1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * rcar_du_crtc.c -- R-Car Display Unit CRTCs
4 *
5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
6 *
7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8 */
9
10 #include <linux/clk.h>
11 #include <linux/mutex.h>
12 #include <linux/platform_device.h>
13 #include <linux/sys_soc.h>
14
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_atomic_helper.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_device.h>
19 #include <drm/drm_fb_cma_helper.h>
20 #include <drm/drm_gem_cma_helper.h>
21 #include <drm/drm_plane_helper.h>
22 #include <drm/drm_vblank.h>
23
24 #include "rcar_du_crtc.h"
25 #include "rcar_du_drv.h"
26 #include "rcar_du_encoder.h"
27 #include "rcar_du_kms.h"
28 #include "rcar_du_plane.h"
29 #include "rcar_du_regs.h"
30 #include "rcar_du_vsp.h"
31 #include "rcar_lvds.h"
32
rcar_du_crtc_read(struct rcar_du_crtc * rcrtc,u32 reg)33 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
34 {
35 struct rcar_du_device *rcdu = rcrtc->dev;
36
37 return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
38 }
39
rcar_du_crtc_write(struct rcar_du_crtc * rcrtc,u32 reg,u32 data)40 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
41 {
42 struct rcar_du_device *rcdu = rcrtc->dev;
43
44 rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
45 }
46
rcar_du_crtc_clr(struct rcar_du_crtc * rcrtc,u32 reg,u32 clr)47 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
48 {
49 struct rcar_du_device *rcdu = rcrtc->dev;
50
51 rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
52 rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
53 }
54
rcar_du_crtc_set(struct rcar_du_crtc * rcrtc,u32 reg,u32 set)55 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
56 {
57 struct rcar_du_device *rcdu = rcrtc->dev;
58
59 rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
60 rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
61 }
62
rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc * rcrtc,u32 clr,u32 set)63 void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
64 {
65 struct rcar_du_device *rcdu = rcrtc->dev;
66
67 rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
68 rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
69 }
70
71 /* -----------------------------------------------------------------------------
72 * Hardware Setup
73 */
74
75 struct dpll_info {
76 unsigned int output;
77 unsigned int fdpll;
78 unsigned int n;
79 unsigned int m;
80 };
81
rcar_du_dpll_divider(struct rcar_du_crtc * rcrtc,struct dpll_info * dpll,unsigned long input,unsigned long target)82 static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
83 struct dpll_info *dpll,
84 unsigned long input,
85 unsigned long target)
86 {
87 unsigned long best_diff = (unsigned long)-1;
88 unsigned long diff;
89 unsigned int fdpll;
90 unsigned int m;
91 unsigned int n;
92
93 /*
94 * fin fvco fout fclkout
95 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
96 * +-> | | |
97 * | |
98 * +---------------- [1/N] <------------+
99 *
100 * fclkout = fvco / P / FDPLL -- (1)
101 *
102 * fin/M = fvco/P/N
103 *
104 * fvco = fin * P * N / M -- (2)
105 *
106 * (1) + (2) indicates
107 *
108 * fclkout = fin * N / M / FDPLL
109 *
110 * NOTES
111 * N : (n + 1)
112 * M : (m + 1)
113 * FDPLL : (fdpll + 1)
114 * P : 2
115 * 2kHz < fvco < 4096MHz
116 *
117 * To minimize the jitter,
118 * N : as large as possible
119 * M : as small as possible
120 */
121 for (m = 0; m < 4; m++) {
122 for (n = 119; n > 38; n--) {
123 /*
124 * This code only runs on 64-bit architectures, the
125 * unsigned long type can thus be used for 64-bit
126 * computation. It will still compile without any
127 * warning on 32-bit architectures.
128 *
129 * To optimize calculations, use fout instead of fvco
130 * to verify the VCO frequency constraint.
131 */
132 unsigned long fout = input * (n + 1) / (m + 1);
133
134 if (fout < 1000 || fout > 2048 * 1000 * 1000U)
135 continue;
136
137 for (fdpll = 1; fdpll < 32; fdpll++) {
138 unsigned long output;
139
140 output = fout / (fdpll + 1);
141 if (output >= 400 * 1000 * 1000)
142 continue;
143
144 diff = abs((long)output - (long)target);
145 if (best_diff > diff) {
146 best_diff = diff;
147 dpll->n = n;
148 dpll->m = m;
149 dpll->fdpll = fdpll;
150 dpll->output = output;
151 }
152
153 if (diff == 0)
154 goto done;
155 }
156 }
157 }
158
159 done:
160 dev_dbg(rcrtc->dev->dev,
161 "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
162 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
163 }
164
165 struct du_clk_params {
166 struct clk *clk;
167 unsigned long rate;
168 unsigned long diff;
169 u32 escr;
170 };
171
rcar_du_escr_divider(struct clk * clk,unsigned long target,u32 escr,struct du_clk_params * params)172 static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
173 u32 escr, struct du_clk_params *params)
174 {
175 unsigned long rate;
176 unsigned long diff;
177 u32 div;
178
179 /*
180 * If the target rate has already been achieved perfectly we can't do
181 * better.
182 */
183 if (params->diff == 0)
184 return;
185
186 /*
187 * Compute the input clock rate and internal divisor values to obtain
188 * the clock rate closest to the target frequency.
189 */
190 rate = clk_round_rate(clk, target);
191 div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
192 diff = abs(rate / (div + 1) - target);
193
194 /*
195 * Store the parameters if the resulting frequency is better than any
196 * previously calculated value.
197 */
198 if (diff < params->diff) {
199 params->clk = clk;
200 params->rate = rate;
201 params->diff = diff;
202 params->escr = escr | div;
203 }
204 }
205
206 static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
207 { .soc_id = "r8a7795", .revision = "ES1.*" },
208 { /* sentinel */ }
209 };
210
rcar_du_crtc_set_display_timing(struct rcar_du_crtc * rcrtc)211 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
212 {
213 const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
214 struct rcar_du_device *rcdu = rcrtc->dev;
215 unsigned long mode_clock = mode->clock * 1000;
216 u32 dsmr;
217 u32 escr;
218
219 if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
220 unsigned long target = mode_clock;
221 struct dpll_info dpll = { 0 };
222 unsigned long extclk;
223 u32 dpllcr;
224 u32 div = 0;
225
226 /*
227 * DU channels that have a display PLL can't use the internal
228 * system clock, and have no internal clock divider.
229 */
230
231 /*
232 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
233 * We can work around them by configuring the DPLL to twice the
234 * desired frequency, coupled with a /2 post-divider. Restrict
235 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
236 * no post-divider when a display PLL is present (as shown by
237 * the workaround breaking HDMI output on M3-W during testing).
238 */
239 if (soc_device_match(rcar_du_r8a7795_es1)) {
240 target *= 2;
241 div = 1;
242 }
243
244 extclk = clk_get_rate(rcrtc->extclock);
245 rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
246
247 dpllcr = DPLLCR_CODE | DPLLCR_CLKE
248 | DPLLCR_FDPLL(dpll.fdpll)
249 | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
250 | DPLLCR_STBY;
251
252 if (rcrtc->index == 1)
253 dpllcr |= DPLLCR_PLCS1
254 | DPLLCR_INCS_DOTCLKIN1;
255 else
256 dpllcr |= DPLLCR_PLCS0
257 | DPLLCR_INCS_DOTCLKIN0;
258
259 rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
260
261 escr = ESCR_DCLKSEL_DCLKIN | div;
262 } else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
263 /*
264 * Use the LVDS PLL output as the dot clock when outputting to
265 * the LVDS encoder on an SoC that supports this clock routing
266 * option. We use the clock directly in that case, without any
267 * additional divider.
268 */
269 escr = ESCR_DCLKSEL_DCLKIN;
270 } else {
271 struct du_clk_params params = { .diff = (unsigned long)-1 };
272
273 rcar_du_escr_divider(rcrtc->clock, mode_clock,
274 ESCR_DCLKSEL_CLKS, ¶ms);
275 if (rcrtc->extclock)
276 rcar_du_escr_divider(rcrtc->extclock, mode_clock,
277 ESCR_DCLKSEL_DCLKIN, ¶ms);
278
279 dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
280 mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
281 params.rate);
282
283 clk_set_rate(params.clk, params.rate);
284 escr = params.escr;
285 }
286
287 dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
288
289 rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
290 rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
291
292 /* Signal polarities */
293 dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
294 | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
295 | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
296 | DSMR_DIPM_DISP | DSMR_CSPM;
297 rcar_du_crtc_write(rcrtc, DSMR, dsmr);
298
299 /* Display timings */
300 rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
301 rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
302 mode->hdisplay - 19);
303 rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
304 mode->hsync_start - 1);
305 rcar_du_crtc_write(rcrtc, HCR, mode->htotal - 1);
306
307 rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
308 mode->crtc_vsync_end - 2);
309 rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
310 mode->crtc_vsync_end +
311 mode->crtc_vdisplay - 2);
312 rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
313 mode->crtc_vsync_end +
314 mode->crtc_vsync_start - 1);
315 rcar_du_crtc_write(rcrtc, VCR, mode->crtc_vtotal - 1);
316
317 rcar_du_crtc_write(rcrtc, DESR, mode->htotal - mode->hsync_start - 1);
318 rcar_du_crtc_write(rcrtc, DEWR, mode->hdisplay);
319 }
320
plane_zpos(struct rcar_du_plane * plane)321 static unsigned int plane_zpos(struct rcar_du_plane *plane)
322 {
323 return plane->plane.state->normalized_zpos;
324 }
325
326 static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane * plane)327 plane_format(struct rcar_du_plane *plane)
328 {
329 return to_rcar_plane_state(plane->plane.state)->format;
330 }
331
rcar_du_crtc_update_planes(struct rcar_du_crtc * rcrtc)332 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
333 {
334 struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
335 struct rcar_du_device *rcdu = rcrtc->dev;
336 unsigned int num_planes = 0;
337 unsigned int dptsr_planes;
338 unsigned int hwplanes = 0;
339 unsigned int prio = 0;
340 unsigned int i;
341 u32 dspr = 0;
342
343 for (i = 0; i < rcrtc->group->num_planes; ++i) {
344 struct rcar_du_plane *plane = &rcrtc->group->planes[i];
345 unsigned int j;
346
347 if (plane->plane.state->crtc != &rcrtc->crtc ||
348 !plane->plane.state->visible)
349 continue;
350
351 /* Insert the plane in the sorted planes array. */
352 for (j = num_planes++; j > 0; --j) {
353 if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
354 break;
355 planes[j] = planes[j-1];
356 }
357
358 planes[j] = plane;
359 prio += plane_format(plane)->planes * 4;
360 }
361
362 for (i = 0; i < num_planes; ++i) {
363 struct rcar_du_plane *plane = planes[i];
364 struct drm_plane_state *state = plane->plane.state;
365 unsigned int index = to_rcar_plane_state(state)->hwindex;
366
367 prio -= 4;
368 dspr |= (index + 1) << prio;
369 hwplanes |= 1 << index;
370
371 if (plane_format(plane)->planes == 2) {
372 index = (index + 1) % 8;
373
374 prio -= 4;
375 dspr |= (index + 1) << prio;
376 hwplanes |= 1 << index;
377 }
378 }
379
380 /* If VSP+DU integration is enabled the plane assignment is fixed. */
381 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
382 if (rcdu->info->gen < 3) {
383 dspr = (rcrtc->index % 2) + 1;
384 hwplanes = 1 << (rcrtc->index % 2);
385 } else {
386 dspr = (rcrtc->index % 2) ? 3 : 1;
387 hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
388 }
389 }
390
391 /*
392 * Update the planes to display timing and dot clock generator
393 * associations.
394 *
395 * Updating the DPTSR register requires restarting the CRTC group,
396 * resulting in visible flicker. To mitigate the issue only update the
397 * association if needed by enabled planes. Planes being disabled will
398 * keep their current association.
399 */
400 mutex_lock(&rcrtc->group->lock);
401
402 dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
403 : rcrtc->group->dptsr_planes & ~hwplanes;
404
405 if (dptsr_planes != rcrtc->group->dptsr_planes) {
406 rcar_du_group_write(rcrtc->group, DPTSR,
407 (dptsr_planes << 16) | dptsr_planes);
408 rcrtc->group->dptsr_planes = dptsr_planes;
409
410 if (rcrtc->group->used_crtcs)
411 rcar_du_group_restart(rcrtc->group);
412 }
413
414 /* Restart the group if plane sources have changed. */
415 if (rcrtc->group->need_restart)
416 rcar_du_group_restart(rcrtc->group);
417
418 mutex_unlock(&rcrtc->group->lock);
419
420 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
421 dspr);
422 }
423
424 /* -----------------------------------------------------------------------------
425 * Page Flip
426 */
427
rcar_du_crtc_finish_page_flip(struct rcar_du_crtc * rcrtc)428 void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
429 {
430 struct drm_pending_vblank_event *event;
431 struct drm_device *dev = rcrtc->crtc.dev;
432 unsigned long flags;
433
434 spin_lock_irqsave(&dev->event_lock, flags);
435 event = rcrtc->event;
436 rcrtc->event = NULL;
437 spin_unlock_irqrestore(&dev->event_lock, flags);
438
439 if (event == NULL)
440 return;
441
442 spin_lock_irqsave(&dev->event_lock, flags);
443 drm_crtc_send_vblank_event(&rcrtc->crtc, event);
444 wake_up(&rcrtc->flip_wait);
445 spin_unlock_irqrestore(&dev->event_lock, flags);
446
447 drm_crtc_vblank_put(&rcrtc->crtc);
448 }
449
rcar_du_crtc_page_flip_pending(struct rcar_du_crtc * rcrtc)450 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
451 {
452 struct drm_device *dev = rcrtc->crtc.dev;
453 unsigned long flags;
454 bool pending;
455
456 spin_lock_irqsave(&dev->event_lock, flags);
457 pending = rcrtc->event != NULL;
458 spin_unlock_irqrestore(&dev->event_lock, flags);
459
460 return pending;
461 }
462
rcar_du_crtc_wait_page_flip(struct rcar_du_crtc * rcrtc)463 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
464 {
465 struct rcar_du_device *rcdu = rcrtc->dev;
466
467 if (wait_event_timeout(rcrtc->flip_wait,
468 !rcar_du_crtc_page_flip_pending(rcrtc),
469 msecs_to_jiffies(50)))
470 return;
471
472 dev_warn(rcdu->dev, "page flip timeout\n");
473
474 rcar_du_crtc_finish_page_flip(rcrtc);
475 }
476
477 /* -----------------------------------------------------------------------------
478 * Start/Stop and Suspend/Resume
479 */
480
rcar_du_crtc_setup(struct rcar_du_crtc * rcrtc)481 static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
482 {
483 /* Set display off and background to black */
484 rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
485 rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
486
487 /* Configure display timings and output routing */
488 rcar_du_crtc_set_display_timing(rcrtc);
489 rcar_du_group_set_routing(rcrtc->group);
490
491 /* Start with all planes disabled. */
492 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
493
494 /* Enable the VSP compositor. */
495 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
496 rcar_du_vsp_enable(rcrtc);
497
498 /* Turn vertical blanking interrupt reporting on. */
499 drm_crtc_vblank_on(&rcrtc->crtc);
500 }
501
rcar_du_crtc_get(struct rcar_du_crtc * rcrtc)502 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
503 {
504 int ret;
505
506 /*
507 * Guard against double-get, as the function is called from both the
508 * .atomic_enable() and .atomic_begin() handlers.
509 */
510 if (rcrtc->initialized)
511 return 0;
512
513 ret = clk_prepare_enable(rcrtc->clock);
514 if (ret < 0)
515 return ret;
516
517 ret = clk_prepare_enable(rcrtc->extclock);
518 if (ret < 0)
519 goto error_clock;
520
521 ret = rcar_du_group_get(rcrtc->group);
522 if (ret < 0)
523 goto error_group;
524
525 rcar_du_crtc_setup(rcrtc);
526 rcrtc->initialized = true;
527
528 return 0;
529
530 error_group:
531 clk_disable_unprepare(rcrtc->extclock);
532 error_clock:
533 clk_disable_unprepare(rcrtc->clock);
534 return ret;
535 }
536
rcar_du_crtc_put(struct rcar_du_crtc * rcrtc)537 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
538 {
539 rcar_du_group_put(rcrtc->group);
540
541 clk_disable_unprepare(rcrtc->extclock);
542 clk_disable_unprepare(rcrtc->clock);
543
544 rcrtc->initialized = false;
545 }
546
rcar_du_crtc_start(struct rcar_du_crtc * rcrtc)547 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
548 {
549 bool interlaced;
550
551 /*
552 * Select master sync mode. This enables display operation in master
553 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
554 * actively driven).
555 */
556 interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
557 rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
558 (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
559 DSYSR_TVM_MASTER);
560
561 rcar_du_group_start_stop(rcrtc->group, true);
562 }
563
rcar_du_crtc_disable_planes(struct rcar_du_crtc * rcrtc)564 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
565 {
566 struct rcar_du_device *rcdu = rcrtc->dev;
567 struct drm_crtc *crtc = &rcrtc->crtc;
568 u32 status;
569
570 /* Make sure vblank interrupts are enabled. */
571 drm_crtc_vblank_get(crtc);
572
573 /*
574 * Disable planes and calculate how many vertical blanking interrupts we
575 * have to wait for. If a vertical blanking interrupt has been triggered
576 * but not processed yet, we don't know whether it occurred before or
577 * after the planes got disabled. We thus have to wait for two vblank
578 * interrupts in that case.
579 */
580 spin_lock_irq(&rcrtc->vblank_lock);
581 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
582 status = rcar_du_crtc_read(rcrtc, DSSR);
583 rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
584 spin_unlock_irq(&rcrtc->vblank_lock);
585
586 if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
587 msecs_to_jiffies(100)))
588 dev_warn(rcdu->dev, "vertical blanking timeout\n");
589
590 drm_crtc_vblank_put(crtc);
591 }
592
rcar_du_crtc_stop(struct rcar_du_crtc * rcrtc)593 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
594 {
595 struct drm_crtc *crtc = &rcrtc->crtc;
596
597 /*
598 * Disable all planes and wait for the change to take effect. This is
599 * required as the plane enable registers are updated on vblank, and no
600 * vblank will occur once the CRTC is stopped. Disabling planes when
601 * starting the CRTC thus wouldn't be enough as it would start scanning
602 * out immediately from old frame buffers until the next vblank.
603 *
604 * This increases the CRTC stop delay, especially when multiple CRTCs
605 * are stopped in one operation as we now wait for one vblank per CRTC.
606 * Whether this can be improved needs to be researched.
607 */
608 rcar_du_crtc_disable_planes(rcrtc);
609
610 /*
611 * Disable vertical blanking interrupt reporting. We first need to wait
612 * for page flip completion before stopping the CRTC as userspace
613 * expects page flips to eventually complete.
614 */
615 rcar_du_crtc_wait_page_flip(rcrtc);
616 drm_crtc_vblank_off(crtc);
617
618 /* Disable the VSP compositor. */
619 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
620 rcar_du_vsp_disable(rcrtc);
621
622 /*
623 * Select switch sync mode. This stops display operation and configures
624 * the HSYNC and VSYNC signals as inputs.
625 *
626 * TODO: Find another way to stop the display for DUs that don't support
627 * TVM sync.
628 */
629 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
630 rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
631 DSYSR_TVM_SWITCH);
632
633 rcar_du_group_start_stop(rcrtc->group, false);
634 }
635
636 /* -----------------------------------------------------------------------------
637 * CRTC Functions
638 */
639
rcar_du_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * state)640 static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
641 struct drm_crtc_state *state)
642 {
643 struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(state);
644 struct drm_encoder *encoder;
645
646 /* Store the routes from the CRTC output to the DU outputs. */
647 rstate->outputs = 0;
648
649 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) {
650 struct rcar_du_encoder *renc;
651
652 /* Skip the writeback encoder. */
653 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
654 continue;
655
656 renc = to_rcar_encoder(encoder);
657 rstate->outputs |= BIT(renc->output);
658 }
659
660 return 0;
661 }
662
rcar_du_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)663 static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
664 struct drm_crtc_state *old_state)
665 {
666 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
667 struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
668 struct rcar_du_device *rcdu = rcrtc->dev;
669
670 rcar_du_crtc_get(rcrtc);
671
672 /*
673 * On D3/E3 the dot clock is provided by the LVDS encoder attached to
674 * the DU channel. We need to enable its clock output explicitly if
675 * the LVDS output is disabled.
676 */
677 if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
678 rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
679 struct rcar_du_encoder *encoder =
680 rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
681 const struct drm_display_mode *mode =
682 &crtc->state->adjusted_mode;
683
684 rcar_lvds_clk_enable(encoder->base.bridge,
685 mode->clock * 1000);
686 }
687
688 rcar_du_crtc_start(rcrtc);
689 }
690
rcar_du_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)691 static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
692 struct drm_crtc_state *old_state)
693 {
694 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
695 struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
696 struct rcar_du_device *rcdu = rcrtc->dev;
697
698 rcar_du_crtc_stop(rcrtc);
699 rcar_du_crtc_put(rcrtc);
700
701 if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
702 rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
703 struct rcar_du_encoder *encoder =
704 rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
705
706 /*
707 * Disable the LVDS clock output, see
708 * rcar_du_crtc_atomic_enable().
709 */
710 rcar_lvds_clk_disable(encoder->base.bridge);
711 }
712
713 spin_lock_irq(&crtc->dev->event_lock);
714 if (crtc->state->event) {
715 drm_crtc_send_vblank_event(crtc, crtc->state->event);
716 crtc->state->event = NULL;
717 }
718 spin_unlock_irq(&crtc->dev->event_lock);
719 }
720
rcar_du_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)721 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
722 struct drm_crtc_state *old_crtc_state)
723 {
724 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
725
726 WARN_ON(!crtc->state->enable);
727
728 /*
729 * If a mode set is in progress we can be called with the CRTC disabled.
730 * We thus need to first get and setup the CRTC in order to configure
731 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
732 * kept awake until the .atomic_enable() call that will follow. The get
733 * operation in .atomic_enable() will in that case be a no-op, and the
734 * CRTC will be put later in .atomic_disable().
735 *
736 * If a mode set is not in progress the CRTC is enabled, and the
737 * following get call will be a no-op. There is thus no need to balance
738 * it in .atomic_flush() either.
739 */
740 rcar_du_crtc_get(rcrtc);
741
742 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
743 rcar_du_vsp_atomic_begin(rcrtc);
744 }
745
rcar_du_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)746 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
747 struct drm_crtc_state *old_crtc_state)
748 {
749 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
750 struct drm_device *dev = rcrtc->crtc.dev;
751 unsigned long flags;
752
753 rcar_du_crtc_update_planes(rcrtc);
754
755 if (crtc->state->event) {
756 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
757
758 spin_lock_irqsave(&dev->event_lock, flags);
759 rcrtc->event = crtc->state->event;
760 crtc->state->event = NULL;
761 spin_unlock_irqrestore(&dev->event_lock, flags);
762 }
763
764 if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
765 rcar_du_vsp_atomic_flush(rcrtc);
766 }
767
768 static enum drm_mode_status
rcar_du_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)769 rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
770 const struct drm_display_mode *mode)
771 {
772 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
773 struct rcar_du_device *rcdu = rcrtc->dev;
774 bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
775 unsigned int vbp;
776
777 if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
778 return MODE_NO_INTERLACE;
779
780 /*
781 * The hardware requires a minimum combined horizontal sync and back
782 * porch of 20 pixels and a minimum vertical back porch of 3 lines.
783 */
784 if (mode->htotal - mode->hsync_start < 20)
785 return MODE_HBLANK_NARROW;
786
787 vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
788 if (vbp < 3)
789 return MODE_VBLANK_NARROW;
790
791 return MODE_OK;
792 }
793
794 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
795 .atomic_check = rcar_du_crtc_atomic_check,
796 .atomic_begin = rcar_du_crtc_atomic_begin,
797 .atomic_flush = rcar_du_crtc_atomic_flush,
798 .atomic_enable = rcar_du_crtc_atomic_enable,
799 .atomic_disable = rcar_du_crtc_atomic_disable,
800 .mode_valid = rcar_du_crtc_mode_valid,
801 };
802
rcar_du_crtc_crc_init(struct rcar_du_crtc * rcrtc)803 static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
804 {
805 struct rcar_du_device *rcdu = rcrtc->dev;
806 const char **sources;
807 unsigned int count;
808 int i = -1;
809
810 /* CRC available only on Gen3 HW. */
811 if (rcdu->info->gen < 3)
812 return;
813
814 /* Reserve 1 for "auto" source. */
815 count = rcrtc->vsp->num_planes + 1;
816
817 sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
818 if (!sources)
819 return;
820
821 sources[0] = kstrdup("auto", GFP_KERNEL);
822 if (!sources[0])
823 goto error;
824
825 for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
826 struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
827 char name[16];
828
829 sprintf(name, "plane%u", plane->base.id);
830 sources[i + 1] = kstrdup(name, GFP_KERNEL);
831 if (!sources[i + 1])
832 goto error;
833 }
834
835 rcrtc->sources = sources;
836 rcrtc->sources_count = count;
837 return;
838
839 error:
840 while (i >= 0) {
841 kfree(sources[i]);
842 i--;
843 }
844 kfree(sources);
845 }
846
rcar_du_crtc_crc_cleanup(struct rcar_du_crtc * rcrtc)847 static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
848 {
849 unsigned int i;
850
851 if (!rcrtc->sources)
852 return;
853
854 for (i = 0; i < rcrtc->sources_count; i++)
855 kfree(rcrtc->sources[i]);
856 kfree(rcrtc->sources);
857
858 rcrtc->sources = NULL;
859 rcrtc->sources_count = 0;
860 }
861
862 static struct drm_crtc_state *
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc * crtc)863 rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
864 {
865 struct rcar_du_crtc_state *state;
866 struct rcar_du_crtc_state *copy;
867
868 if (WARN_ON(!crtc->state))
869 return NULL;
870
871 state = to_rcar_crtc_state(crtc->state);
872 copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
873 if (copy == NULL)
874 return NULL;
875
876 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->state);
877
878 return ©->state;
879 }
880
rcar_du_crtc_atomic_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)881 static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
882 struct drm_crtc_state *state)
883 {
884 __drm_atomic_helper_crtc_destroy_state(state);
885 kfree(to_rcar_crtc_state(state));
886 }
887
rcar_du_crtc_cleanup(struct drm_crtc * crtc)888 static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
889 {
890 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
891
892 rcar_du_crtc_crc_cleanup(rcrtc);
893
894 return drm_crtc_cleanup(crtc);
895 }
896
rcar_du_crtc_reset(struct drm_crtc * crtc)897 static void rcar_du_crtc_reset(struct drm_crtc *crtc)
898 {
899 struct rcar_du_crtc_state *state;
900
901 if (crtc->state) {
902 rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
903 crtc->state = NULL;
904 }
905
906 state = kzalloc(sizeof(*state), GFP_KERNEL);
907 if (state == NULL)
908 return;
909
910 state->crc.source = VSP1_DU_CRC_NONE;
911 state->crc.index = 0;
912
913 crtc->state = &state->state;
914 crtc->state->crtc = crtc;
915 }
916
rcar_du_crtc_enable_vblank(struct drm_crtc * crtc)917 static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
918 {
919 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
920
921 rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
922 rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
923 rcrtc->vblank_enable = true;
924
925 return 0;
926 }
927
rcar_du_crtc_disable_vblank(struct drm_crtc * crtc)928 static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
929 {
930 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
931
932 rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
933 rcrtc->vblank_enable = false;
934 }
935
rcar_du_crtc_parse_crc_source(struct rcar_du_crtc * rcrtc,const char * source_name,enum vsp1_du_crc_source * source)936 static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
937 const char *source_name,
938 enum vsp1_du_crc_source *source)
939 {
940 unsigned int index;
941 int ret;
942
943 /*
944 * Parse the source name. Supported values are "plane%u" to compute the
945 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
946 * CRC on the composer (VSP) output.
947 */
948
949 if (!source_name) {
950 *source = VSP1_DU_CRC_NONE;
951 return 0;
952 } else if (!strcmp(source_name, "auto")) {
953 *source = VSP1_DU_CRC_OUTPUT;
954 return 0;
955 } else if (strstarts(source_name, "plane")) {
956 unsigned int i;
957
958 *source = VSP1_DU_CRC_PLANE;
959
960 ret = kstrtouint(source_name + strlen("plane"), 10, &index);
961 if (ret < 0)
962 return ret;
963
964 for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
965 if (index == rcrtc->vsp->planes[i].plane.base.id)
966 return i;
967 }
968 }
969
970 return -EINVAL;
971 }
972
rcar_du_crtc_verify_crc_source(struct drm_crtc * crtc,const char * source_name,size_t * values_cnt)973 static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
974 const char *source_name,
975 size_t *values_cnt)
976 {
977 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
978 enum vsp1_du_crc_source source;
979
980 if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
981 DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
982 return -EINVAL;
983 }
984
985 *values_cnt = 1;
986 return 0;
987 }
988
989 static const char *const *
rcar_du_crtc_get_crc_sources(struct drm_crtc * crtc,size_t * count)990 rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
991 {
992 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
993
994 *count = rcrtc->sources_count;
995 return rcrtc->sources;
996 }
997
rcar_du_crtc_set_crc_source(struct drm_crtc * crtc,const char * source_name)998 static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
999 const char *source_name)
1000 {
1001 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1002 struct drm_modeset_acquire_ctx ctx;
1003 struct drm_crtc_state *crtc_state;
1004 struct drm_atomic_state *state;
1005 enum vsp1_du_crc_source source;
1006 unsigned int index;
1007 int ret;
1008
1009 ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1010 if (ret < 0)
1011 return ret;
1012
1013 index = ret;
1014
1015 /* Perform an atomic commit to set the CRC source. */
1016 drm_modeset_acquire_init(&ctx, 0);
1017
1018 state = drm_atomic_state_alloc(crtc->dev);
1019 if (!state) {
1020 ret = -ENOMEM;
1021 goto unlock;
1022 }
1023
1024 state->acquire_ctx = &ctx;
1025
1026 retry:
1027 crtc_state = drm_atomic_get_crtc_state(state, crtc);
1028 if (!IS_ERR(crtc_state)) {
1029 struct rcar_du_crtc_state *rcrtc_state;
1030
1031 rcrtc_state = to_rcar_crtc_state(crtc_state);
1032 rcrtc_state->crc.source = source;
1033 rcrtc_state->crc.index = index;
1034
1035 ret = drm_atomic_commit(state);
1036 } else {
1037 ret = PTR_ERR(crtc_state);
1038 }
1039
1040 if (ret == -EDEADLK) {
1041 drm_atomic_state_clear(state);
1042 drm_modeset_backoff(&ctx);
1043 goto retry;
1044 }
1045
1046 drm_atomic_state_put(state);
1047
1048 unlock:
1049 drm_modeset_drop_locks(&ctx);
1050 drm_modeset_acquire_fini(&ctx);
1051
1052 return ret;
1053 }
1054
1055 static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1056 .reset = rcar_du_crtc_reset,
1057 .destroy = drm_crtc_cleanup,
1058 .set_config = drm_atomic_helper_set_config,
1059 .page_flip = drm_atomic_helper_page_flip,
1060 .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1061 .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1062 .enable_vblank = rcar_du_crtc_enable_vblank,
1063 .disable_vblank = rcar_du_crtc_disable_vblank,
1064 };
1065
1066 static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1067 .reset = rcar_du_crtc_reset,
1068 .destroy = rcar_du_crtc_cleanup,
1069 .set_config = drm_atomic_helper_set_config,
1070 .page_flip = drm_atomic_helper_page_flip,
1071 .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1072 .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1073 .enable_vblank = rcar_du_crtc_enable_vblank,
1074 .disable_vblank = rcar_du_crtc_disable_vblank,
1075 .set_crc_source = rcar_du_crtc_set_crc_source,
1076 .verify_crc_source = rcar_du_crtc_verify_crc_source,
1077 .get_crc_sources = rcar_du_crtc_get_crc_sources,
1078 };
1079
1080 /* -----------------------------------------------------------------------------
1081 * Interrupt Handling
1082 */
1083
rcar_du_crtc_irq(int irq,void * arg)1084 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1085 {
1086 struct rcar_du_crtc *rcrtc = arg;
1087 struct rcar_du_device *rcdu = rcrtc->dev;
1088 irqreturn_t ret = IRQ_NONE;
1089 u32 status;
1090
1091 spin_lock(&rcrtc->vblank_lock);
1092
1093 status = rcar_du_crtc_read(rcrtc, DSSR);
1094 rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1095
1096 if (status & DSSR_VBK) {
1097 /*
1098 * Wake up the vblank wait if the counter reaches 0. This must
1099 * be protected by the vblank_lock to avoid races in
1100 * rcar_du_crtc_disable_planes().
1101 */
1102 if (rcrtc->vblank_count) {
1103 if (--rcrtc->vblank_count == 0)
1104 wake_up(&rcrtc->vblank_wait);
1105 }
1106 }
1107
1108 spin_unlock(&rcrtc->vblank_lock);
1109
1110 if (status & DSSR_VBK) {
1111 if (rcdu->info->gen < 3) {
1112 drm_crtc_handle_vblank(&rcrtc->crtc);
1113 rcar_du_crtc_finish_page_flip(rcrtc);
1114 }
1115
1116 ret = IRQ_HANDLED;
1117 }
1118
1119 return ret;
1120 }
1121
1122 /* -----------------------------------------------------------------------------
1123 * Initialization
1124 */
1125
rcar_du_crtc_create(struct rcar_du_group * rgrp,unsigned int swindex,unsigned int hwindex)1126 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1127 unsigned int hwindex)
1128 {
1129 static const unsigned int mmio_offsets[] = {
1130 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1131 };
1132
1133 struct rcar_du_device *rcdu = rgrp->dev;
1134 struct platform_device *pdev = to_platform_device(rcdu->dev);
1135 struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1136 struct drm_crtc *crtc = &rcrtc->crtc;
1137 struct drm_plane *primary;
1138 unsigned int irqflags;
1139 struct clk *clk;
1140 char clk_name[9];
1141 char *name;
1142 int irq;
1143 int ret;
1144
1145 /* Get the CRTC clock and the optional external clock. */
1146 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1147 sprintf(clk_name, "du.%u", hwindex);
1148 name = clk_name;
1149 } else {
1150 name = NULL;
1151 }
1152
1153 rcrtc->clock = devm_clk_get(rcdu->dev, name);
1154 if (IS_ERR(rcrtc->clock)) {
1155 dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1156 return PTR_ERR(rcrtc->clock);
1157 }
1158
1159 sprintf(clk_name, "dclkin.%u", hwindex);
1160 clk = devm_clk_get(rcdu->dev, clk_name);
1161 if (!IS_ERR(clk)) {
1162 rcrtc->extclock = clk;
1163 } else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1164 return -EPROBE_DEFER;
1165 } else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1166 /*
1167 * DU channels that have a display PLL can't use the internal
1168 * system clock and thus require an external clock.
1169 */
1170 ret = PTR_ERR(clk);
1171 dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1172 return ret;
1173 }
1174
1175 init_waitqueue_head(&rcrtc->flip_wait);
1176 init_waitqueue_head(&rcrtc->vblank_wait);
1177 spin_lock_init(&rcrtc->vblank_lock);
1178
1179 rcrtc->dev = rcdu;
1180 rcrtc->group = rgrp;
1181 rcrtc->mmio_offset = mmio_offsets[hwindex];
1182 rcrtc->index = hwindex;
1183 rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
1184
1185 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1186 primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1187 else
1188 primary = &rgrp->planes[swindex % 2].plane;
1189
1190 ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
1191 rcdu->info->gen <= 2 ?
1192 &crtc_funcs_gen2 : &crtc_funcs_gen3,
1193 NULL);
1194 if (ret < 0)
1195 return ret;
1196
1197 drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1198
1199 /* Start with vertical blanking interrupt reporting disabled. */
1200 drm_crtc_vblank_off(crtc);
1201
1202 /* Register the interrupt handler. */
1203 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1204 /* The IRQ's are associated with the CRTC (sw)index. */
1205 irq = platform_get_irq(pdev, swindex);
1206 irqflags = 0;
1207 } else {
1208 irq = platform_get_irq(pdev, 0);
1209 irqflags = IRQF_SHARED;
1210 }
1211
1212 if (irq < 0) {
1213 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1214 return irq;
1215 }
1216
1217 ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1218 dev_name(rcdu->dev), rcrtc);
1219 if (ret < 0) {
1220 dev_err(rcdu->dev,
1221 "failed to register IRQ for CRTC %u\n", swindex);
1222 return ret;
1223 }
1224
1225 rcar_du_crtc_crc_init(rcrtc);
1226
1227 return 0;
1228 }
1229