpu];
1170 		its_send_movi(its_dev, target_col, id);
1171 		its_dev->event_map.col_map[id] = cpu;
1172 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1173 	}
1174 
1175 	return IRQ_SET_MASK_OK_DONE;
1176 }
1177 
its_irq_get_msi_base(struct its_device * its_dev)1178 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1179 {
1180 	struct its_node *its = its_dev->its;
1181 
1182 	return its->phys_base + GITS_TRANSLATER;
1183 }
1184 
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1185 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1186 {
1187 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1188 	struct its_node *its;
1189 	u64 addr;
1190 
1191 	its = its_dev->its;
1192 	addr = its->get_msi_base(its_dev);
1193 
1194 	msg->address_lo		= lower_32_bits(addr);
1195 	msg->address_hi		= upper_32_bits(addr);
1196 	msg->data		= its_get_event_id(d);
1197 
1198 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1199 }
1200 
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1201 static int its_irq_set_irqchip_state(struct irq_data *d,
1202 				     enum irqchip_irq_state which,
1203 				     bool state)
1204 {
1205 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1206 	u32 event = its_get_event_id(d);
1207 
1208 	if (which != IRQCHIP_STATE_PENDING)
1209 		return -EINVAL;
1210 
1211 	if (state)
1212 		its_send_int(its_dev, event);
1213 	else
1214 		its_send_clear(its_dev, event);
1215 
1216 	return 0;
1217 }
1218 
its_map_vm(struct its_node * its,struct its_vm * vm)1219 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1220 {
1221 	unsigned long flags;
1222 
1223 	/* Not using the ITS list? Everything is always mapped. */
1224 	if (!its_list_map)
1225 		return;
1226 
1227 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1228 
1229 	/*
1230 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1231 	 * them mapped now.
1232 	 */
1233 	vm->vlpi_count[its->list_nr]++;
1234 
1235 	if (vm->vlpi_count[its->list_nr] == 1) {
1236 		int i;
1237 
1238 		for (i = 0; i < vm->nr_vpes; i++) {
1239 			struct its_vpe *vpe = vm->vpes[i];
1240 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1241 
1242 			/* Map the VPE to the first possible CPU */
1243 			vpe->col_idx = cpumask_first(cpu_online_mask);
1244 			its_send_vmapp(its, vpe, true);
1245 			its_send_vinvall(its, vpe);
1246 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1247 		}
1248 	}
1249 
1250 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1251 }
1252 
its_unmap_vm(struct its_node * its,struct its_vm * vm)1253 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1254 {
1255 	unsigned long flags;
1256 
1257 	/* Not using the ITS list? Everything is always mapped. */
1258 	if (!its_list_map)
1259 		return;
1260 
1261 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1262 
1263 	if (!--vm->vlpi_count[its->list_nr]) {
1264 		int i;
1265 
1266 		for (i = 0; i < vm->nr_vpes; i++)
1267 			its_send_vmapp(its, vm->vpes[i], false);
1268 	}
1269 
1270 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1271 }
1272 
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1273 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1274 {
1275 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1276 	u32 event = its_get_event_id(d);
1277 	int ret = 0;
1278 
1279 	if (!info->map)
1280 		return -EINVAL;
1281 
1282 	mutex_lock(&its_dev->event_map.vlpi_lock);
1283 
1284 	if (!its_dev->event_map.vm) {
1285 		struct its_vlpi_map *maps;
1286 
1287 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1288 			       GFP_KERNEL);
1289 		if (!maps) {
1290 			ret = -ENOMEM;
1291 			goto out;
1292 		}
1293 
1294 		its_dev->event_map.vm = info->map->vm;
1295 		its_dev->event_map.vlpi_maps = maps;
1296 	} else if (its_dev->event_map.vm != info->map->vm) {
1297 		ret = -EINVAL;
1298 		goto out;
1299 	}
1300 
1301 	/* Get our private copy of the mapping information */
1302 	its_dev->event_map.vlpi_maps[event] = *info->map;
1303 
1304 	if (irqd_is_forwarded_to_vcpu(d)) {
1305 		/* Already mapped, move it around */
1306 		its_send_vmovi(its_dev, event);
1307 	} else {
1308 		/* Ensure all the VPEs are mapped on this ITS */
1309 		its_map_vm(its_dev->its, info->map->vm);
1310 
1311 		/*
1312 		 * Flag the interrupt as forwarded so that we can
1313 		 * start poking the virtual property table.
1314 		 */
1315 		irqd_set_forwarded_to_vcpu(d);
1316 
1317 		/* Write out the property to the prop table */
1318 		lpi_write_config(d, 0xff, info->map->properties);
1319 
1320 		/* Drop the physical mapping */
1321 		its_send_discard(its_dev, event);
1322 
1323 		/* and install the virtual one */
1324 		its_send_vmapti(its_dev, event);
1325 
1326 		/* Increment the number of VLPIs */
1327 		its_dev->event_map.nr_vlpis++;
1328 	}
1329 
1330 out:
1331 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1332 	return ret;
1333 }
1334 
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1335 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1336 {
1337 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1338 	u32 event = its_get_event_id(d);
1339 	int ret = 0;
1340 
1341 	mutex_lock(&its_dev->event_map.vlpi_lock);
1342 
1343 	if (!its_dev->event_map.vm ||
1344 	    !its_dev->event_map.vlpi_maps[event].vm) {
1345 		ret = -EINVAL;
1346 		goto out;
1347 	}
1348 
1349 	/* Copy our mapping information to the incoming request */
1350 	*info->map = its_dev->event_map.vlpi_maps[event];
1351 
1352 out:
1353 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1354 	return ret;
1355 }
1356 
its_vlpi_unmap(struct irq_data * d)1357 static int its_vlpi_unmap(struct irq_data *d)
1358 {
1359 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1360 	u32 event = its_get_event_id(d);
1361 	int ret = 0;
1362 
1363 	mutex_lock(&its_dev->event_map.vlpi_lock);
1364 
1365 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1366 		ret = -EINVAL;
1367 		goto out;
1368 	}
1369 
1370 	/* Drop the virtual mapping */
1371 	its_send_discard(its_dev, event);
1372 
1373 	/* and restore the physical one */
1374 	irqd_clr_forwarded_to_vcpu(d);
1375 	its_send_mapti(its_dev, d->hwirq, event);
1376 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1377 				    LPI_PROP_ENABLED |
1378 				    LPI_PROP_GROUP1));
1379 
1380 	/* Potentially unmap the VM from this ITS */
1381 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1382 
1383 	/*
1384 	 * Drop the refcount and make the device available again if
1385 	 * this was the last VLPI.
1386 	 */
1387 	if (!--its_dev->event_map.nr_vlpis) {
1388 		its_dev->event_map.vm = NULL;
1389 		kfree(its_dev->event_map.vlpi_maps);
1390 	}
1391 
1392 out:
1393 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1394 	return ret;
1395 }
1396 
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1397 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1398 {
1399 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1400 
1401 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1402 		return -EINVAL;
1403 
1404 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1405 		lpi_update_config(d, 0xff, info->config);
1406 	else
1407 		lpi_write_config(d, 0xff, info->config);
1408 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1409 
1410 	return 0;
1411 }
1412 
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1413 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1414 {
1415 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1416 	struct its_cmd_info *info = vcpu_info;
1417 
1418 	/* Need a v4 ITS */
1419 	if (!its_dev->its->is_v4)
1420 		return -EINVAL;
1421 
1422 	/* Unmap request? */
1423 	if (!info)
1424 		return its_vlpi_unmap(d);
1425 
1426 	switch (info->cmd_type) {
1427 	case MAP_VLPI:
1428 		return its_vlpi_map(d, info);
1429 
1430 	case GET_VLPI:
1431 		return its_vlpi_get(d, info);
1432 
1433 	case PROP_UPDATE_VLPI:
1434 	case PROP_UPDATE_AND_INV_VLPI:
1435 		return its_vlpi_prop_update(d, info);
1436 
1437 	default:
1438 		return -EINVAL;
1439 	}
1440 }
1441 
1442 static struct irq_chip its_irq_chip = {
1443 	.name			= "ITS",
1444 	.irq_mask		= its_mask_irq,
1445 	.irq_unmask		= its_unmask_irq,
1446 	.irq_eoi		= irq_chip_eoi_parent,
1447 	.irq_set_affinity	= its_set_affinity,
1448 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1449 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1450 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1451 };
1452 
1453 
1454 /*
1455  * How we allocate LPIs:
1456  *
1457  * lpi_range_list contains ranges of LPIs that are to available to
1458  * allocate from. To allocate LPIs, just pick the first range that
1459  * fits the required allocation, and reduce it by the required
1460  * amount. Once empty, remove the range from the list.
1461  *
1462  * To free a range of LPIs, add a free range to the list, sort it and
1463  * merge the result if the new range happens to be adjacent to an
1464  * already free block.
1465  *
1466  * The consequence of the above is that allocation is cost is low, but
1467  * freeing is expensive. We assumes that freeing rarely occurs.
1468  */
1469 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1470 
1471 static DEFINE_MUTEX(lpi_range_lock);
1472 static LIST_HEAD(lpi_range_list);
1473 
1474 struct lpi_range {
1475 	struct list_head	entry;
1476 	u32			base_id;
1477 	u32			span;
1478 };
1479 
mk_lpi_range(u32 base,u32 span)1480 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1481 {
1482 	struct lpi_range *range;
1483 
1484 	range = kmalloc(sizeof(*range), GFP_KERNEL);
1485 	if (range) {
1486 		range->base_id = base;
1487 		range->span = span;
1488 	}
1489 
1490 	return range;
1491 }
1492 
alloc_lpi_range(u32 nr_lpis,u32 * base)1493 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1494 {
1495 	struct lpi_range *range, *tmp;
1496 	int err = -ENOSPC;
1497 
1498 	mutex_lock(&lpi_range_lock);
1499 
1500 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1501 		if (range->span >= nr_lpis) {
1502 			*base = range->base_id;
1503 			range->base_id += nr_lpis;
1504 			range->span -= nr_lpis;
1505 
1506 			if (range->span == 0) {
1507 				list_del(&range->entry);
1508 				kfree(range);
1509 			}
1510 
1511 			err = 0;
1512 			break;
1513 		}
1514 	}
1515 
1516 	mutex_unlock(&lpi_range_lock);
1517 
1518 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1519 	return err;
1520 }
1521 
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)1522 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
1523 {
1524 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
1525 		return;
1526 	if (a->base_id + a->span != b->base_id)
1527 		return;
1528 	b->base_id = a->base_id;
1529 	b->span += a->span;
1530 	list_del(&a->entry);
1531 	kfree(a);
1532 }
1533 
free_lpi_range(u32 base,u32 nr_lpis)1534 static int free_lpi_range(u32 base, u32 nr_lpis)
1535 {
1536 	struct lpi_range *new, *old;
1537 
1538 	new = mk_lpi_range(base, nr_lpis);
1539 	if (!new)
1540 		return -ENOMEM;
1541 
1542 	mutex_lock(&lpi_range_lock);
1543 
1544 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
1545 		if (old->base_id < base)
1546 			break;
1547 	}
1548 	/*
1549 	 * old is the last element with ->base_id smaller than base,
1550 	 * so new goes right after it. If there are no elements with
1551 	 * ->base_id smaller than base, &old->entry ends up pointing
1552 	 * at the head of the list, and inserting new it the start of
1553 	 * the list is the right thing to do in that case as well.
1554 	 */
1555 	list_add(&new->entry, &old->entry);
1556 	/*
1557 	 * Now check if we can merge with the preceding and/or
1558 	 * following ranges.
1559 	 */
1560 	merge_lpi_ranges(old, new);
1561 	merge_lpi_ranges(new, list_next_entry(new, entry));
1562 
1563 	mutex_unlock(&lpi_range_lock);
1564 	return 0;
1565 }
1566 
its_lpi_init(u32 id_bits)1567 static int __init its_lpi_init(u32 id_bits)
1568 {
1569 	u32 lpis = (1UL << id_bits) - 8192;
1570 	u32 numlpis;
1571 	int err;
1572 
1573 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1574 
1575 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1576 		lpis = numlpis;
1577 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1578 			lpis);
1579 	}
1580 
1581 	/*
1582 	 * Initializing the allocator is just the same as freeing the
1583 	 * full range of LPIs.
1584 	 */
1585 	err = free_lpi_range(8192, lpis);
1586 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1587 	return err;
1588 }
1589 
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)1590 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1591 {
1592 	unsigned long *bitmap = NULL;
1593 	int err = 0;
1594 
1595 	do {
1596 		err = alloc_lpi_range(nr_irqs, base);
1597 		if (!err)
1598 			break;
1599 
1600 		nr_irqs /= 2;
1601 	} while (nr_irqs > 0);
1602 
1603 	if (!nr_irqs)
1604 		err = -ENOSPC;
1605 
1606 	if (err)
1607 		goto out;
1608 
1609 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1610 	if (!bitmap)
1611 		goto out;
1612 
1613 	*nr_ids = nr_irqs;
1614 
1615 out:
1616 	if (!bitmap)
1617 		*base = *nr_ids = 0;
1618 
1619 	return bitmap;
1620 }
1621 
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)1622 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1623 {
1624 	WARN_ON(free_lpi_range(base, nr_ids));
1625 	kfree(bitmap);
1626 }
1627 
gic_reset_prop_table(void * va)1628 static void gic_reset_prop_table(void *va)
1629 {
1630 	/* Priority 0xa0, Group-1, disabled */
1631 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1632 
1633 	/* Make sure the GIC will observe the written configuration */
1634 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1635 }
1636 
its_allocate_prop_table(gfp_t gfp_flags)1637 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1638 {
1639 	struct page *prop_page;
1640 
1641 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1642 	if (!prop_page)
1643 		return NULL;
1644 
1645 	gic_reset_prop_table(page_address(prop_page));
1646 
1647 	return prop_page;
1648 }
1649 
its_free_prop_table(struct page * prop_page)1650 static void its_free_prop_table(struct page *prop_page)
1651 {
1652 	free_pages((unsigned long)page_address(prop_page),
1653 		   get_order(LPI_PROPBASE_SZ));
1654 }
1655 
gic_check_reserved_range(phys_addr_t addr,unsigned long size)1656 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1657 {
1658 	phys_addr_t start, end, addr_end;
1659 	u64 i;
1660 
1661 	/*
1662 	 * We don't bother checking for a kdump kernel as by
1663 	 * construction, the LPI tables are out of this kernel's
1664 	 * memory map.
1665 	 */
1666 	if (is_kdump_kernel())
1667 		return true;
1668 
1669 	addr_end = addr + size - 1;
1670 
1671 	for_each_reserved_mem_region(i, &start, &end) {
1672 		if (addr >= start && addr_end <= end)
1673 			return true;
1674 	}
1675 
1676 	/* Not found, not a good sign... */
1677 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1678 		&addr, &addr_end);
1679 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1680 	return false;
1681 }
1682 
gic_reserve_range(phys_addr_t addr,unsigned long size)1683 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1684 {
1685 	if (efi_enabled(EFI_CONFIG_TABLES))
1686 		return efi_mem_reserve_persistent(addr, size);
1687 
1688 	return 0;
1689 }
1690 
its_setup_lpi_prop_table(void)1691 static int __init its_setup_lpi_prop_table(void)
1692 {
1693 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1694 		u64 val;
1695 
1696 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1697 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1698 
1699 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1700 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1701 						     LPI_PROPBASE_SZ,
1702 						     MEMREMAP_WB);
1703 		gic_reset_prop_table(gic_rdists->prop_table_va);
1704 	} else {
1705 		struct page *page;
1706 
1707 		lpi_id_bits = min_t(u32,
1708 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1709 				    ITS_MAX_LPI_NRBITS);
1710 		page = its_allocate_prop_table(GFP_NOWAIT);
1711 		if (!page) {
1712 			pr_err("Failed to allocate PROPBASE\n");
1713 			return -ENOMEM;
1714 		}
1715 
1716 		gic_rdists->prop_table_pa = page_to_phys(page);
1717 		gic_rdists->prop_table_va = page_address(page);
1718 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
1719 					  LPI_PROPBASE_SZ));
1720 	}
1721 
1722 	pr_info("GICv3: using LPI property table @%pa\n",
1723 		&gic_rdists->prop_table_pa);
1724 
1725 	return its_lpi_init(lpi_id_bits);
1726 }
1727 
1728 static const char *its_base_type_string[] = {
1729 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1730 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1731 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1732 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1733 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1734 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1735 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1736 };
1737 
its_read_baser(struct its_node * its,struct its_baser * baser)1738 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1739 {
1740 	u32 idx = baser - its->tables;
1741 
1742 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1743 }
1744 
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)1745 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1746 			    u64 val)
1747 {
1748 	u32 idx = baser - its->tables;
1749 
1750 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1751 	baser->val = its_read_baser(its, baser);
1752 }
1753 
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 psz,u32 order,bool indirect)1754 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1755 			   u64 cache, u64 shr, u32 psz, u32 order,
1756 			   bool indirect)
1757 {
1758 	u64 val = its_read_baser(its, baser);
1759 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1760 	u64 type = GITS_BASER_TYPE(val);
1761 	u64 baser_phys, tmp;
1762 	u32 alloc_pages;
1763 	struct page *page;
1764 	void *base;
1765 
1766 retry_alloc_baser:
1767 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1768 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1769 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1770 			&its->phys_base, its_base_type_string[type],
1771 			alloc_pages, GITS_BASER_PAGES_MAX);
1772 		alloc_pages = GITS_BASER_PAGES_MAX;
1773 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1774 	}
1775 
1776 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
1777 	if (!page)
1778 		return -ENOMEM;
1779 
1780 	base = (void *)page_address(page);
1781 	baser_phys = virt_to_phys(base);
1782 
1783 	/* Check if the physical address of the memory is above 48bits */
1784 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1785 
1786 		/* 52bit PA is supported only when PageSize=64K */
1787 		if (psz != SZ_64K) {
1788 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1789 			free_pages((unsigned long)base, order);
1790 			return -ENXIO;
1791 		}
1792 
1793 		/* Convert 52bit PA to 48bit field */
1794 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1795 	}
1796 
1797 retry_baser:
1798 	val = (baser_phys					 |
1799 		(type << GITS_BASER_TYPE_SHIFT)			 |
1800 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1801 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1802 		cache						 |
1803 		shr						 |
1804 		GITS_BASER_VALID);
1805 
1806 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1807 
1808 	switch (psz) {
1809 	case SZ_4K:
1810 		val |= GITS_BASER_PAGE_SIZE_4K;
1811 		break;
1812 	case SZ_16K:
1813 		val |= GITS_BASER_PAGE_SIZE_16K;
1814 		break;
1815 	case SZ_64K:
1816 		val |= GITS_BASER_PAGE_SIZE_64K;
1817 		break;
1818 	}
1819 
1820 	its_write_baser(its, baser, val);
1821 	tmp = baser->val;
1822 
1823 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1824 		/*
1825 		 * Shareability didn't stick. Just use
1826 		 * whatever the read reported, which is likely
1827 		 * to be the only thing this redistributor
1828 		 * supports. If that's zero, make it
1829 		 * non-cacheable as well.
1830 		 */
1831 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1832 		if (!shr) {
1833 			cache = GITS_BASER_nC;
1834 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1835 		}
1836 		goto retry_baser;
1837 	}
1838 
1839 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1840 		/*
1841 		 * Page size didn't stick. Let's try a smaller
1842 		 * size and retry. If we reach 4K, then
1843 		 * something is horribly wrong...
1844 		 */
1845 		free_pages((unsigned long)base, order);
1846 		baser->base = NULL;
1847 
1848 		switch (psz) {
1849 		case SZ_16K:
1850 			psz = SZ_4K;
1851 			goto retry_alloc_baser;
1852 		case SZ_64K:
1853 			psz = SZ_16K;
1854 			goto retry_alloc_baser;
1855 		}
1856 	}
1857 
1858 	if (val != tmp) {
1859 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1860 		       &its->phys_base, its_base_type_string[type],
1861 		       val, tmp);
1862 		free_pages((unsigned long)base, order);
1863 		return -ENXIO;
1864 	}
1865 
1866 	baser->order = order;
1867 	baser->base = base;
1868 	baser->psz = psz;
1869 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1870 
1871 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1872 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1873 		its_base_type_string[type],
1874 		(unsigned long)virt_to_phys(base),
1875 		indirect ? "indirect" : "flat", (int)esz,
1876 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1877 
1878 	return 0;
1879 }
1880 
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 psz,u32 * order,u32 ids)1881 static bool its_parse_indirect_baser(struct its_node *its,
1882 				     struct its_baser *baser,
1883 				     u32 psz, u32 *order, u32 ids)
1884 {
1885 	u64 tmp = its_read_baser(its, baser);
1886 	u64 type = GITS_BASER_TYPE(tmp);
1887 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1888 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1889 	u32 new_order = *order;
1890 	bool indirect = false;
1891 
1892 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1893 	if ((esz << ids) > (psz * 2)) {
1894 		/*
1895 		 * Find out whether hw supports a single or two-level table by
1896 		 * table by reading bit at offset '62' after writing '1' to it.
1897 		 */
1898 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1899 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1900 
1901 		if (indirect) {
1902 			/*
1903 			 * The size of the lvl2 table is equal to ITS page size
1904 			 * which is 'psz'. For computing lvl1 table size,
1905 			 * subtract ID bits that sparse lvl2 table from 'ids'
1906 			 * which is reported by ITS hardware times lvl1 table
1907 			 * entry size.
1908 			 */
1909 			ids -= ilog2(psz / (int)esz);
1910 			esz = GITS_LVL1_ENTRY_SIZE;
1911 		}
1912 	}
1913 
1914 	/*
1915 	 * Allocate as many entries as required to fit the
1916 	 * range of device IDs that the ITS can grok... The ID
1917 	 * space being incredibly sparse, this results in a
1918 	 * massive waste of memory if two-level device table
1919 	 * feature is not supported by hardware.
1920 	 */
1921 	new_order = max_t(u32, get_order(esz << ids), new_order);
1922 	if (new_order >= MAX_ORDER) {
1923 		new_order = MAX_ORDER - 1;
1924 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1925 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1926 			&its->phys_base, its_base_type_string[type],
1927 			its->device_ids, ids);
1928 	}
1929 
1930 	*order = new_order;
1931 
1932 	return indirect;
1933 }
1934 
its_free_tables(struct its_node * its)1935 static void its_free_tables(struct its_node *its)
1936 {
1937 	int i;
1938 
1939 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1940 		if (its->tables[i].base) {
1941 			free_pages((unsigned long)its->tables[i].base,
1942 				   its->tables[i].order);
1943 			its->tables[i].base = NULL;
1944 		}
1945 	}
1946 }
1947 
its_alloc_tables(struct its_node * its)1948 static int its_alloc_tables(struct its_node *its)
1949 {
1950 	u64 shr = GITS_BASER_InnerShareable;
1951 	u64 cache = GITS_BASER_RaWaWb;
1952 	u32 psz = SZ_64K;
1953 	int err, i;
1954 
1955 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1956 		/* erratum 24313: ignore memory access type */
1957 		cache = GITS_BASER_nCnB;
1958 
1959 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1960 		struct its_baser *baser = its->tables + i;
1961 		u64 val = its_read_baser(its, baser);
1962 		u64 type = GITS_BASER_TYPE(val);
1963 		u32 order = get_order(psz);
1964 		bool indirect = false;
1965 
1966 		switch (type) {
1967 		case GITS_BASER_TYPE_NONE:
1968 			continue;
1969 
1970 		case GITS_BASER_TYPE_DEVICE:
1971 			indirect = its_parse_indirect_baser(its, baser,
1972 							    psz, &order,
1973 							    its->device_ids);
1974 			break;
1975 
1976 		case GITS_BASER_TYPE_VCPU:
1977 			indirect = its_parse_indirect_baser(its, baser,
1978 							    psz, &order,
1979 							    ITS_MAX_VPEID_BITS);
1980 			break;
1981 		}
1982 
1983 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1984 		if (err < 0) {
1985 			its_free_tables(its);
1986 			return err;
1987 		}
1988 
1989 		/* Update settings which will be used for next BASERn */
1990 		psz = baser->psz;
1991 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1992 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1993 	}
1994 
1995 	return 0;
1996 }
1997 
its_alloc_collections(struct its_node * its)1998 static int its_alloc_collections(struct its_node *its)
1999 {
2000 	int i;
2001 
2002 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2003 				   GFP_KERNEL);
2004 	if (!its->collections)
2005 		return -ENOMEM;
2006 
2007 	for (i = 0; i < nr_cpu_ids; i++)
2008 		its->collections[i].target_address = ~0ULL;
2009 
2010 	return 0;
2011 }
2012 
its_allocate_pending_table(gfp_t gfp_flags)2013 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2014 {
2015 	struct page *pend_page;
2016 
2017 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2018 				get_order(LPI_PENDBASE_SZ));
2019 	if (!pend_page)
2020 		return NULL;
2021 
2022 	/* Make sure the GIC will observe the zero-ed page */
2023 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2024 
2025 	return pend_page;
2026 }
2027 
its_free_pending_table(struct page * pt)2028 static void its_free_pending_table(struct page *pt)
2029 {
2030 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2031 }
2032 
2033 /*
2034  * Booting with kdump and LPIs enabled is generally fine. Any other
2035  * case is wrong in the absence of firmware/EFI support.
2036  */
enabled_lpis_allowed(void)2037 static bool enabled_lpis_allowed(void)
2038 {
2039 	phys_addr_t addr;
2040 	u64 val;
2041 
2042 	/* Check whether the property table is in a reserved region */
2043 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2044 	addr = val & GENMASK_ULL(51, 12);
2045 
2046 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2047 }
2048 
allocate_lpi_tables(void)2049 static int __init allocate_lpi_tables(void)
2050 {
2051 	u64 val;
2052 	int err, cpu;
2053 
2054 	/*
2055 	 * If LPIs are enabled while we run this from the boot CPU,
2056 	 * flag the RD tables as pre-allocated if the stars do align.
2057 	 */
2058 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2059 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2060 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2061 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2062 		pr_info("GICv3: Using preallocated redistributor tables\n");
2063 	}
2064 
2065 	err = its_setup_lpi_prop_table();
2066 	if (err)
2067 		return err;
2068 
2069 	/*
2070 	 * We allocate all the pending tables anyway, as we may have a
2071 	 * mix of RDs that have had LPIs enabled, and some that
2072 	 * don't. We'll free the unused ones as each CPU comes online.
2073 	 */
2074 	for_each_possible_cpu(cpu) {
2075 		struct page *pend_page;
2076 
2077 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2078 		if (!pend_page) {
2079 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2080 			return -ENOMEM;
2081 		}
2082 
2083 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2084 	}
2085 
2086 	return 0;
2087 }
2088 
its_clear_vpend_valid(void __iomem * vlpi_base)2089 static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
2090 {
2091 	u32 count = 1000000;	/* 1s! */
2092 	bool clean;
2093 	u64 val;
2094 
2095 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2096 	val &= ~GICR_VPENDBASER_Valid;
2097 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2098 
2099 	do {
2100 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2101 		clean = !(val & GICR_VPENDBASER_Dirty);
2102 		if (!clean) {
2103 			count--;
2104 			cpu_relax();
2105 			udelay(1);
2106 		}
2107 	} while (!clean && count);
2108 
2109 	return val;
2110 }
2111 
its_cpu_init_lpis(void)2112 static void its_cpu_init_lpis(void)
2113 {
2114 	void __iomem *rbase = gic_data_rdist_rd_base();
2115 	struct page *pend_page;
2116 	phys_addr_t paddr;
2117 	u64 val, tmp;
2118 
2119 	if (gic_data_rdist()->lpi_enabled)
2120 		return;
2121 
2122 	val = readl_relaxed(rbase + GICR_CTLR);
2123 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2124 	    (val & GICR_CTLR_ENABLE_LPIS)) {
2125 		/*
2126 		 * Check that we get the same property table on all
2127 		 * RDs. If we don't, this is hopeless.
2128 		 */
2129 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2130 		paddr &= GENMASK_ULL(51, 12);
2131 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2132 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2133 
2134 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2135 		paddr &= GENMASK_ULL(51, 16);
2136 
2137 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2138 		its_free_pending_table(gic_data_rdist()->pend_page);
2139 		gic_data_rdist()->pend_page = NULL;
2140 
2141 		goto out;
2142 	}
2143 
2144 	pend_page = gic_data_rdist()->pend_page;
2145 	paddr = page_to_phys(pend_page);
2146 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2147 
2148 	/* set PROPBASE */
2149 	val = (gic_rdists->prop_table_pa |
2150 	       GICR_PROPBASER_InnerShareable |
2151 	       GICR_PROPBASER_RaWaWb |
2152 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2153 
2154 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2155 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2156 
2157 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2158 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2159 			/*
2160 			 * The HW reports non-shareable, we must
2161 			 * remove the cacheability attributes as
2162 			 * well.
2163 			 */
2164 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2165 				 GICR_PROPBASER_CACHEABILITY_MASK);
2166 			val |= GICR_PROPBASER_nC;
2167 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2168 		}
2169 		pr_info_once("GIC: using cache flushing for LPI property table\n");
2170 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2171 	}
2172 
2173 	/* set PENDBASE */
2174 	val = (page_to_phys(pend_page) |
2175 	       GICR_PENDBASER_InnerShareable |
2176 	       GICR_PENDBASER_RaWaWb);
2177 
2178 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2179 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2180 
2181 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2182 		/*
2183 		 * The HW reports non-shareable, we must remove the
2184 		 * cacheability attributes as well.
2185 		 */
2186 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2187 			 GICR_PENDBASER_CACHEABILITY_MASK);
2188 		val |= GICR_PENDBASER_nC;
2189 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2190 	}
2191 
2192 	/* Enable LPIs */
2193 	val = readl_relaxed(rbase + GICR_CTLR);
2194 	val |= GICR_CTLR_ENABLE_LPIS;
2195 	writel_relaxed(val, rbase + GICR_CTLR);
2196 
2197 	if (gic_rdists->has_vlpis) {
2198 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2199 
2200 		/*
2201 		 * It's possible for CPU to receive VLPIs before it is
2202 		 * sheduled as a vPE, especially for the first CPU, and the
2203 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2204 		 * as out of range and dropped by GIC.
2205 		 * So we initialize IDbits to known value to avoid VLPI drop.
2206 		 */
2207 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2208 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2209 			smp_processor_id(), val);
2210 		gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2211 
2212 		/*
2213 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
2214 		 * ancient programming gets left in and has possibility of
2215 		 * corrupting memory.
2216 		 */
2217 		val = its_clear_vpend_valid(vlpi_base);
2218 		WARN_ON(val & GICR_VPENDBASER_Dirty);
2219 	}
2220 
2221 	/* Make sure the GIC has seen the above */
2222 	dsb(sy);
2223 out:
2224 	gic_data_rdist()->lpi_enabled = true;
2225 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2226 		smp_processor_id(),
2227 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
2228 		&paddr);
2229 }
2230 
its_cpu_init_collection(struct its_node * its)2231 static void its_cpu_init_collection(struct its_node *its)
2232 {
2233 	int cpu = smp_processor_id();
2234 	u64 target;
2235 
2236 	/* avoid cross node collections and its mapping */
2237 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2238 		struct device_node *cpu_node;
2239 
2240 		cpu_node = of_get_cpu_node(cpu, NULL);
2241 		if (its->numa_node != NUMA_NO_NODE &&
2242 			its->numa_node != of_node_to_nid(cpu_node))
2243 			return;
2244 	}
2245 
2246 	/*
2247 	 * We now have to bind each collection to its target
2248 	 * redistributor.
2249 	 */
2250 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2251 		/*
2252 		 * This ITS wants the physical address of the
2253 		 * redistributor.
2254 		 */
2255 		target = gic_data_rdist()->phys_base;
2256 	} else {
2257 		/* This ITS wants a linear CPU number. */
2258 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2259 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
2260 	}
2261 
2262 	/* Perform collection mapping */
2263 	its->collections[cpu].target_address = target;
2264 	its->collections[cpu].col_id = cpu;
2265 
2266 	its_send_mapc(its, &its->collections[cpu], 1);
2267 	its_send_invall(its, &its->collections[cpu]);
2268 }
2269 
its_cpu_init_collections(void)2270 static void its_cpu_init_collections(void)
2271 {
2272 	struct its_node *its;
2273 
2274 	raw_spin_lock(&its_lock);
2275 
2276 	list_for_each_entry(its, &its_nodes, entry)
2277 		its_cpu_init_collection(its);
2278 
2279 	raw_spin_unlock(&its_lock);
2280 }
2281 
its_find_device(struct its_node * its,u32 dev_id)2282 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2283 {
2284 	struct its_device *its_dev = NULL, *tmp;
2285 	unsigned long flags;
2286 
2287 	raw_spin_lock_irqsave(&its->lock, flags);
2288 
2289 	list_for_each_entry(tmp, &its->its_device_list, entry) {
2290 		if (tmp->device_id == dev_id) {
2291 			its_dev = tmp;
2292 			break;
2293 		}
2294 	}
2295 
2296 	raw_spin_unlock_irqrestore(&its->lock, flags);
2297 
2298 	return its_dev;
2299 }
2300 
its_get_baser(struct its_node * its,u32 type)2301 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2302 {
2303 	int i;
2304 
2305 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2306 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2307 			return &its->tables[i];
2308 	}
2309 
2310 	return NULL;
2311 }
2312 
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)2313 static bool its_alloc_table_entry(struct its_node *its,
2314 				  struct its_baser *baser, u32 id)
2315 {
2316 	struct page *page;
2317 	u32 esz, idx;
2318 	__le64 *table;
2319 
2320 	/* Don't allow device id that exceeds single, flat table limit */
2321 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2322 	if (!(baser->val & GITS_BASER_INDIRECT))
2323 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2324 
2325 	/* Compute 1st level table index & check if that exceeds table limit */
2326 	idx = id >> ilog2(baser->psz / esz);
2327 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2328 		return false;
2329 
2330 	table = baser->base;
2331 
2332 	/* Allocate memory for 2nd level table */
2333 	if (!table[idx]) {
2334 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
2335 					get_order(baser->psz));
2336 		if (!page)
2337 			return false;
2338 
2339 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2340 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2341 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2342 
2343 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2344 
2345 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2346 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2347 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2348 
2349 		/* Ensure updated table contents are visible to ITS hardware */
2350 		dsb(sy);
2351 	}
2352 
2353 	return true;
2354 }
2355 
its_alloc_device_table(struct its_node * its,u32 dev_id)2356 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2357 {
2358 	struct its_baser *baser;
2359 
2360 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2361 
2362 	/* Don't allow device id that exceeds ITS hardware limit */
2363 	if (!baser)
2364 		return (ilog2(dev_id) < its->device_ids);
2365 
2366 	return its_alloc_table_entry(its, baser, dev_id);
2367 }
2368 
its_alloc_vpe_table(u32 vpe_id)2369 static bool its_alloc_vpe_table(u32 vpe_id)
2370 {
2371 	struct its_node *its;
2372 
2373 	/*
2374 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2375 	 * could try and only do it on ITSs corresponding to devices
2376 	 * that have interrupts targeted at this VPE, but the
2377 	 * complexity becomes crazy (and you have tons of memory
2378 	 * anyway, right?).
2379 	 */
2380 	list_for_each_entry(its, &its_nodes, entry) {
2381 		struct its_baser *baser;
2382 
2383 		if (!its->is_v4)
2384 			continue;
2385 
2386 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2387 		if (!baser)
2388 			return false;
2389 
2390 		if (!its_alloc_table_entry(its, baser, vpe_id))
2391 			return false;
2392 	}
2393 
2394 	return true;
2395 }
2396 
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)2397 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2398 					    int nvecs, bool alloc_lpis)
2399 {
2400 	struct its_device *dev;
2401 	unsigned long *lpi_map = NULL;
2402 	unsigned long flags;
2403 	u16 *col_map = NULL;
2404 	void *itt;
2405 	int lpi_base;
2406 	int nr_lpis;
2407 	int nr_ites;
2408 	int sz;
2409 
2410 	if (!its_alloc_device_table(its, dev_id))
2411 		return NULL;
2412 
2413 	if (WARN_ON(!is_power_of_2(nvecs)))
2414 		nvecs = roundup_pow_of_two(nvecs);
2415 
2416 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2417 	/*
2418 	 * Even if the device wants a single LPI, the ITT must be
2419 	 * sized as a power of two (and you need at least one bit...).
2420 	 */
2421 	nr_ites = max(2, nvecs);
2422 	sz = nr_ites * its->ite_size;
2423 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2424 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
2425 	if (alloc_lpis) {
2426 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2427 		if (lpi_map)
2428 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
2429 					  GFP_KERNEL);
2430 	} else {
2431 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2432 		nr_lpis = 0;
2433 		lpi_base = 0;
2434 	}
2435 
2436 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2437 		kfree(dev);
2438 		kfree(itt);
2439 		kfree(lpi_map);
2440 		kfree(col_map);
2441 		return NULL;
2442 	}
2443 
2444 	gic_flush_dcache_to_poc(itt, sz);
2445 
2446 	dev->its = its;
2447 	dev->itt = itt;
2448 	dev->nr_ites = nr_ites;
2449 	dev->event_map.lpi_map = lpi_map;
2450 	dev->event_map.col_map = col_map;
2451 	dev->event_map.lpi_base = lpi_base;
2452 	dev->event_map.nr_lpis = nr_lpis;
2453 	mutex_init(&dev->event_map.vlpi_lock);
2454 	dev->device_id = dev_id;
2455 	INIT_LIST_HEAD(&dev->entry);
2456 
2457 	raw_spin_lock_irqsave(&its->lock, flags);
2458 	list_add(&dev->entry, &its->its_device_list);
2459 	raw_spin_unlock_irqrestore(&its->lock, flags);
2460 
2461 	/* Map device to its ITT */
2462 	its_send_mapd(dev, 1);
2463 
2464 	return dev;
2465 }
2466 
its_free_device(struct its_device * its_dev)2467 static void its_free_device(struct its_device *its_dev)
2468 {
2469 	unsigned long flags;
2470 
2471 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2472 	list_del(&its_dev->entry);
2473 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2474 	kfree(its_dev->itt);
2475 	kfree(its_dev);
2476 }
2477 
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)2478 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2479 {
2480 	int idx;
2481 
2482 	/* Find a free LPI region in lpi_map and allocate them. */
2483 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
2484 				      dev->event_map.nr_lpis,
2485 				      get_count_order(nvecs));
2486 	if (idx < 0)
2487 		return -ENOSPC;
2488 
2489 	*hwirq = dev->event_map.lpi_base + idx;
2490 
2491 	return 0;
2492 }
2493 
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)2494 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2495 			   int nvec, msi_alloc_info_t *info)
2496 {
2497 	struct its_node *its;
2498 	struct its_device *its_dev;
2499 	struct msi_domain_info *msi_info;
2500 	u32 dev_id;
2501 	int err = 0;
2502 
2503 	/*
2504 	 * We ignore "dev" entirely, and rely on the dev_id that has
2505 	 * been passed via the scratchpad. This limits this domain's
2506 	 * usefulness to upper layers that definitely know that they
2507 	 * are built on top of the ITS.
2508 	 */
2509 	dev_id = info->scratchpad[0].ul;
2510 
2511 	msi_info = msi_get_domain_info(domain);
2512 	its = msi_info->data;
2513 
2514 	if (!gic_rdists->has_direct_lpi &&
2515 	    vpe_proxy.dev &&
2516 	    vpe_proxy.dev->its == its &&
2517 	    dev_id == vpe_proxy.dev->device_id) {
2518 		/* Bad luck. Get yourself a better implementation */
2519 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2520 			  dev_id);
2521 		return -EINVAL;
2522 	}
2523 
2524 	mutex_lock(&its->dev_alloc_lock);
2525 	its_dev = its_find_device(its, dev_id);
2526 	if (its_dev) {
2527 		/*
2528 		 * We already have seen this ID, probably through
2529 		 * another alias (PCI bridge of some sort). No need to
2530 		 * create the device.
2531 		 */
2532 		its_dev->shared = true;
2533 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2534 		goto out;
2535 	}
2536 
2537 	its_dev = its_create_device(its, dev_id, nvec, true);
2538 	if (!its_dev) {
2539 		err = -ENOMEM;
2540 		goto out;
2541 	}
2542 
2543 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2544 out:
2545 	mutex_unlock(&its->dev_alloc_lock);
2546 	info->scratchpad[0].ptr = its_dev;
2547 	return err;
2548 }
2549 
2550 static struct msi_domain_ops its_msi_domain_ops = {
2551 	.msi_prepare	= its_msi_prepare,
2552 };
2553 
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)2554 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2555 				    unsigned int virq,
2556 				    irq_hw_number_t hwirq)
2557 {
2558 	struct irq_fwspec fwspec;
2559 
2560 	if (irq_domain_get_of_node(domain->parent)) {
2561 		fwspec.fwnode = domain->parent->fwnode;
2562 		fwspec.param_count = 3;
2563 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2564 		fwspec.param[1] = hwirq;
2565 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2566 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2567 		fwspec.fwnode = domain->parent->fwnode;
2568 		fwspec.param_count = 2;
2569 		fwspec.param[0] = hwirq;
2570 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2571 	} else {
2572 		return -EINVAL;
2573 	}
2574 
2575 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2576 }
2577 
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)2578 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2579 				unsigned int nr_irqs, void *args)
2580 {
2581 	msi_alloc_info_t *info = args;
2582 	struct its_device *its_dev = info->scratchpad[0].ptr;
2583 	struct its_node *its = its_dev->its;
2584 	irq_hw_number_t hwirq;
2585 	int err;
2586 	int i;
2587 
2588 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2589 	if (err)
2590 		return err;
2591 
2592 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
2593 	if (err)
2594 		return err;
2595 
2596 	for (i = 0; i < nr_irqs; i++) {
2597 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2598 		if (err)
2599 			return err;
2600 
2601 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2602 					      hwirq + i, &its_irq_chip, its_dev);
2603 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2604 		pr_debug("ID:%d pID:%d vID:%d\n",
2605 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
2606 			 (int)(hwirq + i), virq + i);
2607 	}
2608 
2609 	return 0;
2610 }
2611 
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)2612 static int its_irq_domain_activate(struct irq_domain *domain,
2613 				   struct irq_data *d, bool reserve)
2614 {
2615 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2616 	u32 event = its_get_event_id(d);
2617 	const struct cpumask *cpu_mask = cpu_online_mask;
2618 	int cpu;
2619 
2620 	/* get the cpu_mask of local node */
2621 	if (its_dev->its->numa_node >= 0)
2622 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2623 
2624 	/* Bind the LPI to the first possible CPU */
2625 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2626 	if (cpu >= nr_cpu_ids) {
2627 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2628 			return -EINVAL;
2629 
2630 		cpu = cpumask_first(cpu_online_mask);
2631 	}
2632 
2633 	its_dev->event_map.col_map[event] = cpu;
2634 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2635 
2636 	/* Map the GIC IRQ and event to the device */
2637 	its_send_mapti(its_dev, d->hwirq, event);
2638 	return 0;
2639 }
2640 
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)2641 static void its_irq_domain_deactivate(struct irq_domain *domain,
2642 				      struct irq_data *d)
2643 {
2644 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2645 	u32 event = its_get_event_id(d);
2646 
2647 	/* Stop the delivery of interrupts */
2648 	its_send_discard(its_dev, event);
2649 }
2650 
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)2651 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2652 				unsigned int nr_irqs)
2653 {
2654 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2655 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2656 	struct its_node *its = its_dev->its;
2657 	int i;
2658 
2659 	bitmap_release_region(its_dev->event_map.lpi_map,
2660 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
2661 			      get_count_order(nr_irqs));
2662 
2663 	for (i = 0; i < nr_irqs; i++) {
2664 		struct irq_data *data = irq_domain_get_irq_data(domain,
2665 								virq + i);
2666 		/* Nuke the entry in the domain */
2667 		irq_domain_reset_irq_data(data);
2668 	}
2669 
2670 	mutex_lock(&its->dev_alloc_lock);
2671 
2672 	/*
2673 	 * If all interrupts have been freed, start mopping the
2674 	 * floor. This is conditionned on the device not being shared.
2675 	 */
2676 	if (!its_dev->shared &&
2677 	    bitmap_empty(its_dev->event_map.lpi_map,
2678 			 its_dev->event_map.nr_lpis)) {
2679 		its_lpi_free(its_dev->event_map.lpi_map,
2680 			     its_dev->event_map.lpi_base,
2681 			     its_dev->event_map.nr_lpis);
2682 		kfree(its_dev->event_map.col_map);
2683 
2684 		/* Unmap device/itt */
2685 		its_send_mapd(its_dev, 0);
2686 		its_free_device(its_dev);
2687 	}
2688 
2689 	mutex_unlock(&its->dev_alloc_lock);
2690 
2691 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2692 }
2693 
2694 static const struct irq_domain_ops its_domain_ops = {
2695 	.alloc			= its_irq_domain_alloc,
2696 	.free			= its_irq_domain_free,
2697 	.activate		= its_irq_domain_activate,
2698 	.deactivate		= its_irq_domain_deactivate,
2699 };
2700 
2701 /*
2702  * This is insane.
2703  *
2704  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2705  * likely), the only way to perform an invalidate is to use a fake
2706  * device to issue an INV command, implying that the LPI has first
2707  * been mapped to some event on that device. Since this is not exactly
2708  * cheap, we try to keep that mapping around as long as possible, and
2709  * only issue an UNMAP if we're short on available slots.
2710  *
2711  * Broken by design(tm).
2712  */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)2713 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2714 {
2715 	/* Already unmapped? */
2716 	if (vpe->vpe_proxy_event == -1)
2717 		return;
2718 
2719 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2720 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2721 
2722 	/*
2723 	 * We don't track empty slots at all, so let's move the
2724 	 * next_victim pointer if we can quickly reuse that slot
2725 	 * instead of nuking an existing entry. Not clear that this is
2726 	 * always a win though, and this might just generate a ripple
2727 	 * effect... Let's just hope VPEs don't migrate too often.
2728 	 */
2729 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2730 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2731 
2732 	vpe->vpe_proxy_event = -1;
2733 }
2734 
its_vpe_db_proxy_unmap(struct its_vpe * vpe)2735 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2736 {
2737 	if (!gic_rdists->has_direct_lpi) {
2738 		unsigned long flags;
2739 
2740 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2741 		its_vpe_db_proxy_unmap_locked(vpe);
2742 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2743 	}
2744 }
2745 
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)2746 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2747 {
2748 	/* Already mapped? */
2749 	if (vpe->vpe_proxy_event != -1)
2750 		return;
2751 
2752 	/* This slot was already allocated. Kick the other VPE out. */
2753 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2754 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2755 
2756 	/* Map the new VPE instead */
2757 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2758 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2759 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2760 
2761 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2762 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2763 }
2764 
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)2765 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2766 {
2767 	unsigned long flags;
2768 	struct its_collection *target_col;
2769 
2770 	if (gic_rdists->has_direct_lpi) {
2771 		void __iomem *rdbase;
2772 
2773 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2774 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2775 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2776 			cpu_relax();
2777 
2778 		return;
2779 	}
2780 
2781 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2782 
2783 	its_vpe_db_proxy_map_locked(vpe);
2784 
2785 	target_col = &vpe_proxy.dev->its->collections[to];
2786 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2787 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2788 
2789 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2790 }
2791 
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)2792 static int its_vpe_set_affinity(struct irq_data *d,
2793 				const struct cpumask *mask_val,
2794 				bool force)
2795 {
2796 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2797 	int cpu = cpumask_first(mask_val);
2798 
2799 	/*
2800 	 * Changing affinity is mega expensive, so let's be as lazy as
2801 	 * we can and only do it if we really have to. Also, if mapped
2802 	 * into the proxy device, we need to move the doorbell
2803 	 * interrupt to its new location.
2804 	 */
2805 	if (vpe->col_idx != cpu) {
2806 		int from = vpe->col_idx;
2807 
2808 		vpe->col_idx = cpu;
2809 		its_send_vmovp(vpe);
2810 		its_vpe_db_proxy_move(vpe, from, cpu);
2811 	}
2812 
2813 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2814 
2815 	return IRQ_SET_MASK_OK_DONE;
2816 }
2817 
its_vpe_schedule(struct its_vpe * vpe)2818 static void its_vpe_schedule(struct its_vpe *vpe)
2819 {
2820 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2821 	u64 val;
2822 
2823 	/* Schedule the VPE */
2824 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2825 		GENMASK_ULL(51, 12);
2826 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2827 	val |= GICR_VPROPBASER_RaWb;
2828 	val |= GICR_VPROPBASER_InnerShareable;
2829 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2830 
2831 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2832 		GENMASK_ULL(51, 16);
2833 	val |= GICR_VPENDBASER_RaWaWb;
2834 	val |= GICR_VPENDBASER_NonShareable;
2835 	/*
2836 	 * There is no good way of finding out if the pending table is
2837 	 * empty as we can race against the doorbell interrupt very
2838 	 * easily. So in the end, vpe->pending_last is only an
2839 	 * indication that the vcpu has something pending, not one
2840 	 * that the pending table is empty. A good implementation
2841 	 * would be able to read its coarse map pretty quickly anyway,
2842 	 * making this a tolerable issue.
2843 	 */
2844 	val |= GICR_VPENDBASER_PendingLast;
2845 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2846 	val |= GICR_VPENDBASER_Valid;
2847 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2848 }
2849 
its_vpe_deschedule(struct its_vpe * vpe)2850 static void its_vpe_deschedule(struct its_vpe *vpe)
2851 {
2852 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2853 	u64 val;
2854 
2855 	val = its_clear_vpend_valid(vlpi_base);
2856 
2857 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2858 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2859 		vpe->idai = false;
2860 		vpe->pending_last = true;
2861 	} else {
2862 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2863 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2864 	}
2865 }
2866 
its_vpe_invall(struct its_vpe * vpe)2867 static void its_vpe_invall(struct its_vpe *vpe)
2868 {
2869 	struct its_node *its;
2870 
2871 	list_for_each_entry(its, &its_nodes, entry) {
2872 		if (!its->is_v4)
2873 			continue;
2874 
2875 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2876 			continue;
2877 
2878 		/*
2879 		 * Sending a VINVALL to a single ITS is enough, as all
2880 		 * we need is to reach the redistributors.
2881 		 */
2882 		its_send_vinvall(its, vpe);
2883 		return;
2884 	}
2885 }
2886 
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)2887 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2888 {
2889 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2890 	struct its_cmd_info *info = vcpu_info;
2891 
2892 	switch (info->cmd_type) {
2893 	case SCHEDULE_VPE:
2894 		its_vpe_schedule(vpe);
2895 		return 0;
2896 
2897 	case DESCHEDULE_VPE:
2898 		its_vpe_deschedule(vpe);
2899 		return 0;
2900 
2901 	case INVALL_VPE:
2902 		its_vpe_invall(vpe);
2903 		return 0;
2904 
2905 	default:
2906 		return -EINVAL;
2907 	}
2908 }
2909 
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))2910 static void its_vpe_send_cmd(struct its_vpe *vpe,
2911 			     void (*cmd)(struct its_device *, u32))
2912 {
2913 	unsigned long flags;
2914 
2915 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2916 
2917 	its_vpe_db_proxy_map_locked(vpe);
2918 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2919 
2920 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2921 }
2922 
its_vpe_send_inv(struct irq_data * d)2923 static void its_vpe_send_inv(struct irq_data *d)
2924 {
2925 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2926 
2927 	if (gic_rdists->has_direct_lpi) {
2928 		void __iomem *rdbase;
2929 
2930 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2931 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2932 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2933 			cpu_relax();
2934 	} else {
2935 		its_vpe_send_cmd(vpe, its_send_inv);
2936 	}
2937 }
2938 
its_vpe_mask_irq(struct irq_data * d)2939 static void its_vpe_mask_irq(struct irq_data *d)
2940 {
2941 	/*
2942 	 * We need to unmask the LPI, which is described by the parent
2943 	 * irq_data. Instead of calling into the parent (which won't
2944 	 * exactly do the right thing, let's simply use the
2945 	 * parent_data pointer. Yes, I'm naughty.
2946 	 */
2947 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2948 	its_vpe_send_inv(d);
2949 }
2950 
its_vpe_unmask_irq(struct irq_data * d)2951 static void its_vpe_unmask_irq(struct irq_data *d)
2952 {
2953 	/* Same hack as above... */
2954 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2955 	its_vpe_send_inv(d);
2956 }
2957 
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)2958 static int its_vpe_set_irqchip_state(struct irq_data *d,
2959 				     enum irqchip_irq_state which,
2960 				     bool state)
2961 {
2962 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2963 
2964 	if (which != IRQCHIP_STATE_PENDING)
2965 		return -EINVAL;
2966 
2967 	if (gic_rdists->has_direct_lpi) {
2968 		void __iomem *rdbase;
2969 
2970 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2971 		if (state) {
2972 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2973 		} else {
2974 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2975 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2976 				cpu_relax();
2977 		}
2978 	} else {
2979 		if (state)
2980 			its_vpe_send_cmd(vpe, its_send_int);
2981 		else
2982 			its_vpe_send_cmd(vpe, its_send_clear);
2983 	}
2984 
2985 	return 0;
2986 }
2987 
2988 static struct irq_chip its_vpe_irq_chip = {
2989 	.name			= "GICv4-vpe",
2990 	.irq_mask		= its_vpe_mask_irq,
2991 	.irq_unmask		= its_vpe_unmask_irq,
2992 	.irq_eoi		= irq_chip_eoi_parent,
2993 	.irq_set_affinity	= its_vpe_set_affinity,
2994 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2995 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2996 };
2997 
its_vpe_id_alloc(void)2998 static int its_vpe_id_alloc(void)
2999 {
3000 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
3001 }
3002 
its_vpe_id_free(u16 id)3003 static void its_vpe_id_free(u16 id)
3004 {
3005 	ida_simple_remove(&its_vpeid_ida, id);
3006 }
3007 
its_vpe_init(struct its_vpe * vpe)3008 static int its_vpe_init(struct its_vpe *vpe)
3009 {
3010 	struct page *vpt_page;
3011 	int vpe_id;
3012 
3013 	/* Allocate vpe_id */
3014 	vpe_id = its_vpe_id_alloc();
3015 	if (vpe_id < 0)
3016 		return vpe_id;
3017 
3018 	/* Allocate VPT */
3019 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
3020 	if (!vpt_page) {
3021 		its_vpe_id_free(vpe_id);
3022 		return -ENOMEM;
3023 	}
3024 
3025 	if (!its_alloc_vpe_table(vpe_id)) {
3026 		its_vpe_id_free(vpe_id);
3027 		its_free_pending_table(vpt_page);
3028 		return -ENOMEM;
3029 	}
3030 
3031 	vpe->vpe_id = vpe_id;
3032 	vpe->vpt_page = vpt_page;
3033 	vpe->vpe_proxy_event = -1;
3034 
3035 	return 0;
3036 }
3037 
its_vpe_teardown(struct its_vpe * vpe)3038 static void its_vpe_teardown(struct its_vpe *vpe)
3039 {
3040 	its_vpe_db_proxy_unmap(vpe);
3041 	its_vpe_id_free(vpe->vpe_id);
3042 	its_free_pending_table(vpe->vpt_page);
3043 }
3044 
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3045 static void its_vpe_irq_domain_free(struct irq_domain *domain,
3046 				    unsigned int virq,
3047 				    unsigned int nr_irqs)
3048 {
3049 	struct its_vm *vm = domain->host_data;
3050 	int i;
3051 
3052 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3053 
3054 	for (i = 0; i < nr_irqs; i++) {
3055 		struct irq_data *data = irq_domain_get_irq_data(domain,
3056 								virq + i);
3057 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
3058 
3059 		BUG_ON(vm != vpe->its_vm);
3060 
3061 		clear_bit(data->hwirq, vm->db_bitmap);
3062 		its_vpe_teardown(vpe);
3063 		irq_domain_reset_irq_data(data);
3064 	}
3065 
3066 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
3067 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
3068 		its_free_prop_table(vm->vprop_page);
3069 	}
3070 }
3071 
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3072 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3073 				    unsigned int nr_irqs, void *args)
3074 {
3075 	struct its_vm *vm = args;
3076 	unsigned long *bitmap;
3077 	struct page *vprop_page;
3078 	int base, nr_ids, i, err = 0;
3079 
3080 	BUG_ON(!vm);
3081 
3082 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3083 	if (!bitmap)
3084 		return -ENOMEM;
3085 
3086 	if (nr_ids < nr_irqs) {
3087 		its_lpi_free(bitmap, base, nr_ids);
3088 		return -ENOMEM;
3089 	}
3090 
3091 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
3092 	if (!vprop_page) {
3093 		its_lpi_free(bitmap, base, nr_ids);
3094 		return -ENOMEM;
3095 	}
3096 
3097 	vm->db_bitmap = bitmap;
3098 	vm->db_lpi_base = base;
3099 	vm->nr_db_lpis = nr_ids;
3100 	vm->vprop_page = vprop_page;
3101 
3102 	for (i = 0; i < nr_irqs; i++) {
3103 		vm->vpes[i]->vpe_db_lpi = base + i;
3104 		err = its_vpe_init(vm->vpes[i]);
3105 		if (err)
3106 			break;
3107 		err = its_irq_gic_domain_alloc(domain, virq + i,
3108 					       vm->vpes[i]->vpe_db_lpi);
3109 		if (err)
3110 			break;
3111 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3112 					      &its_vpe_irq_chip, vm->vpes[i]);
3113 		set_bit(i, bitmap);
3114 	}
3115 
3116 	if (err) {
3117 		if (i > 0)
3118 			its_vpe_irq_domain_free(domain, virq, i - 1);
3119 
3120 		its_lpi_free(bitmap, base, nr_ids);
3121 		its_free_prop_table(vprop_page);
3122 	}
3123 
3124 	return err;
3125 }
3126 
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3127 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3128 				       struct irq_data *d, bool reserve)
3129 {
3130 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3131 	struct its_node *its;
3132 
3133 	/* If we use the list map, we issue VMAPP on demand... */
3134 	if (its_list_map)
3135 		return 0;
3136 
3137 	/* Map the VPE to the first possible CPU */
3138 	vpe->col_idx = cpumask_first(cpu_online_mask);
3139 
3140 	list_for_each_entry(its, &its_nodes, entry) {
3141 		if (!its->is_v4)
3142 			continue;
3143 
3144 		its_send_vmapp(its, vpe, true);
3145 		its_send_vinvall(its, vpe);
3146 	}
3147 
3148 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3149 
3150 	return 0;
3151 }
3152 
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3153 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3154 					  struct irq_data *d)
3155 {
3156 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3157 	struct its_node *its;
3158 
3159 	/*
3160 	 * If we use the list map, we unmap the VPE once no VLPIs are
3161 	 * associated with the VM.
3162 	 */
3163 	if (its_list_map)
3164 		return;
3165 
3166 	list_for_each_entry(its, &its_nodes, entry) {
3167 		if (!its->is_v4)
3168 			continue;
3169 
3170 		its_send_vmapp(its, vpe, false);
3171 	}
3172 }
3173 
3174 static const struct irq_domain_ops its_vpe_domain_ops = {
3175 	.alloc			= its_vpe_irq_domain_alloc,
3176 	.free			= its_vpe_irq_domain_free,
3177 	.activate		= its_vpe_irq_domain_activate,
3178 	.deactivate		= its_vpe_irq_domain_deactivate,
3179 };
3180 
its_force_quiescent(void __iomem * base)3181 static int its_force_quiescent(void __iomem *base)
3182 {
3183 	u32 count = 1000000;	/* 1s */
3184 	u32 val;
3185 
3186 	val = readl_relaxed(base + GITS_CTLR);
3187 	/*
3188 	 * GIC architecture specification requires the ITS to be both
3189 	 * disabled and quiescent for writes to GITS_BASER<n> or
3190 	 * GITS_CBASER to not have UNPREDICTABLE results.
3191 	 */
3192 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3193 		return 0;
3194 
3195 	/* Disable the generation of all interrupts to this ITS */
3196 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3197 	writel_relaxed(val, base + GITS_CTLR);
3198 
3199 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
3200 	while (1) {
3201 		val = readl_relaxed(base + GITS_CTLR);
3202 		if (val & GITS_CTLR_QUIESCENT)
3203 			return 0;
3204 
3205 		count--;
3206 		if (!count)
3207 			return -EBUSY;
3208 
3209 		cpu_relax();
3210 		udelay(1);
3211 	}
3212 }
3213 
its_enable_quirk_cavium_22375(void * data)3214 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3215 {
3216 	struct its_node *its = data;
3217 
3218 	/* erratum 22375: only alloc 8MB table size */
3219 	its->device_ids = 0x14;		/* 20 bits, 8MB */
3220 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3221 
3222 	return true;
3223 }
3224 
its_enable_quirk_cavium_23144(void * data)3225 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3226 {
3227 	struct its_node *its = data;
3228 
3229 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3230 
3231 	return true;
3232 }
3233 
its_enable_quirk_qdf2400_e0065(void * data)3234 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3235 {
3236 	struct its_node *its = data;
3237 
3238 	/* On QDF2400, the size of the ITE is 16Bytes */
3239 	its->ite_size = 16;
3240 
3241 	return true;
3242 }
3243 
its_irq_get_msi_base_pre_its(struct its_device * its_dev)3244 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3245 {
3246 	struct its_node *its = its_dev->its;
3247 
3248 	/*
3249 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3250 	 * which maps 32-bit writes targeted at a separate window of
3251 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3252 	 * with device ID taken from bits [device_id_bits + 1:2] of
3253 	 * the window offset.
3254 	 */
3255 	return its->pre_its_base + (its_dev->device_id << 2);
3256 }
3257 
its_enable_quirk_socionext_synquacer(void * data)3258 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3259 {
3260 	struct its_node *its = data;
3261 	u32 pre_its_window[2];
3262 	u32 ids;
3263 
3264 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
3265 					   "socionext,synquacer-pre-its",
3266 					   pre_its_window,
3267 					   ARRAY_SIZE(pre_its_window))) {
3268 
3269 		its->pre_its_base = pre_its_window[0];
3270 		its->get_msi_base = its_irq_get_msi_base_pre_its;
3271 
3272 		ids = ilog2(pre_its_window[1]) - 2;
3273 		if (its->device_ids > ids)
3274 			its->device_ids = ids;
3275 
3276 		/* the pre-ITS breaks isolation, so disable MSI remapping */
3277 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3278 		return true;
3279 	}
3280 	return false;
3281 }
3282 
its_enable_quirk_hip07_161600802(void * data)3283 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3284 {
3285 	struct its_node *its = data;
3286 
3287 	/*
3288 	 * Hip07 insists on using the wrong address for the VLPI
3289 	 * page. Trick it into doing the right thing...
3290 	 */
3291 	its->vlpi_redist_offset = SZ_128K;
3292 	return true;
3293 }
3294 
3295 static const struct gic_quirk its_quirks[] = {
3296 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3297 	{
3298 		.desc	= "ITS: Cavium errata 22375, 24313",
3299 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3300 		.mask	= 0xffff0fff,
3301 		.init	= its_enable_quirk_cavium_22375,
3302 	},
3303 #endif
3304 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3305 	{
3306 		.desc	= "ITS: Cavium erratum 23144",
3307 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3308 		.mask	= 0xffff0fff,
3309 		.init	= its_enable_quirk_cavium_23144,
3310 	},
3311 #endif
3312 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3313 	{
3314 		.desc	= "ITS: QDF2400 erratum 0065",
3315 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3316 		.mask	= 0xffffffff,
3317 		.init	= its_enable_quirk_qdf2400_e0065,
3318 	},
3319 #endif
3320 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3321 	{
3322 		/*
3323 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3324 		 * implementation, but with a 'pre-ITS' added that requires
3325 		 * special handling in software.
3326 		 */
3327 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3328 		.iidr	= 0x0001143b,
3329 		.mask	= 0xffffffff,
3330 		.init	= its_enable_quirk_socionext_synquacer,
3331 	},
3332 #endif
3333 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3334 	{
3335 		.desc	= "ITS: Hip07 erratum 161600802",
3336 		.iidr	= 0x00000004,
3337 		.mask	= 0xffffffff,
3338 		.init	= its_enable_quirk_hip07_161600802,
3339 	},
3340 #endif
3341 	{
3342 	}
3343 };
3344 
its_enable_quirks(struct its_node * its)3345 static void its_enable_quirks(struct its_node *its)
3346 {
3347 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3348 
3349 	gic_enable_quirks(iidr, its_quirks, its);
3350 }
3351 
its_save_disable(void)3352 static int its_save_disable(void)
3353 {
3354 	struct its_node *its;
3355 	int err = 0;
3356 
3357 	raw_spin_lock(&its_lock);
3358 	list_for_each_entry(its, &its_nodes, entry) {
3359 		void __iomem *base;
3360 
3361 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3362 			continue;
3363 
3364 		base = its->base;
3365 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3366 		err = its_force_quiescent(base);
3367 		if (err) {
3368 			pr_err("ITS@%pa: failed to quiesce: %d\n",
3369 			       &its->phys_base, err);
3370 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3371 			goto err;
3372 		}
3373 
3374 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3375 	}
3376 
3377 err:
3378 	if (err) {
3379 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3380 			void __iomem *base;
3381 
3382 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3383 				continue;
3384 
3385 			base = its->base;
3386 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3387 		}
3388 	}
3389 	raw_spin_unlock(&its_lock);
3390 
3391 	return err;
3392 }
3393 
its_restore_enable(void)3394 static void its_restore_enable(void)
3395 {
3396 	struct its_node *its;
3397 	int ret;
3398 
3399 	raw_spin_lock(&its_lock);
3400 	list_for_each_entry(its, &its_nodes, entry) {
3401 		void __iomem *base;
3402 		int i;
3403 
3404 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3405 			continue;
3406 
3407 		base = its->base;
3408 
3409 		/*
3410 		 * Make sure that the ITS is disabled. If it fails to quiesce,
3411 		 * don't restore it since writing to CBASER or BASER<n>
3412 		 * registers is undefined according to the GIC v3 ITS
3413 		 * Specification.
3414 		 */
3415 		ret = its_force_quiescent(base);
3416 		if (ret) {
3417 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3418 			       &its->phys_base, ret);
3419 			continue;
3420 		}
3421 
3422 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3423 
3424 		/*
3425 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3426 		 * cmd_write line up with it.
3427 		 */
3428 		its->cmd_write = its->cmd_base;
3429 		gits_write_cwriter(0, base + GITS_CWRITER);
3430 
3431 		/* Restore GITS_BASER from the value cache. */
3432 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3433 			struct its_baser *baser = &its->tables[i];
3434 
3435 			if (!(baser->val & GITS_BASER_VALID))
3436 				continue;
3437 
3438 			its_write_baser(its, baser, baser->val);
3439 		}
3440 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3441 
3442 		/*
3443 		 * Reinit the collection if it's stored in the ITS. This is
3444 		 * indicated by the col_id being less than the HCC field.
3445 		 * CID < HCC as specified in the GIC v3 Documentation.
3446 		 */
3447 		if (its->collections[smp_processor_id()].col_id <
3448 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3449 			its_cpu_init_collection(its);
3450 	}
3451 	raw_spin_unlock(&its_lock);
3452 }
3453 
3454 static struct syscore_ops its_syscore_ops = {
3455 	.suspend = its_save_disable,
3456 	.resume = its_restore_enable,
3457 };
3458 
its_init_domain(struct fwnode_handle * handle,struct its_node * its)3459 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3460 {
3461 	struct irq_domain *inner_domain;
3462 	struct msi_domain_info *info;
3463 
3464 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3465 	if (!info)
3466 		return -ENOMEM;
3467 
3468 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3469 	if (!inner_domain) {
3470 		kfree(info);
3471 		return -ENOMEM;
3472 	}
3473 
3474 	inner_domain->parent = its_parent;
3475 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3476 	inner_domain->flags |= its->msi_domain_flags;
3477 	info->ops = &its_msi_domain_ops;
3478 	info->data = its;
3479 	inner_domain->host_data = info;
3480 
3481 	return 0;
3482 }
3483 
its_init_vpe_domain(void)3484 static int its_init_vpe_domain(void)
3485 {
3486 	struct its_node *its;
3487 	u32 devid;
3488 	int entries;
3489 
3490 	if (gic_rdists->has_direct_lpi) {
3491 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3492 		return 0;
3493 	}
3494 
3495 	/* Any ITS will do, even if not v4 */
3496 	its = list_first_entry(&its_nodes, struct its_node, entry);
3497 
3498 	entries = roundup_pow_of_two(nr_cpu_ids);
3499 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3500 				 GFP_KERNEL);
3501 	if (!vpe_proxy.vpes) {
3502 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3503 		return -ENOMEM;
3504 	}
3505 
3506 	/* Use the last possible DevID */
3507 	devid = GENMASK(its->device_ids - 1, 0);
3508 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3509 	if (!vpe_proxy.dev) {
3510 		kfree(vpe_proxy.vpes);
3511 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3512 		return -ENOMEM;
3513 	}
3514 
3515 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3516 
3517 	raw_spin_lock_init(&vpe_proxy.lock);
3518 	vpe_proxy.next_victim = 0;
3519 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3520 		devid, vpe_proxy.dev->nr_ites);
3521 
3522 	return 0;
3523 }
3524 
its_compute_its_list_map(struct resource * res,void __iomem * its_base)3525 static int __init its_compute_its_list_map(struct resource *res,
3526 					   void __iomem *its_base)
3527 {
3528 	int its_number;
3529 	u32 ctlr;
3530 
3531 	/*
3532 	 * This is assumed to be done early enough that we're
3533 	 * guaranteed to be single-threaded, hence no
3534 	 * locking. Should this change, we should address
3535 	 * this.
3536 	 */
3537 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3538 	if (its_number >= GICv4_ITS_LIST_MAX) {
3539 		pr_err("ITS@%pa: No ITSList entry available!\n",
3540 		       &res->start);
3541 		return -EINVAL;
3542 	}
3543 
3544 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3545 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3546 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3547 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3548 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3549 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3550 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3551 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3552 	}
3553 
3554 	if (test_and_set_bit(its_number, &its_list_map)) {
3555 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3556 		       &res->start, its_number);
3557 		return -EINVAL;
3558 	}
3559 
3560 	return its_number;
3561 }
3562 
its_probe_one(struct resource * res,struct fwnode_handle * handle,int numa_node)3563 static int __init its_probe_one(struct resource *res,
3564 				struct fwnode_handle *handle, int numa_node)
3565 {
3566 	struct its_node *its;
3567 	void __iomem *its_base;
3568 	u32 val, ctlr;
3569 	u64 baser, tmp, typer;
3570 	struct page *page;
3571 	int err;
3572 
3573 	its_base = ioremap(res->start, resource_size(res));
3574 	if (!its_base) {
3575 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3576 		return -ENOMEM;
3577 	}
3578 
3579 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3580 	if (val != 0x30 && val != 0x40) {
3581 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3582 		err = -ENODEV;
3583 		goto out_unmap;
3584 	}
3585 
3586 	err = its_force_quiescent(its_base);
3587 	if (err) {
3588 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3589 		goto out_unmap;
3590 	}
3591 
3592 	pr_info("ITS %pR\n", res);
3593 
3594 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3595 	if (!its) {
3596 		err = -ENOMEM;
3597 		goto out_unmap;
3598 	}
3599 
3600 	raw_spin_lock_init(&its->lock);
3601 	mutex_init(&its->dev_alloc_lock);
3602 	INIT_LIST_HEAD(&its->entry);
3603 	INIT_LIST_HEAD(&its->its_device_list);
3604 	typer = gic_read_typer(its_base + GITS_TYPER);
3605 	its->base = its_base;
3606 	its->phys_base = res->start;
3607 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3608 	its->device_ids = GITS_TYPER_DEVBITS(typer);
3609 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3610 	if (its->is_v4) {
3611 		if (!(typer & GITS_TYPER_VMOVP)) {
3612 			err = its_compute_its_list_map(res, its_base);
3613 			if (err < 0)
3614 				goto out_free_its;
3615 
3616 			its->list_nr = err;
3617 
3618 			pr_info("ITS@%pa: Using ITS number %d\n",
3619 				&res->start, err);
3620 		} else {
3621 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3622 		}
3623 	}
3624 
3625 	its->numa_node = numa_node;
3626 
3627 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3628 				get_order(ITS_CMD_QUEUE_SZ));
3629 	if (!page) {
3630 		err = -ENOMEM;
3631 		goto out_free_its;
3632 	}
3633 	its->cmd_base = (void *)page_address(page);
3634 	its->cmd_write = its->cmd_base;
3635 	its->fwnode_handle = handle;
3636 	its->get_msi_base = its_irq_get_msi_base;
3637 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3638 
3639 	its_enable_quirks(its);
3640 
3641 	err = its_alloc_tables(its);
3642 	if (err)
3643 		goto out_free_cmd;
3644 
3645 	err = its_alloc_collections(its);
3646 	if (err)
3647 		goto out_free_tables;
3648 
3649 	baser = (virt_to_phys(its->cmd_base)	|
3650 		 GITS_CBASER_RaWaWb		|
3651 		 GITS_CBASER_InnerShareable	|
3652 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3653 		 GITS_CBASER_VALID);
3654 
3655 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3656 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3657 
3658 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3659 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3660 			/*
3661 			 * The HW reports non-shareable, we must
3662 			 * remove the cacheability attributes as
3663 			 * well.
3664 			 */
3665 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3666 				   GITS_CBASER_CACHEABILITY_MASK);
3667 			baser |= GITS_CBASER_nC;
3668 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3669 		}
3670 		pr_info("ITS: using cache flushing for cmd queue\n");
3671 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3672 	}
3673 
3674 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3675 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3676 	ctlr |= GITS_CTLR_ENABLE;
3677 	if (its->is_v4)
3678 		ctlr |= GITS_CTLR_ImDe;
3679 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3680 
3681 	if (GITS_TYPER_HCC(typer))
3682 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3683 
3684 	err = its_init_domain(handle, its);
3685 	if (err)
3686 		goto out_free_tables;
3687 
3688 	raw_spin_lock(&its_lock);
3689 	list_add(&its->entry, &its_nodes);
3690 	raw_spin_unlock(&its_lock);
3691 
3692 	return 0;
3693 
3694 out_free_tables:
3695 	its_free_tables(its);
3696 out_free_cmd:
3697 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3698 out_free_its:
3699 	kfree(its);
3700 out_unmap:
3701 	iounmap(its_base);
3702 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3703 	return err;
3704 }
3705 
gic_rdists_supports_plpis(void)3706 static bool gic_rdists_supports_plpis(void)
3707 {
3708 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3709 }
3710 
redist_disable_lpis(void)3711 static int redist_disable_lpis(void)
3712 {
3713 	void __iomem *rbase = gic_data_rdist_rd_base();
3714 	u64 timeout = USEC_PER_SEC;
3715 	u64 val;
3716 
3717 	if (!gic_rdists_supports_plpis()) {
3718 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3719 		return -ENXIO;
3720 	}
3721 
3722 	val = readl_relaxed(rbase + GICR_CTLR);
3723 	if (!(val & GICR_CTLR_ENABLE_LPIS))
3724 		return 0;
3725 
3726 	/*
3727 	 * If coming via a CPU hotplug event, we don't need to disable
3728 	 * LPIs before trying to re-enable them. They are already
3729 	 * configured and all is well in the world.
3730 	 *
3731 	 * If running with preallocated tables, there is nothing to do.
3732 	 */
3733 	if (gic_data_rdist()->lpi_enabled ||
3734 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
3735 		return 0;
3736 
3737 	/*
3738 	 * From that point on, we only try to do some damage control.
3739 	 */
3740 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3741 		smp_processor_id());
3742 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3743 
3744 	/* Disable LPIs */
3745 	val &= ~GICR_CTLR_ENABLE_LPIS;
3746 	writel_relaxed(val, rbase + GICR_CTLR);
3747 
3748 	/* Make sure any change to GICR_CTLR is observable by the GIC */
3749 	dsb(sy);
3750 
3751 	/*
3752 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3753 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3754 	 * Error out if we time out waiting for RWP to clear.
3755 	 */
3756 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3757 		if (!timeout) {
3758 			pr_err("CPU%d: Timeout while disabling LPIs\n",
3759 			       smp_processor_id());
3760 			return -ETIMEDOUT;
3761 		}
3762 		udelay(1);
3763 		timeout--;
3764 	}
3765 
3766 	/*
3767 	 * After it has been written to 1, it is IMPLEMENTATION
3768 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3769 	 * cleared to 0. Error out if clearing the bit failed.
3770 	 */
3771 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3772 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3773 		return -EBUSY;
3774 	}
3775 
3776 	return 0;
3777 }
3778 
its_cpu_init(void)3779 int its_cpu_init(void)
3780 {
3781 	if (!list_empty(&its_nodes)) {
3782 		int ret;
3783 
3784 		ret = redist_disable_lpis();
3785 		if (ret)
3786 			return ret;
3787 
3788 		its_cpu_init_lpis();
3789 		its_cpu_init_collections();
3790 	}
3791 
3792 	return 0;
3793 }
3794 
3795 static const struct of_device_id its_device_id[] = {
3796 	{	.compatible	= "arm,gic-v3-its",	},
3797 	{},
3798 };
3799 
its_of_probe(struct device_node * node)3800 static int __init its_of_probe(struct device_node *node)
3801 {
3802 	struct device_node *np;
3803 	struct resource res;
3804 
3805 	for (np = of_find_matching_node(node, its_device_id); np;
3806 	     np = of_find_matching_node(np, its_device_id)) {
3807 		if (!of_device_is_available(np))
3808 			continue;
3809 		if (!of_property_read_bool(np, "msi-controller")) {
3810 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3811 				np);
3812 			continue;
3813 		}
3814 
3815 		if (of_address_to_resource(np, 0, &res)) {
3816 			pr_warn("%pOF: no regs?\n", np);
3817 			continue;
3818 		}
3819 
3820 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3821 	}
3822 	return 0;
3823 }
3824 
3825 #ifdef CONFIG_ACPI
3826 
3827 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3828 
3829 #ifdef CONFIG_ACPI_NUMA
3830 struct its_srat_map {
3831 	/* numa node id */
3832 	u32	numa_node;
3833 	/* GIC ITS ID */
3834 	u32	its_id;
3835 };
3836 
3837 static struct its_srat_map *its_srat_maps __initdata;
3838 static int its_in_srat __initdata;
3839 
acpi_get_its_numa_node(u32 its_id)3840 static int __init acpi_get_its_numa_node(u32 its_id)
3841 {
3842 	int i;
3843 
3844 	for (i = 0; i < its_in_srat; i++) {
3845 		if (its_id == its_srat_maps[i].its_id)
3846 			return its_srat_maps[i].numa_node;
3847 	}
3848 	return NUMA_NO_NODE;
3849 }
3850 
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)3851 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
3852 					  const unsigned long end)
3853 {
3854 	return 0;
3855 }
3856 
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)3857 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
3858 			 const unsigned long end)
3859 {
3860 	int node;
3861 	struct acpi_srat_gic_its_affinity *its_affinity;
3862 
3863 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3864 	if (!its_affinity)
3865 		return -EINVAL;
3866 
3867 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3868 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3869 			its_affinity->header.length);
3870 		return -EINVAL;
3871 	}
3872 
3873 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3874 
3875 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3876 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3877 		return 0;
3878 	}
3879 
3880 	its_srat_maps[its_in_srat].numa_node = node;
3881 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3882 	its_in_srat++;
3883 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3884 		its_affinity->proximity_domain, its_affinity->its_id, node);
3885 
3886 	return 0;
3887 }
3888 
acpi_table_parse_srat_its(void)3889 static void __init acpi_table_parse_srat_its(void)
3890 {
3891 	int count;
3892 
3893 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3894 			sizeof(struct acpi_table_srat),
3895 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3896 			gic_acpi_match_srat_its, 0);
3897 	if (count <= 0)
3898 		return;
3899 
3900 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3901 				      GFP_KERNEL);
3902 	if (!its_srat_maps) {
3903 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3904 		return;
3905 	}
3906 
3907 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3908 			sizeof(struct acpi_table_srat),
3909 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3910 			gic_acpi_parse_srat_its, 0);
3911 }
3912 
3913 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)3914 static void __init acpi_its_srat_maps_free(void)
3915 {
3916 	kfree(its_srat_maps);
3917 }
3918 #else
acpi_table_parse_srat_its(void)3919 static void __init acpi_table_parse_srat_its(void)	{ }
acpi_get_its_numa_node(u32 its_id)3920 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)3921 static void __init acpi_its_srat_maps_free(void) { }
3922 #endif
3923 
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)3924 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
3925 					  const unsigned long end)
3926 {
3927 	struct acpi_madt_generic_translator *its_entry;
3928 	struct fwnode_handle *dom_handle;
3929 	struct resource res;
3930 	int err;
3931 
3932 	its_entry = (struct acpi_madt_generic_translator *)header;
3933 	memset(&res, 0, sizeof(res));
3934 	res.start = its_entry->base_address;
3935 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3936 	res.flags = IORESOURCE_MEM;
3937 
3938 	dom_handle = irq_domain_alloc_fwnode(&res.start);
3939 	if (!dom_handle) {
3940 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3941 		       &res.start);
3942 		return -ENOMEM;
3943 	}
3944 
3945 	err = iort_register_domain_token(its_entry->translation_id, res.start,
3946 					 dom_handle);
3947 	if (err) {
3948 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3949 		       &res.start, its_entry->translation_id);
3950 		goto dom_err;
3951 	}
3952 
3953 	err = its_probe_one(&res, dom_handle,
3954 			acpi_get_its_numa_node(its_entry->translation_id));
3955 	if (!err)
3956 		return 0;
3957 
3958 	iort_deregister_domain_token(its_entry->translation_id);
3959 dom_err:
3960 	irq_domain_free_fwnode(dom_handle);
3961 	return err;
3962 }
3963 
its_acpi_probe(void)3964 static void __init its_acpi_probe(void)
3965 {
3966 	acpi_table_parse_srat_its();
3967 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3968 			      gic_acpi_parse_madt_its, 0);
3969 	acpi_its_srat_maps_free();
3970 }
3971 #else
its_acpi_probe(void)3972 static void __init its_acpi_probe(void) { }
3973 #endif
3974 
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain)3975 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3976 		    struct irq_domain *parent_domain)
3977 {
3978 	struct device_node *of_node;
3979 	struct its_node *its;
3980 	bool has_v4 = false;
3981 	int err;
3982 
3983 	its_parent = parent_domain;
3984 	of_node = to_of_node(handle);
3985 	if (of_node)
3986 		its_of_probe(of_node);
3987 	else
3988 		its_acpi_probe();
3989 
3990 	if (list_empty(&its_nodes)) {
3991 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3992 		return -ENXIO;
3993 	}
3994 
3995 	gic_rdists = rdists;
3996 
3997 	err = allocate_lpi_tables();
3998 	if (err)
3999 		return err;
4000 
4001 	list_for_each_entry(its, &its_nodes, entry)
4002 		has_v4 |= its->is_v4;
4003 
4004 	if (has_v4 & rdists->has_vlpis) {
4005 		if (its_init_vpe_domain() ||
4006 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
4007 			rdists->has_vlpis = false;
4008 			pr_err("ITS: Disabling GICv4 support\n");
4009 		}
4010 	}
4011 
4012 	register_syscore_ops(&its_syscore_ops);
4013 
4014 	return 0;
4015 }
4016