1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Silicon Labs Si514 Programmable Oscillator
4  *
5  * Copyright (C) 2015 Topic Embedded Products
6  *
7  * Author: Mike Looijmans <mike.looijmans@topic.nl>
8  */
9 
10 #include <linux/clk-provider.h>
11 #include <linux/delay.h>
12 #include <linux/module.h>
13 #include <linux/i2c.h>
14 #include <linux/regmap.h>
15 #include <linux/slab.h>
16 
17 /* I2C registers */
18 #define SI514_REG_LP		0
19 #define SI514_REG_M_FRAC1	5
20 #define SI514_REG_M_FRAC2	6
21 #define SI514_REG_M_FRAC3	7
22 #define SI514_REG_M_INT_FRAC	8
23 #define SI514_REG_M_INT		9
24 #define SI514_REG_HS_DIV	10
25 #define SI514_REG_LS_HS_DIV	11
26 #define SI514_REG_OE_STATE	14
27 #define SI514_REG_RESET		128
28 #define SI514_REG_CONTROL	132
29 
30 /* Register values */
31 #define SI514_RESET_RST		BIT(7)
32 
33 #define SI514_CONTROL_FCAL	BIT(0)
34 #define SI514_CONTROL_OE	BIT(2)
35 
36 #define SI514_MIN_FREQ	    100000U
37 #define SI514_MAX_FREQ	 250000000U
38 
39 #define FXO		  31980000U
40 
41 #define FVCO_MIN	2080000000U
42 #define FVCO_MAX	2500000000U
43 
44 #define HS_DIV_MAX	1022
45 
46 struct clk_si514 {
47 	struct clk_hw hw;
48 	struct regmap *regmap;
49 	struct i2c_client *i2c_client;
50 };
51 #define to_clk_si514(_hw)	container_of(_hw, struct clk_si514, hw)
52 
53 /* Multiplier/divider settings */
54 struct clk_si514_muldiv {
55 	u32 m_frac;  /* 29-bit Fractional part of multiplier M */
56 	u8 m_int; /* Integer part of multiplier M, 65..78 */
57 	u8 ls_div_bits; /* 2nd divider, as 2^x */
58 	u16 hs_div; /* 1st divider, must be even and 10<=x<=1022 */
59 };
60 
61 /* Enables or disables the output driver */
si514_enable_output(struct clk_si514 * data,bool enable)62 static int si514_enable_output(struct clk_si514 *data, bool enable)
63 {
64 	return regmap_update_bits(data->regmap, SI514_REG_CONTROL,
65 		SI514_CONTROL_OE, enable ? SI514_CONTROL_OE : 0);
66 }
67 
si514_prepare(struct clk_hw * hw)68 static int si514_prepare(struct clk_hw *hw)
69 {
70 	struct clk_si514 *data = to_clk_si514(hw);
71 
72 	return si514_enable_output(data, true);
73 }
74 
si514_unprepare(struct clk_hw * hw)75 static void si514_unprepare(struct clk_hw *hw)
76 {
77 	struct clk_si514 *data = to_clk_si514(hw);
78 
79 	si514_enable_output(data, false);
80 }
81 
si514_is_prepared(struct clk_hw * hw)82 static int si514_is_prepared(struct clk_hw *hw)
83 {
84 	struct clk_si514 *data = to_clk_si514(hw);
85 	unsigned int val;
86 	int err;
87 
88 	err = regmap_read(data->regmap, SI514_REG_CONTROL, &val);
89 	if (err < 0)
90 		return err;
91 
92 	return !!(val & SI514_CONTROL_OE);
93 }
94 
95 /* Retrieve clock multiplier and dividers from hardware */
si514_get_muldiv(struct clk_si514 * data,struct clk_si514_muldiv * settings)96 static int si514_get_muldiv(struct clk_si514 *data,
97 	struct clk_si514_muldiv *settings)
98 {
99 	int err;
100 	u8 reg[7];
101 
102 	err = regmap_bulk_read(data->regmap, SI514_REG_M_FRAC1,
103 			reg, ARRAY_SIZE(reg));
104 	if (err)
105 		return err;
106 
107 	settings->m_frac = reg[0] | reg[1] << 8 | reg[2] << 16 |
108 			   (reg[3] & 0x1F) << 24;
109 	settings->m_int = (reg[4] & 0x3f) << 3 | reg[3] >> 5;
110 	settings->ls_div_bits = (reg[6] >> 4) & 0x07;
111 	settings->hs_div = (reg[6] & 0x03) << 8 | reg[5];
112 	return 0;
113 }
114 
si514_set_muldiv(struct clk_si514 * data,struct clk_si514_muldiv * settings)115 static int si514_set_muldiv(struct clk_si514 *data,
116 	struct clk_si514_muldiv *settings)
117 {
118 	u8 lp;
119 	u8 reg[7];
120 	int err;
121 
122 	/* Calculate LP1/LP2 according to table 13 in the datasheet */
123 	/* 65.259980246 */
124 	if (settings->m_int < 65 ||
125 		(settings->m_int == 65 && settings->m_frac <= 139575831))
126 		lp = 0x22;
127 	/* 67.859763463 */
128 	else if (settings->m_int < 67 ||
129 		(settings->m_int == 67 && settings->m_frac <= 461581994))
130 		lp = 0x23;
131 	/* 72.937624981 */
132 	else if (settings->m_int < 72 ||
133 		(settings->m_int == 72 && settings->m_frac <= 503383578))
134 		lp = 0x33;
135 	/* 75.843265046 */
136 	else if (settings->m_int < 75 ||
137 		(settings->m_int == 75 && settings->m_frac <= 452724474))
138 		lp = 0x34;
139 	else
140 		lp = 0x44;
141 
142 	err = regmap_write(data->regmap, SI514_REG_LP, lp);
143 	if (err < 0)
144 		return err;
145 
146 	reg[0] = settings->m_frac;
147 	reg[1] = settings->m_frac >> 8;
148 	reg[2] = settings->m_frac >> 16;
149 	reg[3] = settings->m_frac >> 24 | settings->m_int << 5;
150 	reg[4] = settings->m_int >> 3;
151 	reg[5] = settings->hs_div;
152 	reg[6] = (settings->hs_div >> 8) | (settings->ls_div_bits << 4);
153 
154 	err = regmap_bulk_write(data->regmap, SI514_REG_HS_DIV, reg + 5, 2);
155 	if (err < 0)
156 		return err;
157 	/*
158 	 * Writing to SI514_REG_M_INT_FRAC triggers the clock change, so that
159 	 * must be written last
160 	 */
161 	return regmap_bulk_write(data->regmap, SI514_REG_M_FRAC1, reg, 5);
162 }
163 
164 /* Calculate divider settings for a given frequency */
si514_calc_muldiv(struct clk_si514_muldiv * settings,unsigned long frequency)165 static int si514_calc_muldiv(struct clk_si514_muldiv *settings,
166 	unsigned long frequency)
167 {
168 	u64 m;
169 	u32 ls_freq;
170 	u32 tmp;
171 	u8 res;
172 
173 	if ((frequency < SI514_MIN_FREQ) || (frequency > SI514_MAX_FREQ))
174 		return -EINVAL;
175 
176 	/* Determine the minimum value of LS_DIV and resulting target freq. */
177 	ls_freq = frequency;
178 	if (frequency >= (FVCO_MIN / HS_DIV_MAX))
179 		settings->ls_div_bits = 0;
180 	else {
181 		res = 1;
182 		tmp = 2 * HS_DIV_MAX;
183 		while (tmp <= (HS_DIV_MAX * 32)) {
184 			if ((frequency * tmp) >= FVCO_MIN)
185 				break;
186 			++res;
187 			tmp <<= 1;
188 		}
189 		settings->ls_div_bits = res;
190 		ls_freq = frequency << res;
191 	}
192 
193 	/* Determine minimum HS_DIV, round up to even number */
194 	settings->hs_div = DIV_ROUND_UP(FVCO_MIN >> 1, ls_freq) << 1;
195 
196 	/* M = LS_DIV x HS_DIV x frequency / F_XO (in fixed-point) */
197 	m = ((u64)(ls_freq * settings->hs_div) << 29) + (FXO / 2);
198 	do_div(m, FXO);
199 	settings->m_frac = (u32)m & (BIT(29) - 1);
200 	settings->m_int = (u32)(m >> 29);
201 
202 	return 0;
203 }
204 
205 /* Calculate resulting frequency given the register settings */
si514_calc_rate(struct clk_si514_muldiv * settings)206 static unsigned long si514_calc_rate(struct clk_si514_muldiv *settings)
207 {
208 	u64 m = settings->m_frac | ((u64)settings->m_int << 29);
209 	u32 d = settings->hs_div * BIT(settings->ls_div_bits);
210 
211 	return ((u32)(((m * FXO) + (FXO / 2)) >> 29)) / d;
212 }
213 
si514_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)214 static unsigned long si514_recalc_rate(struct clk_hw *hw,
215 		unsigned long parent_rate)
216 {
217 	struct clk_si514 *data = to_clk_si514(hw);
218 	struct clk_si514_muldiv settings;
219 	int err;
220 
221 	err = si514_get_muldiv(data, &settings);
222 	if (err) {
223 		dev_err(&data->i2c_client->dev, "unable to retrieve settings\n");
224 		return 0;
225 	}
226 
227 	return si514_calc_rate(&settings);
228 }
229 
si514_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)230 static long si514_round_rate(struct clk_hw *hw, unsigned long rate,
231 		unsigned long *parent_rate)
232 {
233 	struct clk_si514_muldiv settings;
234 	int err;
235 
236 	if (!rate)
237 		return 0;
238 
239 	err = si514_calc_muldiv(&settings, rate);
240 	if (err)
241 		return err;
242 
243 	return si514_calc_rate(&settings);
244 }
245 
246 /*
247  * Update output frequency for big frequency changes (> 1000 ppm).
248  * The chip supports <1000ppm changes "on the fly", we haven't implemented
249  * that here.
250  */
si514_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)251 static int si514_set_rate(struct clk_hw *hw, unsigned long rate,
252 		unsigned long parent_rate)
253 {
254 	struct clk_si514 *data = to_clk_si514(hw);
255 	struct clk_si514_muldiv settings;
256 	unsigned int old_oe_state;
257 	int err;
258 
259 	err = si514_calc_muldiv(&settings, rate);
260 	if (err)
261 		return err;
262 
263 	err = regmap_read(data->regmap, SI514_REG_CONTROL, &old_oe_state);
264 	if (err)
265 		return err;
266 
267 	si514_enable_output(data, false);
268 
269 	err = si514_set_muldiv(data, &settings);
270 	if (err < 0)
271 		return err; /* Undefined state now, best to leave disabled */
272 
273 	/* Trigger calibration */
274 	err = regmap_write(data->regmap, SI514_REG_CONTROL, SI514_CONTROL_FCAL);
275 	if (err < 0)
276 		return err;
277 
278 	/* Applying a new frequency can take up to 10ms */
279 	usleep_range(10000, 12000);
280 
281 	if (old_oe_state & SI514_CONTROL_OE)
282 		si514_enable_output(data, true);
283 
284 	return err;
285 }
286 
287 static const struct clk_ops si514_clk_ops = {
288 	.prepare = si514_prepare,
289 	.unprepare = si514_unprepare,
290 	.is_prepared = si514_is_prepared,
291 	.recalc_rate = si514_recalc_rate,
292 	.round_rate = si514_round_rate,
293 	.set_rate = si514_set_rate,
294 };
295 
si514_regmap_is_volatile(struct device * dev,unsigned int reg)296 static bool si514_regmap_is_volatile(struct device *dev, unsigned int reg)
297 {
298 	switch (reg) {
299 	case SI514_REG_CONTROL:
300 	case SI514_REG_RESET:
301 		return true;
302 	default:
303 		return false;
304 	}
305 }
306 
si514_regmap_is_writeable(struct device * dev,unsigned int reg)307 static bool si514_regmap_is_writeable(struct device *dev, unsigned int reg)
308 {
309 	switch (reg) {
310 	case SI514_REG_LP:
311 	case SI514_REG_M_FRAC1 ... SI514_REG_LS_HS_DIV:
312 	case SI514_REG_OE_STATE:
313 	case SI514_REG_RESET:
314 	case SI514_REG_CONTROL:
315 		return true;
316 	default:
317 		return false;
318 	}
319 }
320 
321 static const struct regmap_config si514_regmap_config = {
322 	.reg_bits = 8,
323 	.val_bits = 8,
324 	.cache_type = REGCACHE_RBTREE,
325 	.max_register = SI514_REG_CONTROL,
326 	.writeable_reg = si514_regmap_is_writeable,
327 	.volatile_reg = si514_regmap_is_volatile,
328 };
329 
si514_probe(struct i2c_client * client,const struct i2c_device_id * id)330 static int si514_probe(struct i2c_client *client,
331 		const struct i2c_device_id *id)
332 {
333 	struct clk_si514 *data;
334 	struct clk_init_data init;
335 	int err;
336 
337 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
338 	if (!data)
339 		return -ENOMEM;
340 
341 	init.ops = &si514_clk_ops;
342 	init.flags = 0;
343 	init.num_parents = 0;
344 	data->hw.init = &init;
345 	data->i2c_client = client;
346 
347 	if (of_property_read_string(client->dev.of_node, "clock-output-names",
348 			&init.name))
349 		init.name = client->dev.of_node->name;
350 
351 	data->regmap = devm_regmap_init_i2c(client, &si514_regmap_config);
352 	if (IS_ERR(data->regmap)) {
353 		dev_err(&client->dev, "failed to allocate register map\n");
354 		return PTR_ERR(data->regmap);
355 	}
356 
357 	i2c_set_clientdata(client, data);
358 
359 	err = devm_clk_hw_register(&client->dev, &data->hw);
360 	if (err) {
361 		dev_err(&client->dev, "clock registration failed\n");
362 		return err;
363 	}
364 	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_hw_simple_get,
365 				     &data->hw);
366 	if (err) {
367 		dev_err(&client->dev, "unable to add clk provider\n");
368 		return err;
369 	}
370 
371 	return 0;
372 }
373 
si514_remove(struct i2c_client * client)374 static int si514_remove(struct i2c_client *client)
375 {
376 	of_clk_del_provider(client->dev.of_node);
377 	return 0;
378 }
379 
380 static const struct i2c_device_id si514_id[] = {
381 	{ "si514", 0 },
382 	{ }
383 };
384 MODULE_DEVICE_TABLE(i2c, si514_id);
385 
386 static const struct of_device_id clk_si514_of_match[] = {
387 	{ .compatible = "silabs,si514" },
388 	{ },
389 };
390 MODULE_DEVICE_TABLE(of, clk_si514_of_match);
391 
392 static struct i2c_driver si514_driver = {
393 	.driver = {
394 		.name = "si514",
395 		.of_match_table = clk_si514_of_match,
396 	},
397 	.probe		= si514_probe,
398 	.remove		= si514_remove,
399 	.id_table	= si514_id,
400 };
401 module_i2c_driver(si514_driver);
402 
403 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
404 MODULE_DESCRIPTION("Si514 driver");
405 MODULE_LICENSE("GPL");
406