1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Bluetooth support for Intel devices
5 *
6 * Copyright (C) 2015 Intel Corporation
7 */
8
9 #include <linux/module.h>
10 #include <linux/firmware.h>
11 #include <linux/regmap.h>
12 #include <asm/unaligned.h>
13
14 #include <net/bluetooth/bluetooth.h>
15 #include <net/bluetooth/hci_core.h>
16
17 #include "btintel.h"
18
19 #define VERSION "0.1"
20
21 #define BDADDR_INTEL (&(bdaddr_t) {{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
22
btintel_check_bdaddr(struct hci_dev * hdev)23 int btintel_check_bdaddr(struct hci_dev *hdev)
24 {
25 struct hci_rp_read_bd_addr *bda;
26 struct sk_buff *skb;
27
28 skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
29 HCI_INIT_TIMEOUT);
30 if (IS_ERR(skb)) {
31 int err = PTR_ERR(skb);
32 bt_dev_err(hdev, "Reading Intel device address failed (%d)",
33 err);
34 return err;
35 }
36
37 if (skb->len != sizeof(*bda)) {
38 bt_dev_err(hdev, "Intel device address length mismatch");
39 kfree_skb(skb);
40 return -EIO;
41 }
42
43 bda = (struct hci_rp_read_bd_addr *)skb->data;
44
45 /* For some Intel based controllers, the default Bluetooth device
46 * address 00:03:19:9E:8B:00 can be found. These controllers are
47 * fully operational, but have the danger of duplicate addresses
48 * and that in turn can cause problems with Bluetooth operation.
49 */
50 if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
51 bt_dev_err(hdev, "Found Intel default device address (%pMR)",
52 &bda->bdaddr);
53 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
54 }
55
56 kfree_skb(skb);
57
58 return 0;
59 }
60 EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
61
btintel_enter_mfg(struct hci_dev * hdev)62 int btintel_enter_mfg(struct hci_dev *hdev)
63 {
64 static const u8 param[] = { 0x01, 0x00 };
65 struct sk_buff *skb;
66
67 skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
68 if (IS_ERR(skb)) {
69 bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
70 PTR_ERR(skb));
71 return PTR_ERR(skb);
72 }
73 kfree_skb(skb);
74
75 return 0;
76 }
77 EXPORT_SYMBOL_GPL(btintel_enter_mfg);
78
btintel_exit_mfg(struct hci_dev * hdev,bool reset,bool patched)79 int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
80 {
81 u8 param[] = { 0x00, 0x00 };
82 struct sk_buff *skb;
83
84 /* The 2nd command parameter specifies the manufacturing exit method:
85 * 0x00: Just disable the manufacturing mode (0x00).
86 * 0x01: Disable manufacturing mode and reset with patches deactivated.
87 * 0x02: Disable manufacturing mode and reset with patches activated.
88 */
89 if (reset)
90 param[1] |= patched ? 0x02 : 0x01;
91
92 skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
93 if (IS_ERR(skb)) {
94 bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
95 PTR_ERR(skb));
96 return PTR_ERR(skb);
97 }
98 kfree_skb(skb);
99
100 return 0;
101 }
102 EXPORT_SYMBOL_GPL(btintel_exit_mfg);
103
btintel_set_bdaddr(struct hci_dev * hdev,const bdaddr_t * bdaddr)104 int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
105 {
106 struct sk_buff *skb;
107 int err;
108
109 skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
110 if (IS_ERR(skb)) {
111 err = PTR_ERR(skb);
112 bt_dev_err(hdev, "Changing Intel device address failed (%d)",
113 err);
114 return err;
115 }
116 kfree_skb(skb);
117
118 return 0;
119 }
120 EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
121
btintel_set_diag(struct hci_dev * hdev,bool enable)122 int btintel_set_diag(struct hci_dev *hdev, bool enable)
123 {
124 struct sk_buff *skb;
125 u8 param[3];
126 int err;
127
128 if (enable) {
129 param[0] = 0x03;
130 param[1] = 0x03;
131 param[2] = 0x03;
132 } else {
133 param[0] = 0x00;
134 param[1] = 0x00;
135 param[2] = 0x00;
136 }
137
138 skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
139 if (IS_ERR(skb)) {
140 err = PTR_ERR(skb);
141 if (err == -ENODATA)
142 goto done;
143 bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
144 err);
145 return err;
146 }
147 kfree_skb(skb);
148
149 done:
150 btintel_set_event_mask(hdev, enable);
151 return 0;
152 }
153 EXPORT_SYMBOL_GPL(btintel_set_diag);
154
btintel_set_diag_mfg(struct hci_dev * hdev,bool enable)155 int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
156 {
157 int err, ret;
158
159 err = btintel_enter_mfg(hdev);
160 if (err)
161 return err;
162
163 ret = btintel_set_diag(hdev, enable);
164
165 err = btintel_exit_mfg(hdev, false, false);
166 if (err)
167 return err;
168
169 return ret;
170 }
171 EXPORT_SYMBOL_GPL(btintel_set_diag_mfg);
172
btintel_hw_error(struct hci_dev * hdev,u8 code)173 void btintel_hw_error(struct hci_dev *hdev, u8 code)
174 {
175 struct sk_buff *skb;
176 u8 type = 0x00;
177
178 bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
179
180 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
181 if (IS_ERR(skb)) {
182 bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
183 PTR_ERR(skb));
184 return;
185 }
186 kfree_skb(skb);
187
188 skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
189 if (IS_ERR(skb)) {
190 bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
191 PTR_ERR(skb));
192 return;
193 }
194
195 if (skb->len != 13) {
196 bt_dev_err(hdev, "Exception info size mismatch");
197 kfree_skb(skb);
198 return;
199 }
200
201 bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
202
203 kfree_skb(skb);
204 }
205 EXPORT_SYMBOL_GPL(btintel_hw_error);
206
btintel_version_info(struct hci_dev * hdev,struct intel_version * ver)207 void btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
208 {
209 const char *variant;
210
211 switch (ver->fw_variant) {
212 case 0x06:
213 variant = "Bootloader";
214 break;
215 case 0x23:
216 variant = "Firmware";
217 break;
218 default:
219 return;
220 }
221
222 bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
223 variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
224 ver->fw_build_num, ver->fw_build_ww,
225 2000 + ver->fw_build_yy);
226 }
227 EXPORT_SYMBOL_GPL(btintel_version_info);
228
btintel_secure_send(struct hci_dev * hdev,u8 fragment_type,u32 plen,const void * param)229 int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
230 const void *param)
231 {
232 while (plen > 0) {
233 struct sk_buff *skb;
234 u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
235
236 cmd_param[0] = fragment_type;
237 memcpy(cmd_param + 1, param, fragment_len);
238
239 skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
240 cmd_param, HCI_INIT_TIMEOUT);
241 if (IS_ERR(skb))
242 return PTR_ERR(skb);
243
244 kfree_skb(skb);
245
246 plen -= fragment_len;
247 param += fragment_len;
248 }
249
250 return 0;
251 }
252 EXPORT_SYMBOL_GPL(btintel_secure_send);
253
btintel_load_ddc_config(struct hci_dev * hdev,const char * ddc_name)254 int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
255 {
256 const struct firmware *fw;
257 struct sk_buff *skb;
258 const u8 *fw_ptr;
259 int err;
260
261 err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
262 if (err < 0) {
263 bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
264 ddc_name, err);
265 return err;
266 }
267
268 bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
269
270 fw_ptr = fw->data;
271
272 /* DDC file contains one or more DDC structure which has
273 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
274 */
275 while (fw->size > fw_ptr - fw->data) {
276 u8 cmd_plen = fw_ptr[0] + sizeof(u8);
277
278 skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
279 HCI_INIT_TIMEOUT);
280 if (IS_ERR(skb)) {
281 bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
282 PTR_ERR(skb));
283 release_firmware(fw);
284 return PTR_ERR(skb);
285 }
286
287 fw_ptr += cmd_plen;
288 kfree_skb(skb);
289 }
290
291 release_firmware(fw);
292
293 bt_dev_info(hdev, "Applying Intel DDC parameters completed");
294
295 return 0;
296 }
297 EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
298
btintel_set_event_mask(struct hci_dev * hdev,bool debug)299 int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
300 {
301 u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
302 struct sk_buff *skb;
303 int err;
304
305 if (debug)
306 mask[1] |= 0x62;
307
308 skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
309 if (IS_ERR(skb)) {
310 err = PTR_ERR(skb);
311 bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
312 return err;
313 }
314 kfree_skb(skb);
315
316 return 0;
317 }
318 EXPORT_SYMBOL_GPL(btintel_set_event_mask);
319
btintel_set_event_mask_mfg(struct hci_dev * hdev,bool debug)320 int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
321 {
322 int err, ret;
323
324 err = btintel_enter_mfg(hdev);
325 if (err)
326 return err;
327
328 ret = btintel_set_event_mask(hdev, debug);
329
330 err = btintel_exit_mfg(hdev, false, false);
331 if (err)
332 return err;
333
334 return ret;
335 }
336 EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
337
btintel_read_version(struct hci_dev * hdev,struct intel_version * ver)338 int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
339 {
340 struct sk_buff *skb;
341
342 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
343 if (IS_ERR(skb)) {
344 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
345 PTR_ERR(skb));
346 return PTR_ERR(skb);
347 }
348
349 if (skb->len != sizeof(*ver)) {
350 bt_dev_err(hdev, "Intel version event size mismatch");
351 kfree_skb(skb);
352 return -EILSEQ;
353 }
354
355 memcpy(ver, skb->data, sizeof(*ver));
356
357 kfree_skb(skb);
358
359 return 0;
360 }
361 EXPORT_SYMBOL_GPL(btintel_read_version);
362
363 /* ------- REGMAP IBT SUPPORT ------- */
364
365 #define IBT_REG_MODE_8BIT 0x00
366 #define IBT_REG_MODE_16BIT 0x01
367 #define IBT_REG_MODE_32BIT 0x02
368
369 struct regmap_ibt_context {
370 struct hci_dev *hdev;
371 __u16 op_write;
372 __u16 op_read;
373 };
374
375 struct ibt_cp_reg_access {
376 __le32 addr;
377 __u8 mode;
378 __u8 len;
379 __u8 data[0];
380 } __packed;
381
382 struct ibt_rp_reg_access {
383 __u8 status;
384 __le32 addr;
385 __u8 data[0];
386 } __packed;
387
regmap_ibt_read(void * context,const void * addr,size_t reg_size,void * val,size_t val_size)388 static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
389 void *val, size_t val_size)
390 {
391 struct regmap_ibt_context *ctx = context;
392 struct ibt_cp_reg_access cp;
393 struct ibt_rp_reg_access *rp;
394 struct sk_buff *skb;
395 int err = 0;
396
397 if (reg_size != sizeof(__le32))
398 return -EINVAL;
399
400 switch (val_size) {
401 case 1:
402 cp.mode = IBT_REG_MODE_8BIT;
403 break;
404 case 2:
405 cp.mode = IBT_REG_MODE_16BIT;
406 break;
407 case 4:
408 cp.mode = IBT_REG_MODE_32BIT;
409 break;
410 default:
411 return -EINVAL;
412 }
413
414 /* regmap provides a little-endian formatted addr */
415 cp.addr = *(__le32 *)addr;
416 cp.len = val_size;
417
418 bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
419
420 skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
421 HCI_CMD_TIMEOUT);
422 if (IS_ERR(skb)) {
423 err = PTR_ERR(skb);
424 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
425 le32_to_cpu(cp.addr), err);
426 return err;
427 }
428
429 if (skb->len != sizeof(*rp) + val_size) {
430 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
431 le32_to_cpu(cp.addr));
432 err = -EINVAL;
433 goto done;
434 }
435
436 rp = (struct ibt_rp_reg_access *)skb->data;
437
438 if (rp->addr != cp.addr) {
439 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
440 le32_to_cpu(rp->addr));
441 err = -EINVAL;
442 goto done;
443 }
444
445 memcpy(val, rp->data, val_size);
446
447 done:
448 kfree_skb(skb);
449 return err;
450 }
451
regmap_ibt_gather_write(void * context,const void * addr,size_t reg_size,const void * val,size_t val_size)452 static int regmap_ibt_gather_write(void *context,
453 const void *addr, size_t reg_size,
454 const void *val, size_t val_size)
455 {
456 struct regmap_ibt_context *ctx = context;
457 struct ibt_cp_reg_access *cp;
458 struct sk_buff *skb;
459 int plen = sizeof(*cp) + val_size;
460 u8 mode;
461 int err = 0;
462
463 if (reg_size != sizeof(__le32))
464 return -EINVAL;
465
466 switch (val_size) {
467 case 1:
468 mode = IBT_REG_MODE_8BIT;
469 break;
470 case 2:
471 mode = IBT_REG_MODE_16BIT;
472 break;
473 case 4:
474 mode = IBT_REG_MODE_32BIT;
475 break;
476 default:
477 return -EINVAL;
478 }
479
480 cp = kmalloc(plen, GFP_KERNEL);
481 if (!cp)
482 return -ENOMEM;
483
484 /* regmap provides a little-endian formatted addr/value */
485 cp->addr = *(__le32 *)addr;
486 cp->mode = mode;
487 cp->len = val_size;
488 memcpy(&cp->data, val, val_size);
489
490 bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
491
492 skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
493 if (IS_ERR(skb)) {
494 err = PTR_ERR(skb);
495 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
496 le32_to_cpu(cp->addr), err);
497 goto done;
498 }
499 kfree_skb(skb);
500
501 done:
502 kfree(cp);
503 return err;
504 }
505
regmap_ibt_write(void * context,const void * data,size_t count)506 static int regmap_ibt_write(void *context, const void *data, size_t count)
507 {
508 /* data contains register+value, since we only support 32bit addr,
509 * minimum data size is 4 bytes.
510 */
511 if (WARN_ONCE(count < 4, "Invalid register access"))
512 return -EINVAL;
513
514 return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
515 }
516
regmap_ibt_free_context(void * context)517 static void regmap_ibt_free_context(void *context)
518 {
519 kfree(context);
520 }
521
522 static struct regmap_bus regmap_ibt = {
523 .read = regmap_ibt_read,
524 .write = regmap_ibt_write,
525 .gather_write = regmap_ibt_gather_write,
526 .free_context = regmap_ibt_free_context,
527 .reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
528 .val_format_endian_default = REGMAP_ENDIAN_LITTLE,
529 };
530
531 /* Config is the same for all register regions */
532 static const struct regmap_config regmap_ibt_cfg = {
533 .name = "btintel_regmap",
534 .reg_bits = 32,
535 .val_bits = 32,
536 };
537
btintel_regmap_init(struct hci_dev * hdev,u16 opcode_read,u16 opcode_write)538 struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
539 u16 opcode_write)
540 {
541 struct regmap_ibt_context *ctx;
542
543 bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
544 opcode_write);
545
546 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
547 if (!ctx)
548 return ERR_PTR(-ENOMEM);
549
550 ctx->op_read = opcode_read;
551 ctx->op_write = opcode_write;
552 ctx->hdev = hdev;
553
554 return regmap_init(&hdev->dev, ®map_ibt, ctx, ®map_ibt_cfg);
555 }
556 EXPORT_SYMBOL_GPL(btintel_regmap_init);
557
btintel_send_intel_reset(struct hci_dev * hdev,u32 boot_param)558 int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
559 {
560 struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
561 struct sk_buff *skb;
562
563 params.boot_param = cpu_to_le32(boot_param);
564
565 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), ¶ms,
566 HCI_INIT_TIMEOUT);
567 if (IS_ERR(skb)) {
568 bt_dev_err(hdev, "Failed to send Intel Reset command");
569 return PTR_ERR(skb);
570 }
571
572 kfree_skb(skb);
573
574 return 0;
575 }
576 EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
577
btintel_read_boot_params(struct hci_dev * hdev,struct intel_boot_params * params)578 int btintel_read_boot_params(struct hci_dev *hdev,
579 struct intel_boot_params *params)
580 {
581 struct sk_buff *skb;
582
583 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
584 if (IS_ERR(skb)) {
585 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
586 PTR_ERR(skb));
587 return PTR_ERR(skb);
588 }
589
590 if (skb->len != sizeof(*params)) {
591 bt_dev_err(hdev, "Intel boot parameters size mismatch");
592 kfree_skb(skb);
593 return -EILSEQ;
594 }
595
596 memcpy(params, skb->data, sizeof(*params));
597
598 kfree_skb(skb);
599
600 if (params->status) {
601 bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
602 params->status);
603 return -bt_to_errno(params->status);
604 }
605
606 bt_dev_info(hdev, "Device revision is %u",
607 le16_to_cpu(params->dev_revid));
608
609 bt_dev_info(hdev, "Secure boot is %s",
610 params->secure_boot ? "enabled" : "disabled");
611
612 bt_dev_info(hdev, "OTP lock is %s",
613 params->otp_lock ? "enabled" : "disabled");
614
615 bt_dev_info(hdev, "API lock is %s",
616 params->api_lock ? "enabled" : "disabled");
617
618 bt_dev_info(hdev, "Debug lock is %s",
619 params->debug_lock ? "enabled" : "disabled");
620
621 bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
622 params->min_fw_build_nn, params->min_fw_build_cw,
623 2000 + params->min_fw_build_yy);
624
625 return 0;
626 }
627 EXPORT_SYMBOL_GPL(btintel_read_boot_params);
628
btintel_download_firmware(struct hci_dev * hdev,const struct firmware * fw,u32 * boot_param)629 int btintel_download_firmware(struct hci_dev *hdev, const struct firmware *fw,
630 u32 *boot_param)
631 {
632 int err;
633 const u8 *fw_ptr;
634 u32 frag_len;
635
636 /* Start the firmware download transaction with the Init fragment
637 * represented by the 128 bytes of CSS header.
638 */
639 err = btintel_secure_send(hdev, 0x00, 128, fw->data);
640 if (err < 0) {
641 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
642 goto done;
643 }
644
645 /* Send the 256 bytes of public key information from the firmware
646 * as the PKey fragment.
647 */
648 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
649 if (err < 0) {
650 bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
651 goto done;
652 }
653
654 /* Send the 256 bytes of signature information from the firmware
655 * as the Sign fragment.
656 */
657 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
658 if (err < 0) {
659 bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
660 goto done;
661 }
662
663 fw_ptr = fw->data + 644;
664 frag_len = 0;
665
666 while (fw_ptr - fw->data < fw->size) {
667 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
668
669 /* Each SKU has a different reset parameter to use in the
670 * HCI_Intel_Reset command and it is embedded in the firmware
671 * data. So, instead of using static value per SKU, check
672 * the firmware data and save it for later use.
673 */
674 if (le16_to_cpu(cmd->opcode) == 0xfc0e) {
675 /* The boot parameter is the first 32-bit value
676 * and rest of 3 octets are reserved.
677 */
678 *boot_param = get_unaligned_le32(fw_ptr + sizeof(*cmd));
679
680 bt_dev_dbg(hdev, "boot_param=0x%x", *boot_param);
681 }
682
683 frag_len += sizeof(*cmd) + cmd->plen;
684
685 /* The parameter length of the secure send command requires
686 * a 4 byte alignment. It happens so that the firmware file
687 * contains proper Intel_NOP commands to align the fragments
688 * as needed.
689 *
690 * Send set of commands with 4 byte alignment from the
691 * firmware data buffer as a single Data fragement.
692 */
693 if (!(frag_len % 4)) {
694 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
695 if (err < 0) {
696 bt_dev_err(hdev,
697 "Failed to send firmware data (%d)",
698 err);
699 goto done;
700 }
701
702 fw_ptr += frag_len;
703 frag_len = 0;
704 }
705 }
706
707 done:
708 return err;
709 }
710 EXPORT_SYMBOL_GPL(btintel_download_firmware);
711
712 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
713 MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
714 MODULE_VERSION(VERSION);
715 MODULE_LICENSE("GPL");
716 MODULE_FIRMWARE("intel/ibt-11-5.sfi");
717 MODULE_FIRMWARE("intel/ibt-11-5.ddc");
718 MODULE_FIRMWARE("intel/ibt-12-16.sfi");
719 MODULE_FIRMWARE("intel/ibt-12-16.ddc");
720