1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)15 static inline bool bio_will_gap(struct request_queue *q,
16 		struct request *prev_rq, struct bio *prev, struct bio *next)
17 {
18 	struct bio_vec pb, nb;
19 
20 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
21 		return false;
22 
23 	/*
24 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
25 	 * is quite difficult to respect the sg gap limit.  We work hard to
26 	 * merge a huge number of small single bios in case of mkfs.
27 	 */
28 	if (prev_rq)
29 		bio_get_first_bvec(prev_rq->bio, &pb);
30 	else
31 		bio_get_first_bvec(prev, &pb);
32 	if (pb.bv_offset & queue_virt_boundary(q))
33 		return true;
34 
35 	/*
36 	 * We don't need to worry about the situation that the merged segment
37 	 * ends in unaligned virt boundary:
38 	 *
39 	 * - if 'pb' ends aligned, the merged segment ends aligned
40 	 * - if 'pb' ends unaligned, the next bio must include
41 	 *   one single bvec of 'nb', otherwise the 'nb' can't
42 	 *   merge with 'pb'
43 	 */
44 	bio_get_last_bvec(prev, &pb);
45 	bio_get_first_bvec(next, &nb);
46 	if (biovec_phys_mergeable(q, &pb, &nb))
47 		return false;
48 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
49 }
50 
req_gap_back_merge(struct request * req,struct bio * bio)51 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
52 {
53 	return bio_will_gap(req->q, req, req->biotail, bio);
54 }
55 
req_gap_front_merge(struct request * req,struct bio * bio)56 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
57 {
58 	return bio_will_gap(req->q, NULL, bio, req->bio);
59 }
60 
blk_bio_discard_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)61 static struct bio *blk_bio_discard_split(struct request_queue *q,
62 					 struct bio *bio,
63 					 struct bio_set *bs,
64 					 unsigned *nsegs)
65 {
66 	unsigned int max_discard_sectors, granularity;
67 	int alignment;
68 	sector_t tmp;
69 	unsigned split_sectors;
70 
71 	*nsegs = 1;
72 
73 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
74 	granularity = max(q->limits.discard_granularity >> 9, 1U);
75 
76 	max_discard_sectors = min(q->limits.max_discard_sectors,
77 			bio_allowed_max_sectors(q));
78 	max_discard_sectors -= max_discard_sectors % granularity;
79 
80 	if (unlikely(!max_discard_sectors)) {
81 		/* XXX: warn */
82 		return NULL;
83 	}
84 
85 	if (bio_sectors(bio) <= max_discard_sectors)
86 		return NULL;
87 
88 	split_sectors = max_discard_sectors;
89 
90 	/*
91 	 * If the next starting sector would be misaligned, stop the discard at
92 	 * the previous aligned sector.
93 	 */
94 	alignment = (q->limits.discard_alignment >> 9) % granularity;
95 
96 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
97 	tmp = sector_div(tmp, granularity);
98 
99 	if (split_sectors > tmp)
100 		split_sectors -= tmp;
101 
102 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
103 }
104 
blk_bio_write_zeroes_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)105 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
106 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
107 {
108 	*nsegs = 0;
109 
110 	if (!q->limits.max_write_zeroes_sectors)
111 		return NULL;
112 
113 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
114 		return NULL;
115 
116 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
117 }
118 
blk_bio_write_same_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)119 static struct bio *blk_bio_write_same_split(struct request_queue *q,
120 					    struct bio *bio,
121 					    struct bio_set *bs,
122 					    unsigned *nsegs)
123 {
124 	*nsegs = 1;
125 
126 	if (!q->limits.max_write_same_sectors)
127 		return NULL;
128 
129 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
130 		return NULL;
131 
132 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
133 }
134 
135 /*
136  * Return the maximum number of sectors from the start of a bio that may be
137  * submitted as a single request to a block device. If enough sectors remain,
138  * align the end to the physical block size. Otherwise align the end to the
139  * logical block size. This approach minimizes the number of non-aligned
140  * requests that are submitted to a block device if the start of a bio is not
141  * aligned to a physical block boundary.
142  */
get_max_io_size(struct request_queue * q,struct bio * bio)143 static inline unsigned get_max_io_size(struct request_queue *q,
144 				       struct bio *bio)
145 {
146 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
147 	unsigned max_sectors = sectors;
148 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
149 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
150 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
151 
152 	max_sectors += start_offset;
153 	max_sectors &= ~(pbs - 1);
154 	if (max_sectors > start_offset)
155 		return max_sectors - start_offset;
156 
157 	return sectors & (lbs - 1);
158 }
159 
get_max_segment_size(const struct request_queue * q,unsigned offset)160 static unsigned get_max_segment_size(const struct request_queue *q,
161 				     unsigned offset)
162 {
163 	unsigned long mask = queue_segment_boundary(q);
164 
165 	/* default segment boundary mask means no boundary limit */
166 	if (mask == BLK_SEG_BOUNDARY_MASK)
167 		return queue_max_segment_size(q);
168 
169 	return min_t(unsigned long, mask - (mask & offset) + 1,
170 		     queue_max_segment_size(q));
171 }
172 
173 /**
174  * bvec_split_segs - verify whether or not a bvec should be split in the middle
175  * @q:        [in] request queue associated with the bio associated with @bv
176  * @bv:       [in] bvec to examine
177  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
178  *            by the number of segments from @bv that may be appended to that
179  *            bio without exceeding @max_segs
180  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
181  *            by the number of sectors from @bv that may be appended to that
182  *            bio without exceeding @max_sectors
183  * @max_segs: [in] upper bound for *@nsegs
184  * @max_sectors: [in] upper bound for *@sectors
185  *
186  * When splitting a bio, it can happen that a bvec is encountered that is too
187  * big to fit in a single segment and hence that it has to be split in the
188  * middle. This function verifies whether or not that should happen. The value
189  * %true is returned if and only if appending the entire @bv to a bio with
190  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
191  * the block driver.
192  */
bvec_split_segs(const struct request_queue * q,const struct bio_vec * bv,unsigned * nsegs,unsigned * sectors,unsigned max_segs,unsigned max_sectors)193 static bool bvec_split_segs(const struct request_queue *q,
194 			    const struct bio_vec *bv, unsigned *nsegs,
195 			    unsigned *sectors, unsigned max_segs,
196 			    unsigned max_sectors)
197 {
198 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
199 	unsigned len = min(bv->bv_len, max_len);
200 	unsigned total_len = 0;
201 	unsigned seg_size = 0;
202 
203 	while (len && *nsegs < max_segs) {
204 		seg_size = get_max_segment_size(q, bv->bv_offset + total_len);
205 		seg_size = min(seg_size, len);
206 
207 		(*nsegs)++;
208 		total_len += seg_size;
209 		len -= seg_size;
210 
211 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
212 			break;
213 	}
214 
215 	*sectors += total_len >> 9;
216 
217 	/* tell the caller to split the bvec if it is too big to fit */
218 	return len > 0 || bv->bv_len > max_len;
219 }
220 
221 /**
222  * blk_bio_segment_split - split a bio in two bios
223  * @q:    [in] request queue pointer
224  * @bio:  [in] bio to be split
225  * @bs:	  [in] bio set to allocate the clone from
226  * @segs: [out] number of segments in the bio with the first half of the sectors
227  *
228  * Clone @bio, update the bi_iter of the clone to represent the first sectors
229  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
230  * following is guaranteed for the cloned bio:
231  * - That it has at most get_max_io_size(@q, @bio) sectors.
232  * - That it has at most queue_max_segments(@q) segments.
233  *
234  * Except for discard requests the cloned bio will point at the bi_io_vec of
235  * the original bio. It is the responsibility of the caller to ensure that the
236  * original bio is not freed before the cloned bio. The caller is also
237  * responsible for ensuring that @bs is only destroyed after processing of the
238  * split bio has finished.
239  */
blk_bio_segment_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * segs)240 static struct bio *blk_bio_segment_split(struct request_queue *q,
241 					 struct bio *bio,
242 					 struct bio_set *bs,
243 					 unsigned *segs)
244 {
245 	struct bio_vec bv, bvprv, *bvprvp = NULL;
246 	struct bvec_iter iter;
247 	unsigned nsegs = 0, sectors = 0;
248 	const unsigned max_sectors = get_max_io_size(q, bio);
249 	const unsigned max_segs = queue_max_segments(q);
250 
251 	bio_for_each_bvec(bv, bio, iter) {
252 		/*
253 		 * If the queue doesn't support SG gaps and adding this
254 		 * offset would create a gap, disallow it.
255 		 */
256 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
257 			goto split;
258 
259 		if (nsegs < max_segs &&
260 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
261 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
262 			nsegs++;
263 			sectors += bv.bv_len >> 9;
264 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
265 					 max_sectors)) {
266 			goto split;
267 		}
268 
269 		bvprv = bv;
270 		bvprvp = &bvprv;
271 	}
272 
273 	*segs = nsegs;
274 	return NULL;
275 split:
276 	*segs = nsegs;
277 	return bio_split(bio, sectors, GFP_NOIO, bs);
278 }
279 
280 /**
281  * __blk_queue_split - split a bio and submit the second half
282  * @q:       [in] request queue pointer
283  * @bio:     [in, out] bio to be split
284  * @nr_segs: [out] number of segments in the first bio
285  *
286  * Split a bio into two bios, chain the two bios, submit the second half and
287  * store a pointer to the first half in *@bio. If the second bio is still too
288  * big it will be split by a recursive call to this function. Since this
289  * function may allocate a new bio from @q->bio_split, it is the responsibility
290  * of the caller to ensure that @q is only released after processing of the
291  * split bio has finished.
292  */
__blk_queue_split(struct request_queue * q,struct bio ** bio,unsigned int * nr_segs)293 void __blk_queue_split(struct request_queue *q, struct bio **bio,
294 		unsigned int *nr_segs)
295 {
296 	struct bio *split;
297 
298 	switch (bio_op(*bio)) {
299 	case REQ_OP_DISCARD:
300 	case REQ_OP_SECURE_ERASE:
301 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
302 		break;
303 	case REQ_OP_WRITE_ZEROES:
304 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
305 				nr_segs);
306 		break;
307 	case REQ_OP_WRITE_SAME:
308 		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
309 				nr_segs);
310 		break;
311 	default:
312 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
313 		break;
314 	}
315 
316 	if (split) {
317 		/* there isn't chance to merge the splitted bio */
318 		split->bi_opf |= REQ_NOMERGE;
319 
320 		/*
321 		 * Since we're recursing into make_request here, ensure
322 		 * that we mark this bio as already having entered the queue.
323 		 * If not, and the queue is going away, we can get stuck
324 		 * forever on waiting for the queue reference to drop. But
325 		 * that will never happen, as we're already holding a
326 		 * reference to it.
327 		 */
328 		bio_set_flag(*bio, BIO_QUEUE_ENTERED);
329 
330 		bio_chain(split, *bio);
331 		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
332 		generic_make_request(*bio);
333 		*bio = split;
334 	}
335 }
336 
337 /**
338  * blk_queue_split - split a bio and submit the second half
339  * @q:   [in] request queue pointer
340  * @bio: [in, out] bio to be split
341  *
342  * Split a bio into two bios, chains the two bios, submit the second half and
343  * store a pointer to the first half in *@bio. Since this function may allocate
344  * a new bio from @q->bio_split, it is the responsibility of the caller to
345  * ensure that @q is only released after processing of the split bio has
346  * finished.
347  */
blk_queue_split(struct request_queue * q,struct bio ** bio)348 void blk_queue_split(struct request_queue *q, struct bio **bio)
349 {
350 	unsigned int nr_segs;
351 
352 	__blk_queue_split(q, bio, &nr_segs);
353 }
354 EXPORT_SYMBOL(blk_queue_split);
355 
blk_recalc_rq_segments(struct request * rq)356 unsigned int blk_recalc_rq_segments(struct request *rq)
357 {
358 	unsigned int nr_phys_segs = 0;
359 	unsigned int nr_sectors = 0;
360 	struct req_iterator iter;
361 	struct bio_vec bv;
362 
363 	if (!rq->bio)
364 		return 0;
365 
366 	switch (bio_op(rq->bio)) {
367 	case REQ_OP_DISCARD:
368 	case REQ_OP_SECURE_ERASE:
369 	case REQ_OP_WRITE_ZEROES:
370 		return 0;
371 	case REQ_OP_WRITE_SAME:
372 		return 1;
373 	}
374 
375 	rq_for_each_bvec(bv, rq, iter)
376 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
377 				UINT_MAX, UINT_MAX);
378 	return nr_phys_segs;
379 }
380 
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)381 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
382 		struct scatterlist *sglist)
383 {
384 	if (!*sg)
385 		return sglist;
386 
387 	/*
388 	 * If the driver previously mapped a shorter list, we could see a
389 	 * termination bit prematurely unless it fully inits the sg table
390 	 * on each mapping. We KNOW that there must be more entries here
391 	 * or the driver would be buggy, so force clear the termination bit
392 	 * to avoid doing a full sg_init_table() in drivers for each command.
393 	 */
394 	sg_unmark_end(*sg);
395 	return sg_next(*sg);
396 }
397 
blk_bvec_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct scatterlist ** sg)398 static unsigned blk_bvec_map_sg(struct request_queue *q,
399 		struct bio_vec *bvec, struct scatterlist *sglist,
400 		struct scatterlist **sg)
401 {
402 	unsigned nbytes = bvec->bv_len;
403 	unsigned nsegs = 0, total = 0;
404 
405 	while (nbytes > 0) {
406 		unsigned offset = bvec->bv_offset + total;
407 		unsigned len = min(get_max_segment_size(q, offset), nbytes);
408 		struct page *page = bvec->bv_page;
409 
410 		/*
411 		 * Unfortunately a fair number of drivers barf on scatterlists
412 		 * that have an offset larger than PAGE_SIZE, despite other
413 		 * subsystems dealing with that invariant just fine.  For now
414 		 * stick to the legacy format where we never present those from
415 		 * the block layer, but the code below should be removed once
416 		 * these offenders (mostly MMC/SD drivers) are fixed.
417 		 */
418 		page += (offset >> PAGE_SHIFT);
419 		offset &= ~PAGE_MASK;
420 
421 		*sg = blk_next_sg(sg, sglist);
422 		sg_set_page(*sg, page, len, offset);
423 
424 		total += len;
425 		nbytes -= len;
426 		nsegs++;
427 	}
428 
429 	return nsegs;
430 }
431 
__blk_bvec_map_sg(struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)432 static inline int __blk_bvec_map_sg(struct bio_vec bv,
433 		struct scatterlist *sglist, struct scatterlist **sg)
434 {
435 	*sg = blk_next_sg(sg, sglist);
436 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
437 	return 1;
438 }
439 
440 /* only try to merge bvecs into one sg if they are from two bios */
441 static inline bool
__blk_segment_map_sg_merge(struct request_queue * q,struct bio_vec * bvec,struct bio_vec * bvprv,struct scatterlist ** sg)442 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
443 			   struct bio_vec *bvprv, struct scatterlist **sg)
444 {
445 
446 	int nbytes = bvec->bv_len;
447 
448 	if (!*sg)
449 		return false;
450 
451 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
452 		return false;
453 
454 	if (!biovec_phys_mergeable(q, bvprv, bvec))
455 		return false;
456 
457 	(*sg)->length += nbytes;
458 
459 	return true;
460 }
461 
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)462 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
463 			     struct scatterlist *sglist,
464 			     struct scatterlist **sg)
465 {
466 	struct bio_vec uninitialized_var(bvec), bvprv = { NULL };
467 	struct bvec_iter iter;
468 	int nsegs = 0;
469 	bool new_bio = false;
470 
471 	for_each_bio(bio) {
472 		bio_for_each_bvec(bvec, bio, iter) {
473 			/*
474 			 * Only try to merge bvecs from two bios given we
475 			 * have done bio internal merge when adding pages
476 			 * to bio
477 			 */
478 			if (new_bio &&
479 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
480 				goto next_bvec;
481 
482 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
483 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
484 			else
485 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
486  next_bvec:
487 			new_bio = false;
488 		}
489 		if (likely(bio->bi_iter.bi_size)) {
490 			bvprv = bvec;
491 			new_bio = true;
492 		}
493 	}
494 
495 	return nsegs;
496 }
497 
498 /*
499  * map a request to scatterlist, return number of sg entries setup. Caller
500  * must make sure sg can hold rq->nr_phys_segments entries
501  */
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)502 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
503 		  struct scatterlist *sglist)
504 {
505 	struct scatterlist *sg = NULL;
506 	int nsegs = 0;
507 
508 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
509 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, &sg);
510 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
511 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, &sg);
512 	else if (rq->bio)
513 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
514 
515 	if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
516 	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
517 		unsigned int pad_len =
518 			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
519 
520 		sg->length += pad_len;
521 		rq->extra_len += pad_len;
522 	}
523 
524 	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
525 		if (op_is_write(req_op(rq)))
526 			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
527 
528 		sg_unmark_end(sg);
529 		sg = sg_next(sg);
530 		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
531 			    q->dma_drain_size,
532 			    ((unsigned long)q->dma_drain_buffer) &
533 			    (PAGE_SIZE - 1));
534 		nsegs++;
535 		rq->extra_len += q->dma_drain_size;
536 	}
537 
538 	if (sg)
539 		sg_mark_end(sg);
540 
541 	/*
542 	 * Something must have been wrong if the figured number of
543 	 * segment is bigger than number of req's physical segments
544 	 */
545 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
546 
547 	return nsegs;
548 }
549 EXPORT_SYMBOL(blk_rq_map_sg);
550 
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)551 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
552 		unsigned int nr_phys_segs)
553 {
554 	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q))
555 		goto no_merge;
556 
557 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
558 		goto no_merge;
559 
560 	/*
561 	 * This will form the start of a new hw segment.  Bump both
562 	 * counters.
563 	 */
564 	req->nr_phys_segments += nr_phys_segs;
565 	return 1;
566 
567 no_merge:
568 	req_set_nomerge(req->q, req);
569 	return 0;
570 }
571 
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)572 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
573 {
574 	if (req_gap_back_merge(req, bio))
575 		return 0;
576 	if (blk_integrity_rq(req) &&
577 	    integrity_req_gap_back_merge(req, bio))
578 		return 0;
579 	if (blk_rq_sectors(req) + bio_sectors(bio) >
580 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
581 		req_set_nomerge(req->q, req);
582 		return 0;
583 	}
584 
585 	return ll_new_hw_segment(req, bio, nr_segs);
586 }
587 
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)588 int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
589 {
590 	if (req_gap_front_merge(req, bio))
591 		return 0;
592 	if (blk_integrity_rq(req) &&
593 	    integrity_req_gap_front_merge(req, bio))
594 		return 0;
595 	if (blk_rq_sectors(req) + bio_sectors(bio) >
596 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
597 		req_set_nomerge(req->q, req);
598 		return 0;
599 	}
600 
601 	return ll_new_hw_segment(req, bio, nr_segs);
602 }
603 
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)604 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
605 		struct request *next)
606 {
607 	unsigned short segments = blk_rq_nr_discard_segments(req);
608 
609 	if (segments >= queue_max_discard_segments(q))
610 		goto no_merge;
611 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
612 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
613 		goto no_merge;
614 
615 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
616 	return true;
617 no_merge:
618 	req_set_nomerge(q, req);
619 	return false;
620 }
621 
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)622 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
623 				struct request *next)
624 {
625 	int total_phys_segments;
626 
627 	if (req_gap_back_merge(req, next->bio))
628 		return 0;
629 
630 	/*
631 	 * Will it become too large?
632 	 */
633 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
634 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
635 		return 0;
636 
637 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
638 	if (total_phys_segments > queue_max_segments(q))
639 		return 0;
640 
641 	if (blk_integrity_merge_rq(q, req, next) == false)
642 		return 0;
643 
644 	/* Merge is OK... */
645 	req->nr_phys_segments = total_phys_segments;
646 	return 1;
647 }
648 
649 /**
650  * blk_rq_set_mixed_merge - mark a request as mixed merge
651  * @rq: request to mark as mixed merge
652  *
653  * Description:
654  *     @rq is about to be mixed merged.  Make sure the attributes
655  *     which can be mixed are set in each bio and mark @rq as mixed
656  *     merged.
657  */
blk_rq_set_mixed_merge(struct request * rq)658 void blk_rq_set_mixed_merge(struct request *rq)
659 {
660 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
661 	struct bio *bio;
662 
663 	if (rq->rq_flags & RQF_MIXED_MERGE)
664 		return;
665 
666 	/*
667 	 * @rq will no longer represent mixable attributes for all the
668 	 * contained bios.  It will just track those of the first one.
669 	 * Distributes the attributs to each bio.
670 	 */
671 	for (bio = rq->bio; bio; bio = bio->bi_next) {
672 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
673 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
674 		bio->bi_opf |= ff;
675 	}
676 	rq->rq_flags |= RQF_MIXED_MERGE;
677 }
678 
blk_account_io_merge(struct request * req)679 static void blk_account_io_merge(struct request *req)
680 {
681 	if (blk_do_io_stat(req)) {
682 		struct hd_struct *part;
683 
684 		part_stat_lock();
685 		part = req->part;
686 
687 		part_dec_in_flight(req->q, part, rq_data_dir(req));
688 
689 		hd_struct_put(part);
690 		part_stat_unlock();
691 	}
692 }
693 /*
694  * Two cases of handling DISCARD merge:
695  * If max_discard_segments > 1, the driver takes every bio
696  * as a range and send them to controller together. The ranges
697  * needn't to be contiguous.
698  * Otherwise, the bios/requests will be handled as same as
699  * others which should be contiguous.
700  */
blk_discard_mergable(struct request * req)701 static inline bool blk_discard_mergable(struct request *req)
702 {
703 	if (req_op(req) == REQ_OP_DISCARD &&
704 	    queue_max_discard_segments(req->q) > 1)
705 		return true;
706 	return false;
707 }
708 
blk_try_req_merge(struct request * req,struct request * next)709 static enum elv_merge blk_try_req_merge(struct request *req,
710 					struct request *next)
711 {
712 	if (blk_discard_mergable(req))
713 		return ELEVATOR_DISCARD_MERGE;
714 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
715 		return ELEVATOR_BACK_MERGE;
716 
717 	return ELEVATOR_NO_MERGE;
718 }
719 
720 /*
721  * For non-mq, this has to be called with the request spinlock acquired.
722  * For mq with scheduling, the appropriate queue wide lock should be held.
723  */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)724 static struct request *attempt_merge(struct request_queue *q,
725 				     struct request *req, struct request *next)
726 {
727 	if (!rq_mergeable(req) || !rq_mergeable(next))
728 		return NULL;
729 
730 	if (req_op(req) != req_op(next))
731 		return NULL;
732 
733 	if (rq_data_dir(req) != rq_data_dir(next)
734 	    || req->rq_disk != next->rq_disk)
735 		return NULL;
736 
737 	if (req_op(req) == REQ_OP_WRITE_SAME &&
738 	    !blk_write_same_mergeable(req->bio, next->bio))
739 		return NULL;
740 
741 	/*
742 	 * Don't allow merge of different write hints, or for a hint with
743 	 * non-hint IO.
744 	 */
745 	if (req->write_hint != next->write_hint)
746 		return NULL;
747 
748 	if (req->ioprio != next->ioprio)
749 		return NULL;
750 
751 	/*
752 	 * If we are allowed to merge, then append bio list
753 	 * from next to rq and release next. merge_requests_fn
754 	 * will have updated segment counts, update sector
755 	 * counts here. Handle DISCARDs separately, as they
756 	 * have separate settings.
757 	 */
758 
759 	switch (blk_try_req_merge(req, next)) {
760 	case ELEVATOR_DISCARD_MERGE:
761 		if (!req_attempt_discard_merge(q, req, next))
762 			return NULL;
763 		break;
764 	case ELEVATOR_BACK_MERGE:
765 		if (!ll_merge_requests_fn(q, req, next))
766 			return NULL;
767 		break;
768 	default:
769 		return NULL;
770 	}
771 
772 	/*
773 	 * If failfast settings disagree or any of the two is already
774 	 * a mixed merge, mark both as mixed before proceeding.  This
775 	 * makes sure that all involved bios have mixable attributes
776 	 * set properly.
777 	 */
778 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
779 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
780 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
781 		blk_rq_set_mixed_merge(req);
782 		blk_rq_set_mixed_merge(next);
783 	}
784 
785 	/*
786 	 * At this point we have either done a back merge or front merge. We
787 	 * need the smaller start_time_ns of the merged requests to be the
788 	 * current request for accounting purposes.
789 	 */
790 	if (next->start_time_ns < req->start_time_ns)
791 		req->start_time_ns = next->start_time_ns;
792 
793 	req->biotail->bi_next = next->bio;
794 	req->biotail = next->biotail;
795 
796 	req->__data_len += blk_rq_bytes(next);
797 
798 	if (!blk_discard_mergable(req))
799 		elv_merge_requests(q, req, next);
800 
801 	/*
802 	 * 'next' is going away, so update stats accordingly
803 	 */
804 	blk_account_io_merge(next);
805 
806 	/*
807 	 * ownership of bio passed from next to req, return 'next' for
808 	 * the caller to free
809 	 */
810 	next->bio = NULL;
811 	return next;
812 }
813 
attempt_back_merge(struct request_queue * q,struct request * rq)814 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
815 {
816 	struct request *next = elv_latter_request(q, rq);
817 
818 	if (next)
819 		return attempt_merge(q, rq, next);
820 
821 	return NULL;
822 }
823 
attempt_front_merge(struct request_queue * q,struct request * rq)824 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
825 {
826 	struct request *prev = elv_former_request(q, rq);
827 
828 	if (prev)
829 		return attempt_merge(q, prev, rq);
830 
831 	return NULL;
832 }
833 
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)834 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
835 			  struct request *next)
836 {
837 	struct request *free;
838 
839 	free = attempt_merge(q, rq, next);
840 	if (free) {
841 		blk_put_request(free);
842 		return 1;
843 	}
844 
845 	return 0;
846 }
847 
blk_rq_merge_ok(struct request * rq,struct bio * bio)848 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
849 {
850 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
851 		return false;
852 
853 	if (req_op(rq) != bio_op(bio))
854 		return false;
855 
856 	/* different data direction or already started, don't merge */
857 	if (bio_data_dir(bio) != rq_data_dir(rq))
858 		return false;
859 
860 	/* must be same device */
861 	if (rq->rq_disk != bio->bi_disk)
862 		return false;
863 
864 	/* only merge integrity protected bio into ditto rq */
865 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
866 		return false;
867 
868 	/* must be using the same buffer */
869 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
870 	    !blk_write_same_mergeable(rq->bio, bio))
871 		return false;
872 
873 	/*
874 	 * Don't allow merge of different write hints, or for a hint with
875 	 * non-hint IO.
876 	 */
877 	if (rq->write_hint != bio->bi_write_hint)
878 		return false;
879 
880 	if (rq->ioprio != bio_prio(bio))
881 		return false;
882 
883 	return true;
884 }
885 
blk_try_merge(struct request * rq,struct bio * bio)886 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
887 {
888 	if (blk_discard_mergable(rq))
889 		return ELEVATOR_DISCARD_MERGE;
890 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
891 		return ELEVATOR_BACK_MERGE;
892 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
893 		return ELEVATOR_FRONT_MERGE;
894 	return ELEVATOR_NO_MERGE;
895 }
896