1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
4  */
5 #include <crypto/internal/aead.h>
6 #include <crypto/aes.h>
7 #include <crypto/algapi.h>
8 #include <crypto/authenc.h>
9 #include <crypto/internal/des.h>
10 #include <crypto/md5.h>
11 #include <crypto/sha.h>
12 #include <crypto/internal/skcipher.h>
13 #include <linux/clk.h>
14 #include <linux/crypto.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmapool.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/scatterlist.h>
29 #include <linux/sched.h>
30 #include <linux/sizes.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 
34 #include "picoxcell_crypto_regs.h"
35 
36 /*
37  * The threshold for the number of entries in the CMD FIFO available before
38  * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
39  * number of interrupts raised to the CPU.
40  */
41 #define CMD0_IRQ_THRESHOLD   1
42 
43 /*
44  * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
45  * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
46  * When there are packets in flight but lower than the threshold, we enable
47  * the timer and at expiry, attempt to remove any processed packets from the
48  * queue and if there are still packets left, schedule the timer again.
49  */
50 #define PACKET_TIMEOUT	    1
51 
52 /* The priority to register each algorithm with. */
53 #define SPACC_CRYPTO_ALG_PRIORITY	10000
54 
55 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN	16
56 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
57 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ	64
58 #define SPACC_CRYPTO_IPSEC_MAX_CTXS	32
59 #define SPACC_CRYPTO_IPSEC_FIFO_SZ	32
60 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ	64
61 #define SPACC_CRYPTO_L2_HASH_PG_SZ	64
62 #define SPACC_CRYPTO_L2_MAX_CTXS	128
63 #define SPACC_CRYPTO_L2_FIFO_SZ		128
64 
65 #define MAX_DDT_LEN			16
66 
67 /* DDT format. This must match the hardware DDT format exactly. */
68 struct spacc_ddt {
69 	dma_addr_t	p;
70 	u32		len;
71 };
72 
73 /*
74  * Asynchronous crypto request structure.
75  *
76  * This structure defines a request that is either queued for processing or
77  * being processed.
78  */
79 struct spacc_req {
80 	struct list_head		list;
81 	struct spacc_engine		*engine;
82 	struct crypto_async_request	*req;
83 	int				result;
84 	bool				is_encrypt;
85 	unsigned			ctx_id;
86 	dma_addr_t			src_addr, dst_addr;
87 	struct spacc_ddt		*src_ddt, *dst_ddt;
88 	void				(*complete)(struct spacc_req *req);
89 };
90 
91 struct spacc_aead {
92 	unsigned long			ctrl_default;
93 	unsigned long			type;
94 	struct aead_alg			alg;
95 	struct spacc_engine		*engine;
96 	struct list_head		entry;
97 	int				key_offs;
98 	int				iv_offs;
99 };
100 
101 struct spacc_engine {
102 	void __iomem			*regs;
103 	struct list_head		pending;
104 	int				next_ctx;
105 	spinlock_t			hw_lock;
106 	int				in_flight;
107 	struct list_head		completed;
108 	struct list_head		in_progress;
109 	struct tasklet_struct		complete;
110 	unsigned long			fifo_sz;
111 	void __iomem			*cipher_ctx_base;
112 	void __iomem			*hash_key_base;
113 	struct spacc_alg		*algs;
114 	unsigned			num_algs;
115 	struct list_head		registered_algs;
116 	struct spacc_aead		*aeads;
117 	unsigned			num_aeads;
118 	struct list_head		registered_aeads;
119 	size_t				cipher_pg_sz;
120 	size_t				hash_pg_sz;
121 	const char			*name;
122 	struct clk			*clk;
123 	struct device			*dev;
124 	unsigned			max_ctxs;
125 	struct timer_list		packet_timeout;
126 	unsigned			stat_irq_thresh;
127 	struct dma_pool			*req_pool;
128 };
129 
130 /* Algorithm type mask. */
131 #define SPACC_CRYPTO_ALG_MASK		0x7
132 
133 /* SPACC definition of a crypto algorithm. */
134 struct spacc_alg {
135 	unsigned long			ctrl_default;
136 	unsigned long			type;
137 	struct crypto_alg		alg;
138 	struct spacc_engine		*engine;
139 	struct list_head		entry;
140 	int				key_offs;
141 	int				iv_offs;
142 };
143 
144 /* Generic context structure for any algorithm type. */
145 struct spacc_generic_ctx {
146 	struct spacc_engine		*engine;
147 	int				flags;
148 	int				key_offs;
149 	int				iv_offs;
150 };
151 
152 /* Block cipher context. */
153 struct spacc_ablk_ctx {
154 	struct spacc_generic_ctx	generic;
155 	u8				key[AES_MAX_KEY_SIZE];
156 	u8				key_len;
157 	/*
158 	 * The fallback cipher. If the operation can't be done in hardware,
159 	 * fallback to a software version.
160 	 */
161 	struct crypto_sync_skcipher	*sw_cipher;
162 };
163 
164 /* AEAD cipher context. */
165 struct spacc_aead_ctx {
166 	struct spacc_generic_ctx	generic;
167 	u8				cipher_key[AES_MAX_KEY_SIZE];
168 	u8				hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
169 	u8				cipher_key_len;
170 	u8				hash_key_len;
171 	struct crypto_aead		*sw_cipher;
172 };
173 
174 static int spacc_ablk_submit(struct spacc_req *req);
175 
to_spacc_alg(struct crypto_alg * alg)176 static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
177 {
178 	return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
179 }
180 
to_spacc_aead(struct aead_alg * alg)181 static inline struct spacc_aead *to_spacc_aead(struct aead_alg *alg)
182 {
183 	return container_of(alg, struct spacc_aead, alg);
184 }
185 
spacc_fifo_cmd_full(struct spacc_engine * engine)186 static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
187 {
188 	u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
189 
190 	return fifo_stat & SPA_FIFO_CMD_FULL;
191 }
192 
193 /*
194  * Given a cipher context, and a context number, get the base address of the
195  * context page.
196  *
197  * Returns the address of the context page where the key/context may
198  * be written.
199  */
spacc_ctx_page_addr(struct spacc_generic_ctx * ctx,unsigned indx,bool is_cipher_ctx)200 static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
201 						unsigned indx,
202 						bool is_cipher_ctx)
203 {
204 	return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
205 			(indx * ctx->engine->cipher_pg_sz) :
206 		ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
207 }
208 
209 /* The context pages can only be written with 32-bit accesses. */
memcpy_toio32(u32 __iomem * dst,const void * src,unsigned count)210 static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
211 				 unsigned count)
212 {
213 	const u32 *src32 = (const u32 *) src;
214 
215 	while (count--)
216 		writel(*src32++, dst++);
217 }
218 
spacc_cipher_write_ctx(struct spacc_generic_ctx * ctx,void __iomem * page_addr,const u8 * key,size_t key_len,const u8 * iv,size_t iv_len)219 static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
220 				   void __iomem *page_addr, const u8 *key,
221 				   size_t key_len, const u8 *iv, size_t iv_len)
222 {
223 	void __iomem *key_ptr = page_addr + ctx->key_offs;
224 	void __iomem *iv_ptr = page_addr + ctx->iv_offs;
225 
226 	memcpy_toio32(key_ptr, key, key_len / 4);
227 	memcpy_toio32(iv_ptr, iv, iv_len / 4);
228 }
229 
230 /*
231  * Load a context into the engines context memory.
232  *
233  * Returns the index of the context page where the context was loaded.
234  */
spacc_load_ctx(struct spacc_generic_ctx * ctx,const u8 * ciph_key,size_t ciph_len,const u8 * iv,size_t ivlen,const u8 * hash_key,size_t hash_len)235 static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
236 			       const u8 *ciph_key, size_t ciph_len,
237 			       const u8 *iv, size_t ivlen, const u8 *hash_key,
238 			       size_t hash_len)
239 {
240 	unsigned indx = ctx->engine->next_ctx++;
241 	void __iomem *ciph_page_addr, *hash_page_addr;
242 
243 	ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
244 	hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
245 
246 	ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
247 	spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
248 			       ivlen);
249 	writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
250 	       (1 << SPA_KEY_SZ_CIPHER_OFFSET),
251 	       ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
252 
253 	if (hash_key) {
254 		memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
255 		writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
256 		       ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
257 	}
258 
259 	return indx;
260 }
261 
ddt_set(struct spacc_ddt * ddt,dma_addr_t phys,size_t len)262 static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
263 {
264 	ddt->p = phys;
265 	ddt->len = len;
266 }
267 
268 /*
269  * Take a crypto request and scatterlists for the data and turn them into DDTs
270  * for passing to the crypto engines. This also DMA maps the data so that the
271  * crypto engines can DMA to/from them.
272  */
spacc_sg_to_ddt(struct spacc_engine * engine,struct scatterlist * payload,unsigned nbytes,enum dma_data_direction dir,dma_addr_t * ddt_phys)273 static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
274 					 struct scatterlist *payload,
275 					 unsigned nbytes,
276 					 enum dma_data_direction dir,
277 					 dma_addr_t *ddt_phys)
278 {
279 	unsigned mapped_ents;
280 	struct scatterlist *cur;
281 	struct spacc_ddt *ddt;
282 	int i;
283 	int nents;
284 
285 	nents = sg_nents_for_len(payload, nbytes);
286 	if (nents < 0) {
287 		dev_err(engine->dev, "Invalid numbers of SG.\n");
288 		return NULL;
289 	}
290 	mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
291 
292 	if (mapped_ents + 1 > MAX_DDT_LEN)
293 		goto out;
294 
295 	ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
296 	if (!ddt)
297 		goto out;
298 
299 	for_each_sg(payload, cur, mapped_ents, i)
300 		ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
301 	ddt_set(&ddt[mapped_ents], 0, 0);
302 
303 	return ddt;
304 
305 out:
306 	dma_unmap_sg(engine->dev, payload, nents, dir);
307 	return NULL;
308 }
309 
spacc_aead_make_ddts(struct aead_request * areq)310 static int spacc_aead_make_ddts(struct aead_request *areq)
311 {
312 	struct crypto_aead *aead = crypto_aead_reqtfm(areq);
313 	struct spacc_req *req = aead_request_ctx(areq);
314 	struct spacc_engine *engine = req->engine;
315 	struct spacc_ddt *src_ddt, *dst_ddt;
316 	unsigned total;
317 	int src_nents, dst_nents;
318 	struct scatterlist *cur;
319 	int i, dst_ents, src_ents;
320 
321 	total = areq->assoclen + areq->cryptlen;
322 	if (req->is_encrypt)
323 		total += crypto_aead_authsize(aead);
324 
325 	src_nents = sg_nents_for_len(areq->src, total);
326 	if (src_nents < 0) {
327 		dev_err(engine->dev, "Invalid numbers of src SG.\n");
328 		return src_nents;
329 	}
330 	if (src_nents + 1 > MAX_DDT_LEN)
331 		return -E2BIG;
332 
333 	dst_nents = 0;
334 	if (areq->src != areq->dst) {
335 		dst_nents = sg_nents_for_len(areq->dst, total);
336 		if (dst_nents < 0) {
337 			dev_err(engine->dev, "Invalid numbers of dst SG.\n");
338 			return dst_nents;
339 		}
340 		if (src_nents + 1 > MAX_DDT_LEN)
341 			return -E2BIG;
342 	}
343 
344 	src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
345 	if (!src_ddt)
346 		goto err;
347 
348 	dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
349 	if (!dst_ddt)
350 		goto err_free_src;
351 
352 	req->src_ddt = src_ddt;
353 	req->dst_ddt = dst_ddt;
354 
355 	if (dst_nents) {
356 		src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
357 				      DMA_TO_DEVICE);
358 		if (!src_ents)
359 			goto err_free_dst;
360 
361 		dst_ents = dma_map_sg(engine->dev, areq->dst, dst_nents,
362 				      DMA_FROM_DEVICE);
363 
364 		if (!dst_ents) {
365 			dma_unmap_sg(engine->dev, areq->src, src_nents,
366 				     DMA_TO_DEVICE);
367 			goto err_free_dst;
368 		}
369 	} else {
370 		src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
371 				      DMA_BIDIRECTIONAL);
372 		if (!src_ents)
373 			goto err_free_dst;
374 		dst_ents = src_ents;
375 	}
376 
377 	/*
378 	 * Now map in the payload for the source and destination and terminate
379 	 * with the NULL pointers.
380 	 */
381 	for_each_sg(areq->src, cur, src_ents, i)
382 		ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
383 
384 	/* For decryption we need to skip the associated data. */
385 	total = req->is_encrypt ? 0 : areq->assoclen;
386 	for_each_sg(areq->dst, cur, dst_ents, i) {
387 		unsigned len = sg_dma_len(cur);
388 
389 		if (len <= total) {
390 			total -= len;
391 			continue;
392 		}
393 
394 		ddt_set(dst_ddt++, sg_dma_address(cur) + total, len - total);
395 	}
396 
397 	ddt_set(src_ddt, 0, 0);
398 	ddt_set(dst_ddt, 0, 0);
399 
400 	return 0;
401 
402 err_free_dst:
403 	dma_pool_free(engine->req_pool, dst_ddt, req->dst_addr);
404 err_free_src:
405 	dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
406 err:
407 	return -ENOMEM;
408 }
409 
spacc_aead_free_ddts(struct spacc_req * req)410 static void spacc_aead_free_ddts(struct spacc_req *req)
411 {
412 	struct aead_request *areq = container_of(req->req, struct aead_request,
413 						 base);
414 	struct crypto_aead *aead = crypto_aead_reqtfm(areq);
415 	unsigned total = areq->assoclen + areq->cryptlen +
416 			 (req->is_encrypt ? crypto_aead_authsize(aead) : 0);
417 	struct spacc_aead_ctx *aead_ctx = crypto_aead_ctx(aead);
418 	struct spacc_engine *engine = aead_ctx->generic.engine;
419 	int nents = sg_nents_for_len(areq->src, total);
420 
421 	/* sg_nents_for_len should not fail since it works when mapping sg */
422 	if (unlikely(nents < 0)) {
423 		dev_err(engine->dev, "Invalid numbers of src SG.\n");
424 		return;
425 	}
426 
427 	if (areq->src != areq->dst) {
428 		dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
429 		nents = sg_nents_for_len(areq->dst, total);
430 		if (unlikely(nents < 0)) {
431 			dev_err(engine->dev, "Invalid numbers of dst SG.\n");
432 			return;
433 		}
434 		dma_unmap_sg(engine->dev, areq->dst, nents, DMA_FROM_DEVICE);
435 	} else
436 		dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
437 
438 	dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
439 	dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
440 }
441 
spacc_free_ddt(struct spacc_req * req,struct spacc_ddt * ddt,dma_addr_t ddt_addr,struct scatterlist * payload,unsigned nbytes,enum dma_data_direction dir)442 static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
443 			   dma_addr_t ddt_addr, struct scatterlist *payload,
444 			   unsigned nbytes, enum dma_data_direction dir)
445 {
446 	int nents = sg_nents_for_len(payload, nbytes);
447 
448 	if (nents < 0) {
449 		dev_err(req->engine->dev, "Invalid numbers of SG.\n");
450 		return;
451 	}
452 
453 	dma_unmap_sg(req->engine->dev, payload, nents, dir);
454 	dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
455 }
456 
spacc_aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)457 static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
458 			     unsigned int keylen)
459 {
460 	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
461 	struct crypto_authenc_keys keys;
462 	int err;
463 
464 	crypto_aead_clear_flags(ctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
465 	crypto_aead_set_flags(ctx->sw_cipher, crypto_aead_get_flags(tfm) &
466 					      CRYPTO_TFM_REQ_MASK);
467 	err = crypto_aead_setkey(ctx->sw_cipher, key, keylen);
468 	crypto_aead_clear_flags(tfm, CRYPTO_TFM_RES_MASK);
469 	crypto_aead_set_flags(tfm, crypto_aead_get_flags(ctx->sw_cipher) &
470 				   CRYPTO_TFM_RES_MASK);
471 	if (err)
472 		return err;
473 
474 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
475 		goto badkey;
476 
477 	if (keys.enckeylen > AES_MAX_KEY_SIZE)
478 		goto badkey;
479 
480 	if (keys.authkeylen > sizeof(ctx->hash_ctx))
481 		goto badkey;
482 
483 	memcpy(ctx->cipher_key, keys.enckey, keys.enckeylen);
484 	ctx->cipher_key_len = keys.enckeylen;
485 
486 	memcpy(ctx->hash_ctx, keys.authkey, keys.authkeylen);
487 	ctx->hash_key_len = keys.authkeylen;
488 
489 	memzero_explicit(&keys, sizeof(keys));
490 	return 0;
491 
492 badkey:
493 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
494 	memzero_explicit(&keys, sizeof(keys));
495 	return -EINVAL;
496 }
497 
spacc_aead_setauthsize(struct crypto_aead * tfm,unsigned int authsize)498 static int spacc_aead_setauthsize(struct crypto_aead *tfm,
499 				  unsigned int authsize)
500 {
501 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
502 
503 	return crypto_aead_setauthsize(ctx->sw_cipher, authsize);
504 }
505 
506 /*
507  * Check if an AEAD request requires a fallback operation. Some requests can't
508  * be completed in hardware because the hardware may not support certain key
509  * sizes. In these cases we need to complete the request in software.
510  */
spacc_aead_need_fallback(struct aead_request * aead_req)511 static int spacc_aead_need_fallback(struct aead_request *aead_req)
512 {
513 	struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
514 	struct aead_alg *alg = crypto_aead_alg(aead);
515 	struct spacc_aead *spacc_alg = to_spacc_aead(alg);
516 	struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
517 
518 	/*
519 	 * If we have a non-supported key-length, then we need to do a
520 	 * software fallback.
521 	 */
522 	if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
523 	    SPA_CTRL_CIPH_ALG_AES &&
524 	    ctx->cipher_key_len != AES_KEYSIZE_128 &&
525 	    ctx->cipher_key_len != AES_KEYSIZE_256)
526 		return 1;
527 
528 	return 0;
529 }
530 
spacc_aead_do_fallback(struct aead_request * req,unsigned alg_type,bool is_encrypt)531 static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
532 				  bool is_encrypt)
533 {
534 	struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
535 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
536 	struct aead_request *subreq = aead_request_ctx(req);
537 
538 	aead_request_set_tfm(subreq, ctx->sw_cipher);
539 	aead_request_set_callback(subreq, req->base.flags,
540 				  req->base.complete, req->base.data);
541 	aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
542 			       req->iv);
543 	aead_request_set_ad(subreq, req->assoclen);
544 
545 	return is_encrypt ? crypto_aead_encrypt(subreq) :
546 			    crypto_aead_decrypt(subreq);
547 }
548 
spacc_aead_complete(struct spacc_req * req)549 static void spacc_aead_complete(struct spacc_req *req)
550 {
551 	spacc_aead_free_ddts(req);
552 	req->req->complete(req->req, req->result);
553 }
554 
spacc_aead_submit(struct spacc_req * req)555 static int spacc_aead_submit(struct spacc_req *req)
556 {
557 	struct aead_request *aead_req =
558 		container_of(req->req, struct aead_request, base);
559 	struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
560 	unsigned int authsize = crypto_aead_authsize(aead);
561 	struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
562 	struct aead_alg *alg = crypto_aead_alg(aead);
563 	struct spacc_aead *spacc_alg = to_spacc_aead(alg);
564 	struct spacc_engine *engine = ctx->generic.engine;
565 	u32 ctrl, proc_len, assoc_len;
566 
567 	req->result = -EINPROGRESS;
568 	req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
569 		ctx->cipher_key_len, aead_req->iv, crypto_aead_ivsize(aead),
570 		ctx->hash_ctx, ctx->hash_key_len);
571 
572 	/* Set the source and destination DDT pointers. */
573 	writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
574 	writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
575 	writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
576 
577 	assoc_len = aead_req->assoclen;
578 	proc_len = aead_req->cryptlen + assoc_len;
579 
580 	/*
581 	 * If we are decrypting, we need to take the length of the ICV out of
582 	 * the processing length.
583 	 */
584 	if (!req->is_encrypt)
585 		proc_len -= authsize;
586 
587 	writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
588 	writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
589 	writel(authsize, engine->regs + SPA_ICV_LEN_REG_OFFSET);
590 	writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
591 	writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
592 
593 	ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
594 		(1 << SPA_CTRL_ICV_APPEND);
595 	if (req->is_encrypt)
596 		ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
597 	else
598 		ctrl |= (1 << SPA_CTRL_KEY_EXP);
599 
600 	mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
601 
602 	writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
603 
604 	return -EINPROGRESS;
605 }
606 
607 static int spacc_req_submit(struct spacc_req *req);
608 
spacc_push(struct spacc_engine * engine)609 static void spacc_push(struct spacc_engine *engine)
610 {
611 	struct spacc_req *req;
612 
613 	while (!list_empty(&engine->pending) &&
614 	       engine->in_flight + 1 <= engine->fifo_sz) {
615 
616 		++engine->in_flight;
617 		req = list_first_entry(&engine->pending, struct spacc_req,
618 				       list);
619 		list_move_tail(&req->list, &engine->in_progress);
620 
621 		req->result = spacc_req_submit(req);
622 	}
623 }
624 
625 /*
626  * Setup an AEAD request for processing. This will configure the engine, load
627  * the context and then start the packet processing.
628  */
spacc_aead_setup(struct aead_request * req,unsigned alg_type,bool is_encrypt)629 static int spacc_aead_setup(struct aead_request *req,
630 			    unsigned alg_type, bool is_encrypt)
631 {
632 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
633 	struct aead_alg *alg = crypto_aead_alg(aead);
634 	struct spacc_engine *engine = to_spacc_aead(alg)->engine;
635 	struct spacc_req *dev_req = aead_request_ctx(req);
636 	int err;
637 	unsigned long flags;
638 
639 	dev_req->req		= &req->base;
640 	dev_req->is_encrypt	= is_encrypt;
641 	dev_req->result		= -EBUSY;
642 	dev_req->engine		= engine;
643 	dev_req->complete	= spacc_aead_complete;
644 
645 	if (unlikely(spacc_aead_need_fallback(req) ||
646 		     ((err = spacc_aead_make_ddts(req)) == -E2BIG)))
647 		return spacc_aead_do_fallback(req, alg_type, is_encrypt);
648 
649 	if (err)
650 		goto out;
651 
652 	err = -EINPROGRESS;
653 	spin_lock_irqsave(&engine->hw_lock, flags);
654 	if (unlikely(spacc_fifo_cmd_full(engine)) ||
655 	    engine->in_flight + 1 > engine->fifo_sz) {
656 		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
657 			err = -EBUSY;
658 			spin_unlock_irqrestore(&engine->hw_lock, flags);
659 			goto out_free_ddts;
660 		}
661 		list_add_tail(&dev_req->list, &engine->pending);
662 	} else {
663 		list_add_tail(&dev_req->list, &engine->pending);
664 		spacc_push(engine);
665 	}
666 	spin_unlock_irqrestore(&engine->hw_lock, flags);
667 
668 	goto out;
669 
670 out_free_ddts:
671 	spacc_aead_free_ddts(dev_req);
672 out:
673 	return err;
674 }
675 
spacc_aead_encrypt(struct aead_request * req)676 static int spacc_aead_encrypt(struct aead_request *req)
677 {
678 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
679 	struct spacc_aead *alg = to_spacc_aead(crypto_aead_alg(aead));
680 
681 	return spacc_aead_setup(req, alg->type, 1);
682 }
683 
spacc_aead_decrypt(struct aead_request * req)684 static int spacc_aead_decrypt(struct aead_request *req)
685 {
686 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
687 	struct spacc_aead  *alg = to_spacc_aead(crypto_aead_alg(aead));
688 
689 	return spacc_aead_setup(req, alg->type, 0);
690 }
691 
692 /*
693  * Initialise a new AEAD context. This is responsible for allocating the
694  * fallback cipher and initialising the context.
695  */
spacc_aead_cra_init(struct crypto_aead * tfm)696 static int spacc_aead_cra_init(struct crypto_aead *tfm)
697 {
698 	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
699 	struct aead_alg *alg = crypto_aead_alg(tfm);
700 	struct spacc_aead *spacc_alg = to_spacc_aead(alg);
701 	struct spacc_engine *engine = spacc_alg->engine;
702 
703 	ctx->generic.flags = spacc_alg->type;
704 	ctx->generic.engine = engine;
705 	ctx->sw_cipher = crypto_alloc_aead(alg->base.cra_name, 0,
706 					   CRYPTO_ALG_NEED_FALLBACK);
707 	if (IS_ERR(ctx->sw_cipher))
708 		return PTR_ERR(ctx->sw_cipher);
709 	ctx->generic.key_offs = spacc_alg->key_offs;
710 	ctx->generic.iv_offs = spacc_alg->iv_offs;
711 
712 	crypto_aead_set_reqsize(
713 		tfm,
714 		max(sizeof(struct spacc_req),
715 		    sizeof(struct aead_request) +
716 		    crypto_aead_reqsize(ctx->sw_cipher)));
717 
718 	return 0;
719 }
720 
721 /*
722  * Destructor for an AEAD context. This is called when the transform is freed
723  * and must free the fallback cipher.
724  */
spacc_aead_cra_exit(struct crypto_aead * tfm)725 static void spacc_aead_cra_exit(struct crypto_aead *tfm)
726 {
727 	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
728 
729 	crypto_free_aead(ctx->sw_cipher);
730 }
731 
732 /*
733  * Set the DES key for a block cipher transform. This also performs weak key
734  * checking if the transform has requested it.
735  */
spacc_des_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int len)736 static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
737 			    unsigned int len)
738 {
739 	struct spacc_ablk_ctx *ctx = crypto_ablkcipher_ctx(cipher);
740 	int err;
741 
742 	err = verify_ablkcipher_des_key(cipher, key);
743 	if (err)
744 		return err;
745 
746 	memcpy(ctx->key, key, len);
747 	ctx->key_len = len;
748 
749 	return 0;
750 }
751 
752 /*
753  * Set the 3DES key for a block cipher transform. This also performs weak key
754  * checking if the transform has requested it.
755  */
spacc_des3_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int len)756 static int spacc_des3_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
757 			     unsigned int len)
758 {
759 	struct spacc_ablk_ctx *ctx = crypto_ablkcipher_ctx(cipher);
760 	int err;
761 
762 	err = verify_ablkcipher_des3_key(cipher, key);
763 	if (err)
764 		return err;
765 
766 	memcpy(ctx->key, key, len);
767 	ctx->key_len = len;
768 
769 	return 0;
770 }
771 
772 /*
773  * Set the key for an AES block cipher. Some key lengths are not supported in
774  * hardware so this must also check whether a fallback is needed.
775  */
spacc_aes_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int len)776 static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
777 			    unsigned int len)
778 {
779 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
780 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
781 	int err = 0;
782 
783 	if (len > AES_MAX_KEY_SIZE) {
784 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
785 		return -EINVAL;
786 	}
787 
788 	/*
789 	 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
790 	 * request for any other size (192 bits) then we need to do a software
791 	 * fallback.
792 	 */
793 	if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
794 		if (!ctx->sw_cipher)
795 			return -EINVAL;
796 
797 		/*
798 		 * Set the fallback transform to use the same request flags as
799 		 * the hardware transform.
800 		 */
801 		crypto_sync_skcipher_clear_flags(ctx->sw_cipher,
802 					    CRYPTO_TFM_REQ_MASK);
803 		crypto_sync_skcipher_set_flags(ctx->sw_cipher,
804 					  cipher->base.crt_flags &
805 					  CRYPTO_TFM_REQ_MASK);
806 
807 		err = crypto_sync_skcipher_setkey(ctx->sw_cipher, key, len);
808 
809 		tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
810 		tfm->crt_flags |=
811 			crypto_sync_skcipher_get_flags(ctx->sw_cipher) &
812 			CRYPTO_TFM_RES_MASK;
813 
814 		if (err)
815 			goto sw_setkey_failed;
816 	}
817 
818 	memcpy(ctx->key, key, len);
819 	ctx->key_len = len;
820 
821 sw_setkey_failed:
822 	return err;
823 }
824 
spacc_kasumi_f8_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int len)825 static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
826 				  const u8 *key, unsigned int len)
827 {
828 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
829 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
830 	int err = 0;
831 
832 	if (len > AES_MAX_KEY_SIZE) {
833 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
834 		err = -EINVAL;
835 		goto out;
836 	}
837 
838 	memcpy(ctx->key, key, len);
839 	ctx->key_len = len;
840 
841 out:
842 	return err;
843 }
844 
spacc_ablk_need_fallback(struct spacc_req * req)845 static int spacc_ablk_need_fallback(struct spacc_req *req)
846 {
847 	struct spacc_ablk_ctx *ctx;
848 	struct crypto_tfm *tfm = req->req->tfm;
849 	struct crypto_alg *alg = req->req->tfm->__crt_alg;
850 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
851 
852 	ctx = crypto_tfm_ctx(tfm);
853 
854 	return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
855 			SPA_CTRL_CIPH_ALG_AES &&
856 			ctx->key_len != AES_KEYSIZE_128 &&
857 			ctx->key_len != AES_KEYSIZE_256;
858 }
859 
spacc_ablk_complete(struct spacc_req * req)860 static void spacc_ablk_complete(struct spacc_req *req)
861 {
862 	struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
863 
864 	if (ablk_req->src != ablk_req->dst) {
865 		spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
866 			       ablk_req->nbytes, DMA_TO_DEVICE);
867 		spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
868 			       ablk_req->nbytes, DMA_FROM_DEVICE);
869 	} else
870 		spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
871 			       ablk_req->nbytes, DMA_BIDIRECTIONAL);
872 
873 	req->req->complete(req->req, req->result);
874 }
875 
spacc_ablk_submit(struct spacc_req * req)876 static int spacc_ablk_submit(struct spacc_req *req)
877 {
878 	struct crypto_tfm *tfm = req->req->tfm;
879 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
880 	struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
881 	struct crypto_alg *alg = req->req->tfm->__crt_alg;
882 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
883 	struct spacc_engine *engine = ctx->generic.engine;
884 	u32 ctrl;
885 
886 	req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
887 		ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
888 		NULL, 0);
889 
890 	writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
891 	writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
892 	writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
893 
894 	writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
895 	writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
896 	writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
897 	writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
898 
899 	ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
900 		(req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
901 		 (1 << SPA_CTRL_KEY_EXP));
902 
903 	mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
904 
905 	writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
906 
907 	return -EINPROGRESS;
908 }
909 
spacc_ablk_do_fallback(struct ablkcipher_request * req,unsigned alg_type,bool is_encrypt)910 static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
911 				  unsigned alg_type, bool is_encrypt)
912 {
913 	struct crypto_tfm *old_tfm =
914 	    crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
915 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
916 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->sw_cipher);
917 	int err;
918 
919 	/*
920 	 * Change the request to use the software fallback transform, and once
921 	 * the ciphering has completed, put the old transform back into the
922 	 * request.
923 	 */
924 	skcipher_request_set_sync_tfm(subreq, ctx->sw_cipher);
925 	skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL);
926 	skcipher_request_set_crypt(subreq, req->src, req->dst,
927 				   req->nbytes, req->info);
928 	err = is_encrypt ? crypto_skcipher_encrypt(subreq) :
929 			   crypto_skcipher_decrypt(subreq);
930 	skcipher_request_zero(subreq);
931 
932 	return err;
933 }
934 
spacc_ablk_setup(struct ablkcipher_request * req,unsigned alg_type,bool is_encrypt)935 static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
936 			    bool is_encrypt)
937 {
938 	struct crypto_alg *alg = req->base.tfm->__crt_alg;
939 	struct spacc_engine *engine = to_spacc_alg(alg)->engine;
940 	struct spacc_req *dev_req = ablkcipher_request_ctx(req);
941 	unsigned long flags;
942 	int err = -ENOMEM;
943 
944 	dev_req->req		= &req->base;
945 	dev_req->is_encrypt	= is_encrypt;
946 	dev_req->engine		= engine;
947 	dev_req->complete	= spacc_ablk_complete;
948 	dev_req->result		= -EINPROGRESS;
949 
950 	if (unlikely(spacc_ablk_need_fallback(dev_req)))
951 		return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
952 
953 	/*
954 	 * Create the DDT's for the engine. If we share the same source and
955 	 * destination then we can optimize by reusing the DDT's.
956 	 */
957 	if (req->src != req->dst) {
958 		dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
959 			req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
960 		if (!dev_req->src_ddt)
961 			goto out;
962 
963 		dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
964 			req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
965 		if (!dev_req->dst_ddt)
966 			goto out_free_src;
967 	} else {
968 		dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
969 			req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
970 		if (!dev_req->dst_ddt)
971 			goto out;
972 
973 		dev_req->src_ddt = NULL;
974 		dev_req->src_addr = dev_req->dst_addr;
975 	}
976 
977 	err = -EINPROGRESS;
978 	spin_lock_irqsave(&engine->hw_lock, flags);
979 	/*
980 	 * Check if the engine will accept the operation now. If it won't then
981 	 * we either stick it on the end of a pending list if we can backlog,
982 	 * or bailout with an error if not.
983 	 */
984 	if (unlikely(spacc_fifo_cmd_full(engine)) ||
985 	    engine->in_flight + 1 > engine->fifo_sz) {
986 		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
987 			err = -EBUSY;
988 			spin_unlock_irqrestore(&engine->hw_lock, flags);
989 			goto out_free_ddts;
990 		}
991 		list_add_tail(&dev_req->list, &engine->pending);
992 	} else {
993 		list_add_tail(&dev_req->list, &engine->pending);
994 		spacc_push(engine);
995 	}
996 	spin_unlock_irqrestore(&engine->hw_lock, flags);
997 
998 	goto out;
999 
1000 out_free_ddts:
1001 	spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
1002 		       req->nbytes, req->src == req->dst ?
1003 		       DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1004 out_free_src:
1005 	if (req->src != req->dst)
1006 		spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1007 			       req->src, req->nbytes, DMA_TO_DEVICE);
1008 out:
1009 	return err;
1010 }
1011 
spacc_ablk_cra_init(struct crypto_tfm * tfm)1012 static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1013 {
1014 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1015 	struct crypto_alg *alg = tfm->__crt_alg;
1016 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1017 	struct spacc_engine *engine = spacc_alg->engine;
1018 
1019 	ctx->generic.flags = spacc_alg->type;
1020 	ctx->generic.engine = engine;
1021 	if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1022 		ctx->sw_cipher = crypto_alloc_sync_skcipher(
1023 			alg->cra_name, 0, CRYPTO_ALG_NEED_FALLBACK);
1024 		if (IS_ERR(ctx->sw_cipher)) {
1025 			dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1026 				 alg->cra_name);
1027 			return PTR_ERR(ctx->sw_cipher);
1028 		}
1029 	}
1030 	ctx->generic.key_offs = spacc_alg->key_offs;
1031 	ctx->generic.iv_offs = spacc_alg->iv_offs;
1032 
1033 	tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1034 
1035 	return 0;
1036 }
1037 
spacc_ablk_cra_exit(struct crypto_tfm * tfm)1038 static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1039 {
1040 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1041 
1042 	crypto_free_sync_skcipher(ctx->sw_cipher);
1043 }
1044 
spacc_ablk_encrypt(struct ablkcipher_request * req)1045 static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1046 {
1047 	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1048 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1049 	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1050 
1051 	return spacc_ablk_setup(req, alg->type, 1);
1052 }
1053 
spacc_ablk_decrypt(struct ablkcipher_request * req)1054 static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1055 {
1056 	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1057 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1058 	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1059 
1060 	return spacc_ablk_setup(req, alg->type, 0);
1061 }
1062 
spacc_fifo_stat_empty(struct spacc_engine * engine)1063 static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1064 {
1065 	return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1066 		SPA_FIFO_STAT_EMPTY;
1067 }
1068 
spacc_process_done(struct spacc_engine * engine)1069 static void spacc_process_done(struct spacc_engine *engine)
1070 {
1071 	struct spacc_req *req;
1072 	unsigned long flags;
1073 
1074 	spin_lock_irqsave(&engine->hw_lock, flags);
1075 
1076 	while (!spacc_fifo_stat_empty(engine)) {
1077 		req = list_first_entry(&engine->in_progress, struct spacc_req,
1078 				       list);
1079 		list_move_tail(&req->list, &engine->completed);
1080 		--engine->in_flight;
1081 
1082 		/* POP the status register. */
1083 		writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1084 		req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1085 		     SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1086 
1087 		/*
1088 		 * Convert the SPAcc error status into the standard POSIX error
1089 		 * codes.
1090 		 */
1091 		if (unlikely(req->result)) {
1092 			switch (req->result) {
1093 			case SPA_STATUS_ICV_FAIL:
1094 				req->result = -EBADMSG;
1095 				break;
1096 
1097 			case SPA_STATUS_MEMORY_ERROR:
1098 				dev_warn(engine->dev,
1099 					 "memory error triggered\n");
1100 				req->result = -EFAULT;
1101 				break;
1102 
1103 			case SPA_STATUS_BLOCK_ERROR:
1104 				dev_warn(engine->dev,
1105 					 "block error triggered\n");
1106 				req->result = -EIO;
1107 				break;
1108 			}
1109 		}
1110 	}
1111 
1112 	tasklet_schedule(&engine->complete);
1113 
1114 	spin_unlock_irqrestore(&engine->hw_lock, flags);
1115 }
1116 
spacc_spacc_irq(int irq,void * dev)1117 static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1118 {
1119 	struct spacc_engine *engine = (struct spacc_engine *)dev;
1120 	u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1121 
1122 	writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1123 	spacc_process_done(engine);
1124 
1125 	return IRQ_HANDLED;
1126 }
1127 
spacc_packet_timeout(struct timer_list * t)1128 static void spacc_packet_timeout(struct timer_list *t)
1129 {
1130 	struct spacc_engine *engine = from_timer(engine, t, packet_timeout);
1131 
1132 	spacc_process_done(engine);
1133 }
1134 
spacc_req_submit(struct spacc_req * req)1135 static int spacc_req_submit(struct spacc_req *req)
1136 {
1137 	struct crypto_alg *alg = req->req->tfm->__crt_alg;
1138 
1139 	if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1140 		return spacc_aead_submit(req);
1141 	else
1142 		return spacc_ablk_submit(req);
1143 }
1144 
spacc_spacc_complete(unsigned long data)1145 static void spacc_spacc_complete(unsigned long data)
1146 {
1147 	struct spacc_engine *engine = (struct spacc_engine *)data;
1148 	struct spacc_req *req, *tmp;
1149 	unsigned long flags;
1150 	LIST_HEAD(completed);
1151 
1152 	spin_lock_irqsave(&engine->hw_lock, flags);
1153 
1154 	list_splice_init(&engine->completed, &completed);
1155 	spacc_push(engine);
1156 	if (engine->in_flight)
1157 		mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1158 
1159 	spin_unlock_irqrestore(&engine->hw_lock, flags);
1160 
1161 	list_for_each_entry_safe(req, tmp, &completed, list) {
1162 		list_del(&req->list);
1163 		req->complete(req);
1164 	}
1165 }
1166 
1167 #ifdef CONFIG_PM
spacc_suspend(struct device * dev)1168 static int spacc_suspend(struct device *dev)
1169 {
1170 	struct spacc_engine *engine = dev_get_drvdata(dev);
1171 
1172 	/*
1173 	 * We only support standby mode. All we have to do is gate the clock to
1174 	 * the spacc. The hardware will preserve state until we turn it back
1175 	 * on again.
1176 	 */
1177 	clk_disable(engine->clk);
1178 
1179 	return 0;
1180 }
1181 
spacc_resume(struct device * dev)1182 static int spacc_resume(struct device *dev)
1183 {
1184 	struct spacc_engine *engine = dev_get_drvdata(dev);
1185 
1186 	return clk_enable(engine->clk);
1187 }
1188 
1189 static const struct dev_pm_ops spacc_pm_ops = {
1190 	.suspend	= spacc_suspend,
1191 	.resume		= spacc_resume,
1192 };
1193 #endif /* CONFIG_PM */
1194 
spacc_dev_to_engine(struct device * dev)1195 static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1196 {
1197 	return dev ? dev_get_drvdata(dev) : NULL;
1198 }
1199 
spacc_stat_irq_thresh_show(struct device * dev,struct device_attribute * attr,char * buf)1200 static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1201 					  struct device_attribute *attr,
1202 					  char *buf)
1203 {
1204 	struct spacc_engine *engine = spacc_dev_to_engine(dev);
1205 
1206 	return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1207 }
1208 
spacc_stat_irq_thresh_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1209 static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1210 					   struct device_attribute *attr,
1211 					   const char *buf, size_t len)
1212 {
1213 	struct spacc_engine *engine = spacc_dev_to_engine(dev);
1214 	unsigned long thresh;
1215 
1216 	if (kstrtoul(buf, 0, &thresh))
1217 		return -EINVAL;
1218 
1219 	thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1220 
1221 	engine->stat_irq_thresh = thresh;
1222 	writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1223 	       engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1224 
1225 	return len;
1226 }
1227 static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1228 		   spacc_stat_irq_thresh_store);
1229 
1230 static struct spacc_alg ipsec_engine_algs[] = {
1231 	{
1232 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1233 		.key_offs = 0,
1234 		.iv_offs = AES_MAX_KEY_SIZE,
1235 		.alg = {
1236 			.cra_name = "cbc(aes)",
1237 			.cra_driver_name = "cbc-aes-picoxcell",
1238 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1239 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1240 				     CRYPTO_ALG_KERN_DRIVER_ONLY |
1241 				     CRYPTO_ALG_ASYNC |
1242 				     CRYPTO_ALG_NEED_FALLBACK,
1243 			.cra_blocksize = AES_BLOCK_SIZE,
1244 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1245 			.cra_type = &crypto_ablkcipher_type,
1246 			.cra_module = THIS_MODULE,
1247 			.cra_ablkcipher = {
1248 				.setkey = spacc_aes_setkey,
1249 				.encrypt = spacc_ablk_encrypt,
1250 				.decrypt = spacc_ablk_decrypt,
1251 				.min_keysize = AES_MIN_KEY_SIZE,
1252 				.max_keysize = AES_MAX_KEY_SIZE,
1253 				.ivsize = AES_BLOCK_SIZE,
1254 			},
1255 			.cra_init = spacc_ablk_cra_init,
1256 			.cra_exit = spacc_ablk_cra_exit,
1257 		},
1258 	},
1259 	{
1260 		.key_offs = 0,
1261 		.iv_offs = AES_MAX_KEY_SIZE,
1262 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1263 		.alg = {
1264 			.cra_name = "ecb(aes)",
1265 			.cra_driver_name = "ecb-aes-picoxcell",
1266 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1267 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1268 				CRYPTO_ALG_KERN_DRIVER_ONLY |
1269 				CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1270 			.cra_blocksize = AES_BLOCK_SIZE,
1271 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1272 			.cra_type = &crypto_ablkcipher_type,
1273 			.cra_module = THIS_MODULE,
1274 			.cra_ablkcipher = {
1275 				.setkey = spacc_aes_setkey,
1276 				.encrypt = spacc_ablk_encrypt,
1277 				.decrypt = spacc_ablk_decrypt,
1278 				.min_keysize = AES_MIN_KEY_SIZE,
1279 				.max_keysize = AES_MAX_KEY_SIZE,
1280 			},
1281 			.cra_init = spacc_ablk_cra_init,
1282 			.cra_exit = spacc_ablk_cra_exit,
1283 		},
1284 	},
1285 	{
1286 		.key_offs = DES_BLOCK_SIZE,
1287 		.iv_offs = 0,
1288 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1289 		.alg = {
1290 			.cra_name = "cbc(des)",
1291 			.cra_driver_name = "cbc-des-picoxcell",
1292 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1293 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1294 					CRYPTO_ALG_ASYNC |
1295 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1296 			.cra_blocksize = DES_BLOCK_SIZE,
1297 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1298 			.cra_type = &crypto_ablkcipher_type,
1299 			.cra_module = THIS_MODULE,
1300 			.cra_ablkcipher = {
1301 				.setkey = spacc_des_setkey,
1302 				.encrypt = spacc_ablk_encrypt,
1303 				.decrypt = spacc_ablk_decrypt,
1304 				.min_keysize = DES_KEY_SIZE,
1305 				.max_keysize = DES_KEY_SIZE,
1306 				.ivsize = DES_BLOCK_SIZE,
1307 			},
1308 			.cra_init = spacc_ablk_cra_init,
1309 			.cra_exit = spacc_ablk_cra_exit,
1310 		},
1311 	},
1312 	{
1313 		.key_offs = DES_BLOCK_SIZE,
1314 		.iv_offs = 0,
1315 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1316 		.alg = {
1317 			.cra_name = "ecb(des)",
1318 			.cra_driver_name = "ecb-des-picoxcell",
1319 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1320 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1321 					CRYPTO_ALG_ASYNC |
1322 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1323 			.cra_blocksize = DES_BLOCK_SIZE,
1324 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1325 			.cra_type = &crypto_ablkcipher_type,
1326 			.cra_module = THIS_MODULE,
1327 			.cra_ablkcipher = {
1328 				.setkey = spacc_des_setkey,
1329 				.encrypt = spacc_ablk_encrypt,
1330 				.decrypt = spacc_ablk_decrypt,
1331 				.min_keysize = DES_KEY_SIZE,
1332 				.max_keysize = DES_KEY_SIZE,
1333 			},
1334 			.cra_init = spacc_ablk_cra_init,
1335 			.cra_exit = spacc_ablk_cra_exit,
1336 		},
1337 	},
1338 	{
1339 		.key_offs = DES_BLOCK_SIZE,
1340 		.iv_offs = 0,
1341 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1342 		.alg = {
1343 			.cra_name = "cbc(des3_ede)",
1344 			.cra_driver_name = "cbc-des3-ede-picoxcell",
1345 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1346 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1347 					CRYPTO_ALG_ASYNC |
1348 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1349 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1350 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1351 			.cra_type = &crypto_ablkcipher_type,
1352 			.cra_module = THIS_MODULE,
1353 			.cra_ablkcipher = {
1354 				.setkey = spacc_des3_setkey,
1355 				.encrypt = spacc_ablk_encrypt,
1356 				.decrypt = spacc_ablk_decrypt,
1357 				.min_keysize = DES3_EDE_KEY_SIZE,
1358 				.max_keysize = DES3_EDE_KEY_SIZE,
1359 				.ivsize = DES3_EDE_BLOCK_SIZE,
1360 			},
1361 			.cra_init = spacc_ablk_cra_init,
1362 			.cra_exit = spacc_ablk_cra_exit,
1363 		},
1364 	},
1365 	{
1366 		.key_offs = DES_BLOCK_SIZE,
1367 		.iv_offs = 0,
1368 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1369 		.alg = {
1370 			.cra_name = "ecb(des3_ede)",
1371 			.cra_driver_name = "ecb-des3-ede-picoxcell",
1372 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1373 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1374 					CRYPTO_ALG_ASYNC |
1375 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1376 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1377 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1378 			.cra_type = &crypto_ablkcipher_type,
1379 			.cra_module = THIS_MODULE,
1380 			.cra_ablkcipher = {
1381 				.setkey = spacc_des3_setkey,
1382 				.encrypt = spacc_ablk_encrypt,
1383 				.decrypt = spacc_ablk_decrypt,
1384 				.min_keysize = DES3_EDE_KEY_SIZE,
1385 				.max_keysize = DES3_EDE_KEY_SIZE,
1386 			},
1387 			.cra_init = spacc_ablk_cra_init,
1388 			.cra_exit = spacc_ablk_cra_exit,
1389 		},
1390 	},
1391 };
1392 
1393 static struct spacc_aead ipsec_engine_aeads[] = {
1394 	{
1395 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1396 				SPA_CTRL_CIPH_MODE_CBC |
1397 				SPA_CTRL_HASH_ALG_SHA |
1398 				SPA_CTRL_HASH_MODE_HMAC,
1399 		.key_offs = 0,
1400 		.iv_offs = AES_MAX_KEY_SIZE,
1401 		.alg = {
1402 			.base = {
1403 				.cra_name = "authenc(hmac(sha1),cbc(aes))",
1404 				.cra_driver_name = "authenc-hmac-sha1-"
1405 						   "cbc-aes-picoxcell",
1406 				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1407 				.cra_flags = CRYPTO_ALG_ASYNC |
1408 					     CRYPTO_ALG_NEED_FALLBACK |
1409 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1410 				.cra_blocksize = AES_BLOCK_SIZE,
1411 				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1412 				.cra_module = THIS_MODULE,
1413 			},
1414 			.setkey = spacc_aead_setkey,
1415 			.setauthsize = spacc_aead_setauthsize,
1416 			.encrypt = spacc_aead_encrypt,
1417 			.decrypt = spacc_aead_decrypt,
1418 			.ivsize = AES_BLOCK_SIZE,
1419 			.maxauthsize = SHA1_DIGEST_SIZE,
1420 			.init = spacc_aead_cra_init,
1421 			.exit = spacc_aead_cra_exit,
1422 		},
1423 	},
1424 	{
1425 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1426 				SPA_CTRL_CIPH_MODE_CBC |
1427 				SPA_CTRL_HASH_ALG_SHA256 |
1428 				SPA_CTRL_HASH_MODE_HMAC,
1429 		.key_offs = 0,
1430 		.iv_offs = AES_MAX_KEY_SIZE,
1431 		.alg = {
1432 			.base = {
1433 				.cra_name = "authenc(hmac(sha256),cbc(aes))",
1434 				.cra_driver_name = "authenc-hmac-sha256-"
1435 						   "cbc-aes-picoxcell",
1436 				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1437 				.cra_flags = CRYPTO_ALG_ASYNC |
1438 					     CRYPTO_ALG_NEED_FALLBACK |
1439 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1440 				.cra_blocksize = AES_BLOCK_SIZE,
1441 				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1442 				.cra_module = THIS_MODULE,
1443 			},
1444 			.setkey = spacc_aead_setkey,
1445 			.setauthsize = spacc_aead_setauthsize,
1446 			.encrypt = spacc_aead_encrypt,
1447 			.decrypt = spacc_aead_decrypt,
1448 			.ivsize = AES_BLOCK_SIZE,
1449 			.maxauthsize = SHA256_DIGEST_SIZE,
1450 			.init = spacc_aead_cra_init,
1451 			.exit = spacc_aead_cra_exit,
1452 		},
1453 	},
1454 	{
1455 		.key_offs = 0,
1456 		.iv_offs = AES_MAX_KEY_SIZE,
1457 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1458 				SPA_CTRL_CIPH_MODE_CBC |
1459 				SPA_CTRL_HASH_ALG_MD5 |
1460 				SPA_CTRL_HASH_MODE_HMAC,
1461 		.alg = {
1462 			.base = {
1463 				.cra_name = "authenc(hmac(md5),cbc(aes))",
1464 				.cra_driver_name = "authenc-hmac-md5-"
1465 						   "cbc-aes-picoxcell",
1466 				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1467 				.cra_flags = CRYPTO_ALG_ASYNC |
1468 					     CRYPTO_ALG_NEED_FALLBACK |
1469 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1470 				.cra_blocksize = AES_BLOCK_SIZE,
1471 				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1472 				.cra_module = THIS_MODULE,
1473 			},
1474 			.setkey = spacc_aead_setkey,
1475 			.setauthsize = spacc_aead_setauthsize,
1476 			.encrypt = spacc_aead_encrypt,
1477 			.decrypt = spacc_aead_decrypt,
1478 			.ivsize = AES_BLOCK_SIZE,
1479 			.maxauthsize = MD5_DIGEST_SIZE,
1480 			.init = spacc_aead_cra_init,
1481 			.exit = spacc_aead_cra_exit,
1482 		},
1483 	},
1484 	{
1485 		.key_offs = DES_BLOCK_SIZE,
1486 		.iv_offs = 0,
1487 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1488 				SPA_CTRL_CIPH_MODE_CBC |
1489 				SPA_CTRL_HASH_ALG_SHA |
1490 				SPA_CTRL_HASH_MODE_HMAC,
1491 		.alg = {
1492 			.base = {
1493 				.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1494 				.cra_driver_name = "authenc-hmac-sha1-"
1495 						   "cbc-3des-picoxcell",
1496 				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1497 				.cra_flags = CRYPTO_ALG_ASYNC |
1498 					     CRYPTO_ALG_NEED_FALLBACK |
1499 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1500 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1501 				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1502 				.cra_module = THIS_MODULE,
1503 			},
1504 			.setkey = spacc_aead_setkey,
1505 			.setauthsize = spacc_aead_setauthsize,
1506 			.encrypt = spacc_aead_encrypt,
1507 			.decrypt = spacc_aead_decrypt,
1508 			.ivsize = DES3_EDE_BLOCK_SIZE,
1509 			.maxauthsize = SHA1_DIGEST_SIZE,
1510 			.init = spacc_aead_cra_init,
1511 			.exit = spacc_aead_cra_exit,
1512 		},
1513 	},
1514 	{
1515 		.key_offs = DES_BLOCK_SIZE,
1516 		.iv_offs = 0,
1517 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1518 				SPA_CTRL_CIPH_MODE_CBC |
1519 				SPA_CTRL_HASH_ALG_SHA256 |
1520 				SPA_CTRL_HASH_MODE_HMAC,
1521 		.alg = {
1522 			.base = {
1523 				.cra_name = "authenc(hmac(sha256),"
1524 					    "cbc(des3_ede))",
1525 				.cra_driver_name = "authenc-hmac-sha256-"
1526 						   "cbc-3des-picoxcell",
1527 				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1528 				.cra_flags = CRYPTO_ALG_ASYNC |
1529 					     CRYPTO_ALG_NEED_FALLBACK |
1530 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1531 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1532 				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1533 				.cra_module = THIS_MODULE,
1534 			},
1535 			.setkey = spacc_aead_setkey,
1536 			.setauthsize = spacc_aead_setauthsize,
1537 			.encrypt = spacc_aead_encrypt,
1538 			.decrypt = spacc_aead_decrypt,
1539 			.ivsize = DES3_EDE_BLOCK_SIZE,
1540 			.maxauthsize = SHA256_DIGEST_SIZE,
1541 			.init = spacc_aead_cra_init,
1542 			.exit = spacc_aead_cra_exit,
1543 		},
1544 	},
1545 	{
1546 		.key_offs = DES_BLOCK_SIZE,
1547 		.iv_offs = 0,
1548 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1549 				SPA_CTRL_CIPH_MODE_CBC |
1550 				SPA_CTRL_HASH_ALG_MD5 |
1551 				SPA_CTRL_HASH_MODE_HMAC,
1552 		.alg = {
1553 			.base = {
1554 				.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1555 				.cra_driver_name = "authenc-hmac-md5-"
1556 						   "cbc-3des-picoxcell",
1557 				.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1558 				.cra_flags = CRYPTO_ALG_ASYNC |
1559 					     CRYPTO_ALG_NEED_FALLBACK |
1560 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1561 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1562 				.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1563 				.cra_module = THIS_MODULE,
1564 			},
1565 			.setkey = spacc_aead_setkey,
1566 			.setauthsize = spacc_aead_setauthsize,
1567 			.encrypt = spacc_aead_encrypt,
1568 			.decrypt = spacc_aead_decrypt,
1569 			.ivsize = DES3_EDE_BLOCK_SIZE,
1570 			.maxauthsize = MD5_DIGEST_SIZE,
1571 			.init = spacc_aead_cra_init,
1572 			.exit = spacc_aead_cra_exit,
1573 		},
1574 	},
1575 };
1576 
1577 static struct spacc_alg l2_engine_algs[] = {
1578 	{
1579 		.key_offs = 0,
1580 		.iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1581 		.ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1582 				SPA_CTRL_CIPH_MODE_F8,
1583 		.alg = {
1584 			.cra_name = "f8(kasumi)",
1585 			.cra_driver_name = "f8-kasumi-picoxcell",
1586 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1587 			.cra_flags = CRYPTO_ALG_ASYNC |
1588 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1589 			.cra_blocksize = 8,
1590 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1591 			.cra_type = &crypto_ablkcipher_type,
1592 			.cra_module = THIS_MODULE,
1593 			.cra_ablkcipher = {
1594 				.setkey = spacc_kasumi_f8_setkey,
1595 				.encrypt = spacc_ablk_encrypt,
1596 				.decrypt = spacc_ablk_decrypt,
1597 				.min_keysize = 16,
1598 				.max_keysize = 16,
1599 				.ivsize = 8,
1600 			},
1601 			.cra_init = spacc_ablk_cra_init,
1602 			.cra_exit = spacc_ablk_cra_exit,
1603 		},
1604 	},
1605 };
1606 
1607 #ifdef CONFIG_OF
1608 static const struct of_device_id spacc_of_id_table[] = {
1609 	{ .compatible = "picochip,spacc-ipsec" },
1610 	{ .compatible = "picochip,spacc-l2" },
1611 	{}
1612 };
1613 MODULE_DEVICE_TABLE(of, spacc_of_id_table);
1614 #endif /* CONFIG_OF */
1615 
spacc_probe(struct platform_device * pdev)1616 static int spacc_probe(struct platform_device *pdev)
1617 {
1618 	int i, err, ret;
1619 	struct resource *irq;
1620 	struct device_node *np = pdev->dev.of_node;
1621 	struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1622 						   GFP_KERNEL);
1623 	if (!engine)
1624 		return -ENOMEM;
1625 
1626 	if (of_device_is_compatible(np, "picochip,spacc-ipsec")) {
1627 		engine->max_ctxs	= SPACC_CRYPTO_IPSEC_MAX_CTXS;
1628 		engine->cipher_pg_sz	= SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1629 		engine->hash_pg_sz	= SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1630 		engine->fifo_sz		= SPACC_CRYPTO_IPSEC_FIFO_SZ;
1631 		engine->algs		= ipsec_engine_algs;
1632 		engine->num_algs	= ARRAY_SIZE(ipsec_engine_algs);
1633 		engine->aeads		= ipsec_engine_aeads;
1634 		engine->num_aeads	= ARRAY_SIZE(ipsec_engine_aeads);
1635 	} else if (of_device_is_compatible(np, "picochip,spacc-l2")) {
1636 		engine->max_ctxs	= SPACC_CRYPTO_L2_MAX_CTXS;
1637 		engine->cipher_pg_sz	= SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1638 		engine->hash_pg_sz	= SPACC_CRYPTO_L2_HASH_PG_SZ;
1639 		engine->fifo_sz		= SPACC_CRYPTO_L2_FIFO_SZ;
1640 		engine->algs		= l2_engine_algs;
1641 		engine->num_algs	= ARRAY_SIZE(l2_engine_algs);
1642 	} else {
1643 		return -EINVAL;
1644 	}
1645 
1646 	engine->name = dev_name(&pdev->dev);
1647 
1648 	engine->regs = devm_platform_ioremap_resource(pdev, 0);
1649 	if (IS_ERR(engine->regs))
1650 		return PTR_ERR(engine->regs);
1651 
1652 	irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1653 	if (!irq) {
1654 		dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1655 		return -ENXIO;
1656 	}
1657 
1658 	if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1659 			     engine->name, engine)) {
1660 		dev_err(engine->dev, "failed to request IRQ\n");
1661 		return -EBUSY;
1662 	}
1663 
1664 	engine->dev		= &pdev->dev;
1665 	engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1666 	engine->hash_key_base	= engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1667 
1668 	engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1669 		MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1670 	if (!engine->req_pool)
1671 		return -ENOMEM;
1672 
1673 	spin_lock_init(&engine->hw_lock);
1674 
1675 	engine->clk = clk_get(&pdev->dev, "ref");
1676 	if (IS_ERR(engine->clk)) {
1677 		dev_info(&pdev->dev, "clk unavailable\n");
1678 		return PTR_ERR(engine->clk);
1679 	}
1680 
1681 	if (clk_prepare_enable(engine->clk)) {
1682 		dev_info(&pdev->dev, "unable to prepare/enable clk\n");
1683 		ret = -EIO;
1684 		goto err_clk_put;
1685 	}
1686 
1687 	ret = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1688 	if (ret)
1689 		goto err_clk_disable;
1690 
1691 
1692 	/*
1693 	 * Use an IRQ threshold of 50% as a default. This seems to be a
1694 	 * reasonable trade off of latency against throughput but can be
1695 	 * changed at runtime.
1696 	 */
1697 	engine->stat_irq_thresh = (engine->fifo_sz / 2);
1698 
1699 	/*
1700 	 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1701 	 * only submit a new packet for processing when we complete another in
1702 	 * the queue. This minimizes time spent in the interrupt handler.
1703 	 */
1704 	writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1705 	       engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1706 	writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1707 	       engine->regs + SPA_IRQ_EN_REG_OFFSET);
1708 
1709 	timer_setup(&engine->packet_timeout, spacc_packet_timeout, 0);
1710 
1711 	INIT_LIST_HEAD(&engine->pending);
1712 	INIT_LIST_HEAD(&engine->completed);
1713 	INIT_LIST_HEAD(&engine->in_progress);
1714 	engine->in_flight = 0;
1715 	tasklet_init(&engine->complete, spacc_spacc_complete,
1716 		     (unsigned long)engine);
1717 
1718 	platform_set_drvdata(pdev, engine);
1719 
1720 	ret = -EINVAL;
1721 	INIT_LIST_HEAD(&engine->registered_algs);
1722 	for (i = 0; i < engine->num_algs; ++i) {
1723 		engine->algs[i].engine = engine;
1724 		err = crypto_register_alg(&engine->algs[i].alg);
1725 		if (!err) {
1726 			list_add_tail(&engine->algs[i].entry,
1727 				      &engine->registered_algs);
1728 			ret = 0;
1729 		}
1730 		if (err)
1731 			dev_err(engine->dev, "failed to register alg \"%s\"\n",
1732 				engine->algs[i].alg.cra_name);
1733 		else
1734 			dev_dbg(engine->dev, "registered alg \"%s\"\n",
1735 				engine->algs[i].alg.cra_name);
1736 	}
1737 
1738 	INIT_LIST_HEAD(&engine->registered_aeads);
1739 	for (i = 0; i < engine->num_aeads; ++i) {
1740 		engine->aeads[i].engine = engine;
1741 		err = crypto_register_aead(&engine->aeads[i].alg);
1742 		if (!err) {
1743 			list_add_tail(&engine->aeads[i].entry,
1744 				      &engine->registered_aeads);
1745 			ret = 0;
1746 		}
1747 		if (err)
1748 			dev_err(engine->dev, "failed to register alg \"%s\"\n",
1749 				engine->aeads[i].alg.base.cra_name);
1750 		else
1751 			dev_dbg(engine->dev, "registered alg \"%s\"\n",
1752 				engine->aeads[i].alg.base.cra_name);
1753 	}
1754 
1755 	if (!ret)
1756 		return 0;
1757 
1758 	del_timer_sync(&engine->packet_timeout);
1759 	device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1760 err_clk_disable:
1761 	clk_disable_unprepare(engine->clk);
1762 err_clk_put:
1763 	clk_put(engine->clk);
1764 
1765 	return ret;
1766 }
1767 
spacc_remove(struct platform_device * pdev)1768 static int spacc_remove(struct platform_device *pdev)
1769 {
1770 	struct spacc_aead *aead, *an;
1771 	struct spacc_alg *alg, *next;
1772 	struct spacc_engine *engine = platform_get_drvdata(pdev);
1773 
1774 	del_timer_sync(&engine->packet_timeout);
1775 	device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1776 
1777 	list_for_each_entry_safe(aead, an, &engine->registered_aeads, entry) {
1778 		list_del(&aead->entry);
1779 		crypto_unregister_aead(&aead->alg);
1780 	}
1781 
1782 	list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1783 		list_del(&alg->entry);
1784 		crypto_unregister_alg(&alg->alg);
1785 	}
1786 
1787 	clk_disable_unprepare(engine->clk);
1788 	clk_put(engine->clk);
1789 
1790 	return 0;
1791 }
1792 
1793 static struct platform_driver spacc_driver = {
1794 	.probe		= spacc_probe,
1795 	.remove		= spacc_remove,
1796 	.driver		= {
1797 		.name	= "picochip,spacc",
1798 #ifdef CONFIG_PM
1799 		.pm	= &spacc_pm_ops,
1800 #endif /* CONFIG_PM */
1801 		.of_match_table	= of_match_ptr(spacc_of_id_table),
1802 	},
1803 };
1804 
1805 module_platform_driver(spacc_driver);
1806 
1807 MODULE_LICENSE("GPL");
1808 MODULE_AUTHOR("Jamie Iles");
1809