1 /*
2  * Copyright (c) 2013, Kenneth MacKay
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are
7  * met:
8  *  * Redistributions of source code must retain the above copyright
9  *   notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 #ifndef _CRYPTO_ECC_H
27 #define _CRYPTO_ECC_H
28 
29 /* One digit is u64 qword. */
30 #define ECC_CURVE_NIST_P192_DIGITS  3
31 #define ECC_CURVE_NIST_P256_DIGITS  4
32 #define ECC_MAX_DIGITS             (512 / 64)
33 
34 #define ECC_DIGITS_TO_BYTES_SHIFT 3
35 
36 /**
37  * struct ecc_point - elliptic curve point in affine coordinates
38  *
39  * @x:		X coordinate in vli form.
40  * @y:		Y coordinate in vli form.
41  * @ndigits:	Length of vlis in u64 qwords.
42  */
43 struct ecc_point {
44 	u64 *x;
45 	u64 *y;
46 	u8 ndigits;
47 };
48 
49 #define ECC_POINT_INIT(x, y, ndigits)	(struct ecc_point) { x, y, ndigits }
50 
51 /**
52  * struct ecc_curve - definition of elliptic curve
53  *
54  * @name:	Short name of the curve.
55  * @g:		Generator point of the curve.
56  * @p:		Prime number, if Barrett's reduction is used for this curve
57  *		pre-calculated value 'mu' is appended to the @p after ndigits.
58  *		Use of Barrett's reduction is heuristically determined in
59  *		vli_mmod_fast().
60  * @n:		Order of the curve group.
61  * @a:		Curve parameter a.
62  * @b:		Curve parameter b.
63  */
64 struct ecc_curve {
65 	char *name;
66 	struct ecc_point g;
67 	u64 *p;
68 	u64 *n;
69 	u64 *a;
70 	u64 *b;
71 };
72 
73 /**
74  * ecc_is_key_valid() - Validate a given ECDH private key
75  *
76  * @curve_id:		id representing the curve to use
77  * @ndigits:		curve's number of digits
78  * @private_key:	private key to be used for the given curve
79  * @private_key_len:	private key length
80  *
81  * Returns 0 if the key is acceptable, a negative value otherwise
82  */
83 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
84 		     const u64 *private_key, unsigned int private_key_len);
85 
86 /**
87  * ecc_gen_privkey() -  Generates an ECC private key.
88  * The private key is a random integer in the range 0 < random < n, where n is a
89  * prime that is the order of the cyclic subgroup generated by the distinguished
90  * point G.
91  * @curve_id:		id representing the curve to use
92  * @ndigits:		curve number of digits
93  * @private_key:	buffer for storing the generated private key
94  *
95  * Returns 0 if the private key was generated successfully, a negative value
96  * if an error occurred.
97  */
98 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey);
99 
100 /**
101  * ecc_make_pub_key() - Compute an ECC public key
102  *
103  * @curve_id:		id representing the curve to use
104  * @ndigits:		curve's number of digits
105  * @private_key:	pregenerated private key for the given curve
106  * @public_key:		buffer for storing the generated public key
107  *
108  * Returns 0 if the public key was generated successfully, a negative value
109  * if an error occurred.
110  */
111 int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits,
112 		     const u64 *private_key, u64 *public_key);
113 
114 /**
115  * crypto_ecdh_shared_secret() - Compute a shared secret
116  *
117  * @curve_id:		id representing the curve to use
118  * @ndigits:		curve's number of digits
119  * @private_key:	private key of part A
120  * @public_key:		public key of counterpart B
121  * @secret:		buffer for storing the calculated shared secret
122  *
123  * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret
124  * before using it for symmetric encryption or HMAC.
125  *
126  * Returns 0 if the shared secret was generated successfully, a negative value
127  * if an error occurred.
128  */
129 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
130 			      const u64 *private_key, const u64 *public_key,
131 			      u64 *secret);
132 
133 /**
134  * ecc_is_pubkey_valid_partial() - Partial public key validation
135  *
136  * @curve:		elliptic curve domain parameters
137  * @pk:			public key as a point
138  *
139  * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial
140  * Public-Key Validation Routine.
141  *
142  * Note: There is no check that the public key is in the correct elliptic curve
143  * subgroup.
144  *
145  * Return: 0 if validation is successful, -EINVAL if validation is failed.
146  */
147 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
148 				struct ecc_point *pk);
149 
150 /**
151  * vli_is_zero() - Determine is vli is zero
152  *
153  * @vli:		vli to check.
154  * @ndigits:		length of the @vli
155  */
156 bool vli_is_zero(const u64 *vli, unsigned int ndigits);
157 
158 /**
159  * vli_cmp() - compare left and right vlis
160  *
161  * @left:		vli
162  * @right:		vli
163  * @ndigits:		length of both vlis
164  *
165  * Returns sign of @left - @right, i.e. -1 if @left < @right,
166  * 0 if @left == @right, 1 if @left > @right.
167  */
168 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits);
169 
170 /**
171  * vli_sub() - Subtracts right from left
172  *
173  * @result:		where to write result
174  * @left:		vli
175  * @right		vli
176  * @ndigits:		length of all vlis
177  *
178  * Note: can modify in-place.
179  *
180  * Return: carry bit.
181  */
182 u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
183 	    unsigned int ndigits);
184 
185 /**
186  * vli_from_be64() - Load vli from big-endian u64 array
187  *
188  * @dest:		destination vli
189  * @src:		source array of u64 BE values
190  * @ndigits:		length of both vli and array
191  */
192 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits);
193 
194 /**
195  * vli_from_le64() - Load vli from little-endian u64 array
196  *
197  * @dest:		destination vli
198  * @src:		source array of u64 LE values
199  * @ndigits:		length of both vli and array
200  */
201 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits);
202 
203 /**
204  * vli_mod_inv() - Modular inversion
205  *
206  * @result:		where to write vli number
207  * @input:		vli value to operate on
208  * @mod:		modulus
209  * @ndigits:		length of all vlis
210  */
211 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
212 		 unsigned int ndigits);
213 
214 /**
215  * vli_mod_mult_slow() - Modular multiplication
216  *
217  * @result:		where to write result value
218  * @left:		vli number to multiply with @right
219  * @right:		vli number to multiply with @left
220  * @mod:		modulus
221  * @ndigits:		length of all vlis
222  *
223  * Note: Assumes that mod is big enough curve order.
224  */
225 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
226 		       const u64 *mod, unsigned int ndigits);
227 
228 /**
229  * ecc_point_mult_shamir() - Add two points multiplied by scalars
230  *
231  * @result:		resulting point
232  * @x:			scalar to multiply with @p
233  * @p:			point to multiply with @x
234  * @y:			scalar to multiply with @q
235  * @q:			point to multiply with @y
236  * @curve:		curve
237  *
238  * Returns result = x * p + x * q over the curve.
239  * This works faster than two multiplications and addition.
240  */
241 void ecc_point_mult_shamir(const struct ecc_point *result,
242 			   const u64 *x, const struct ecc_point *p,
243 			   const u64 *y, const struct ecc_point *q,
244 			   const struct ecc_curve *curve);
245 #endif
246