1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_ioctl.h>
46 #include <drm/drm_irq.h>
47 #include <drm/drm_probe_helper.h>
48 #include <drm/i915_drm.h>
49
50 #include "display/intel_acpi.h"
51 #include "display/intel_audio.h"
52 #include "display/intel_bw.h"
53 #include "display/intel_cdclk.h"
54 #include "display/intel_display_types.h"
55 #include "display/intel_dp.h"
56 #include "display/intel_fbdev.h"
57 #include "display/intel_gmbus.h"
58 #include "display/intel_hotplug.h"
59 #include "display/intel_overlay.h"
60 #include "display/intel_pipe_crc.h"
61 #include "display/intel_sprite.h"
62
63 #include "gem/i915_gem_context.h"
64 #include "gem/i915_gem_ioctls.h"
65 #include "gt/intel_gt.h"
66 #include "gt/intel_gt_pm.h"
67
68 #include "i915_debugfs.h"
69 #include "i915_drv.h"
70 #include "i915_irq.h"
71 #include "i915_memcpy.h"
72 #include "i915_perf.h"
73 #include "i915_query.h"
74 #include "i915_suspend.h"
75 #include "i915_sysfs.h"
76 #include "i915_trace.h"
77 #include "i915_vgpu.h"
78 #include "intel_csr.h"
79 #include "intel_pm.h"
80
81 static struct drm_driver driver;
82
83 struct vlv_s0ix_state {
84 /* GAM */
85 u32 wr_watermark;
86 u32 gfx_prio_ctrl;
87 u32 arb_mode;
88 u32 gfx_pend_tlb0;
89 u32 gfx_pend_tlb1;
90 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
91 u32 media_max_req_count;
92 u32 gfx_max_req_count;
93 u32 render_hwsp;
94 u32 ecochk;
95 u32 bsd_hwsp;
96 u32 blt_hwsp;
97 u32 tlb_rd_addr;
98
99 /* MBC */
100 u32 g3dctl;
101 u32 gsckgctl;
102 u32 mbctl;
103
104 /* GCP */
105 u32 ucgctl1;
106 u32 ucgctl3;
107 u32 rcgctl1;
108 u32 rcgctl2;
109 u32 rstctl;
110 u32 misccpctl;
111
112 /* GPM */
113 u32 gfxpause;
114 u32 rpdeuhwtc;
115 u32 rpdeuc;
116 u32 ecobus;
117 u32 pwrdwnupctl;
118 u32 rp_down_timeout;
119 u32 rp_deucsw;
120 u32 rcubmabdtmr;
121 u32 rcedata;
122 u32 spare2gh;
123
124 /* Display 1 CZ domain */
125 u32 gt_imr;
126 u32 gt_ier;
127 u32 pm_imr;
128 u32 pm_ier;
129 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
130
131 /* GT SA CZ domain */
132 u32 tilectl;
133 u32 gt_fifoctl;
134 u32 gtlc_wake_ctrl;
135 u32 gtlc_survive;
136 u32 pmwgicz;
137
138 /* Display 2 CZ domain */
139 u32 gu_ctl0;
140 u32 gu_ctl1;
141 u32 pcbr;
142 u32 clock_gate_dis2;
143 };
144
i915_get_bridge_dev(struct drm_i915_private * dev_priv)145 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
146 {
147 int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
148
149 dev_priv->bridge_dev =
150 pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
151 if (!dev_priv->bridge_dev) {
152 DRM_ERROR("bridge device not found\n");
153 return -1;
154 }
155 return 0;
156 }
157
158 /* Allocate space for the MCH regs if needed, return nonzero on error */
159 static int
intel_alloc_mchbar_resource(struct drm_i915_private * dev_priv)160 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
161 {
162 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
163 u32 temp_lo, temp_hi = 0;
164 u64 mchbar_addr;
165 int ret;
166
167 if (INTEL_GEN(dev_priv) >= 4)
168 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
169 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
170 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
171
172 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
173 #ifdef CONFIG_PNP
174 if (mchbar_addr &&
175 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
176 return 0;
177 #endif
178
179 /* Get some space for it */
180 dev_priv->mch_res.name = "i915 MCHBAR";
181 dev_priv->mch_res.flags = IORESOURCE_MEM;
182 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
183 &dev_priv->mch_res,
184 MCHBAR_SIZE, MCHBAR_SIZE,
185 PCIBIOS_MIN_MEM,
186 0, pcibios_align_resource,
187 dev_priv->bridge_dev);
188 if (ret) {
189 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
190 dev_priv->mch_res.start = 0;
191 return ret;
192 }
193
194 if (INTEL_GEN(dev_priv) >= 4)
195 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
196 upper_32_bits(dev_priv->mch_res.start));
197
198 pci_write_config_dword(dev_priv->bridge_dev, reg,
199 lower_32_bits(dev_priv->mch_res.start));
200 return 0;
201 }
202
203 /* Setup MCHBAR if possible, return true if we should disable it again */
204 static void
intel_setup_mchbar(struct drm_i915_private * dev_priv)205 intel_setup_mchbar(struct drm_i915_private *dev_priv)
206 {
207 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
208 u32 temp;
209 bool enabled;
210
211 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
212 return;
213
214 dev_priv->mchbar_need_disable = false;
215
216 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
217 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
218 enabled = !!(temp & DEVEN_MCHBAR_EN);
219 } else {
220 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
221 enabled = temp & 1;
222 }
223
224 /* If it's already enabled, don't have to do anything */
225 if (enabled)
226 return;
227
228 if (intel_alloc_mchbar_resource(dev_priv))
229 return;
230
231 dev_priv->mchbar_need_disable = true;
232
233 /* Space is allocated or reserved, so enable it. */
234 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
235 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
236 temp | DEVEN_MCHBAR_EN);
237 } else {
238 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
239 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
240 }
241 }
242
243 static void
intel_teardown_mchbar(struct drm_i915_private * dev_priv)244 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
245 {
246 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
247
248 if (dev_priv->mchbar_need_disable) {
249 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
250 u32 deven_val;
251
252 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
253 &deven_val);
254 deven_val &= ~DEVEN_MCHBAR_EN;
255 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
256 deven_val);
257 } else {
258 u32 mchbar_val;
259
260 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
261 &mchbar_val);
262 mchbar_val &= ~1;
263 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
264 mchbar_val);
265 }
266 }
267
268 if (dev_priv->mch_res.start)
269 release_resource(&dev_priv->mch_res);
270 }
271
272 /* true = enable decode, false = disable decoder */
i915_vga_set_decode(void * cookie,bool state)273 static unsigned int i915_vga_set_decode(void *cookie, bool state)
274 {
275 struct drm_i915_private *dev_priv = cookie;
276
277 intel_modeset_vga_set_state(dev_priv, state);
278 if (state)
279 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
280 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
281 else
282 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
283 }
284
285 static int i915_resume_switcheroo(struct drm_i915_private *i915);
286 static int i915_suspend_switcheroo(struct drm_i915_private *i915,
287 pm_message_t state);
288
i915_switcheroo_set_state(struct pci_dev * pdev,enum vga_switcheroo_state state)289 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
290 {
291 struct drm_i915_private *i915 = pdev_to_i915(pdev);
292 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
293
294 if (!i915) {
295 dev_err(&pdev->dev, "DRM not initialized, aborting switch.\n");
296 return;
297 }
298
299 if (state == VGA_SWITCHEROO_ON) {
300 pr_info("switched on\n");
301 i915->drm.switch_power_state = DRM_SWITCH_POWER_CHANGING;
302 /* i915 resume handler doesn't set to D0 */
303 pci_set_power_state(pdev, PCI_D0);
304 i915_resume_switcheroo(i915);
305 i915->drm.switch_power_state = DRM_SWITCH_POWER_ON;
306 } else {
307 pr_info("switched off\n");
308 i915->drm.switch_power_state = DRM_SWITCH_POWER_CHANGING;
309 i915_suspend_switcheroo(i915, pmm);
310 i915->drm.switch_power_state = DRM_SWITCH_POWER_OFF;
311 }
312 }
313
i915_switcheroo_can_switch(struct pci_dev * pdev)314 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
315 {
316 struct drm_i915_private *i915 = pdev_to_i915(pdev);
317
318 /*
319 * FIXME: open_count is protected by drm_global_mutex but that would lead to
320 * locking inversion with the driver load path. And the access here is
321 * completely racy anyway. So don't bother with locking for now.
322 */
323 return i915 && i915->drm.open_count == 0;
324 }
325
326 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
327 .set_gpu_state = i915_switcheroo_set_state,
328 .reprobe = NULL,
329 .can_switch = i915_switcheroo_can_switch,
330 };
331
i915_driver_modeset_probe(struct drm_device * dev)332 static int i915_driver_modeset_probe(struct drm_device *dev)
333 {
334 struct drm_i915_private *dev_priv = to_i915(dev);
335 struct pci_dev *pdev = dev_priv->drm.pdev;
336 int ret;
337
338 if (i915_inject_probe_failure(dev_priv))
339 return -ENODEV;
340
341 if (HAS_DISPLAY(dev_priv)) {
342 ret = drm_vblank_init(&dev_priv->drm,
343 INTEL_INFO(dev_priv)->num_pipes);
344 if (ret)
345 goto out;
346 }
347
348 intel_bios_init(dev_priv);
349
350 /* If we have > 1 VGA cards, then we need to arbitrate access
351 * to the common VGA resources.
352 *
353 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
354 * then we do not take part in VGA arbitration and the
355 * vga_client_register() fails with -ENODEV.
356 */
357 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
358 if (ret && ret != -ENODEV)
359 goto out;
360
361 intel_register_dsm_handler();
362
363 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
364 if (ret)
365 goto cleanup_vga_client;
366
367 intel_power_domains_init_hw(dev_priv, false);
368
369 intel_csr_ucode_init(dev_priv);
370
371 ret = intel_irq_install(dev_priv);
372 if (ret)
373 goto cleanup_csr;
374
375 intel_gmbus_setup(dev_priv);
376
377 /* Important: The output setup functions called by modeset_init need
378 * working irqs for e.g. gmbus and dp aux transfers. */
379 ret = intel_modeset_init(dev);
380 if (ret)
381 goto cleanup_irq;
382
383 ret = i915_gem_init(dev_priv);
384 if (ret)
385 goto cleanup_modeset;
386
387 intel_overlay_setup(dev_priv);
388
389 if (!HAS_DISPLAY(dev_priv))
390 return 0;
391
392 ret = intel_fbdev_init(dev);
393 if (ret)
394 goto cleanup_gem;
395
396 /* Only enable hotplug handling once the fbdev is fully set up. */
397 intel_hpd_init(dev_priv);
398
399 intel_init_ipc(dev_priv);
400
401 return 0;
402
403 cleanup_gem:
404 i915_gem_suspend(dev_priv);
405 i915_gem_driver_remove(dev_priv);
406 i915_gem_driver_release(dev_priv);
407 cleanup_modeset:
408 intel_modeset_driver_remove(dev);
409 cleanup_irq:
410 intel_irq_uninstall(dev_priv);
411 intel_gmbus_teardown(dev_priv);
412 cleanup_csr:
413 intel_csr_ucode_fini(dev_priv);
414 intel_power_domains_driver_remove(dev_priv);
415 vga_switcheroo_unregister_client(pdev);
416 cleanup_vga_client:
417 vga_client_register(pdev, NULL, NULL, NULL);
418 out:
419 return ret;
420 }
421
i915_kick_out_firmware_fb(struct drm_i915_private * dev_priv)422 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
423 {
424 struct apertures_struct *ap;
425 struct pci_dev *pdev = dev_priv->drm.pdev;
426 struct i915_ggtt *ggtt = &dev_priv->ggtt;
427 bool primary;
428 int ret;
429
430 ap = alloc_apertures(1);
431 if (!ap)
432 return -ENOMEM;
433
434 ap->ranges[0].base = ggtt->gmadr.start;
435 ap->ranges[0].size = ggtt->mappable_end;
436
437 primary =
438 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
439
440 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
441
442 kfree(ap);
443
444 return ret;
445 }
446
intel_init_dpio(struct drm_i915_private * dev_priv)447 static void intel_init_dpio(struct drm_i915_private *dev_priv)
448 {
449 /*
450 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
451 * CHV x1 PHY (DP/HDMI D)
452 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
453 */
454 if (IS_CHERRYVIEW(dev_priv)) {
455 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
456 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
457 } else if (IS_VALLEYVIEW(dev_priv)) {
458 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
459 }
460 }
461
i915_workqueues_init(struct drm_i915_private * dev_priv)462 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
463 {
464 /*
465 * The i915 workqueue is primarily used for batched retirement of
466 * requests (and thus managing bo) once the task has been completed
467 * by the GPU. i915_retire_requests() is called directly when we
468 * need high-priority retirement, such as waiting for an explicit
469 * bo.
470 *
471 * It is also used for periodic low-priority events, such as
472 * idle-timers and recording error state.
473 *
474 * All tasks on the workqueue are expected to acquire the dev mutex
475 * so there is no point in running more than one instance of the
476 * workqueue at any time. Use an ordered one.
477 */
478 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
479 if (dev_priv->wq == NULL)
480 goto out_err;
481
482 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
483 if (dev_priv->hotplug.dp_wq == NULL)
484 goto out_free_wq;
485
486 return 0;
487
488 out_free_wq:
489 destroy_workqueue(dev_priv->wq);
490 out_err:
491 DRM_ERROR("Failed to allocate workqueues.\n");
492
493 return -ENOMEM;
494 }
495
i915_workqueues_cleanup(struct drm_i915_private * dev_priv)496 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
497 {
498 destroy_workqueue(dev_priv->hotplug.dp_wq);
499 destroy_workqueue(dev_priv->wq);
500 }
501
502 /*
503 * We don't keep the workarounds for pre-production hardware, so we expect our
504 * driver to fail on these machines in one way or another. A little warning on
505 * dmesg may help both the user and the bug triagers.
506 *
507 * Our policy for removing pre-production workarounds is to keep the
508 * current gen workarounds as a guide to the bring-up of the next gen
509 * (workarounds have a habit of persisting!). Anything older than that
510 * should be removed along with the complications they introduce.
511 */
intel_detect_preproduction_hw(struct drm_i915_private * dev_priv)512 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
513 {
514 bool pre = false;
515
516 pre |= IS_HSW_EARLY_SDV(dev_priv);
517 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
518 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
519 pre |= IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0);
520
521 if (pre) {
522 DRM_ERROR("This is a pre-production stepping. "
523 "It may not be fully functional.\n");
524 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
525 }
526 }
527
vlv_alloc_s0ix_state(struct drm_i915_private * i915)528 static int vlv_alloc_s0ix_state(struct drm_i915_private *i915)
529 {
530 if (!IS_VALLEYVIEW(i915))
531 return 0;
532
533 /* we write all the values in the struct, so no need to zero it out */
534 i915->vlv_s0ix_state = kmalloc(sizeof(*i915->vlv_s0ix_state),
535 GFP_KERNEL);
536 if (!i915->vlv_s0ix_state)
537 return -ENOMEM;
538
539 return 0;
540 }
541
vlv_free_s0ix_state(struct drm_i915_private * i915)542 static void vlv_free_s0ix_state(struct drm_i915_private *i915)
543 {
544 if (!i915->vlv_s0ix_state)
545 return;
546
547 kfree(i915->vlv_s0ix_state);
548 i915->vlv_s0ix_state = NULL;
549 }
550
551 /**
552 * i915_driver_early_probe - setup state not requiring device access
553 * @dev_priv: device private
554 *
555 * Initialize everything that is a "SW-only" state, that is state not
556 * requiring accessing the device or exposing the driver via kernel internal
557 * or userspace interfaces. Example steps belonging here: lock initialization,
558 * system memory allocation, setting up device specific attributes and
559 * function hooks not requiring accessing the device.
560 */
i915_driver_early_probe(struct drm_i915_private * dev_priv)561 static int i915_driver_early_probe(struct drm_i915_private *dev_priv)
562 {
563 int ret = 0;
564
565 if (i915_inject_probe_failure(dev_priv))
566 return -ENODEV;
567
568 intel_device_info_subplatform_init(dev_priv);
569
570 intel_uncore_mmio_debug_init_early(&dev_priv->mmio_debug);
571 intel_uncore_init_early(&dev_priv->uncore, dev_priv);
572
573 spin_lock_init(&dev_priv->irq_lock);
574 spin_lock_init(&dev_priv->gpu_error.lock);
575 mutex_init(&dev_priv->backlight_lock);
576
577 mutex_init(&dev_priv->sb_lock);
578 pm_qos_add_request(&dev_priv->sb_qos,
579 PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
580
581 mutex_init(&dev_priv->av_mutex);
582 mutex_init(&dev_priv->wm.wm_mutex);
583 mutex_init(&dev_priv->pps_mutex);
584 mutex_init(&dev_priv->hdcp_comp_mutex);
585
586 i915_memcpy_init_early(dev_priv);
587 intel_runtime_pm_init_early(&dev_priv->runtime_pm);
588
589 ret = i915_workqueues_init(dev_priv);
590 if (ret < 0)
591 return ret;
592
593 ret = vlv_alloc_s0ix_state(dev_priv);
594 if (ret < 0)
595 goto err_workqueues;
596
597 intel_wopcm_init_early(&dev_priv->wopcm);
598
599 intel_gt_init_early(&dev_priv->gt, dev_priv);
600
601 ret = i915_gem_init_early(dev_priv);
602 if (ret < 0)
603 goto err_gt;
604
605 /* This must be called before any calls to HAS_PCH_* */
606 intel_detect_pch(dev_priv);
607
608 intel_pm_setup(dev_priv);
609 intel_init_dpio(dev_priv);
610 ret = intel_power_domains_init(dev_priv);
611 if (ret < 0)
612 goto err_gem;
613 intel_irq_init(dev_priv);
614 intel_init_display_hooks(dev_priv);
615 intel_init_clock_gating_hooks(dev_priv);
616 intel_init_audio_hooks(dev_priv);
617 intel_display_crc_init(dev_priv);
618
619 intel_detect_preproduction_hw(dev_priv);
620
621 return 0;
622
623 err_gem:
624 i915_gem_cleanup_early(dev_priv);
625 err_gt:
626 intel_gt_driver_late_release(&dev_priv->gt);
627 vlv_free_s0ix_state(dev_priv);
628 err_workqueues:
629 i915_workqueues_cleanup(dev_priv);
630 return ret;
631 }
632
633 /**
634 * i915_driver_late_release - cleanup the setup done in
635 * i915_driver_early_probe()
636 * @dev_priv: device private
637 */
i915_driver_late_release(struct drm_i915_private * dev_priv)638 static void i915_driver_late_release(struct drm_i915_private *dev_priv)
639 {
640 intel_irq_fini(dev_priv);
641 intel_power_domains_cleanup(dev_priv);
642 i915_gem_cleanup_early(dev_priv);
643 intel_gt_driver_late_release(&dev_priv->gt);
644 vlv_free_s0ix_state(dev_priv);
645 i915_workqueues_cleanup(dev_priv);
646
647 pm_qos_remove_request(&dev_priv->sb_qos);
648 mutex_destroy(&dev_priv->sb_lock);
649 }
650
651 /**
652 * i915_driver_mmio_probe - setup device MMIO
653 * @dev_priv: device private
654 *
655 * Setup minimal device state necessary for MMIO accesses later in the
656 * initialization sequence. The setup here should avoid any other device-wide
657 * side effects or exposing the driver via kernel internal or user space
658 * interfaces.
659 */
i915_driver_mmio_probe(struct drm_i915_private * dev_priv)660 static int i915_driver_mmio_probe(struct drm_i915_private *dev_priv)
661 {
662 int ret;
663
664 if (i915_inject_probe_failure(dev_priv))
665 return -ENODEV;
666
667 if (i915_get_bridge_dev(dev_priv))
668 return -EIO;
669
670 ret = intel_uncore_init_mmio(&dev_priv->uncore);
671 if (ret < 0)
672 goto err_bridge;
673
674 /* Try to make sure MCHBAR is enabled before poking at it */
675 intel_setup_mchbar(dev_priv);
676
677 intel_device_info_init_mmio(dev_priv);
678
679 intel_uncore_prune_mmio_domains(&dev_priv->uncore);
680
681 intel_uc_init_mmio(&dev_priv->gt.uc);
682
683 ret = intel_engines_init_mmio(dev_priv);
684 if (ret)
685 goto err_uncore;
686
687 i915_gem_init_mmio(dev_priv);
688
689 return 0;
690
691 err_uncore:
692 intel_teardown_mchbar(dev_priv);
693 intel_uncore_fini_mmio(&dev_priv->uncore);
694 err_bridge:
695 pci_dev_put(dev_priv->bridge_dev);
696
697 return ret;
698 }
699
700 /**
701 * i915_driver_mmio_release - cleanup the setup done in i915_driver_mmio_probe()
702 * @dev_priv: device private
703 */
i915_driver_mmio_release(struct drm_i915_private * dev_priv)704 static void i915_driver_mmio_release(struct drm_i915_private *dev_priv)
705 {
706 intel_engines_cleanup(dev_priv);
707 intel_teardown_mchbar(dev_priv);
708 intel_uncore_fini_mmio(&dev_priv->uncore);
709 pci_dev_put(dev_priv->bridge_dev);
710 }
711
intel_sanitize_options(struct drm_i915_private * dev_priv)712 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
713 {
714 intel_gvt_sanitize_options(dev_priv);
715 }
716
717 #define DRAM_TYPE_STR(type) [INTEL_DRAM_ ## type] = #type
718
intel_dram_type_str(enum intel_dram_type type)719 static const char *intel_dram_type_str(enum intel_dram_type type)
720 {
721 static const char * const str[] = {
722 DRAM_TYPE_STR(UNKNOWN),
723 DRAM_TYPE_STR(DDR3),
724 DRAM_TYPE_STR(DDR4),
725 DRAM_TYPE_STR(LPDDR3),
726 DRAM_TYPE_STR(LPDDR4),
727 };
728
729 if (type >= ARRAY_SIZE(str))
730 type = INTEL_DRAM_UNKNOWN;
731
732 return str[type];
733 }
734
735 #undef DRAM_TYPE_STR
736
intel_dimm_num_devices(const struct dram_dimm_info * dimm)737 static int intel_dimm_num_devices(const struct dram_dimm_info *dimm)
738 {
739 return dimm->ranks * 64 / (dimm->width ?: 1);
740 }
741
742 /* Returns total GB for the whole DIMM */
skl_get_dimm_size(u16 val)743 static int skl_get_dimm_size(u16 val)
744 {
745 return val & SKL_DRAM_SIZE_MASK;
746 }
747
skl_get_dimm_width(u16 val)748 static int skl_get_dimm_width(u16 val)
749 {
750 if (skl_get_dimm_size(val) == 0)
751 return 0;
752
753 switch (val & SKL_DRAM_WIDTH_MASK) {
754 case SKL_DRAM_WIDTH_X8:
755 case SKL_DRAM_WIDTH_X16:
756 case SKL_DRAM_WIDTH_X32:
757 val = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
758 return 8 << val;
759 default:
760 MISSING_CASE(val);
761 return 0;
762 }
763 }
764
skl_get_dimm_ranks(u16 val)765 static int skl_get_dimm_ranks(u16 val)
766 {
767 if (skl_get_dimm_size(val) == 0)
768 return 0;
769
770 val = (val & SKL_DRAM_RANK_MASK) >> SKL_DRAM_RANK_SHIFT;
771
772 return val + 1;
773 }
774
775 /* Returns total GB for the whole DIMM */
cnl_get_dimm_size(u16 val)776 static int cnl_get_dimm_size(u16 val)
777 {
778 return (val & CNL_DRAM_SIZE_MASK) / 2;
779 }
780
cnl_get_dimm_width(u16 val)781 static int cnl_get_dimm_width(u16 val)
782 {
783 if (cnl_get_dimm_size(val) == 0)
784 return 0;
785
786 switch (val & CNL_DRAM_WIDTH_MASK) {
787 case CNL_DRAM_WIDTH_X8:
788 case CNL_DRAM_WIDTH_X16:
789 case CNL_DRAM_WIDTH_X32:
790 val = (val & CNL_DRAM_WIDTH_MASK) >> CNL_DRAM_WIDTH_SHIFT;
791 return 8 << val;
792 default:
793 MISSING_CASE(val);
794 return 0;
795 }
796 }
797
cnl_get_dimm_ranks(u16 val)798 static int cnl_get_dimm_ranks(u16 val)
799 {
800 if (cnl_get_dimm_size(val) == 0)
801 return 0;
802
803 val = (val & CNL_DRAM_RANK_MASK) >> CNL_DRAM_RANK_SHIFT;
804
805 return val + 1;
806 }
807
808 static bool
skl_is_16gb_dimm(const struct dram_dimm_info * dimm)809 skl_is_16gb_dimm(const struct dram_dimm_info *dimm)
810 {
811 /* Convert total GB to Gb per DRAM device */
812 return 8 * dimm->size / (intel_dimm_num_devices(dimm) ?: 1) == 16;
813 }
814
815 static void
skl_dram_get_dimm_info(struct drm_i915_private * dev_priv,struct dram_dimm_info * dimm,int channel,char dimm_name,u16 val)816 skl_dram_get_dimm_info(struct drm_i915_private *dev_priv,
817 struct dram_dimm_info *dimm,
818 int channel, char dimm_name, u16 val)
819 {
820 if (INTEL_GEN(dev_priv) >= 10) {
821 dimm->size = cnl_get_dimm_size(val);
822 dimm->width = cnl_get_dimm_width(val);
823 dimm->ranks = cnl_get_dimm_ranks(val);
824 } else {
825 dimm->size = skl_get_dimm_size(val);
826 dimm->width = skl_get_dimm_width(val);
827 dimm->ranks = skl_get_dimm_ranks(val);
828 }
829
830 DRM_DEBUG_KMS("CH%u DIMM %c size: %u GB, width: X%u, ranks: %u, 16Gb DIMMs: %s\n",
831 channel, dimm_name, dimm->size, dimm->width, dimm->ranks,
832 yesno(skl_is_16gb_dimm(dimm)));
833 }
834
835 static int
skl_dram_get_channel_info(struct drm_i915_private * dev_priv,struct dram_channel_info * ch,int channel,u32 val)836 skl_dram_get_channel_info(struct drm_i915_private *dev_priv,
837 struct dram_channel_info *ch,
838 int channel, u32 val)
839 {
840 skl_dram_get_dimm_info(dev_priv, &ch->dimm_l,
841 channel, 'L', val & 0xffff);
842 skl_dram_get_dimm_info(dev_priv, &ch->dimm_s,
843 channel, 'S', val >> 16);
844
845 if (ch->dimm_l.size == 0 && ch->dimm_s.size == 0) {
846 DRM_DEBUG_KMS("CH%u not populated\n", channel);
847 return -EINVAL;
848 }
849
850 if (ch->dimm_l.ranks == 2 || ch->dimm_s.ranks == 2)
851 ch->ranks = 2;
852 else if (ch->dimm_l.ranks == 1 && ch->dimm_s.ranks == 1)
853 ch->ranks = 2;
854 else
855 ch->ranks = 1;
856
857 ch->is_16gb_dimm =
858 skl_is_16gb_dimm(&ch->dimm_l) ||
859 skl_is_16gb_dimm(&ch->dimm_s);
860
861 DRM_DEBUG_KMS("CH%u ranks: %u, 16Gb DIMMs: %s\n",
862 channel, ch->ranks, yesno(ch->is_16gb_dimm));
863
864 return 0;
865 }
866
867 static bool
intel_is_dram_symmetric(const struct dram_channel_info * ch0,const struct dram_channel_info * ch1)868 intel_is_dram_symmetric(const struct dram_channel_info *ch0,
869 const struct dram_channel_info *ch1)
870 {
871 return !memcmp(ch0, ch1, sizeof(*ch0)) &&
872 (ch0->dimm_s.size == 0 ||
873 !memcmp(&ch0->dimm_l, &ch0->dimm_s, sizeof(ch0->dimm_l)));
874 }
875
876 static int
skl_dram_get_channels_info(struct drm_i915_private * dev_priv)877 skl_dram_get_channels_info(struct drm_i915_private *dev_priv)
878 {
879 struct dram_info *dram_info = &dev_priv->dram_info;
880 struct dram_channel_info ch0 = {}, ch1 = {};
881 u32 val;
882 int ret;
883
884 val = I915_READ(SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN);
885 ret = skl_dram_get_channel_info(dev_priv, &ch0, 0, val);
886 if (ret == 0)
887 dram_info->num_channels++;
888
889 val = I915_READ(SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN);
890 ret = skl_dram_get_channel_info(dev_priv, &ch1, 1, val);
891 if (ret == 0)
892 dram_info->num_channels++;
893
894 if (dram_info->num_channels == 0) {
895 DRM_INFO("Number of memory channels is zero\n");
896 return -EINVAL;
897 }
898
899 /*
900 * If any of the channel is single rank channel, worst case output
901 * will be same as if single rank memory, so consider single rank
902 * memory.
903 */
904 if (ch0.ranks == 1 || ch1.ranks == 1)
905 dram_info->ranks = 1;
906 else
907 dram_info->ranks = max(ch0.ranks, ch1.ranks);
908
909 if (dram_info->ranks == 0) {
910 DRM_INFO("couldn't get memory rank information\n");
911 return -EINVAL;
912 }
913
914 dram_info->is_16gb_dimm = ch0.is_16gb_dimm || ch1.is_16gb_dimm;
915
916 dram_info->symmetric_memory = intel_is_dram_symmetric(&ch0, &ch1);
917
918 DRM_DEBUG_KMS("Memory configuration is symmetric? %s\n",
919 yesno(dram_info->symmetric_memory));
920 return 0;
921 }
922
923 static enum intel_dram_type
skl_get_dram_type(struct drm_i915_private * dev_priv)924 skl_get_dram_type(struct drm_i915_private *dev_priv)
925 {
926 u32 val;
927
928 val = I915_READ(SKL_MAD_INTER_CHANNEL_0_0_0_MCHBAR_MCMAIN);
929
930 switch (val & SKL_DRAM_DDR_TYPE_MASK) {
931 case SKL_DRAM_DDR_TYPE_DDR3:
932 return INTEL_DRAM_DDR3;
933 case SKL_DRAM_DDR_TYPE_DDR4:
934 return INTEL_DRAM_DDR4;
935 case SKL_DRAM_DDR_TYPE_LPDDR3:
936 return INTEL_DRAM_LPDDR3;
937 case SKL_DRAM_DDR_TYPE_LPDDR4:
938 return INTEL_DRAM_LPDDR4;
939 default:
940 MISSING_CASE(val);
941 return INTEL_DRAM_UNKNOWN;
942 }
943 }
944
945 static int
skl_get_dram_info(struct drm_i915_private * dev_priv)946 skl_get_dram_info(struct drm_i915_private *dev_priv)
947 {
948 struct dram_info *dram_info = &dev_priv->dram_info;
949 u32 mem_freq_khz, val;
950 int ret;
951
952 dram_info->type = skl_get_dram_type(dev_priv);
953 DRM_DEBUG_KMS("DRAM type: %s\n", intel_dram_type_str(dram_info->type));
954
955 ret = skl_dram_get_channels_info(dev_priv);
956 if (ret)
957 return ret;
958
959 val = I915_READ(SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
960 mem_freq_khz = DIV_ROUND_UP((val & SKL_REQ_DATA_MASK) *
961 SKL_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
962
963 dram_info->bandwidth_kbps = dram_info->num_channels *
964 mem_freq_khz * 8;
965
966 if (dram_info->bandwidth_kbps == 0) {
967 DRM_INFO("Couldn't get system memory bandwidth\n");
968 return -EINVAL;
969 }
970
971 dram_info->valid = true;
972 return 0;
973 }
974
975 /* Returns Gb per DRAM device */
bxt_get_dimm_size(u32 val)976 static int bxt_get_dimm_size(u32 val)
977 {
978 switch (val & BXT_DRAM_SIZE_MASK) {
979 case BXT_DRAM_SIZE_4GBIT:
980 return 4;
981 case BXT_DRAM_SIZE_6GBIT:
982 return 6;
983 case BXT_DRAM_SIZE_8GBIT:
984 return 8;
985 case BXT_DRAM_SIZE_12GBIT:
986 return 12;
987 case BXT_DRAM_SIZE_16GBIT:
988 return 16;
989 default:
990 MISSING_CASE(val);
991 return 0;
992 }
993 }
994
bxt_get_dimm_width(u32 val)995 static int bxt_get_dimm_width(u32 val)
996 {
997 if (!bxt_get_dimm_size(val))
998 return 0;
999
1000 val = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT;
1001
1002 return 8 << val;
1003 }
1004
bxt_get_dimm_ranks(u32 val)1005 static int bxt_get_dimm_ranks(u32 val)
1006 {
1007 if (!bxt_get_dimm_size(val))
1008 return 0;
1009
1010 switch (val & BXT_DRAM_RANK_MASK) {
1011 case BXT_DRAM_RANK_SINGLE:
1012 return 1;
1013 case BXT_DRAM_RANK_DUAL:
1014 return 2;
1015 default:
1016 MISSING_CASE(val);
1017 return 0;
1018 }
1019 }
1020
bxt_get_dimm_type(u32 val)1021 static enum intel_dram_type bxt_get_dimm_type(u32 val)
1022 {
1023 if (!bxt_get_dimm_size(val))
1024 return INTEL_DRAM_UNKNOWN;
1025
1026 switch (val & BXT_DRAM_TYPE_MASK) {
1027 case BXT_DRAM_TYPE_DDR3:
1028 return INTEL_DRAM_DDR3;
1029 case BXT_DRAM_TYPE_LPDDR3:
1030 return INTEL_DRAM_LPDDR3;
1031 case BXT_DRAM_TYPE_DDR4:
1032 return INTEL_DRAM_DDR4;
1033 case BXT_DRAM_TYPE_LPDDR4:
1034 return INTEL_DRAM_LPDDR4;
1035 default:
1036 MISSING_CASE(val);
1037 return INTEL_DRAM_UNKNOWN;
1038 }
1039 }
1040
bxt_get_dimm_info(struct dram_dimm_info * dimm,u32 val)1041 static void bxt_get_dimm_info(struct dram_dimm_info *dimm,
1042 u32 val)
1043 {
1044 dimm->width = bxt_get_dimm_width(val);
1045 dimm->ranks = bxt_get_dimm_ranks(val);
1046
1047 /*
1048 * Size in register is Gb per DRAM device. Convert to total
1049 * GB to match the way we report this for non-LP platforms.
1050 */
1051 dimm->size = bxt_get_dimm_size(val) * intel_dimm_num_devices(dimm) / 8;
1052 }
1053
1054 static int
bxt_get_dram_info(struct drm_i915_private * dev_priv)1055 bxt_get_dram_info(struct drm_i915_private *dev_priv)
1056 {
1057 struct dram_info *dram_info = &dev_priv->dram_info;
1058 u32 dram_channels;
1059 u32 mem_freq_khz, val;
1060 u8 num_active_channels;
1061 int i;
1062
1063 val = I915_READ(BXT_P_CR_MC_BIOS_REQ_0_0_0);
1064 mem_freq_khz = DIV_ROUND_UP((val & BXT_REQ_DATA_MASK) *
1065 BXT_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
1066
1067 dram_channels = val & BXT_DRAM_CHANNEL_ACTIVE_MASK;
1068 num_active_channels = hweight32(dram_channels);
1069
1070 /* Each active bit represents 4-byte channel */
1071 dram_info->bandwidth_kbps = (mem_freq_khz * num_active_channels * 4);
1072
1073 if (dram_info->bandwidth_kbps == 0) {
1074 DRM_INFO("Couldn't get system memory bandwidth\n");
1075 return -EINVAL;
1076 }
1077
1078 /*
1079 * Now read each DUNIT8/9/10/11 to check the rank of each dimms.
1080 */
1081 for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) {
1082 struct dram_dimm_info dimm;
1083 enum intel_dram_type type;
1084
1085 val = I915_READ(BXT_D_CR_DRP0_DUNIT(i));
1086 if (val == 0xFFFFFFFF)
1087 continue;
1088
1089 dram_info->num_channels++;
1090
1091 bxt_get_dimm_info(&dimm, val);
1092 type = bxt_get_dimm_type(val);
1093
1094 WARN_ON(type != INTEL_DRAM_UNKNOWN &&
1095 dram_info->type != INTEL_DRAM_UNKNOWN &&
1096 dram_info->type != type);
1097
1098 DRM_DEBUG_KMS("CH%u DIMM size: %u GB, width: X%u, ranks: %u, type: %s\n",
1099 i - BXT_D_CR_DRP0_DUNIT_START,
1100 dimm.size, dimm.width, dimm.ranks,
1101 intel_dram_type_str(type));
1102
1103 /*
1104 * If any of the channel is single rank channel,
1105 * worst case output will be same as if single rank
1106 * memory, so consider single rank memory.
1107 */
1108 if (dram_info->ranks == 0)
1109 dram_info->ranks = dimm.ranks;
1110 else if (dimm.ranks == 1)
1111 dram_info->ranks = 1;
1112
1113 if (type != INTEL_DRAM_UNKNOWN)
1114 dram_info->type = type;
1115 }
1116
1117 if (dram_info->type == INTEL_DRAM_UNKNOWN ||
1118 dram_info->ranks == 0) {
1119 DRM_INFO("couldn't get memory information\n");
1120 return -EINVAL;
1121 }
1122
1123 dram_info->valid = true;
1124 return 0;
1125 }
1126
1127 static void
intel_get_dram_info(struct drm_i915_private * dev_priv)1128 intel_get_dram_info(struct drm_i915_private *dev_priv)
1129 {
1130 struct dram_info *dram_info = &dev_priv->dram_info;
1131 int ret;
1132
1133 /*
1134 * Assume 16Gb DIMMs are present until proven otherwise.
1135 * This is only used for the level 0 watermark latency
1136 * w/a which does not apply to bxt/glk.
1137 */
1138 dram_info->is_16gb_dimm = !IS_GEN9_LP(dev_priv);
1139
1140 if (INTEL_GEN(dev_priv) < 9)
1141 return;
1142
1143 if (IS_GEN9_LP(dev_priv))
1144 ret = bxt_get_dram_info(dev_priv);
1145 else
1146 ret = skl_get_dram_info(dev_priv);
1147 if (ret)
1148 return;
1149
1150 DRM_DEBUG_KMS("DRAM bandwidth: %u kBps, channels: %u\n",
1151 dram_info->bandwidth_kbps,
1152 dram_info->num_channels);
1153
1154 DRM_DEBUG_KMS("DRAM ranks: %u, 16Gb DIMMs: %s\n",
1155 dram_info->ranks, yesno(dram_info->is_16gb_dimm));
1156 }
1157
gen9_edram_size_mb(struct drm_i915_private * dev_priv,u32 cap)1158 static u32 gen9_edram_size_mb(struct drm_i915_private *dev_priv, u32 cap)
1159 {
1160 const unsigned int ways[8] = { 4, 8, 12, 16, 16, 16, 16, 16 };
1161 const unsigned int sets[4] = { 1, 1, 2, 2 };
1162
1163 return EDRAM_NUM_BANKS(cap) *
1164 ways[EDRAM_WAYS_IDX(cap)] *
1165 sets[EDRAM_SETS_IDX(cap)];
1166 }
1167
edram_detect(struct drm_i915_private * dev_priv)1168 static void edram_detect(struct drm_i915_private *dev_priv)
1169 {
1170 u32 edram_cap = 0;
1171
1172 if (!(IS_HASWELL(dev_priv) ||
1173 IS_BROADWELL(dev_priv) ||
1174 INTEL_GEN(dev_priv) >= 9))
1175 return;
1176
1177 edram_cap = __raw_uncore_read32(&dev_priv->uncore, HSW_EDRAM_CAP);
1178
1179 /* NB: We can't write IDICR yet because we don't have gt funcs set up */
1180
1181 if (!(edram_cap & EDRAM_ENABLED))
1182 return;
1183
1184 /*
1185 * The needed capability bits for size calculation are not there with
1186 * pre gen9 so return 128MB always.
1187 */
1188 if (INTEL_GEN(dev_priv) < 9)
1189 dev_priv->edram_size_mb = 128;
1190 else
1191 dev_priv->edram_size_mb =
1192 gen9_edram_size_mb(dev_priv, edram_cap);
1193
1194 dev_info(dev_priv->drm.dev,
1195 "Found %uMB of eDRAM\n", dev_priv->edram_size_mb);
1196 }
1197
1198 /**
1199 * i915_driver_hw_probe - setup state requiring device access
1200 * @dev_priv: device private
1201 *
1202 * Setup state that requires accessing the device, but doesn't require
1203 * exposing the driver via kernel internal or userspace interfaces.
1204 */
i915_driver_hw_probe(struct drm_i915_private * dev_priv)1205 static int i915_driver_hw_probe(struct drm_i915_private *dev_priv)
1206 {
1207 struct pci_dev *pdev = dev_priv->drm.pdev;
1208 int ret;
1209
1210 if (i915_inject_probe_failure(dev_priv))
1211 return -ENODEV;
1212
1213 intel_device_info_runtime_init(dev_priv);
1214
1215 if (HAS_PPGTT(dev_priv)) {
1216 if (intel_vgpu_active(dev_priv) &&
1217 !intel_vgpu_has_full_ppgtt(dev_priv)) {
1218 i915_report_error(dev_priv,
1219 "incompatible vGPU found, support for isolated ppGTT required\n");
1220 return -ENXIO;
1221 }
1222 }
1223
1224 if (HAS_EXECLISTS(dev_priv)) {
1225 /*
1226 * Older GVT emulation depends upon intercepting CSB mmio,
1227 * which we no longer use, preferring to use the HWSP cache
1228 * instead.
1229 */
1230 if (intel_vgpu_active(dev_priv) &&
1231 !intel_vgpu_has_hwsp_emulation(dev_priv)) {
1232 i915_report_error(dev_priv,
1233 "old vGPU host found, support for HWSP emulation required\n");
1234 return -ENXIO;
1235 }
1236 }
1237
1238 intel_sanitize_options(dev_priv);
1239
1240 /* needs to be done before ggtt probe */
1241 edram_detect(dev_priv);
1242
1243 i915_perf_init(dev_priv);
1244
1245 ret = i915_ggtt_probe_hw(dev_priv);
1246 if (ret)
1247 goto err_perf;
1248
1249 /*
1250 * WARNING: Apparently we must kick fbdev drivers before vgacon,
1251 * otherwise the vga fbdev driver falls over.
1252 */
1253 ret = i915_kick_out_firmware_fb(dev_priv);
1254 if (ret) {
1255 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1256 goto err_ggtt;
1257 }
1258
1259 ret = vga_remove_vgacon(pdev);
1260 if (ret) {
1261 DRM_ERROR("failed to remove conflicting VGA console\n");
1262 goto err_ggtt;
1263 }
1264
1265 ret = i915_ggtt_init_hw(dev_priv);
1266 if (ret)
1267 goto err_ggtt;
1268
1269 intel_gt_init_hw(dev_priv);
1270
1271 ret = i915_ggtt_enable_hw(dev_priv);
1272 if (ret) {
1273 DRM_ERROR("failed to enable GGTT\n");
1274 goto err_ggtt;
1275 }
1276
1277 pci_set_master(pdev);
1278
1279 /*
1280 * We don't have a max segment size, so set it to the max so sg's
1281 * debugging layer doesn't complain
1282 */
1283 dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1284
1285 /* overlay on gen2 is broken and can't address above 1G */
1286 if (IS_GEN(dev_priv, 2)) {
1287 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1288 if (ret) {
1289 DRM_ERROR("failed to set DMA mask\n");
1290
1291 goto err_ggtt;
1292 }
1293 }
1294
1295 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1296 * using 32bit addressing, overwriting memory if HWS is located
1297 * above 4GB.
1298 *
1299 * The documentation also mentions an issue with undefined
1300 * behaviour if any general state is accessed within a page above 4GB,
1301 * which also needs to be handled carefully.
1302 */
1303 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1304 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1305
1306 if (ret) {
1307 DRM_ERROR("failed to set DMA mask\n");
1308
1309 goto err_ggtt;
1310 }
1311 }
1312
1313 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1314 PM_QOS_DEFAULT_VALUE);
1315
1316 /* BIOS often leaves RC6 enabled, but disable it for hw init */
1317 intel_sanitize_gt_powersave(dev_priv);
1318
1319 intel_gt_init_workarounds(dev_priv);
1320
1321 /* On the 945G/GM, the chipset reports the MSI capability on the
1322 * integrated graphics even though the support isn't actually there
1323 * according to the published specs. It doesn't appear to function
1324 * correctly in testing on 945G.
1325 * This may be a side effect of MSI having been made available for PEG
1326 * and the registers being closely associated.
1327 *
1328 * According to chipset errata, on the 965GM, MSI interrupts may
1329 * be lost or delayed, and was defeatured. MSI interrupts seem to
1330 * get lost on g4x as well, and interrupt delivery seems to stay
1331 * properly dead afterwards. So we'll just disable them for all
1332 * pre-gen5 chipsets.
1333 *
1334 * dp aux and gmbus irq on gen4 seems to be able to generate legacy
1335 * interrupts even when in MSI mode. This results in spurious
1336 * interrupt warnings if the legacy irq no. is shared with another
1337 * device. The kernel then disables that interrupt source and so
1338 * prevents the other device from working properly.
1339 */
1340 if (INTEL_GEN(dev_priv) >= 5) {
1341 if (pci_enable_msi(pdev) < 0)
1342 DRM_DEBUG_DRIVER("can't enable MSI");
1343 }
1344
1345 ret = intel_gvt_init(dev_priv);
1346 if (ret)
1347 goto err_msi;
1348
1349 intel_opregion_setup(dev_priv);
1350 /*
1351 * Fill the dram structure to get the system raw bandwidth and
1352 * dram info. This will be used for memory latency calculation.
1353 */
1354 intel_get_dram_info(dev_priv);
1355
1356 intel_bw_init_hw(dev_priv);
1357
1358 return 0;
1359
1360 err_msi:
1361 if (pdev->msi_enabled)
1362 pci_disable_msi(pdev);
1363 pm_qos_remove_request(&dev_priv->pm_qos);
1364 err_ggtt:
1365 i915_ggtt_driver_release(dev_priv);
1366 err_perf:
1367 i915_perf_fini(dev_priv);
1368 return ret;
1369 }
1370
1371 /**
1372 * i915_driver_hw_remove - cleanup the setup done in i915_driver_hw_probe()
1373 * @dev_priv: device private
1374 */
i915_driver_hw_remove(struct drm_i915_private * dev_priv)1375 static void i915_driver_hw_remove(struct drm_i915_private *dev_priv)
1376 {
1377 struct pci_dev *pdev = dev_priv->drm.pdev;
1378
1379 i915_perf_fini(dev_priv);
1380
1381 if (pdev->msi_enabled)
1382 pci_disable_msi(pdev);
1383
1384 pm_qos_remove_request(&dev_priv->pm_qos);
1385 }
1386
1387 /**
1388 * i915_driver_register - register the driver with the rest of the system
1389 * @dev_priv: device private
1390 *
1391 * Perform any steps necessary to make the driver available via kernel
1392 * internal or userspace interfaces.
1393 */
i915_driver_register(struct drm_i915_private * dev_priv)1394 static void i915_driver_register(struct drm_i915_private *dev_priv)
1395 {
1396 struct drm_device *dev = &dev_priv->drm;
1397
1398 i915_gem_driver_register(dev_priv);
1399 i915_pmu_register(dev_priv);
1400
1401 /*
1402 * Notify a valid surface after modesetting,
1403 * when running inside a VM.
1404 */
1405 if (intel_vgpu_active(dev_priv))
1406 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1407
1408 /* Reveal our presence to userspace */
1409 if (drm_dev_register(dev, 0) == 0) {
1410 i915_debugfs_register(dev_priv);
1411 i915_setup_sysfs(dev_priv);
1412
1413 /* Depends on sysfs having been initialized */
1414 i915_perf_register(dev_priv);
1415 } else
1416 DRM_ERROR("Failed to register driver for userspace access!\n");
1417
1418 if (HAS_DISPLAY(dev_priv)) {
1419 /* Must be done after probing outputs */
1420 intel_opregion_register(dev_priv);
1421 acpi_video_register();
1422 }
1423
1424 if (IS_GEN(dev_priv, 5))
1425 intel_gpu_ips_init(dev_priv);
1426
1427 intel_audio_init(dev_priv);
1428
1429 /*
1430 * Some ports require correctly set-up hpd registers for detection to
1431 * work properly (leading to ghost connected connector status), e.g. VGA
1432 * on gm45. Hence we can only set up the initial fbdev config after hpd
1433 * irqs are fully enabled. We do it last so that the async config
1434 * cannot run before the connectors are registered.
1435 */
1436 intel_fbdev_initial_config_async(dev);
1437
1438 /*
1439 * We need to coordinate the hotplugs with the asynchronous fbdev
1440 * configuration, for which we use the fbdev->async_cookie.
1441 */
1442 if (HAS_DISPLAY(dev_priv))
1443 drm_kms_helper_poll_init(dev);
1444
1445 intel_power_domains_enable(dev_priv);
1446 intel_runtime_pm_enable(&dev_priv->runtime_pm);
1447 }
1448
1449 /**
1450 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1451 * @dev_priv: device private
1452 */
i915_driver_unregister(struct drm_i915_private * dev_priv)1453 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1454 {
1455 intel_runtime_pm_disable(&dev_priv->runtime_pm);
1456 intel_power_domains_disable(dev_priv);
1457
1458 intel_fbdev_unregister(dev_priv);
1459 intel_audio_deinit(dev_priv);
1460
1461 /*
1462 * After flushing the fbdev (incl. a late async config which will
1463 * have delayed queuing of a hotplug event), then flush the hotplug
1464 * events.
1465 */
1466 drm_kms_helper_poll_fini(&dev_priv->drm);
1467
1468 intel_gpu_ips_teardown();
1469 acpi_video_unregister();
1470 intel_opregion_unregister(dev_priv);
1471
1472 i915_perf_unregister(dev_priv);
1473 i915_pmu_unregister(dev_priv);
1474
1475 i915_teardown_sysfs(dev_priv);
1476 drm_dev_unplug(&dev_priv->drm);
1477
1478 i915_gem_driver_unregister(dev_priv);
1479 }
1480
i915_welcome_messages(struct drm_i915_private * dev_priv)1481 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1482 {
1483 if (drm_debug & DRM_UT_DRIVER) {
1484 struct drm_printer p = drm_debug_printer("i915 device info:");
1485
1486 drm_printf(&p, "pciid=0x%04x rev=0x%02x platform=%s (subplatform=0x%x) gen=%i\n",
1487 INTEL_DEVID(dev_priv),
1488 INTEL_REVID(dev_priv),
1489 intel_platform_name(INTEL_INFO(dev_priv)->platform),
1490 intel_subplatform(RUNTIME_INFO(dev_priv),
1491 INTEL_INFO(dev_priv)->platform),
1492 INTEL_GEN(dev_priv));
1493
1494 intel_device_info_dump_flags(INTEL_INFO(dev_priv), &p);
1495 intel_device_info_dump_runtime(RUNTIME_INFO(dev_priv), &p);
1496 }
1497
1498 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1499 DRM_INFO("DRM_I915_DEBUG enabled\n");
1500 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1501 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1502 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM))
1503 DRM_INFO("DRM_I915_DEBUG_RUNTIME_PM enabled\n");
1504 }
1505
1506 static struct drm_i915_private *
i915_driver_create(struct pci_dev * pdev,const struct pci_device_id * ent)1507 i915_driver_create(struct pci_dev *pdev, const struct pci_device_id *ent)
1508 {
1509 const struct intel_device_info *match_info =
1510 (struct intel_device_info *)ent->driver_data;
1511 struct intel_device_info *device_info;
1512 struct drm_i915_private *i915;
1513 int err;
1514
1515 i915 = kzalloc(sizeof(*i915), GFP_KERNEL);
1516 if (!i915)
1517 return ERR_PTR(-ENOMEM);
1518
1519 err = drm_dev_init(&i915->drm, &driver, &pdev->dev);
1520 if (err) {
1521 kfree(i915);
1522 return ERR_PTR(err);
1523 }
1524
1525 i915->drm.dev_private = i915;
1526
1527 i915->drm.pdev = pdev;
1528 pci_set_drvdata(pdev, i915);
1529
1530 /* Setup the write-once "constant" device info */
1531 device_info = mkwrite_device_info(i915);
1532 memcpy(device_info, match_info, sizeof(*device_info));
1533 RUNTIME_INFO(i915)->device_id = pdev->device;
1534
1535 BUG_ON(device_info->gen > BITS_PER_TYPE(device_info->gen_mask));
1536
1537 return i915;
1538 }
1539
i915_driver_destroy(struct drm_i915_private * i915)1540 static void i915_driver_destroy(struct drm_i915_private *i915)
1541 {
1542 struct pci_dev *pdev = i915->drm.pdev;
1543
1544 drm_dev_fini(&i915->drm);
1545 kfree(i915);
1546
1547 /* And make sure we never chase our dangling pointer from pci_dev */
1548 pci_set_drvdata(pdev, NULL);
1549 }
1550
1551 /**
1552 * i915_driver_probe - setup chip and create an initial config
1553 * @pdev: PCI device
1554 * @ent: matching PCI ID entry
1555 *
1556 * The driver probe routine has to do several things:
1557 * - drive output discovery via intel_modeset_init()
1558 * - initialize the memory manager
1559 * - allocate initial config memory
1560 * - setup the DRM framebuffer with the allocated memory
1561 */
i915_driver_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1562 int i915_driver_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1563 {
1564 const struct intel_device_info *match_info =
1565 (struct intel_device_info *)ent->driver_data;
1566 struct drm_i915_private *dev_priv;
1567 int ret;
1568
1569 dev_priv = i915_driver_create(pdev, ent);
1570 if (IS_ERR(dev_priv))
1571 return PTR_ERR(dev_priv);
1572
1573 /* Disable nuclear pageflip by default on pre-ILK */
1574 if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1575 dev_priv->drm.driver_features &= ~DRIVER_ATOMIC;
1576
1577 ret = pci_enable_device(pdev);
1578 if (ret)
1579 goto out_fini;
1580
1581 ret = i915_driver_early_probe(dev_priv);
1582 if (ret < 0)
1583 goto out_pci_disable;
1584
1585 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1586
1587 i915_detect_vgpu(dev_priv);
1588
1589 ret = i915_driver_mmio_probe(dev_priv);
1590 if (ret < 0)
1591 goto out_runtime_pm_put;
1592
1593 ret = i915_driver_hw_probe(dev_priv);
1594 if (ret < 0)
1595 goto out_cleanup_mmio;
1596
1597 ret = i915_driver_modeset_probe(&dev_priv->drm);
1598 if (ret < 0)
1599 goto out_cleanup_hw;
1600
1601 i915_driver_register(dev_priv);
1602
1603 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1604
1605 i915_welcome_messages(dev_priv);
1606
1607 return 0;
1608
1609 out_cleanup_hw:
1610 i915_driver_hw_remove(dev_priv);
1611 i915_ggtt_driver_release(dev_priv);
1612
1613 /* Paranoia: make sure we have disabled everything before we exit. */
1614 intel_sanitize_gt_powersave(dev_priv);
1615 out_cleanup_mmio:
1616 i915_driver_mmio_release(dev_priv);
1617 out_runtime_pm_put:
1618 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1619 i915_driver_late_release(dev_priv);
1620 out_pci_disable:
1621 pci_disable_device(pdev);
1622 out_fini:
1623 i915_probe_error(dev_priv, "Device initialization failed (%d)\n", ret);
1624 i915_driver_destroy(dev_priv);
1625 return ret;
1626 }
1627
i915_driver_remove(struct drm_i915_private * i915)1628 void i915_driver_remove(struct drm_i915_private *i915)
1629 {
1630 struct pci_dev *pdev = i915->drm.pdev;
1631
1632 disable_rpm_wakeref_asserts(&i915->runtime_pm);
1633
1634 i915_driver_unregister(i915);
1635
1636 /*
1637 * After unregistering the device to prevent any new users, cancel
1638 * all in-flight requests so that we can quickly unbind the active
1639 * resources.
1640 */
1641 intel_gt_set_wedged(&i915->gt);
1642
1643 /* Flush any external code that still may be under the RCU lock */
1644 synchronize_rcu();
1645
1646 i915_gem_suspend(i915);
1647
1648 drm_atomic_helper_shutdown(&i915->drm);
1649
1650 intel_gvt_driver_remove(i915);
1651
1652 intel_modeset_driver_remove(&i915->drm);
1653
1654 intel_bios_driver_remove(i915);
1655
1656 vga_switcheroo_unregister_client(pdev);
1657 vga_client_register(pdev, NULL, NULL, NULL);
1658
1659 intel_csr_ucode_fini(i915);
1660
1661 /* Free error state after interrupts are fully disabled. */
1662 cancel_delayed_work_sync(&i915->gt.hangcheck.work);
1663 i915_reset_error_state(i915);
1664
1665 i915_gem_driver_remove(i915);
1666
1667 intel_power_domains_driver_remove(i915);
1668
1669 i915_driver_hw_remove(i915);
1670
1671 enable_rpm_wakeref_asserts(&i915->runtime_pm);
1672 }
1673
i915_driver_release(struct drm_device * dev)1674 static void i915_driver_release(struct drm_device *dev)
1675 {
1676 struct drm_i915_private *dev_priv = to_i915(dev);
1677 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
1678
1679 disable_rpm_wakeref_asserts(rpm);
1680
1681 i915_gem_driver_release(dev_priv);
1682
1683 i915_ggtt_driver_release(dev_priv);
1684
1685 /* Paranoia: make sure we have disabled everything before we exit. */
1686 intel_sanitize_gt_powersave(dev_priv);
1687
1688 i915_driver_mmio_release(dev_priv);
1689
1690 enable_rpm_wakeref_asserts(rpm);
1691 intel_runtime_pm_driver_release(rpm);
1692
1693 i915_driver_late_release(dev_priv);
1694 i915_driver_destroy(dev_priv);
1695 }
1696
i915_driver_open(struct drm_device * dev,struct drm_file * file)1697 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1698 {
1699 struct drm_i915_private *i915 = to_i915(dev);
1700 int ret;
1701
1702 ret = i915_gem_open(i915, file);
1703 if (ret)
1704 return ret;
1705
1706 return 0;
1707 }
1708
1709 /**
1710 * i915_driver_lastclose - clean up after all DRM clients have exited
1711 * @dev: DRM device
1712 *
1713 * Take care of cleaning up after all DRM clients have exited. In the
1714 * mode setting case, we want to restore the kernel's initial mode (just
1715 * in case the last client left us in a bad state).
1716 *
1717 * Additionally, in the non-mode setting case, we'll tear down the GTT
1718 * and DMA structures, since the kernel won't be using them, and clea
1719 * up any GEM state.
1720 */
i915_driver_lastclose(struct drm_device * dev)1721 static void i915_driver_lastclose(struct drm_device *dev)
1722 {
1723 intel_fbdev_restore_mode(dev);
1724 vga_switcheroo_process_delayed_switch();
1725 }
1726
i915_driver_postclose(struct drm_device * dev,struct drm_file * file)1727 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1728 {
1729 struct drm_i915_file_private *file_priv = file->driver_priv;
1730
1731 mutex_lock(&dev->struct_mutex);
1732 i915_gem_context_close(file);
1733 i915_gem_release(dev, file);
1734 mutex_unlock(&dev->struct_mutex);
1735
1736 kfree(file_priv);
1737
1738 /* Catch up with all the deferred frees from "this" client */
1739 i915_gem_flush_free_objects(to_i915(dev));
1740 }
1741
intel_suspend_encoders(struct drm_i915_private * dev_priv)1742 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1743 {
1744 struct drm_device *dev = &dev_priv->drm;
1745 struct intel_encoder *encoder;
1746
1747 drm_modeset_lock_all(dev);
1748 for_each_intel_encoder(dev, encoder)
1749 if (encoder->suspend)
1750 encoder->suspend(encoder);
1751 drm_modeset_unlock_all(dev);
1752 }
1753
1754 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1755 bool rpm_resume);
1756 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1757
suspend_to_idle(struct drm_i915_private * dev_priv)1758 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1759 {
1760 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1761 if (acpi_target_system_state() < ACPI_STATE_S3)
1762 return true;
1763 #endif
1764 return false;
1765 }
1766
i915_drm_prepare(struct drm_device * dev)1767 static int i915_drm_prepare(struct drm_device *dev)
1768 {
1769 struct drm_i915_private *i915 = to_i915(dev);
1770
1771 /*
1772 * NB intel_display_suspend() may issue new requests after we've
1773 * ostensibly marked the GPU as ready-to-sleep here. We need to
1774 * split out that work and pull it forward so that after point,
1775 * the GPU is not woken again.
1776 */
1777 i915_gem_suspend(i915);
1778
1779 return 0;
1780 }
1781
i915_drm_suspend(struct drm_device * dev)1782 static int i915_drm_suspend(struct drm_device *dev)
1783 {
1784 struct drm_i915_private *dev_priv = to_i915(dev);
1785 struct pci_dev *pdev = dev_priv->drm.pdev;
1786 pci_power_t opregion_target_state;
1787
1788 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1789
1790 /* We do a lot of poking in a lot of registers, make sure they work
1791 * properly. */
1792 intel_power_domains_disable(dev_priv);
1793
1794 drm_kms_helper_poll_disable(dev);
1795
1796 pci_save_state(pdev);
1797
1798 intel_display_suspend(dev);
1799
1800 intel_dp_mst_suspend(dev_priv);
1801
1802 intel_runtime_pm_disable_interrupts(dev_priv);
1803 intel_hpd_cancel_work(dev_priv);
1804
1805 intel_suspend_encoders(dev_priv);
1806
1807 intel_suspend_hw(dev_priv);
1808
1809 i915_gem_suspend_gtt_mappings(dev_priv);
1810
1811 i915_save_state(dev_priv);
1812
1813 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1814 intel_opregion_suspend(dev_priv, opregion_target_state);
1815
1816 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1817
1818 dev_priv->suspend_count++;
1819
1820 intel_csr_ucode_suspend(dev_priv);
1821
1822 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1823
1824 return 0;
1825 }
1826
1827 static enum i915_drm_suspend_mode
get_suspend_mode(struct drm_i915_private * dev_priv,bool hibernate)1828 get_suspend_mode(struct drm_i915_private *dev_priv, bool hibernate)
1829 {
1830 if (hibernate)
1831 return I915_DRM_SUSPEND_HIBERNATE;
1832
1833 if (suspend_to_idle(dev_priv))
1834 return I915_DRM_SUSPEND_IDLE;
1835
1836 return I915_DRM_SUSPEND_MEM;
1837 }
1838
i915_drm_suspend_late(struct drm_device * dev,bool hibernation)1839 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1840 {
1841 struct drm_i915_private *dev_priv = to_i915(dev);
1842 struct pci_dev *pdev = dev_priv->drm.pdev;
1843 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
1844 int ret = 0;
1845
1846 disable_rpm_wakeref_asserts(rpm);
1847
1848 i915_gem_suspend_late(dev_priv);
1849
1850 i915_rc6_ctx_wa_suspend(dev_priv);
1851
1852 intel_uncore_suspend(&dev_priv->uncore);
1853
1854 intel_power_domains_suspend(dev_priv,
1855 get_suspend_mode(dev_priv, hibernation));
1856
1857 intel_display_power_suspend_late(dev_priv);
1858
1859 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1860 ret = vlv_suspend_complete(dev_priv);
1861
1862 if (ret) {
1863 DRM_ERROR("Suspend complete failed: %d\n", ret);
1864 intel_power_domains_resume(dev_priv);
1865
1866 goto out;
1867 }
1868
1869 pci_disable_device(pdev);
1870 /*
1871 * During hibernation on some platforms the BIOS may try to access
1872 * the device even though it's already in D3 and hang the machine. So
1873 * leave the device in D0 on those platforms and hope the BIOS will
1874 * power down the device properly. The issue was seen on multiple old
1875 * GENs with different BIOS vendors, so having an explicit blacklist
1876 * is inpractical; apply the workaround on everything pre GEN6. The
1877 * platforms where the issue was seen:
1878 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1879 * Fujitsu FSC S7110
1880 * Acer Aspire 1830T
1881 */
1882 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1883 pci_set_power_state(pdev, PCI_D3hot);
1884
1885 out:
1886 enable_rpm_wakeref_asserts(rpm);
1887 if (!dev_priv->uncore.user_forcewake_count)
1888 intel_runtime_pm_driver_release(rpm);
1889
1890 return ret;
1891 }
1892
1893 static int
i915_suspend_switcheroo(struct drm_i915_private * i915,pm_message_t state)1894 i915_suspend_switcheroo(struct drm_i915_private *i915, pm_message_t state)
1895 {
1896 int error;
1897
1898 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1899 state.event != PM_EVENT_FREEZE))
1900 return -EINVAL;
1901
1902 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
1903 return 0;
1904
1905 error = i915_drm_suspend(&i915->drm);
1906 if (error)
1907 return error;
1908
1909 return i915_drm_suspend_late(&i915->drm, false);
1910 }
1911
i915_drm_resume(struct drm_device * dev)1912 static int i915_drm_resume(struct drm_device *dev)
1913 {
1914 struct drm_i915_private *dev_priv = to_i915(dev);
1915 int ret;
1916
1917 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1918 intel_sanitize_gt_powersave(dev_priv);
1919
1920 i915_gem_sanitize(dev_priv);
1921
1922 ret = i915_ggtt_enable_hw(dev_priv);
1923 if (ret)
1924 DRM_ERROR("failed to re-enable GGTT\n");
1925
1926 mutex_lock(&dev_priv->drm.struct_mutex);
1927 i915_gem_restore_gtt_mappings(dev_priv);
1928 i915_gem_restore_fences(dev_priv);
1929 mutex_unlock(&dev_priv->drm.struct_mutex);
1930
1931 intel_csr_ucode_resume(dev_priv);
1932
1933 i915_restore_state(dev_priv);
1934 intel_pps_unlock_regs_wa(dev_priv);
1935
1936 intel_init_pch_refclk(dev_priv);
1937
1938 /*
1939 * Interrupts have to be enabled before any batches are run. If not the
1940 * GPU will hang. i915_gem_init_hw() will initiate batches to
1941 * update/restore the context.
1942 *
1943 * drm_mode_config_reset() needs AUX interrupts.
1944 *
1945 * Modeset enabling in intel_modeset_init_hw() also needs working
1946 * interrupts.
1947 */
1948 intel_runtime_pm_enable_interrupts(dev_priv);
1949
1950 drm_mode_config_reset(dev);
1951
1952 i915_gem_resume(dev_priv);
1953
1954 intel_modeset_init_hw(dev);
1955 intel_init_clock_gating(dev_priv);
1956
1957 spin_lock_irq(&dev_priv->irq_lock);
1958 if (dev_priv->display.hpd_irq_setup)
1959 dev_priv->display.hpd_irq_setup(dev_priv);
1960 spin_unlock_irq(&dev_priv->irq_lock);
1961
1962 intel_dp_mst_resume(dev_priv);
1963
1964 intel_display_resume(dev);
1965
1966 drm_kms_helper_poll_enable(dev);
1967
1968 /*
1969 * ... but also need to make sure that hotplug processing
1970 * doesn't cause havoc. Like in the driver load code we don't
1971 * bother with the tiny race here where we might lose hotplug
1972 * notifications.
1973 * */
1974 intel_hpd_init(dev_priv);
1975
1976 intel_opregion_resume(dev_priv);
1977
1978 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1979
1980 intel_power_domains_enable(dev_priv);
1981
1982 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1983
1984 return 0;
1985 }
1986
i915_drm_resume_early(struct drm_device * dev)1987 static int i915_drm_resume_early(struct drm_device *dev)
1988 {
1989 struct drm_i915_private *dev_priv = to_i915(dev);
1990 struct pci_dev *pdev = dev_priv->drm.pdev;
1991 int ret;
1992
1993 /*
1994 * We have a resume ordering issue with the snd-hda driver also
1995 * requiring our device to be power up. Due to the lack of a
1996 * parent/child relationship we currently solve this with an early
1997 * resume hook.
1998 *
1999 * FIXME: This should be solved with a special hdmi sink device or
2000 * similar so that power domains can be employed.
2001 */
2002
2003 /*
2004 * Note that we need to set the power state explicitly, since we
2005 * powered off the device during freeze and the PCI core won't power
2006 * it back up for us during thaw. Powering off the device during
2007 * freeze is not a hard requirement though, and during the
2008 * suspend/resume phases the PCI core makes sure we get here with the
2009 * device powered on. So in case we change our freeze logic and keep
2010 * the device powered we can also remove the following set power state
2011 * call.
2012 */
2013 ret = pci_set_power_state(pdev, PCI_D0);
2014 if (ret) {
2015 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
2016 return ret;
2017 }
2018
2019 /*
2020 * Note that pci_enable_device() first enables any parent bridge
2021 * device and only then sets the power state for this device. The
2022 * bridge enabling is a nop though, since bridge devices are resumed
2023 * first. The order of enabling power and enabling the device is
2024 * imposed by the PCI core as described above, so here we preserve the
2025 * same order for the freeze/thaw phases.
2026 *
2027 * TODO: eventually we should remove pci_disable_device() /
2028 * pci_enable_enable_device() from suspend/resume. Due to how they
2029 * depend on the device enable refcount we can't anyway depend on them
2030 * disabling/enabling the device.
2031 */
2032 if (pci_enable_device(pdev))
2033 return -EIO;
2034
2035 pci_set_master(pdev);
2036
2037 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2038
2039 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2040 ret = vlv_resume_prepare(dev_priv, false);
2041 if (ret)
2042 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
2043 ret);
2044
2045 intel_uncore_resume_early(&dev_priv->uncore);
2046
2047 intel_gt_check_and_clear_faults(&dev_priv->gt);
2048
2049 intel_display_power_resume_early(dev_priv);
2050
2051 intel_sanitize_gt_powersave(dev_priv);
2052
2053 intel_power_domains_resume(dev_priv);
2054
2055 i915_rc6_ctx_wa_resume(dev_priv);
2056
2057 intel_gt_sanitize(&dev_priv->gt, true);
2058
2059 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2060
2061 return ret;
2062 }
2063
i915_resume_switcheroo(struct drm_i915_private * i915)2064 static int i915_resume_switcheroo(struct drm_i915_private *i915)
2065 {
2066 int ret;
2067
2068 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2069 return 0;
2070
2071 ret = i915_drm_resume_early(&i915->drm);
2072 if (ret)
2073 return ret;
2074
2075 return i915_drm_resume(&i915->drm);
2076 }
2077
i915_pm_prepare(struct device * kdev)2078 static int i915_pm_prepare(struct device *kdev)
2079 {
2080 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2081
2082 if (!i915) {
2083 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2084 return -ENODEV;
2085 }
2086
2087 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2088 return 0;
2089
2090 return i915_drm_prepare(&i915->drm);
2091 }
2092
i915_pm_suspend(struct device * kdev)2093 static int i915_pm_suspend(struct device *kdev)
2094 {
2095 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2096
2097 if (!i915) {
2098 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2099 return -ENODEV;
2100 }
2101
2102 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2103 return 0;
2104
2105 return i915_drm_suspend(&i915->drm);
2106 }
2107
i915_pm_suspend_late(struct device * kdev)2108 static int i915_pm_suspend_late(struct device *kdev)
2109 {
2110 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2111
2112 /*
2113 * We have a suspend ordering issue with the snd-hda driver also
2114 * requiring our device to be power up. Due to the lack of a
2115 * parent/child relationship we currently solve this with an late
2116 * suspend hook.
2117 *
2118 * FIXME: This should be solved with a special hdmi sink device or
2119 * similar so that power domains can be employed.
2120 */
2121 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2122 return 0;
2123
2124 return i915_drm_suspend_late(&i915->drm, false);
2125 }
2126
i915_pm_poweroff_late(struct device * kdev)2127 static int i915_pm_poweroff_late(struct device *kdev)
2128 {
2129 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2130
2131 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2132 return 0;
2133
2134 return i915_drm_suspend_late(&i915->drm, true);
2135 }
2136
i915_pm_resume_early(struct device * kdev)2137 static int i915_pm_resume_early(struct device *kdev)
2138 {
2139 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2140
2141 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2142 return 0;
2143
2144 return i915_drm_resume_early(&i915->drm);
2145 }
2146
i915_pm_resume(struct device * kdev)2147 static int i915_pm_resume(struct device *kdev)
2148 {
2149 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2150
2151 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2152 return 0;
2153
2154 return i915_drm_resume(&i915->drm);
2155 }
2156
2157 /* freeze: before creating the hibernation_image */
i915_pm_freeze(struct device * kdev)2158 static int i915_pm_freeze(struct device *kdev)
2159 {
2160 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2161 int ret;
2162
2163 if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
2164 ret = i915_drm_suspend(&i915->drm);
2165 if (ret)
2166 return ret;
2167 }
2168
2169 ret = i915_gem_freeze(i915);
2170 if (ret)
2171 return ret;
2172
2173 return 0;
2174 }
2175
i915_pm_freeze_late(struct device * kdev)2176 static int i915_pm_freeze_late(struct device *kdev)
2177 {
2178 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2179 int ret;
2180
2181 if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
2182 ret = i915_drm_suspend_late(&i915->drm, true);
2183 if (ret)
2184 return ret;
2185 }
2186
2187 ret = i915_gem_freeze_late(i915);
2188 if (ret)
2189 return ret;
2190
2191 return 0;
2192 }
2193
2194 /* thaw: called after creating the hibernation image, but before turning off. */
i915_pm_thaw_early(struct device * kdev)2195 static int i915_pm_thaw_early(struct device *kdev)
2196 {
2197 return i915_pm_resume_early(kdev);
2198 }
2199
i915_pm_thaw(struct device * kdev)2200 static int i915_pm_thaw(struct device *kdev)
2201 {
2202 return i915_pm_resume(kdev);
2203 }
2204
2205 /* restore: called after loading the hibernation image. */
i915_pm_restore_early(struct device * kdev)2206 static int i915_pm_restore_early(struct device *kdev)
2207 {
2208 return i915_pm_resume_early(kdev);
2209 }
2210
i915_pm_restore(struct device * kdev)2211 static int i915_pm_restore(struct device *kdev)
2212 {
2213 return i915_pm_resume(kdev);
2214 }
2215
2216 /*
2217 * Save all Gunit registers that may be lost after a D3 and a subsequent
2218 * S0i[R123] transition. The list of registers needing a save/restore is
2219 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2220 * registers in the following way:
2221 * - Driver: saved/restored by the driver
2222 * - Punit : saved/restored by the Punit firmware
2223 * - No, w/o marking: no need to save/restore, since the register is R/O or
2224 * used internally by the HW in a way that doesn't depend
2225 * keeping the content across a suspend/resume.
2226 * - Debug : used for debugging
2227 *
2228 * We save/restore all registers marked with 'Driver', with the following
2229 * exceptions:
2230 * - Registers out of use, including also registers marked with 'Debug'.
2231 * These have no effect on the driver's operation, so we don't save/restore
2232 * them to reduce the overhead.
2233 * - Registers that are fully setup by an initialization function called from
2234 * the resume path. For example many clock gating and RPS/RC6 registers.
2235 * - Registers that provide the right functionality with their reset defaults.
2236 *
2237 * TODO: Except for registers that based on the above 3 criteria can be safely
2238 * ignored, we save/restore all others, practically treating the HW context as
2239 * a black-box for the driver. Further investigation is needed to reduce the
2240 * saved/restored registers even further, by following the same 3 criteria.
2241 */
vlv_save_gunit_s0ix_state(struct drm_i915_private * dev_priv)2242 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2243 {
2244 struct vlv_s0ix_state *s = dev_priv->vlv_s0ix_state;
2245 int i;
2246
2247 if (!s)
2248 return;
2249
2250 /* GAM 0x4000-0x4770 */
2251 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2252 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2253 s->arb_mode = I915_READ(ARB_MODE);
2254 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2255 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2256
2257 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2258 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2259
2260 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2261 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2262
2263 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2264 s->ecochk = I915_READ(GAM_ECOCHK);
2265 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2266 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2267
2268 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2269
2270 /* MBC 0x9024-0x91D0, 0x8500 */
2271 s->g3dctl = I915_READ(VLV_G3DCTL);
2272 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2273 s->mbctl = I915_READ(GEN6_MBCTL);
2274
2275 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2276 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2277 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2278 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2279 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2280 s->rstctl = I915_READ(GEN6_RSTCTL);
2281 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2282
2283 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2284 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2285 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2286 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2287 s->ecobus = I915_READ(ECOBUS);
2288 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2289 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2290 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2291 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2292 s->rcedata = I915_READ(VLV_RCEDATA);
2293 s->spare2gh = I915_READ(VLV_SPAREG2H);
2294
2295 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2296 s->gt_imr = I915_READ(GTIMR);
2297 s->gt_ier = I915_READ(GTIER);
2298 s->pm_imr = I915_READ(GEN6_PMIMR);
2299 s->pm_ier = I915_READ(GEN6_PMIER);
2300
2301 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2302 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2303
2304 /* GT SA CZ domain, 0x100000-0x138124 */
2305 s->tilectl = I915_READ(TILECTL);
2306 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2307 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2308 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2309 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2310
2311 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2312 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2313 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2314 s->pcbr = I915_READ(VLV_PCBR);
2315 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2316
2317 /*
2318 * Not saving any of:
2319 * DFT, 0x9800-0x9EC0
2320 * SARB, 0xB000-0xB1FC
2321 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2322 * PCI CFG
2323 */
2324 }
2325
vlv_restore_gunit_s0ix_state(struct drm_i915_private * dev_priv)2326 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2327 {
2328 struct vlv_s0ix_state *s = dev_priv->vlv_s0ix_state;
2329 u32 val;
2330 int i;
2331
2332 if (!s)
2333 return;
2334
2335 /* GAM 0x4000-0x4770 */
2336 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2337 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2338 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2339 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2340 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2341
2342 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2343 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2344
2345 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2346 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2347
2348 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2349 I915_WRITE(GAM_ECOCHK, s->ecochk);
2350 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2351 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2352
2353 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2354
2355 /* MBC 0x9024-0x91D0, 0x8500 */
2356 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2357 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2358 I915_WRITE(GEN6_MBCTL, s->mbctl);
2359
2360 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2361 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2362 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2363 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2364 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2365 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2366 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2367
2368 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2369 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2370 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2371 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2372 I915_WRITE(ECOBUS, s->ecobus);
2373 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2374 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2375 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2376 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2377 I915_WRITE(VLV_RCEDATA, s->rcedata);
2378 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2379
2380 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2381 I915_WRITE(GTIMR, s->gt_imr);
2382 I915_WRITE(GTIER, s->gt_ier);
2383 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2384 I915_WRITE(GEN6_PMIER, s->pm_ier);
2385
2386 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2387 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2388
2389 /* GT SA CZ domain, 0x100000-0x138124 */
2390 I915_WRITE(TILECTL, s->tilectl);
2391 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2392 /*
2393 * Preserve the GT allow wake and GFX force clock bit, they are not
2394 * be restored, as they are used to control the s0ix suspend/resume
2395 * sequence by the caller.
2396 */
2397 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2398 val &= VLV_GTLC_ALLOWWAKEREQ;
2399 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2400 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2401
2402 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2403 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2404 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2405 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2406
2407 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2408
2409 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2410 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2411 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2412 I915_WRITE(VLV_PCBR, s->pcbr);
2413 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2414 }
2415
vlv_wait_for_pw_status(struct drm_i915_private * i915,u32 mask,u32 val)2416 static int vlv_wait_for_pw_status(struct drm_i915_private *i915,
2417 u32 mask, u32 val)
2418 {
2419 i915_reg_t reg = VLV_GTLC_PW_STATUS;
2420 u32 reg_value;
2421 int ret;
2422
2423 /* The HW does not like us polling for PW_STATUS frequently, so
2424 * use the sleeping loop rather than risk the busy spin within
2425 * intel_wait_for_register().
2426 *
2427 * Transitioning between RC6 states should be at most 2ms (see
2428 * valleyview_enable_rps) so use a 3ms timeout.
2429 */
2430 ret = wait_for(((reg_value =
2431 intel_uncore_read_notrace(&i915->uncore, reg)) & mask)
2432 == val, 3);
2433
2434 /* just trace the final value */
2435 trace_i915_reg_rw(false, reg, reg_value, sizeof(reg_value), true);
2436
2437 return ret;
2438 }
2439
vlv_force_gfx_clock(struct drm_i915_private * dev_priv,bool force_on)2440 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2441 {
2442 u32 val;
2443 int err;
2444
2445 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2446 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2447 if (force_on)
2448 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2449 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2450
2451 if (!force_on)
2452 return 0;
2453
2454 err = intel_wait_for_register(&dev_priv->uncore,
2455 VLV_GTLC_SURVIVABILITY_REG,
2456 VLV_GFX_CLK_STATUS_BIT,
2457 VLV_GFX_CLK_STATUS_BIT,
2458 20);
2459 if (err)
2460 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2461 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2462
2463 return err;
2464 }
2465
vlv_allow_gt_wake(struct drm_i915_private * dev_priv,bool allow)2466 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2467 {
2468 u32 mask;
2469 u32 val;
2470 int err;
2471
2472 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2473 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2474 if (allow)
2475 val |= VLV_GTLC_ALLOWWAKEREQ;
2476 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2477 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2478
2479 mask = VLV_GTLC_ALLOWWAKEACK;
2480 val = allow ? mask : 0;
2481
2482 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2483 if (err)
2484 DRM_ERROR("timeout disabling GT waking\n");
2485
2486 return err;
2487 }
2488
vlv_wait_for_gt_wells(struct drm_i915_private * dev_priv,bool wait_for_on)2489 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2490 bool wait_for_on)
2491 {
2492 u32 mask;
2493 u32 val;
2494
2495 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2496 val = wait_for_on ? mask : 0;
2497
2498 /*
2499 * RC6 transitioning can be delayed up to 2 msec (see
2500 * valleyview_enable_rps), use 3 msec for safety.
2501 *
2502 * This can fail to turn off the rc6 if the GPU is stuck after a failed
2503 * reset and we are trying to force the machine to sleep.
2504 */
2505 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2506 DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
2507 onoff(wait_for_on));
2508 }
2509
vlv_check_no_gt_access(struct drm_i915_private * dev_priv)2510 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2511 {
2512 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2513 return;
2514
2515 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2516 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2517 }
2518
vlv_suspend_complete(struct drm_i915_private * dev_priv)2519 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2520 {
2521 u32 mask;
2522 int err;
2523
2524 /*
2525 * Bspec defines the following GT well on flags as debug only, so
2526 * don't treat them as hard failures.
2527 */
2528 vlv_wait_for_gt_wells(dev_priv, false);
2529
2530 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2531 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2532
2533 vlv_check_no_gt_access(dev_priv);
2534
2535 err = vlv_force_gfx_clock(dev_priv, true);
2536 if (err)
2537 goto err1;
2538
2539 err = vlv_allow_gt_wake(dev_priv, false);
2540 if (err)
2541 goto err2;
2542
2543 vlv_save_gunit_s0ix_state(dev_priv);
2544
2545 err = vlv_force_gfx_clock(dev_priv, false);
2546 if (err)
2547 goto err2;
2548
2549 return 0;
2550
2551 err2:
2552 /* For safety always re-enable waking and disable gfx clock forcing */
2553 vlv_allow_gt_wake(dev_priv, true);
2554 err1:
2555 vlv_force_gfx_clock(dev_priv, false);
2556
2557 return err;
2558 }
2559
vlv_resume_prepare(struct drm_i915_private * dev_priv,bool rpm_resume)2560 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2561 bool rpm_resume)
2562 {
2563 int err;
2564 int ret;
2565
2566 /*
2567 * If any of the steps fail just try to continue, that's the best we
2568 * can do at this point. Return the first error code (which will also
2569 * leave RPM permanently disabled).
2570 */
2571 ret = vlv_force_gfx_clock(dev_priv, true);
2572
2573 vlv_restore_gunit_s0ix_state(dev_priv);
2574
2575 err = vlv_allow_gt_wake(dev_priv, true);
2576 if (!ret)
2577 ret = err;
2578
2579 err = vlv_force_gfx_clock(dev_priv, false);
2580 if (!ret)
2581 ret = err;
2582
2583 vlv_check_no_gt_access(dev_priv);
2584
2585 if (rpm_resume)
2586 intel_init_clock_gating(dev_priv);
2587
2588 return ret;
2589 }
2590
intel_runtime_suspend(struct device * kdev)2591 static int intel_runtime_suspend(struct device *kdev)
2592 {
2593 struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
2594 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
2595 int ret = 0;
2596
2597 if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && HAS_RC6(dev_priv))))
2598 return -ENODEV;
2599
2600 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2601 return -ENODEV;
2602
2603 DRM_DEBUG_KMS("Suspending device\n");
2604
2605 disable_rpm_wakeref_asserts(rpm);
2606
2607 /*
2608 * We are safe here against re-faults, since the fault handler takes
2609 * an RPM reference.
2610 */
2611 i915_gem_runtime_suspend(dev_priv);
2612
2613 intel_gt_runtime_suspend(&dev_priv->gt);
2614
2615 intel_runtime_pm_disable_interrupts(dev_priv);
2616
2617 intel_uncore_suspend(&dev_priv->uncore);
2618
2619 intel_display_power_suspend(dev_priv);
2620
2621 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2622 ret = vlv_suspend_complete(dev_priv);
2623
2624 if (ret) {
2625 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2626 intel_uncore_runtime_resume(&dev_priv->uncore);
2627
2628 intel_runtime_pm_enable_interrupts(dev_priv);
2629
2630 intel_gt_runtime_resume(&dev_priv->gt);
2631
2632 i915_gem_restore_fences(dev_priv);
2633
2634 enable_rpm_wakeref_asserts(rpm);
2635
2636 return ret;
2637 }
2638
2639 enable_rpm_wakeref_asserts(rpm);
2640 intel_runtime_pm_driver_release(rpm);
2641
2642 if (intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore))
2643 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2644
2645 rpm->suspended = true;
2646
2647 /*
2648 * FIXME: We really should find a document that references the arguments
2649 * used below!
2650 */
2651 if (IS_BROADWELL(dev_priv)) {
2652 /*
2653 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2654 * being detected, and the call we do at intel_runtime_resume()
2655 * won't be able to restore them. Since PCI_D3hot matches the
2656 * actual specification and appears to be working, use it.
2657 */
2658 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2659 } else {
2660 /*
2661 * current versions of firmware which depend on this opregion
2662 * notification have repurposed the D1 definition to mean
2663 * "runtime suspended" vs. what you would normally expect (D3)
2664 * to distinguish it from notifications that might be sent via
2665 * the suspend path.
2666 */
2667 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2668 }
2669
2670 assert_forcewakes_inactive(&dev_priv->uncore);
2671
2672 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2673 intel_hpd_poll_init(dev_priv);
2674
2675 DRM_DEBUG_KMS("Device suspended\n");
2676 return 0;
2677 }
2678
intel_runtime_resume(struct device * kdev)2679 static int intel_runtime_resume(struct device *kdev)
2680 {
2681 struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
2682 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
2683 int ret = 0;
2684
2685 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2686 return -ENODEV;
2687
2688 DRM_DEBUG_KMS("Resuming device\n");
2689
2690 WARN_ON_ONCE(atomic_read(&rpm->wakeref_count));
2691 disable_rpm_wakeref_asserts(rpm);
2692
2693 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2694 rpm->suspended = false;
2695 if (intel_uncore_unclaimed_mmio(&dev_priv->uncore))
2696 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2697
2698 intel_display_power_resume(dev_priv);
2699
2700 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2701 ret = vlv_resume_prepare(dev_priv, true);
2702
2703 intel_uncore_runtime_resume(&dev_priv->uncore);
2704
2705 intel_runtime_pm_enable_interrupts(dev_priv);
2706
2707 /*
2708 * No point of rolling back things in case of an error, as the best
2709 * we can do is to hope that things will still work (and disable RPM).
2710 */
2711 intel_gt_runtime_resume(&dev_priv->gt);
2712 i915_gem_restore_fences(dev_priv);
2713
2714 /*
2715 * On VLV/CHV display interrupts are part of the display
2716 * power well, so hpd is reinitialized from there. For
2717 * everyone else do it here.
2718 */
2719 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2720 intel_hpd_init(dev_priv);
2721
2722 intel_enable_ipc(dev_priv);
2723
2724 enable_rpm_wakeref_asserts(rpm);
2725
2726 if (ret)
2727 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2728 else
2729 DRM_DEBUG_KMS("Device resumed\n");
2730
2731 return ret;
2732 }
2733
2734 const struct dev_pm_ops i915_pm_ops = {
2735 /*
2736 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2737 * PMSG_RESUME]
2738 */
2739 .prepare = i915_pm_prepare,
2740 .suspend = i915_pm_suspend,
2741 .suspend_late = i915_pm_suspend_late,
2742 .resume_early = i915_pm_resume_early,
2743 .resume = i915_pm_resume,
2744
2745 /*
2746 * S4 event handlers
2747 * @freeze, @freeze_late : called (1) before creating the
2748 * hibernation image [PMSG_FREEZE] and
2749 * (2) after rebooting, before restoring
2750 * the image [PMSG_QUIESCE]
2751 * @thaw, @thaw_early : called (1) after creating the hibernation
2752 * image, before writing it [PMSG_THAW]
2753 * and (2) after failing to create or
2754 * restore the image [PMSG_RECOVER]
2755 * @poweroff, @poweroff_late: called after writing the hibernation
2756 * image, before rebooting [PMSG_HIBERNATE]
2757 * @restore, @restore_early : called after rebooting and restoring the
2758 * hibernation image [PMSG_RESTORE]
2759 */
2760 .freeze = i915_pm_freeze,
2761 .freeze_late = i915_pm_freeze_late,
2762 .thaw_early = i915_pm_thaw_early,
2763 .thaw = i915_pm_thaw,
2764 .poweroff = i915_pm_suspend,
2765 .poweroff_late = i915_pm_poweroff_late,
2766 .restore_early = i915_pm_restore_early,
2767 .restore = i915_pm_restore,
2768
2769 /* S0ix (via runtime suspend) event handlers */
2770 .runtime_suspend = intel_runtime_suspend,
2771 .runtime_resume = intel_runtime_resume,
2772 };
2773
2774 static const struct vm_operations_struct i915_gem_vm_ops = {
2775 .fault = i915_gem_fault,
2776 .open = drm_gem_vm_open,
2777 .close = drm_gem_vm_close,
2778 };
2779
2780 static const struct file_operations i915_driver_fops = {
2781 .owner = THIS_MODULE,
2782 .open = drm_open,
2783 .release = drm_release,
2784 .unlocked_ioctl = drm_ioctl,
2785 .mmap = drm_gem_mmap,
2786 .poll = drm_poll,
2787 .read = drm_read,
2788 .compat_ioctl = i915_compat_ioctl,
2789 .llseek = noop_llseek,
2790 };
2791
2792 static int
i915_gem_reject_pin_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2793 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2794 struct drm_file *file)
2795 {
2796 return -ENODEV;
2797 }
2798
2799 static const struct drm_ioctl_desc i915_ioctls[] = {
2800 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2801 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2802 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2803 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2804 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2805 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2806 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_RENDER_ALLOW),
2807 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2808 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2809 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2810 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2811 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2812 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2813 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2814 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2815 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2816 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2817 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2818 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
2819 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_RENDER_ALLOW),
2820 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2821 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2822 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_RENDER_ALLOW),
2823 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2824 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2825 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_RENDER_ALLOW),
2826 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2827 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2828 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2829 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2830 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2831 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2832 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2833 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2834 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2835 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2836 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2837 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2838 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
2839 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2840 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
2841 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
2842 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
2843 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
2844 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_RENDER_ALLOW),
2845 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE_EXT, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2846 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2847 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2848 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2849 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2850 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2851 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2852 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2853 DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_RENDER_ALLOW),
2854 DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_RENDER_ALLOW),
2855 DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_RENDER_ALLOW),
2856 DRM_IOCTL_DEF_DRV(I915_GEM_VM_CREATE, i915_gem_vm_create_ioctl, DRM_RENDER_ALLOW),
2857 DRM_IOCTL_DEF_DRV(I915_GEM_VM_DESTROY, i915_gem_vm_destroy_ioctl, DRM_RENDER_ALLOW),
2858 };
2859
2860 static struct drm_driver driver = {
2861 /* Don't use MTRRs here; the Xserver or userspace app should
2862 * deal with them for Intel hardware.
2863 */
2864 .driver_features =
2865 DRIVER_GEM |
2866 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2867 .release = i915_driver_release,
2868 .open = i915_driver_open,
2869 .lastclose = i915_driver_lastclose,
2870 .postclose = i915_driver_postclose,
2871
2872 .gem_close_object = i915_gem_close_object,
2873 .gem_free_object_unlocked = i915_gem_free_object,
2874 .gem_vm_ops = &i915_gem_vm_ops,
2875
2876 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2877 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2878 .gem_prime_export = i915_gem_prime_export,
2879 .gem_prime_import = i915_gem_prime_import,
2880
2881 .get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos,
2882 .get_scanout_position = i915_get_crtc_scanoutpos,
2883
2884 .dumb_create = i915_gem_dumb_create,
2885 .dumb_map_offset = i915_gem_mmap_gtt,
2886 .ioctls = i915_ioctls,
2887 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2888 .fops = &i915_driver_fops,
2889 .name = DRIVER_NAME,
2890 .desc = DRIVER_DESC,
2891 .date = DRIVER_DATE,
2892 .major = DRIVER_MAJOR,
2893 .minor = DRIVER_MINOR,
2894 .patchlevel = DRIVER_PATCHLEVEL,
2895 };
2896
2897 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2898 #include "selftests/mock_drm.c"
2899 #endif
2900