1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Code extracted from drivers/block/genhd.c
4  *  Copyright (C) 1991-1998  Linus Torvalds
5  *  Re-organised Feb 1998 Russell King
6  *
7  *  We now have independent partition support from the
8  *  block drivers, which allows all the partition code to
9  *  be grouped in one location, and it to be mostly self
10  *  contained.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/fs.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/ctype.h>
19 #include <linux/genhd.h>
20 #include <linux/blktrace_api.h>
21 
22 #include "partitions/check.h"
23 
24 #ifdef CONFIG_BLK_DEV_MD
25 extern void md_autodetect_dev(dev_t dev);
26 #endif
27 
28 /*
29  * disk_name() is used by partition check code and the genhd driver.
30  * It formats the devicename of the indicated disk into
31  * the supplied buffer (of size at least 32), and returns
32  * a pointer to that same buffer (for convenience).
33  */
34 
disk_name(struct gendisk * hd,int partno,char * buf)35 char *disk_name(struct gendisk *hd, int partno, char *buf)
36 {
37 	if (!partno)
38 		snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
39 	else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
40 		snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
41 	else
42 		snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
43 
44 	return buf;
45 }
46 
bdevname(struct block_device * bdev,char * buf)47 const char *bdevname(struct block_device *bdev, char *buf)
48 {
49 	return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
50 }
51 
52 EXPORT_SYMBOL(bdevname);
53 
bio_devname(struct bio * bio,char * buf)54 const char *bio_devname(struct bio *bio, char *buf)
55 {
56 	return disk_name(bio->bi_disk, bio->bi_partno, buf);
57 }
58 EXPORT_SYMBOL(bio_devname);
59 
60 /*
61  * There's very little reason to use this, you should really
62  * have a struct block_device just about everywhere and use
63  * bdevname() instead.
64  */
__bdevname(dev_t dev,char * buffer)65 const char *__bdevname(dev_t dev, char *buffer)
66 {
67 	scnprintf(buffer, BDEVNAME_SIZE, "unknown-block(%u,%u)",
68 				MAJOR(dev), MINOR(dev));
69 	return buffer;
70 }
71 
72 EXPORT_SYMBOL(__bdevname);
73 
part_partition_show(struct device * dev,struct device_attribute * attr,char * buf)74 static ssize_t part_partition_show(struct device *dev,
75 				   struct device_attribute *attr, char *buf)
76 {
77 	struct hd_struct *p = dev_to_part(dev);
78 
79 	return sprintf(buf, "%d\n", p->partno);
80 }
81 
part_start_show(struct device * dev,struct device_attribute * attr,char * buf)82 static ssize_t part_start_show(struct device *dev,
83 			       struct device_attribute *attr, char *buf)
84 {
85 	struct hd_struct *p = dev_to_part(dev);
86 
87 	return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
88 }
89 
part_size_show(struct device * dev,struct device_attribute * attr,char * buf)90 ssize_t part_size_show(struct device *dev,
91 		       struct device_attribute *attr, char *buf)
92 {
93 	struct hd_struct *p = dev_to_part(dev);
94 	return sprintf(buf, "%llu\n",(unsigned long long)part_nr_sects_read(p));
95 }
96 
part_ro_show(struct device * dev,struct device_attribute * attr,char * buf)97 static ssize_t part_ro_show(struct device *dev,
98 			    struct device_attribute *attr, char *buf)
99 {
100 	struct hd_struct *p = dev_to_part(dev);
101 	return sprintf(buf, "%d\n", p->policy ? 1 : 0);
102 }
103 
part_alignment_offset_show(struct device * dev,struct device_attribute * attr,char * buf)104 static ssize_t part_alignment_offset_show(struct device *dev,
105 					  struct device_attribute *attr, char *buf)
106 {
107 	struct hd_struct *p = dev_to_part(dev);
108 	return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
109 }
110 
part_discard_alignment_show(struct device * dev,struct device_attribute * attr,char * buf)111 static ssize_t part_discard_alignment_show(struct device *dev,
112 					   struct device_attribute *attr, char *buf)
113 {
114 	struct hd_struct *p = dev_to_part(dev);
115 	return sprintf(buf, "%u\n", p->discard_alignment);
116 }
117 
part_stat_show(struct device * dev,struct device_attribute * attr,char * buf)118 ssize_t part_stat_show(struct device *dev,
119 		       struct device_attribute *attr, char *buf)
120 {
121 	struct hd_struct *p = dev_to_part(dev);
122 	struct request_queue *q = part_to_disk(p)->queue;
123 	unsigned int inflight;
124 
125 	inflight = part_in_flight(q, p);
126 	return sprintf(buf,
127 		"%8lu %8lu %8llu %8u "
128 		"%8lu %8lu %8llu %8u "
129 		"%8u %8u %8u "
130 		"%8lu %8lu %8llu %8u"
131 		"\n",
132 		part_stat_read(p, ios[STAT_READ]),
133 		part_stat_read(p, merges[STAT_READ]),
134 		(unsigned long long)part_stat_read(p, sectors[STAT_READ]),
135 		(unsigned int)part_stat_read_msecs(p, STAT_READ),
136 		part_stat_read(p, ios[STAT_WRITE]),
137 		part_stat_read(p, merges[STAT_WRITE]),
138 		(unsigned long long)part_stat_read(p, sectors[STAT_WRITE]),
139 		(unsigned int)part_stat_read_msecs(p, STAT_WRITE),
140 		inflight,
141 		jiffies_to_msecs(part_stat_read(p, io_ticks)),
142 		jiffies_to_msecs(part_stat_read(p, time_in_queue)),
143 		part_stat_read(p, ios[STAT_DISCARD]),
144 		part_stat_read(p, merges[STAT_DISCARD]),
145 		(unsigned long long)part_stat_read(p, sectors[STAT_DISCARD]),
146 		(unsigned int)part_stat_read_msecs(p, STAT_DISCARD));
147 }
148 
part_inflight_show(struct device * dev,struct device_attribute * attr,char * buf)149 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
150 			   char *buf)
151 {
152 	struct hd_struct *p = dev_to_part(dev);
153 	struct request_queue *q = part_to_disk(p)->queue;
154 	unsigned int inflight[2];
155 
156 	part_in_flight_rw(q, p, inflight);
157 	return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]);
158 }
159 
160 #ifdef CONFIG_FAIL_MAKE_REQUEST
part_fail_show(struct device * dev,struct device_attribute * attr,char * buf)161 ssize_t part_fail_show(struct device *dev,
162 		       struct device_attribute *attr, char *buf)
163 {
164 	struct hd_struct *p = dev_to_part(dev);
165 
166 	return sprintf(buf, "%d\n", p->make_it_fail);
167 }
168 
part_fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)169 ssize_t part_fail_store(struct device *dev,
170 			struct device_attribute *attr,
171 			const char *buf, size_t count)
172 {
173 	struct hd_struct *p = dev_to_part(dev);
174 	int i;
175 
176 	if (count > 0 && sscanf(buf, "%d", &i) > 0)
177 		p->make_it_fail = (i == 0) ? 0 : 1;
178 
179 	return count;
180 }
181 #endif
182 
183 static DEVICE_ATTR(partition, 0444, part_partition_show, NULL);
184 static DEVICE_ATTR(start, 0444, part_start_show, NULL);
185 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
186 static DEVICE_ATTR(ro, 0444, part_ro_show, NULL);
187 static DEVICE_ATTR(alignment_offset, 0444, part_alignment_offset_show, NULL);
188 static DEVICE_ATTR(discard_alignment, 0444, part_discard_alignment_show, NULL);
189 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
190 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
191 #ifdef CONFIG_FAIL_MAKE_REQUEST
192 static struct device_attribute dev_attr_fail =
193 	__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
194 #endif
195 
196 static struct attribute *part_attrs[] = {
197 	&dev_attr_partition.attr,
198 	&dev_attr_start.attr,
199 	&dev_attr_size.attr,
200 	&dev_attr_ro.attr,
201 	&dev_attr_alignment_offset.attr,
202 	&dev_attr_discard_alignment.attr,
203 	&dev_attr_stat.attr,
204 	&dev_attr_inflight.attr,
205 #ifdef CONFIG_FAIL_MAKE_REQUEST
206 	&dev_attr_fail.attr,
207 #endif
208 	NULL
209 };
210 
211 static struct attribute_group part_attr_group = {
212 	.attrs = part_attrs,
213 };
214 
215 static const struct attribute_group *part_attr_groups[] = {
216 	&part_attr_group,
217 #ifdef CONFIG_BLK_DEV_IO_TRACE
218 	&blk_trace_attr_group,
219 #endif
220 	NULL
221 };
222 
part_release(struct device * dev)223 static void part_release(struct device *dev)
224 {
225 	struct hd_struct *p = dev_to_part(dev);
226 	blk_free_devt(dev->devt);
227 	hd_free_part(p);
228 	kfree(p);
229 }
230 
part_uevent(struct device * dev,struct kobj_uevent_env * env)231 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
232 {
233 	struct hd_struct *part = dev_to_part(dev);
234 
235 	add_uevent_var(env, "PARTN=%u", part->partno);
236 	if (part->info && part->info->volname[0])
237 		add_uevent_var(env, "PARTNAME=%s", part->info->volname);
238 	return 0;
239 }
240 
241 struct device_type part_type = {
242 	.name		= "partition",
243 	.groups		= part_attr_groups,
244 	.release	= part_release,
245 	.uevent		= part_uevent,
246 };
247 
delete_partition_work_fn(struct work_struct * work)248 static void delete_partition_work_fn(struct work_struct *work)
249 {
250 	struct hd_struct *part = container_of(to_rcu_work(work), struct hd_struct,
251 					rcu_work);
252 
253 	part->start_sect = 0;
254 	part->nr_sects = 0;
255 	part_stat_set_all(part, 0);
256 	put_device(part_to_dev(part));
257 }
258 
__delete_partition(struct percpu_ref * ref)259 void __delete_partition(struct percpu_ref *ref)
260 {
261 	struct hd_struct *part = container_of(ref, struct hd_struct, ref);
262 	INIT_RCU_WORK(&part->rcu_work, delete_partition_work_fn);
263 	queue_rcu_work(system_wq, &part->rcu_work);
264 }
265 
266 /*
267  * Must be called either with bd_mutex held, before a disk can be opened or
268  * after all disk users are gone.
269  */
delete_partition(struct gendisk * disk,int partno)270 void delete_partition(struct gendisk *disk, int partno)
271 {
272 	struct disk_part_tbl *ptbl =
273 		rcu_dereference_protected(disk->part_tbl, 1);
274 	struct hd_struct *part;
275 
276 	if (partno >= ptbl->len)
277 		return;
278 
279 	part = rcu_dereference_protected(ptbl->part[partno], 1);
280 	if (!part)
281 		return;
282 
283 	rcu_assign_pointer(ptbl->part[partno], NULL);
284 	rcu_assign_pointer(ptbl->last_lookup, NULL);
285 	kobject_put(part->holder_dir);
286 	device_del(part_to_dev(part));
287 
288 	/*
289 	 * Remove gendisk pointer from idr so that it cannot be looked up
290 	 * while RCU period before freeing gendisk is running to prevent
291 	 * use-after-free issues. Note that the device number stays
292 	 * "in-use" until we really free the gendisk.
293 	 */
294 	blk_invalidate_devt(part_devt(part));
295 	hd_struct_kill(part);
296 }
297 
whole_disk_show(struct device * dev,struct device_attribute * attr,char * buf)298 static ssize_t whole_disk_show(struct device *dev,
299 			       struct device_attribute *attr, char *buf)
300 {
301 	return 0;
302 }
303 static DEVICE_ATTR(whole_disk, 0444, whole_disk_show, NULL);
304 
305 /*
306  * Must be called either with bd_mutex held, before a disk can be opened or
307  * after all disk users are gone.
308  */
add_partition(struct gendisk * disk,int partno,sector_t start,sector_t len,int flags,struct partition_meta_info * info)309 struct hd_struct *add_partition(struct gendisk *disk, int partno,
310 				sector_t start, sector_t len, int flags,
311 				struct partition_meta_info *info)
312 {
313 	struct hd_struct *p;
314 	dev_t devt = MKDEV(0, 0);
315 	struct device *ddev = disk_to_dev(disk);
316 	struct device *pdev;
317 	struct disk_part_tbl *ptbl;
318 	const char *dname;
319 	int err;
320 
321 	err = disk_expand_part_tbl(disk, partno);
322 	if (err)
323 		return ERR_PTR(err);
324 	ptbl = rcu_dereference_protected(disk->part_tbl, 1);
325 
326 	if (ptbl->part[partno])
327 		return ERR_PTR(-EBUSY);
328 
329 	p = kzalloc(sizeof(*p), GFP_KERNEL);
330 	if (!p)
331 		return ERR_PTR(-EBUSY);
332 
333 	if (!init_part_stats(p)) {
334 		err = -ENOMEM;
335 		goto out_free;
336 	}
337 
338 	seqcount_init(&p->nr_sects_seq);
339 	pdev = part_to_dev(p);
340 
341 	p->start_sect = start;
342 	p->alignment_offset =
343 		queue_limit_alignment_offset(&disk->queue->limits, start);
344 	p->discard_alignment =
345 		queue_limit_discard_alignment(&disk->queue->limits, start);
346 	p->nr_sects = len;
347 	p->partno = partno;
348 	p->policy = get_disk_ro(disk);
349 
350 	if (info) {
351 		struct partition_meta_info *pinfo = alloc_part_info(disk);
352 		if (!pinfo) {
353 			err = -ENOMEM;
354 			goto out_free_stats;
355 		}
356 		memcpy(pinfo, info, sizeof(*info));
357 		p->info = pinfo;
358 	}
359 
360 	dname = dev_name(ddev);
361 	if (isdigit(dname[strlen(dname) - 1]))
362 		dev_set_name(pdev, "%sp%d", dname, partno);
363 	else
364 		dev_set_name(pdev, "%s%d", dname, partno);
365 
366 	device_initialize(pdev);
367 	pdev->class = &block_class;
368 	pdev->type = &part_type;
369 	pdev->parent = ddev;
370 
371 	err = blk_alloc_devt(p, &devt);
372 	if (err)
373 		goto out_free_info;
374 	pdev->devt = devt;
375 
376 	/* delay uevent until 'holders' subdir is created */
377 	dev_set_uevent_suppress(pdev, 1);
378 	err = device_add(pdev);
379 	if (err)
380 		goto out_put;
381 
382 	err = -ENOMEM;
383 	p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
384 	if (!p->holder_dir)
385 		goto out_del;
386 
387 	dev_set_uevent_suppress(pdev, 0);
388 	if (flags & ADDPART_FLAG_WHOLEDISK) {
389 		err = device_create_file(pdev, &dev_attr_whole_disk);
390 		if (err)
391 			goto out_del;
392 	}
393 
394 	err = hd_ref_init(p);
395 	if (err) {
396 		if (flags & ADDPART_FLAG_WHOLEDISK)
397 			goto out_remove_file;
398 		goto out_del;
399 	}
400 
401 	/* everything is up and running, commence */
402 	rcu_assign_pointer(ptbl->part[partno], p);
403 
404 	/* suppress uevent if the disk suppresses it */
405 	if (!dev_get_uevent_suppress(ddev))
406 		kobject_uevent(&pdev->kobj, KOBJ_ADD);
407 	return p;
408 
409 out_free_info:
410 	free_part_info(p);
411 out_free_stats:
412 	free_part_stats(p);
413 out_free:
414 	kfree(p);
415 	return ERR_PTR(err);
416 out_remove_file:
417 	device_remove_file(pdev, &dev_attr_whole_disk);
418 out_del:
419 	kobject_put(p->holder_dir);
420 	device_del(pdev);
421 out_put:
422 	put_device(pdev);
423 	return ERR_PTR(err);
424 }
425 
disk_unlock_native_capacity(struct gendisk * disk)426 static bool disk_unlock_native_capacity(struct gendisk *disk)
427 {
428 	const struct block_device_operations *bdops = disk->fops;
429 
430 	if (bdops->unlock_native_capacity &&
431 	    !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
432 		printk(KERN_CONT "enabling native capacity\n");
433 		bdops->unlock_native_capacity(disk);
434 		disk->flags |= GENHD_FL_NATIVE_CAPACITY;
435 		return true;
436 	} else {
437 		printk(KERN_CONT "truncated\n");
438 		return false;
439 	}
440 }
441 
drop_partitions(struct gendisk * disk,struct block_device * bdev)442 static int drop_partitions(struct gendisk *disk, struct block_device *bdev)
443 {
444 	struct disk_part_iter piter;
445 	struct hd_struct *part;
446 	int res;
447 
448 	if (bdev->bd_part_count || bdev->bd_super)
449 		return -EBUSY;
450 	res = invalidate_partition(disk, 0);
451 	if (res)
452 		return res;
453 
454 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
455 	while ((part = disk_part_iter_next(&piter)))
456 		delete_partition(disk, part->partno);
457 	disk_part_iter_exit(&piter);
458 
459 	return 0;
460 }
461 
part_zone_aligned(struct gendisk * disk,struct block_device * bdev,sector_t from,sector_t size)462 static bool part_zone_aligned(struct gendisk *disk,
463 			      struct block_device *bdev,
464 			      sector_t from, sector_t size)
465 {
466 	unsigned int zone_sectors = bdev_zone_sectors(bdev);
467 
468 	/*
469 	 * If this function is called, then the disk is a zoned block device
470 	 * (host-aware or host-managed). This can be detected even if the
471 	 * zoned block device support is disabled (CONFIG_BLK_DEV_ZONED not
472 	 * set). In this case, however, only host-aware devices will be seen
473 	 * as a block device is not created for host-managed devices. Without
474 	 * zoned block device support, host-aware drives can still be used as
475 	 * regular block devices (no zone operation) and their zone size will
476 	 * be reported as 0. Allow this case.
477 	 */
478 	if (!zone_sectors)
479 		return true;
480 
481 	/*
482 	 * Check partition start and size alignement. If the drive has a
483 	 * smaller last runt zone, ignore it and allow the partition to
484 	 * use it. Check the zone size too: it should be a power of 2 number
485 	 * of sectors.
486 	 */
487 	if (WARN_ON_ONCE(!is_power_of_2(zone_sectors))) {
488 		u32 rem;
489 
490 		div_u64_rem(from, zone_sectors, &rem);
491 		if (rem)
492 			return false;
493 		if ((from + size) < get_capacity(disk)) {
494 			div_u64_rem(size, zone_sectors, &rem);
495 			if (rem)
496 				return false;
497 		}
498 
499 	} else {
500 
501 		if (from & (zone_sectors - 1))
502 			return false;
503 		if ((from + size) < get_capacity(disk) &&
504 		    (size & (zone_sectors - 1)))
505 			return false;
506 
507 	}
508 
509 	return true;
510 }
511 
rescan_partitions(struct gendisk * disk,struct block_device * bdev)512 int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
513 {
514 	struct parsed_partitions *state = NULL;
515 	struct hd_struct *part;
516 	int p, highest, res;
517 rescan:
518 	if (state && !IS_ERR(state)) {
519 		free_partitions(state);
520 		state = NULL;
521 	}
522 
523 	res = drop_partitions(disk, bdev);
524 	if (res)
525 		return res;
526 
527 	if (disk->fops->revalidate_disk)
528 		disk->fops->revalidate_disk(disk);
529 	check_disk_size_change(disk, bdev, true);
530 	bdev->bd_invalidated = 0;
531 	if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
532 		return 0;
533 	if (IS_ERR(state)) {
534 		/*
535 		 * I/O error reading the partition table.  If any
536 		 * partition code tried to read beyond EOD, retry
537 		 * after unlocking native capacity.
538 		 */
539 		if (PTR_ERR(state) == -ENOSPC) {
540 			printk(KERN_WARNING "%s: partition table beyond EOD, ",
541 			       disk->disk_name);
542 			if (disk_unlock_native_capacity(disk))
543 				goto rescan;
544 		}
545 		return -EIO;
546 	}
547 	/*
548 	 * If any partition code tried to read beyond EOD, try
549 	 * unlocking native capacity even if partition table is
550 	 * successfully read as we could be missing some partitions.
551 	 */
552 	if (state->access_beyond_eod) {
553 		printk(KERN_WARNING
554 		       "%s: partition table partially beyond EOD, ",
555 		       disk->disk_name);
556 		if (disk_unlock_native_capacity(disk))
557 			goto rescan;
558 	}
559 
560 	/* tell userspace that the media / partition table may have changed */
561 	kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
562 
563 	/* Detect the highest partition number and preallocate
564 	 * disk->part_tbl.  This is an optimization and not strictly
565 	 * necessary.
566 	 */
567 	for (p = 1, highest = 0; p < state->limit; p++)
568 		if (state->parts[p].size)
569 			highest = p;
570 
571 	disk_expand_part_tbl(disk, highest);
572 
573 	/* add partitions */
574 	for (p = 1; p < state->limit; p++) {
575 		sector_t size, from;
576 
577 		size = state->parts[p].size;
578 		if (!size)
579 			continue;
580 
581 		from = state->parts[p].from;
582 		if (from >= get_capacity(disk)) {
583 			printk(KERN_WARNING
584 			       "%s: p%d start %llu is beyond EOD, ",
585 			       disk->disk_name, p, (unsigned long long) from);
586 			if (disk_unlock_native_capacity(disk))
587 				goto rescan;
588 			continue;
589 		}
590 
591 		if (from + size > get_capacity(disk)) {
592 			printk(KERN_WARNING
593 			       "%s: p%d size %llu extends beyond EOD, ",
594 			       disk->disk_name, p, (unsigned long long) size);
595 
596 			if (disk_unlock_native_capacity(disk)) {
597 				/* free state and restart */
598 				goto rescan;
599 			} else {
600 				/*
601 				 * we can not ignore partitions of broken tables
602 				 * created by for example camera firmware, but
603 				 * we limit them to the end of the disk to avoid
604 				 * creating invalid block devices
605 				 */
606 				size = get_capacity(disk) - from;
607 			}
608 		}
609 
610 		/*
611 		 * On a zoned block device, partitions should be aligned on the
612 		 * device zone size (i.e. zone boundary crossing not allowed).
613 		 * Otherwise, resetting the write pointer of the last zone of
614 		 * one partition may impact the following partition.
615 		 */
616 		if (bdev_is_zoned(bdev) &&
617 		    !part_zone_aligned(disk, bdev, from, size)) {
618 			printk(KERN_WARNING
619 			       "%s: p%d start %llu+%llu is not zone aligned\n",
620 			       disk->disk_name, p, (unsigned long long) from,
621 			       (unsigned long long) size);
622 			continue;
623 		}
624 
625 		part = add_partition(disk, p, from, size,
626 				     state->parts[p].flags,
627 				     &state->parts[p].info);
628 		if (IS_ERR(part)) {
629 			printk(KERN_ERR " %s: p%d could not be added: %ld\n",
630 			       disk->disk_name, p, -PTR_ERR(part));
631 			continue;
632 		}
633 #ifdef CONFIG_BLK_DEV_MD
634 		if (state->parts[p].flags & ADDPART_FLAG_RAID)
635 			md_autodetect_dev(part_to_dev(part)->devt);
636 #endif
637 	}
638 	free_partitions(state);
639 	return 0;
640 }
641 
invalidate_partitions(struct gendisk * disk,struct block_device * bdev)642 int invalidate_partitions(struct gendisk *disk, struct block_device *bdev)
643 {
644 	int res;
645 
646 	if (!bdev->bd_invalidated)
647 		return 0;
648 
649 	res = drop_partitions(disk, bdev);
650 	if (res)
651 		return res;
652 
653 	set_capacity(disk, 0);
654 	check_disk_size_change(disk, bdev, false);
655 	bdev->bd_invalidated = 0;
656 	/* tell userspace that the media / partition table may have changed */
657 	kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
658 
659 	return 0;
660 }
661 
read_dev_sector(struct block_device * bdev,sector_t n,Sector * p)662 unsigned char *read_dev_sector(struct block_device *bdev, sector_t n, Sector *p)
663 {
664 	struct address_space *mapping = bdev->bd_inode->i_mapping;
665 	struct page *page;
666 
667 	page = read_mapping_page(mapping, (pgoff_t)(n >> (PAGE_SHIFT-9)), NULL);
668 	if (!IS_ERR(page)) {
669 		if (PageError(page))
670 			goto fail;
671 		p->v = page;
672 		return (unsigned char *)page_address(page) +  ((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << 9);
673 fail:
674 		put_page(page);
675 	}
676 	p->v = NULL;
677 	return NULL;
678 }
679 
680 EXPORT_SYMBOL(read_dev_sector);
681