1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3 * AMCC SoC PPC4xx Crypto Driver
4 *
5 * Copyright (c) 2008 Applied Micro Circuits Corporation.
6 * All rights reserved. James Hsiao <jhsiao@amcc.com>
7 *
8 * This file implements AMCC crypto offload Linux device driver for use with
9 * Linux CryptoAPI.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock_types.h>
15 #include <linux/random.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/platform_device.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_platform.h>
25 #include <linux/slab.h>
26 #include <asm/dcr.h>
27 #include <asm/dcr-regs.h>
28 #include <asm/cacheflush.h>
29 #include <crypto/aead.h>
30 #include <crypto/aes.h>
31 #include <crypto/ctr.h>
32 #include <crypto/gcm.h>
33 #include <crypto/sha.h>
34 #include <crypto/rng.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/skcipher.h>
37 #include <crypto/internal/aead.h>
38 #include <crypto/internal/rng.h>
39 #include <crypto/internal/skcipher.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 #include "crypto4xx_trng.h"
44
45 #define PPC4XX_SEC_VERSION_STR "0.5"
46
47 /**
48 * PPC4xx Crypto Engine Initialization Routine
49 */
crypto4xx_hw_init(struct crypto4xx_device * dev)50 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51 {
52 union ce_ring_size ring_size;
53 union ce_ring_control ring_ctrl;
54 union ce_part_ring_size part_ring_size;
55 union ce_io_threshold io_threshold;
56 u32 rand_num;
57 union ce_pe_dma_cfg pe_dma_cfg;
58 u32 device_ctrl;
59
60 writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61 /* setup pe dma, include reset sg, pdr and pe, then release reset */
62 pe_dma_cfg.w = 0;
63 pe_dma_cfg.bf.bo_sgpd_en = 1;
64 pe_dma_cfg.bf.bo_data_en = 0;
65 pe_dma_cfg.bf.bo_sa_en = 1;
66 pe_dma_cfg.bf.bo_pd_en = 1;
67 pe_dma_cfg.bf.dynamic_sa_en = 1;
68 pe_dma_cfg.bf.reset_sg = 1;
69 pe_dma_cfg.bf.reset_pdr = 1;
70 pe_dma_cfg.bf.reset_pe = 1;
71 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72 /* un reset pe,sg and pdr */
73 pe_dma_cfg.bf.pe_mode = 0;
74 pe_dma_cfg.bf.reset_sg = 0;
75 pe_dma_cfg.bf.reset_pdr = 0;
76 pe_dma_cfg.bf.reset_pe = 0;
77 pe_dma_cfg.bf.bo_td_en = 0;
78 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81 writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82 get_random_bytes(&rand_num, sizeof(rand_num));
83 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84 get_random_bytes(&rand_num, sizeof(rand_num));
85 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86 ring_size.w = 0;
87 ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88 ring_size.bf.ring_size = PPC4XX_NUM_PD;
89 writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90 ring_ctrl.w = 0;
91 writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92 device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93 device_ctrl |= PPC4XX_DC_3DES_EN;
94 writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95 writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96 writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97 part_ring_size.w = 0;
98 part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99 part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100 writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101 writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102 io_threshold.w = 0;
103 io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104 io_threshold.bf.input_threshold = PPC4XX_INPUT_THRESHOLD;
105 writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106 writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107 writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108 writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109 writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110 writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111 writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112 writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113 /* un reset pe,sg and pdr */
114 pe_dma_cfg.bf.pe_mode = 1;
115 pe_dma_cfg.bf.reset_sg = 0;
116 pe_dma_cfg.bf.reset_pdr = 0;
117 pe_dma_cfg.bf.reset_pe = 0;
118 pe_dma_cfg.bf.bo_td_en = 0;
119 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120 /*clear all pending interrupt*/
121 writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124 writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125 if (dev->is_revb) {
126 writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
127 dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
128 writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
129 dev->ce_base + CRYPTO4XX_INT_EN);
130 } else {
131 writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
132 }
133 }
134
crypto4xx_alloc_sa(struct crypto4xx_ctx * ctx,u32 size)135 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
136 {
137 ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
138 if (ctx->sa_in == NULL)
139 return -ENOMEM;
140
141 ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
142 if (ctx->sa_out == NULL) {
143 kfree(ctx->sa_in);
144 ctx->sa_in = NULL;
145 return -ENOMEM;
146 }
147
148 ctx->sa_len = size;
149
150 return 0;
151 }
152
crypto4xx_free_sa(struct crypto4xx_ctx * ctx)153 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
154 {
155 kfree(ctx->sa_in);
156 ctx->sa_in = NULL;
157 kfree(ctx->sa_out);
158 ctx->sa_out = NULL;
159 ctx->sa_len = 0;
160 }
161
162 /**
163 * alloc memory for the gather ring
164 * no need to alloc buf for the ring
165 * gdr_tail, gdr_head and gdr_count are initialized by this function
166 */
crypto4xx_build_pdr(struct crypto4xx_device * dev)167 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
168 {
169 int i;
170 dev->pdr = dma_alloc_coherent(dev->core_dev->device,
171 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
172 &dev->pdr_pa, GFP_ATOMIC);
173 if (!dev->pdr)
174 return -ENOMEM;
175
176 dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
177 GFP_KERNEL);
178 if (!dev->pdr_uinfo) {
179 dma_free_coherent(dev->core_dev->device,
180 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181 dev->pdr,
182 dev->pdr_pa);
183 return -ENOMEM;
184 }
185 dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
186 sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
187 &dev->shadow_sa_pool_pa,
188 GFP_ATOMIC);
189 if (!dev->shadow_sa_pool)
190 return -ENOMEM;
191
192 dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
193 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
194 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
195 if (!dev->shadow_sr_pool)
196 return -ENOMEM;
197 for (i = 0; i < PPC4XX_NUM_PD; i++) {
198 struct ce_pd *pd = &dev->pdr[i];
199 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
200
201 pd->sa = dev->shadow_sa_pool_pa +
202 sizeof(union shadow_sa_buf) * i;
203
204 /* alloc 256 bytes which is enough for any kind of dynamic sa */
205 pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
206
207 /* alloc state record */
208 pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
209 pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
210 sizeof(struct sa_state_record) * i;
211 }
212
213 return 0;
214 }
215
crypto4xx_destroy_pdr(struct crypto4xx_device * dev)216 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
217 {
218 if (dev->pdr)
219 dma_free_coherent(dev->core_dev->device,
220 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
221 dev->pdr, dev->pdr_pa);
222
223 if (dev->shadow_sa_pool)
224 dma_free_coherent(dev->core_dev->device,
225 sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
226 dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
227
228 if (dev->shadow_sr_pool)
229 dma_free_coherent(dev->core_dev->device,
230 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
231 dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
232
233 kfree(dev->pdr_uinfo);
234 }
235
crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device * dev)236 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
237 {
238 u32 retval;
239 u32 tmp;
240
241 retval = dev->pdr_head;
242 tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
243
244 if (tmp == dev->pdr_tail)
245 return ERING_WAS_FULL;
246
247 dev->pdr_head = tmp;
248
249 return retval;
250 }
251
crypto4xx_put_pd_to_pdr(struct crypto4xx_device * dev,u32 idx)252 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
253 {
254 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
255 u32 tail;
256 unsigned long flags;
257
258 spin_lock_irqsave(&dev->core_dev->lock, flags);
259 pd_uinfo->state = PD_ENTRY_FREE;
260
261 if (dev->pdr_tail != PPC4XX_LAST_PD)
262 dev->pdr_tail++;
263 else
264 dev->pdr_tail = 0;
265 tail = dev->pdr_tail;
266 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
267
268 return tail;
269 }
270
271 /**
272 * alloc memory for the gather ring
273 * no need to alloc buf for the ring
274 * gdr_tail, gdr_head and gdr_count are initialized by this function
275 */
crypto4xx_build_gdr(struct crypto4xx_device * dev)276 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
277 {
278 dev->gdr = dma_alloc_coherent(dev->core_dev->device,
279 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
280 &dev->gdr_pa, GFP_ATOMIC);
281 if (!dev->gdr)
282 return -ENOMEM;
283
284 return 0;
285 }
286
crypto4xx_destroy_gdr(struct crypto4xx_device * dev)287 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
288 {
289 dma_free_coherent(dev->core_dev->device,
290 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
291 dev->gdr, dev->gdr_pa);
292 }
293
294 /*
295 * when this function is called.
296 * preemption or interrupt must be disabled
297 */
crypto4xx_get_n_gd(struct crypto4xx_device * dev,int n)298 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
299 {
300 u32 retval;
301 u32 tmp;
302
303 if (n >= PPC4XX_NUM_GD)
304 return ERING_WAS_FULL;
305
306 retval = dev->gdr_head;
307 tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
308 if (dev->gdr_head > dev->gdr_tail) {
309 if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
310 return ERING_WAS_FULL;
311 } else if (dev->gdr_head < dev->gdr_tail) {
312 if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
313 return ERING_WAS_FULL;
314 }
315 dev->gdr_head = tmp;
316
317 return retval;
318 }
319
crypto4xx_put_gd_to_gdr(struct crypto4xx_device * dev)320 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
321 {
322 unsigned long flags;
323
324 spin_lock_irqsave(&dev->core_dev->lock, flags);
325 if (dev->gdr_tail == dev->gdr_head) {
326 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
327 return 0;
328 }
329
330 if (dev->gdr_tail != PPC4XX_LAST_GD)
331 dev->gdr_tail++;
332 else
333 dev->gdr_tail = 0;
334
335 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
336
337 return 0;
338 }
339
crypto4xx_get_gdp(struct crypto4xx_device * dev,dma_addr_t * gd_dma,u32 idx)340 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
341 dma_addr_t *gd_dma, u32 idx)
342 {
343 *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
344
345 return &dev->gdr[idx];
346 }
347
348 /**
349 * alloc memory for the scatter ring
350 * need to alloc buf for the ring
351 * sdr_tail, sdr_head and sdr_count are initialized by this function
352 */
crypto4xx_build_sdr(struct crypto4xx_device * dev)353 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
354 {
355 int i;
356
357 /* alloc memory for scatter descriptor ring */
358 dev->sdr = dma_alloc_coherent(dev->core_dev->device,
359 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
360 &dev->sdr_pa, GFP_ATOMIC);
361 if (!dev->sdr)
362 return -ENOMEM;
363
364 dev->scatter_buffer_va =
365 dma_alloc_coherent(dev->core_dev->device,
366 PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
367 &dev->scatter_buffer_pa, GFP_ATOMIC);
368 if (!dev->scatter_buffer_va) {
369 dma_free_coherent(dev->core_dev->device,
370 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
371 dev->sdr, dev->sdr_pa);
372 return -ENOMEM;
373 }
374
375 for (i = 0; i < PPC4XX_NUM_SD; i++) {
376 dev->sdr[i].ptr = dev->scatter_buffer_pa +
377 PPC4XX_SD_BUFFER_SIZE * i;
378 }
379
380 return 0;
381 }
382
crypto4xx_destroy_sdr(struct crypto4xx_device * dev)383 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
384 {
385 if (dev->sdr)
386 dma_free_coherent(dev->core_dev->device,
387 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
388 dev->sdr, dev->sdr_pa);
389
390 if (dev->scatter_buffer_va)
391 dma_free_coherent(dev->core_dev->device,
392 PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
393 dev->scatter_buffer_va,
394 dev->scatter_buffer_pa);
395 }
396
397 /*
398 * when this function is called.
399 * preemption or interrupt must be disabled
400 */
crypto4xx_get_n_sd(struct crypto4xx_device * dev,int n)401 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
402 {
403 u32 retval;
404 u32 tmp;
405
406 if (n >= PPC4XX_NUM_SD)
407 return ERING_WAS_FULL;
408
409 retval = dev->sdr_head;
410 tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
411 if (dev->sdr_head > dev->gdr_tail) {
412 if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
413 return ERING_WAS_FULL;
414 } else if (dev->sdr_head < dev->sdr_tail) {
415 if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
416 return ERING_WAS_FULL;
417 } /* the head = tail, or empty case is already take cared */
418 dev->sdr_head = tmp;
419
420 return retval;
421 }
422
crypto4xx_put_sd_to_sdr(struct crypto4xx_device * dev)423 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
424 {
425 unsigned long flags;
426
427 spin_lock_irqsave(&dev->core_dev->lock, flags);
428 if (dev->sdr_tail == dev->sdr_head) {
429 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
430 return 0;
431 }
432 if (dev->sdr_tail != PPC4XX_LAST_SD)
433 dev->sdr_tail++;
434 else
435 dev->sdr_tail = 0;
436 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
437
438 return 0;
439 }
440
crypto4xx_get_sdp(struct crypto4xx_device * dev,dma_addr_t * sd_dma,u32 idx)441 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
442 dma_addr_t *sd_dma, u32 idx)
443 {
444 *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
445
446 return &dev->sdr[idx];
447 }
448
crypto4xx_copy_pkt_to_dst(struct crypto4xx_device * dev,struct ce_pd * pd,struct pd_uinfo * pd_uinfo,u32 nbytes,struct scatterlist * dst)449 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
450 struct ce_pd *pd,
451 struct pd_uinfo *pd_uinfo,
452 u32 nbytes,
453 struct scatterlist *dst)
454 {
455 unsigned int first_sd = pd_uinfo->first_sd;
456 unsigned int last_sd;
457 unsigned int overflow = 0;
458 unsigned int to_copy;
459 unsigned int dst_start = 0;
460
461 /*
462 * Because the scatter buffers are all neatly organized in one
463 * big continuous ringbuffer; scatterwalk_map_and_copy() can
464 * be instructed to copy a range of buffers in one go.
465 */
466
467 last_sd = (first_sd + pd_uinfo->num_sd);
468 if (last_sd > PPC4XX_LAST_SD) {
469 last_sd = PPC4XX_LAST_SD;
470 overflow = last_sd % PPC4XX_NUM_SD;
471 }
472
473 while (nbytes) {
474 void *buf = dev->scatter_buffer_va +
475 first_sd * PPC4XX_SD_BUFFER_SIZE;
476
477 to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
478 (1 + last_sd - first_sd));
479 scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
480 nbytes -= to_copy;
481
482 if (overflow) {
483 first_sd = 0;
484 last_sd = overflow;
485 dst_start += to_copy;
486 overflow = 0;
487 }
488 }
489 }
490
crypto4xx_copy_digest_to_dst(void * dst,struct pd_uinfo * pd_uinfo,struct crypto4xx_ctx * ctx)491 static void crypto4xx_copy_digest_to_dst(void *dst,
492 struct pd_uinfo *pd_uinfo,
493 struct crypto4xx_ctx *ctx)
494 {
495 struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
496
497 if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
498 memcpy(dst, pd_uinfo->sr_va->save_digest,
499 SA_HASH_ALG_SHA1_DIGEST_SIZE);
500 }
501 }
502
crypto4xx_ret_sg_desc(struct crypto4xx_device * dev,struct pd_uinfo * pd_uinfo)503 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
504 struct pd_uinfo *pd_uinfo)
505 {
506 int i;
507 if (pd_uinfo->num_gd) {
508 for (i = 0; i < pd_uinfo->num_gd; i++)
509 crypto4xx_put_gd_to_gdr(dev);
510 pd_uinfo->first_gd = 0xffffffff;
511 pd_uinfo->num_gd = 0;
512 }
513 if (pd_uinfo->num_sd) {
514 for (i = 0; i < pd_uinfo->num_sd; i++)
515 crypto4xx_put_sd_to_sdr(dev);
516
517 pd_uinfo->first_sd = 0xffffffff;
518 pd_uinfo->num_sd = 0;
519 }
520 }
521
crypto4xx_cipher_done(struct crypto4xx_device * dev,struct pd_uinfo * pd_uinfo,struct ce_pd * pd)522 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
523 struct pd_uinfo *pd_uinfo,
524 struct ce_pd *pd)
525 {
526 struct skcipher_request *req;
527 struct scatterlist *dst;
528 dma_addr_t addr;
529
530 req = skcipher_request_cast(pd_uinfo->async_req);
531
532 if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
533 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
534 req->cryptlen, req->dst);
535 } else {
536 dst = pd_uinfo->dest_va;
537 addr = dma_map_page(dev->core_dev->device, sg_page(dst),
538 dst->offset, dst->length, DMA_FROM_DEVICE);
539 }
540
541 if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
542 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
543
544 crypto4xx_memcpy_from_le32((u32 *)req->iv,
545 pd_uinfo->sr_va->save_iv,
546 crypto_skcipher_ivsize(skcipher));
547 }
548
549 crypto4xx_ret_sg_desc(dev, pd_uinfo);
550
551 if (pd_uinfo->state & PD_ENTRY_BUSY)
552 skcipher_request_complete(req, -EINPROGRESS);
553 skcipher_request_complete(req, 0);
554 }
555
crypto4xx_ahash_done(struct crypto4xx_device * dev,struct pd_uinfo * pd_uinfo)556 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
557 struct pd_uinfo *pd_uinfo)
558 {
559 struct crypto4xx_ctx *ctx;
560 struct ahash_request *ahash_req;
561
562 ahash_req = ahash_request_cast(pd_uinfo->async_req);
563 ctx = crypto_tfm_ctx(ahash_req->base.tfm);
564
565 crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
566 crypto_tfm_ctx(ahash_req->base.tfm));
567 crypto4xx_ret_sg_desc(dev, pd_uinfo);
568
569 if (pd_uinfo->state & PD_ENTRY_BUSY)
570 ahash_request_complete(ahash_req, -EINPROGRESS);
571 ahash_request_complete(ahash_req, 0);
572 }
573
crypto4xx_aead_done(struct crypto4xx_device * dev,struct pd_uinfo * pd_uinfo,struct ce_pd * pd)574 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
575 struct pd_uinfo *pd_uinfo,
576 struct ce_pd *pd)
577 {
578 struct aead_request *aead_req = container_of(pd_uinfo->async_req,
579 struct aead_request, base);
580 struct scatterlist *dst = pd_uinfo->dest_va;
581 size_t cp_len = crypto_aead_authsize(
582 crypto_aead_reqtfm(aead_req));
583 u32 icv[AES_BLOCK_SIZE];
584 int err = 0;
585
586 if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
587 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
588 pd->pd_ctl_len.bf.pkt_len,
589 dst);
590 } else {
591 dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
592 DMA_FROM_DEVICE);
593 }
594
595 if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
596 /* append icv at the end */
597 crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
598 sizeof(icv));
599
600 scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
601 cp_len, 1);
602 } else {
603 /* check icv at the end */
604 scatterwalk_map_and_copy(icv, aead_req->src,
605 aead_req->assoclen + aead_req->cryptlen -
606 cp_len, cp_len, 0);
607
608 crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
609
610 if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
611 err = -EBADMSG;
612 }
613
614 crypto4xx_ret_sg_desc(dev, pd_uinfo);
615
616 if (pd->pd_ctl.bf.status & 0xff) {
617 if (!__ratelimit(&dev->aead_ratelimit)) {
618 if (pd->pd_ctl.bf.status & 2)
619 pr_err("pad fail error\n");
620 if (pd->pd_ctl.bf.status & 4)
621 pr_err("seqnum fail\n");
622 if (pd->pd_ctl.bf.status & 8)
623 pr_err("error _notify\n");
624 pr_err("aead return err status = 0x%02x\n",
625 pd->pd_ctl.bf.status & 0xff);
626 pr_err("pd pad_ctl = 0x%08x\n",
627 pd->pd_ctl.bf.pd_pad_ctl);
628 }
629 err = -EINVAL;
630 }
631
632 if (pd_uinfo->state & PD_ENTRY_BUSY)
633 aead_request_complete(aead_req, -EINPROGRESS);
634
635 aead_request_complete(aead_req, err);
636 }
637
crypto4xx_pd_done(struct crypto4xx_device * dev,u32 idx)638 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
639 {
640 struct ce_pd *pd = &dev->pdr[idx];
641 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
642
643 switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
644 case CRYPTO_ALG_TYPE_SKCIPHER:
645 crypto4xx_cipher_done(dev, pd_uinfo, pd);
646 break;
647 case CRYPTO_ALG_TYPE_AEAD:
648 crypto4xx_aead_done(dev, pd_uinfo, pd);
649 break;
650 case CRYPTO_ALG_TYPE_AHASH:
651 crypto4xx_ahash_done(dev, pd_uinfo);
652 break;
653 }
654 }
655
crypto4xx_stop_all(struct crypto4xx_core_device * core_dev)656 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
657 {
658 crypto4xx_destroy_pdr(core_dev->dev);
659 crypto4xx_destroy_gdr(core_dev->dev);
660 crypto4xx_destroy_sdr(core_dev->dev);
661 iounmap(core_dev->dev->ce_base);
662 kfree(core_dev->dev);
663 kfree(core_dev);
664 }
665
get_next_gd(u32 current)666 static u32 get_next_gd(u32 current)
667 {
668 if (current != PPC4XX_LAST_GD)
669 return current + 1;
670 else
671 return 0;
672 }
673
get_next_sd(u32 current)674 static u32 get_next_sd(u32 current)
675 {
676 if (current != PPC4XX_LAST_SD)
677 return current + 1;
678 else
679 return 0;
680 }
681
crypto4xx_build_pd(struct crypto_async_request * req,struct crypto4xx_ctx * ctx,struct scatterlist * src,struct scatterlist * dst,const unsigned int datalen,const __le32 * iv,const u32 iv_len,const struct dynamic_sa_ctl * req_sa,const unsigned int sa_len,const unsigned int assoclen,struct scatterlist * _dst)682 int crypto4xx_build_pd(struct crypto_async_request *req,
683 struct crypto4xx_ctx *ctx,
684 struct scatterlist *src,
685 struct scatterlist *dst,
686 const unsigned int datalen,
687 const __le32 *iv, const u32 iv_len,
688 const struct dynamic_sa_ctl *req_sa,
689 const unsigned int sa_len,
690 const unsigned int assoclen,
691 struct scatterlist *_dst)
692 {
693 struct crypto4xx_device *dev = ctx->dev;
694 struct dynamic_sa_ctl *sa;
695 struct ce_gd *gd;
696 struct ce_pd *pd;
697 u32 num_gd, num_sd;
698 u32 fst_gd = 0xffffffff;
699 u32 fst_sd = 0xffffffff;
700 u32 pd_entry;
701 unsigned long flags;
702 struct pd_uinfo *pd_uinfo;
703 unsigned int nbytes = datalen;
704 size_t offset_to_sr_ptr;
705 u32 gd_idx = 0;
706 int tmp;
707 bool is_busy, force_sd;
708
709 /*
710 * There's a very subtile/disguised "bug" in the hardware that
711 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
712 * of the hardware spec:
713 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
714 * operation modes for >>> "Block ciphers" <<<.
715 *
716 * To workaround this issue and stop the hardware from causing
717 * "overran dst buffer" on crypttexts that are not a multiple
718 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
719 * scatter buffers.
720 */
721 force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
722 || req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
723 && (datalen % AES_BLOCK_SIZE);
724
725 /* figure how many gd are needed */
726 tmp = sg_nents_for_len(src, assoclen + datalen);
727 if (tmp < 0) {
728 dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
729 return tmp;
730 }
731 if (tmp == 1)
732 tmp = 0;
733 num_gd = tmp;
734
735 if (assoclen) {
736 nbytes += assoclen;
737 dst = scatterwalk_ffwd(_dst, dst, assoclen);
738 }
739
740 /* figure how many sd are needed */
741 if (sg_is_last(dst) && force_sd == false) {
742 num_sd = 0;
743 } else {
744 if (datalen > PPC4XX_SD_BUFFER_SIZE) {
745 num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
746 if (datalen % PPC4XX_SD_BUFFER_SIZE)
747 num_sd++;
748 } else {
749 num_sd = 1;
750 }
751 }
752
753 /*
754 * The follow section of code needs to be protected
755 * The gather ring and scatter ring needs to be consecutive
756 * In case of run out of any kind of descriptor, the descriptor
757 * already got must be return the original place.
758 */
759 spin_lock_irqsave(&dev->core_dev->lock, flags);
760 /*
761 * Let the caller know to slow down, once more than 13/16ths = 81%
762 * of the available data contexts are being used simultaneously.
763 *
764 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
765 * 31 more contexts. Before new requests have to be rejected.
766 */
767 if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
768 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
769 ((PPC4XX_NUM_PD * 13) / 16);
770 } else {
771 /*
772 * To fix contention issues between ipsec (no blacklog) and
773 * dm-crypto (backlog) reserve 32 entries for "no backlog"
774 * data contexts.
775 */
776 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
777 ((PPC4XX_NUM_PD * 15) / 16);
778
779 if (is_busy) {
780 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
781 return -EBUSY;
782 }
783 }
784
785 if (num_gd) {
786 fst_gd = crypto4xx_get_n_gd(dev, num_gd);
787 if (fst_gd == ERING_WAS_FULL) {
788 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
789 return -EAGAIN;
790 }
791 }
792 if (num_sd) {
793 fst_sd = crypto4xx_get_n_sd(dev, num_sd);
794 if (fst_sd == ERING_WAS_FULL) {
795 if (num_gd)
796 dev->gdr_head = fst_gd;
797 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
798 return -EAGAIN;
799 }
800 }
801 pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
802 if (pd_entry == ERING_WAS_FULL) {
803 if (num_gd)
804 dev->gdr_head = fst_gd;
805 if (num_sd)
806 dev->sdr_head = fst_sd;
807 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
808 return -EAGAIN;
809 }
810 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
811
812 pd = &dev->pdr[pd_entry];
813 pd->sa_len = sa_len;
814
815 pd_uinfo = &dev->pdr_uinfo[pd_entry];
816 pd_uinfo->num_gd = num_gd;
817 pd_uinfo->num_sd = num_sd;
818 pd_uinfo->dest_va = dst;
819 pd_uinfo->async_req = req;
820
821 if (iv_len)
822 memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
823
824 sa = pd_uinfo->sa_va;
825 memcpy(sa, req_sa, sa_len * 4);
826
827 sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
828 offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
829 *(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
830
831 if (num_gd) {
832 dma_addr_t gd_dma;
833 struct scatterlist *sg;
834
835 /* get first gd we are going to use */
836 gd_idx = fst_gd;
837 pd_uinfo->first_gd = fst_gd;
838 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
839 pd->src = gd_dma;
840 /* enable gather */
841 sa->sa_command_0.bf.gather = 1;
842 /* walk the sg, and setup gather array */
843
844 sg = src;
845 while (nbytes) {
846 size_t len;
847
848 len = min(sg->length, nbytes);
849 gd->ptr = dma_map_page(dev->core_dev->device,
850 sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
851 gd->ctl_len.len = len;
852 gd->ctl_len.done = 0;
853 gd->ctl_len.ready = 1;
854 if (len >= nbytes)
855 break;
856
857 nbytes -= sg->length;
858 gd_idx = get_next_gd(gd_idx);
859 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
860 sg = sg_next(sg);
861 }
862 } else {
863 pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
864 src->offset, min(nbytes, src->length),
865 DMA_TO_DEVICE);
866 /*
867 * Disable gather in sa command
868 */
869 sa->sa_command_0.bf.gather = 0;
870 /*
871 * Indicate gather array is not used
872 */
873 pd_uinfo->first_gd = 0xffffffff;
874 }
875 if (!num_sd) {
876 /*
877 * we know application give us dst a whole piece of memory
878 * no need to use scatter ring.
879 */
880 pd_uinfo->first_sd = 0xffffffff;
881 sa->sa_command_0.bf.scatter = 0;
882 pd->dest = (u32)dma_map_page(dev->core_dev->device,
883 sg_page(dst), dst->offset,
884 min(datalen, dst->length),
885 DMA_TO_DEVICE);
886 } else {
887 dma_addr_t sd_dma;
888 struct ce_sd *sd = NULL;
889
890 u32 sd_idx = fst_sd;
891 nbytes = datalen;
892 sa->sa_command_0.bf.scatter = 1;
893 pd_uinfo->first_sd = fst_sd;
894 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
895 pd->dest = sd_dma;
896 /* setup scatter descriptor */
897 sd->ctl.done = 0;
898 sd->ctl.rdy = 1;
899 /* sd->ptr should be setup by sd_init routine*/
900 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
901 nbytes -= PPC4XX_SD_BUFFER_SIZE;
902 else
903 nbytes = 0;
904 while (nbytes) {
905 sd_idx = get_next_sd(sd_idx);
906 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
907 /* setup scatter descriptor */
908 sd->ctl.done = 0;
909 sd->ctl.rdy = 1;
910 if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
911 nbytes -= PPC4XX_SD_BUFFER_SIZE;
912 } else {
913 /*
914 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
915 * which is more than nbytes, so done.
916 */
917 nbytes = 0;
918 }
919 }
920 }
921
922 pd->pd_ctl.w = PD_CTL_HOST_READY |
923 ((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) |
924 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
925 PD_CTL_HASH_FINAL : 0);
926 pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
927 pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
928
929 wmb();
930 /* write any value to push engine to read a pd */
931 writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
932 writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
933 return is_busy ? -EBUSY : -EINPROGRESS;
934 }
935
936 /**
937 * Algorithm Registration Functions
938 */
crypto4xx_ctx_init(struct crypto4xx_alg * amcc_alg,struct crypto4xx_ctx * ctx)939 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
940 struct crypto4xx_ctx *ctx)
941 {
942 ctx->dev = amcc_alg->dev;
943 ctx->sa_in = NULL;
944 ctx->sa_out = NULL;
945 ctx->sa_len = 0;
946 }
947
crypto4xx_sk_init(struct crypto_skcipher * sk)948 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
949 {
950 struct skcipher_alg *alg = crypto_skcipher_alg(sk);
951 struct crypto4xx_alg *amcc_alg;
952 struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(sk);
953
954 if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
955 ctx->sw_cipher.cipher =
956 crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
957 CRYPTO_ALG_NEED_FALLBACK);
958 if (IS_ERR(ctx->sw_cipher.cipher))
959 return PTR_ERR(ctx->sw_cipher.cipher);
960 }
961
962 amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
963 crypto4xx_ctx_init(amcc_alg, ctx);
964 return 0;
965 }
966
crypto4xx_common_exit(struct crypto4xx_ctx * ctx)967 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
968 {
969 crypto4xx_free_sa(ctx);
970 }
971
crypto4xx_sk_exit(struct crypto_skcipher * sk)972 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
973 {
974 struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(sk);
975
976 crypto4xx_common_exit(ctx);
977 if (ctx->sw_cipher.cipher)
978 crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
979 }
980
crypto4xx_aead_init(struct crypto_aead * tfm)981 static int crypto4xx_aead_init(struct crypto_aead *tfm)
982 {
983 struct aead_alg *alg = crypto_aead_alg(tfm);
984 struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
985 struct crypto4xx_alg *amcc_alg;
986
987 ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
988 CRYPTO_ALG_NEED_FALLBACK |
989 CRYPTO_ALG_ASYNC);
990 if (IS_ERR(ctx->sw_cipher.aead))
991 return PTR_ERR(ctx->sw_cipher.aead);
992
993 amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
994 crypto4xx_ctx_init(amcc_alg, ctx);
995 crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
996 crypto_aead_reqsize(ctx->sw_cipher.aead),
997 sizeof(struct crypto4xx_aead_reqctx)));
998 return 0;
999 }
1000
crypto4xx_aead_exit(struct crypto_aead * tfm)1001 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
1002 {
1003 struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
1004
1005 crypto4xx_common_exit(ctx);
1006 crypto_free_aead(ctx->sw_cipher.aead);
1007 }
1008
crypto4xx_register_alg(struct crypto4xx_device * sec_dev,struct crypto4xx_alg_common * crypto_alg,int array_size)1009 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1010 struct crypto4xx_alg_common *crypto_alg,
1011 int array_size)
1012 {
1013 struct crypto4xx_alg *alg;
1014 int i;
1015 int rc = 0;
1016
1017 for (i = 0; i < array_size; i++) {
1018 alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1019 if (!alg)
1020 return -ENOMEM;
1021
1022 alg->alg = crypto_alg[i];
1023 alg->dev = sec_dev;
1024
1025 switch (alg->alg.type) {
1026 case CRYPTO_ALG_TYPE_AEAD:
1027 rc = crypto_register_aead(&alg->alg.u.aead);
1028 break;
1029
1030 case CRYPTO_ALG_TYPE_AHASH:
1031 rc = crypto_register_ahash(&alg->alg.u.hash);
1032 break;
1033
1034 case CRYPTO_ALG_TYPE_RNG:
1035 rc = crypto_register_rng(&alg->alg.u.rng);
1036 break;
1037
1038 default:
1039 rc = crypto_register_skcipher(&alg->alg.u.cipher);
1040 break;
1041 }
1042
1043 if (rc)
1044 kfree(alg);
1045 else
1046 list_add_tail(&alg->entry, &sec_dev->alg_list);
1047 }
1048
1049 return 0;
1050 }
1051
crypto4xx_unregister_alg(struct crypto4xx_device * sec_dev)1052 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1053 {
1054 struct crypto4xx_alg *alg, *tmp;
1055
1056 list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1057 list_del(&alg->entry);
1058 switch (alg->alg.type) {
1059 case CRYPTO_ALG_TYPE_AHASH:
1060 crypto_unregister_ahash(&alg->alg.u.hash);
1061 break;
1062
1063 case CRYPTO_ALG_TYPE_AEAD:
1064 crypto_unregister_aead(&alg->alg.u.aead);
1065 break;
1066
1067 case CRYPTO_ALG_TYPE_RNG:
1068 crypto_unregister_rng(&alg->alg.u.rng);
1069 break;
1070
1071 default:
1072 crypto_unregister_skcipher(&alg->alg.u.cipher);
1073 }
1074 kfree(alg);
1075 }
1076 }
1077
crypto4xx_bh_tasklet_cb(unsigned long data)1078 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1079 {
1080 struct device *dev = (struct device *)data;
1081 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1082 struct pd_uinfo *pd_uinfo;
1083 struct ce_pd *pd;
1084 u32 tail = core_dev->dev->pdr_tail;
1085 u32 head = core_dev->dev->pdr_head;
1086
1087 do {
1088 pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1089 pd = &core_dev->dev->pdr[tail];
1090 if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1091 ((READ_ONCE(pd->pd_ctl.w) &
1092 (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1093 PD_CTL_PE_DONE)) {
1094 crypto4xx_pd_done(core_dev->dev, tail);
1095 tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1096 } else {
1097 /* if tail not done, break */
1098 break;
1099 }
1100 } while (head != tail);
1101 }
1102
1103 /**
1104 * Top Half of isr.
1105 */
crypto4xx_interrupt_handler(int irq,void * data,u32 clr_val)1106 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1107 u32 clr_val)
1108 {
1109 struct device *dev = (struct device *)data;
1110 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1111
1112 writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1113 tasklet_schedule(&core_dev->tasklet);
1114
1115 return IRQ_HANDLED;
1116 }
1117
crypto4xx_ce_interrupt_handler(int irq,void * data)1118 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1119 {
1120 return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1121 }
1122
crypto4xx_ce_interrupt_handler_revb(int irq,void * data)1123 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1124 {
1125 return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1126 PPC4XX_TMO_ERR_INT);
1127 }
1128
ppc4xx_prng_data_read(struct crypto4xx_device * dev,u8 * data,unsigned int max)1129 static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1130 u8 *data, unsigned int max)
1131 {
1132 unsigned int i, curr = 0;
1133 u32 val[2];
1134
1135 do {
1136 /* trigger PRN generation */
1137 writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1138 dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1139
1140 for (i = 0; i < 1024; i++) {
1141 /* usually 19 iterations are enough */
1142 if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1143 CRYPTO4XX_PRNG_STAT_BUSY))
1144 continue;
1145
1146 val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1147 val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1148 break;
1149 }
1150 if (i == 1024)
1151 return -ETIMEDOUT;
1152
1153 if ((max - curr) >= 8) {
1154 memcpy(data, &val, 8);
1155 data += 8;
1156 curr += 8;
1157 } else {
1158 /* copy only remaining bytes */
1159 memcpy(data, &val, max - curr);
1160 break;
1161 }
1162 } while (curr < max);
1163
1164 return curr;
1165 }
1166
crypto4xx_prng_generate(struct crypto_rng * tfm,const u8 * src,unsigned int slen,u8 * dstn,unsigned int dlen)1167 static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1168 const u8 *src, unsigned int slen,
1169 u8 *dstn, unsigned int dlen)
1170 {
1171 struct rng_alg *alg = crypto_rng_alg(tfm);
1172 struct crypto4xx_alg *amcc_alg;
1173 struct crypto4xx_device *dev;
1174 int ret;
1175
1176 amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1177 dev = amcc_alg->dev;
1178
1179 mutex_lock(&dev->core_dev->rng_lock);
1180 ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1181 mutex_unlock(&dev->core_dev->rng_lock);
1182 return ret;
1183 }
1184
1185
crypto4xx_prng_seed(struct crypto_rng * tfm,const u8 * seed,unsigned int slen)1186 static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1187 unsigned int slen)
1188 {
1189 return 0;
1190 }
1191
1192 /**
1193 * Supported Crypto Algorithms
1194 */
1195 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1196 /* Crypto AES modes */
1197 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1198 .base = {
1199 .cra_name = "cbc(aes)",
1200 .cra_driver_name = "cbc-aes-ppc4xx",
1201 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1202 .cra_flags = CRYPTO_ALG_ASYNC |
1203 CRYPTO_ALG_KERN_DRIVER_ONLY,
1204 .cra_blocksize = AES_BLOCK_SIZE,
1205 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1206 .cra_module = THIS_MODULE,
1207 },
1208 .min_keysize = AES_MIN_KEY_SIZE,
1209 .max_keysize = AES_MAX_KEY_SIZE,
1210 .ivsize = AES_IV_SIZE,
1211 .setkey = crypto4xx_setkey_aes_cbc,
1212 .encrypt = crypto4xx_encrypt_iv_block,
1213 .decrypt = crypto4xx_decrypt_iv_block,
1214 .init = crypto4xx_sk_init,
1215 .exit = crypto4xx_sk_exit,
1216 } },
1217 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1218 .base = {
1219 .cra_name = "cfb(aes)",
1220 .cra_driver_name = "cfb-aes-ppc4xx",
1221 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1222 .cra_flags = CRYPTO_ALG_ASYNC |
1223 CRYPTO_ALG_KERN_DRIVER_ONLY,
1224 .cra_blocksize = 1,
1225 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1226 .cra_module = THIS_MODULE,
1227 },
1228 .min_keysize = AES_MIN_KEY_SIZE,
1229 .max_keysize = AES_MAX_KEY_SIZE,
1230 .ivsize = AES_IV_SIZE,
1231 .setkey = crypto4xx_setkey_aes_cfb,
1232 .encrypt = crypto4xx_encrypt_iv_stream,
1233 .decrypt = crypto4xx_decrypt_iv_stream,
1234 .init = crypto4xx_sk_init,
1235 .exit = crypto4xx_sk_exit,
1236 } },
1237 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1238 .base = {
1239 .cra_name = "ctr(aes)",
1240 .cra_driver_name = "ctr-aes-ppc4xx",
1241 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1242 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1243 CRYPTO_ALG_ASYNC |
1244 CRYPTO_ALG_KERN_DRIVER_ONLY,
1245 .cra_blocksize = 1,
1246 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1247 .cra_module = THIS_MODULE,
1248 },
1249 .min_keysize = AES_MIN_KEY_SIZE,
1250 .max_keysize = AES_MAX_KEY_SIZE,
1251 .ivsize = AES_IV_SIZE,
1252 .setkey = crypto4xx_setkey_aes_ctr,
1253 .encrypt = crypto4xx_encrypt_ctr,
1254 .decrypt = crypto4xx_decrypt_ctr,
1255 .init = crypto4xx_sk_init,
1256 .exit = crypto4xx_sk_exit,
1257 } },
1258 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1259 .base = {
1260 .cra_name = "rfc3686(ctr(aes))",
1261 .cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1262 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1263 .cra_flags = CRYPTO_ALG_ASYNC |
1264 CRYPTO_ALG_KERN_DRIVER_ONLY,
1265 .cra_blocksize = 1,
1266 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1267 .cra_module = THIS_MODULE,
1268 },
1269 .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1270 .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1271 .ivsize = CTR_RFC3686_IV_SIZE,
1272 .setkey = crypto4xx_setkey_rfc3686,
1273 .encrypt = crypto4xx_rfc3686_encrypt,
1274 .decrypt = crypto4xx_rfc3686_decrypt,
1275 .init = crypto4xx_sk_init,
1276 .exit = crypto4xx_sk_exit,
1277 } },
1278 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1279 .base = {
1280 .cra_name = "ecb(aes)",
1281 .cra_driver_name = "ecb-aes-ppc4xx",
1282 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1283 .cra_flags = CRYPTO_ALG_ASYNC |
1284 CRYPTO_ALG_KERN_DRIVER_ONLY,
1285 .cra_blocksize = AES_BLOCK_SIZE,
1286 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1287 .cra_module = THIS_MODULE,
1288 },
1289 .min_keysize = AES_MIN_KEY_SIZE,
1290 .max_keysize = AES_MAX_KEY_SIZE,
1291 .setkey = crypto4xx_setkey_aes_ecb,
1292 .encrypt = crypto4xx_encrypt_noiv_block,
1293 .decrypt = crypto4xx_decrypt_noiv_block,
1294 .init = crypto4xx_sk_init,
1295 .exit = crypto4xx_sk_exit,
1296 } },
1297 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1298 .base = {
1299 .cra_name = "ofb(aes)",
1300 .cra_driver_name = "ofb-aes-ppc4xx",
1301 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1302 .cra_flags = CRYPTO_ALG_ASYNC |
1303 CRYPTO_ALG_KERN_DRIVER_ONLY,
1304 .cra_blocksize = 1,
1305 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1306 .cra_module = THIS_MODULE,
1307 },
1308 .min_keysize = AES_MIN_KEY_SIZE,
1309 .max_keysize = AES_MAX_KEY_SIZE,
1310 .ivsize = AES_IV_SIZE,
1311 .setkey = crypto4xx_setkey_aes_ofb,
1312 .encrypt = crypto4xx_encrypt_iv_stream,
1313 .decrypt = crypto4xx_decrypt_iv_stream,
1314 .init = crypto4xx_sk_init,
1315 .exit = crypto4xx_sk_exit,
1316 } },
1317
1318 /* AEAD */
1319 { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1320 .setkey = crypto4xx_setkey_aes_ccm,
1321 .setauthsize = crypto4xx_setauthsize_aead,
1322 .encrypt = crypto4xx_encrypt_aes_ccm,
1323 .decrypt = crypto4xx_decrypt_aes_ccm,
1324 .init = crypto4xx_aead_init,
1325 .exit = crypto4xx_aead_exit,
1326 .ivsize = AES_BLOCK_SIZE,
1327 .maxauthsize = 16,
1328 .base = {
1329 .cra_name = "ccm(aes)",
1330 .cra_driver_name = "ccm-aes-ppc4xx",
1331 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1332 .cra_flags = CRYPTO_ALG_ASYNC |
1333 CRYPTO_ALG_NEED_FALLBACK |
1334 CRYPTO_ALG_KERN_DRIVER_ONLY,
1335 .cra_blocksize = 1,
1336 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1337 .cra_module = THIS_MODULE,
1338 },
1339 } },
1340 { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1341 .setkey = crypto4xx_setkey_aes_gcm,
1342 .setauthsize = crypto4xx_setauthsize_aead,
1343 .encrypt = crypto4xx_encrypt_aes_gcm,
1344 .decrypt = crypto4xx_decrypt_aes_gcm,
1345 .init = crypto4xx_aead_init,
1346 .exit = crypto4xx_aead_exit,
1347 .ivsize = GCM_AES_IV_SIZE,
1348 .maxauthsize = 16,
1349 .base = {
1350 .cra_name = "gcm(aes)",
1351 .cra_driver_name = "gcm-aes-ppc4xx",
1352 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1353 .cra_flags = CRYPTO_ALG_ASYNC |
1354 CRYPTO_ALG_NEED_FALLBACK |
1355 CRYPTO_ALG_KERN_DRIVER_ONLY,
1356 .cra_blocksize = 1,
1357 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1358 .cra_module = THIS_MODULE,
1359 },
1360 } },
1361 { .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1362 .base = {
1363 .cra_name = "stdrng",
1364 .cra_driver_name = "crypto4xx_rng",
1365 .cra_priority = 300,
1366 .cra_ctxsize = 0,
1367 .cra_module = THIS_MODULE,
1368 },
1369 .generate = crypto4xx_prng_generate,
1370 .seed = crypto4xx_prng_seed,
1371 .seedsize = 0,
1372 } },
1373 };
1374
1375 /**
1376 * Module Initialization Routine
1377 */
crypto4xx_probe(struct platform_device * ofdev)1378 static int crypto4xx_probe(struct platform_device *ofdev)
1379 {
1380 int rc;
1381 struct resource res;
1382 struct device *dev = &ofdev->dev;
1383 struct crypto4xx_core_device *core_dev;
1384 u32 pvr;
1385 bool is_revb = true;
1386
1387 rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1388 if (rc)
1389 return -ENODEV;
1390
1391 if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1392 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1393 mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1394 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1395 mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1396 } else if (of_find_compatible_node(NULL, NULL,
1397 "amcc,ppc405ex-crypto")) {
1398 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1399 mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1400 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1401 mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1402 is_revb = false;
1403 } else if (of_find_compatible_node(NULL, NULL,
1404 "amcc,ppc460sx-crypto")) {
1405 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1406 mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1407 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1408 mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1409 } else {
1410 printk(KERN_ERR "Crypto Function Not supported!\n");
1411 return -EINVAL;
1412 }
1413
1414 core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1415 if (!core_dev)
1416 return -ENOMEM;
1417
1418 dev_set_drvdata(dev, core_dev);
1419 core_dev->ofdev = ofdev;
1420 core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1421 rc = -ENOMEM;
1422 if (!core_dev->dev)
1423 goto err_alloc_dev;
1424
1425 /*
1426 * Older version of 460EX/GT have a hardware bug.
1427 * Hence they do not support H/W based security intr coalescing
1428 */
1429 pvr = mfspr(SPRN_PVR);
1430 if (is_revb && ((pvr >> 4) == 0x130218A)) {
1431 u32 min = PVR_MIN(pvr);
1432
1433 if (min < 4) {
1434 dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1435 is_revb = false;
1436 }
1437 }
1438
1439 core_dev->dev->core_dev = core_dev;
1440 core_dev->dev->is_revb = is_revb;
1441 core_dev->device = dev;
1442 mutex_init(&core_dev->rng_lock);
1443 spin_lock_init(&core_dev->lock);
1444 INIT_LIST_HEAD(&core_dev->dev->alg_list);
1445 ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1446 rc = crypto4xx_build_pdr(core_dev->dev);
1447 if (rc)
1448 goto err_build_pdr;
1449
1450 rc = crypto4xx_build_gdr(core_dev->dev);
1451 if (rc)
1452 goto err_build_pdr;
1453
1454 rc = crypto4xx_build_sdr(core_dev->dev);
1455 if (rc)
1456 goto err_build_sdr;
1457
1458 /* Init tasklet for bottom half processing */
1459 tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1460 (unsigned long) dev);
1461
1462 core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1463 if (!core_dev->dev->ce_base) {
1464 dev_err(dev, "failed to of_iomap\n");
1465 rc = -ENOMEM;
1466 goto err_iomap;
1467 }
1468
1469 /* Register for Crypto isr, Crypto Engine IRQ */
1470 core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1471 rc = request_irq(core_dev->irq, is_revb ?
1472 crypto4xx_ce_interrupt_handler_revb :
1473 crypto4xx_ce_interrupt_handler, 0,
1474 KBUILD_MODNAME, dev);
1475 if (rc)
1476 goto err_request_irq;
1477
1478 /* need to setup pdr, rdr, gdr and sdr before this */
1479 crypto4xx_hw_init(core_dev->dev);
1480
1481 /* Register security algorithms with Linux CryptoAPI */
1482 rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1483 ARRAY_SIZE(crypto4xx_alg));
1484 if (rc)
1485 goto err_start_dev;
1486
1487 ppc4xx_trng_probe(core_dev);
1488 return 0;
1489
1490 err_start_dev:
1491 free_irq(core_dev->irq, dev);
1492 err_request_irq:
1493 irq_dispose_mapping(core_dev->irq);
1494 iounmap(core_dev->dev->ce_base);
1495 err_iomap:
1496 tasklet_kill(&core_dev->tasklet);
1497 err_build_sdr:
1498 crypto4xx_destroy_sdr(core_dev->dev);
1499 crypto4xx_destroy_gdr(core_dev->dev);
1500 err_build_pdr:
1501 crypto4xx_destroy_pdr(core_dev->dev);
1502 kfree(core_dev->dev);
1503 err_alloc_dev:
1504 kfree(core_dev);
1505
1506 return rc;
1507 }
1508
crypto4xx_remove(struct platform_device * ofdev)1509 static int crypto4xx_remove(struct platform_device *ofdev)
1510 {
1511 struct device *dev = &ofdev->dev;
1512 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1513
1514 ppc4xx_trng_remove(core_dev);
1515
1516 free_irq(core_dev->irq, dev);
1517 irq_dispose_mapping(core_dev->irq);
1518
1519 tasklet_kill(&core_dev->tasklet);
1520 /* Un-register with Linux CryptoAPI */
1521 crypto4xx_unregister_alg(core_dev->dev);
1522 mutex_destroy(&core_dev->rng_lock);
1523 /* Free all allocated memory */
1524 crypto4xx_stop_all(core_dev);
1525
1526 return 0;
1527 }
1528
1529 static const struct of_device_id crypto4xx_match[] = {
1530 { .compatible = "amcc,ppc4xx-crypto",},
1531 { },
1532 };
1533 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1534
1535 static struct platform_driver crypto4xx_driver = {
1536 .driver = {
1537 .name = KBUILD_MODNAME,
1538 .of_match_table = crypto4xx_match,
1539 },
1540 .probe = crypto4xx_probe,
1541 .remove = crypto4xx_remove,
1542 };
1543
1544 module_platform_driver(crypto4xx_driver);
1545
1546 MODULE_LICENSE("GPL");
1547 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1548 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1549