1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file implements KASLR memory randomization for x86_64. It randomizes
4  * the virtual address space of kernel memory regions (physical memory
5  * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
6  * exploits relying on predictable kernel addresses.
7  *
8  * Entropy is generated using the KASLR early boot functions now shared in
9  * the lib directory (originally written by Kees Cook). Randomization is
10  * done on PGD & P4D/PUD page table levels to increase possible addresses.
11  * The physical memory mapping code was adapted to support P4D/PUD level
12  * virtual addresses. This implementation on the best configuration provides
13  * 30,000 possible virtual addresses in average for each memory region.
14  * An additional low memory page is used to ensure each CPU can start with
15  * a PGD aligned virtual address (for realmode).
16  *
17  * The order of each memory region is not changed. The feature looks at
18  * the available space for the regions based on different configuration
19  * options and randomizes the base and space between each. The size of the
20  * physical memory mapping is the available physical memory.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/random.h>
26 #include <linux/memblock.h>
27 
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/setup.h>
31 #include <asm/kaslr.h>
32 
33 #include "mm_internal.h"
34 
35 #define TB_SHIFT 40
36 
37 /*
38  * The end address could depend on more configuration options to make the
39  * highest amount of space for randomization available, but that's too hard
40  * to keep straight and caused issues already.
41  */
42 static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE;
43 
44 /*
45  * Memory regions randomized by KASLR (except modules that use a separate logic
46  * earlier during boot). The list is ordered based on virtual addresses. This
47  * order is kept after randomization.
48  */
49 static __initdata struct kaslr_memory_region {
50 	unsigned long *base;
51 	unsigned long size_tb;
52 } kaslr_regions[] = {
53 	{ &page_offset_base, 0 },
54 	{ &vmalloc_base, 0 },
55 	{ &vmemmap_base, 0 },
56 };
57 
58 /* Get size in bytes used by the memory region */
get_padding(struct kaslr_memory_region * region)59 static inline unsigned long get_padding(struct kaslr_memory_region *region)
60 {
61 	return (region->size_tb << TB_SHIFT);
62 }
63 
64 /*
65  * Apply no randomization if KASLR was disabled at boot or if KASAN
66  * is enabled. KASAN shadow mappings rely on regions being PGD aligned.
67  */
kaslr_memory_enabled(void)68 static inline bool kaslr_memory_enabled(void)
69 {
70 	return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN);
71 }
72 
73 /* Initialize base and padding for each memory region randomized with KASLR */
kernel_randomize_memory(void)74 void __init kernel_randomize_memory(void)
75 {
76 	size_t i;
77 	unsigned long vaddr_start, vaddr;
78 	unsigned long rand, memory_tb;
79 	struct rnd_state rand_state;
80 	unsigned long remain_entropy;
81 	unsigned long vmemmap_size;
82 
83 	vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4;
84 	vaddr = vaddr_start;
85 
86 	/*
87 	 * These BUILD_BUG_ON checks ensure the memory layout is consistent
88 	 * with the vaddr_start/vaddr_end variables. These checks are very
89 	 * limited....
90 	 */
91 	BUILD_BUG_ON(vaddr_start >= vaddr_end);
92 	BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE);
93 	BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
94 
95 	if (!kaslr_memory_enabled())
96 		return;
97 
98 	kaslr_regions[0].size_tb = 1 << (MAX_PHYSMEM_BITS - TB_SHIFT);
99 	kaslr_regions[1].size_tb = VMALLOC_SIZE_TB;
100 
101 	/*
102 	 * Update Physical memory mapping to available and
103 	 * add padding if needed (especially for memory hotplug support).
104 	 */
105 	BUG_ON(kaslr_regions[0].base != &page_offset_base);
106 	memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
107 		CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
108 
109 	/* Adapt phyiscal memory region size based on available memory */
110 	if (memory_tb < kaslr_regions[0].size_tb)
111 		kaslr_regions[0].size_tb = memory_tb;
112 
113 	/*
114 	 * Calculate the vmemmap region size in TBs, aligned to a TB
115 	 * boundary.
116 	 */
117 	vmemmap_size = (kaslr_regions[0].size_tb << (TB_SHIFT - PAGE_SHIFT)) *
118 			sizeof(struct page);
119 	kaslr_regions[2].size_tb = DIV_ROUND_UP(vmemmap_size, 1UL << TB_SHIFT);
120 
121 	/* Calculate entropy available between regions */
122 	remain_entropy = vaddr_end - vaddr_start;
123 	for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
124 		remain_entropy -= get_padding(&kaslr_regions[i]);
125 
126 	prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
127 
128 	for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
129 		unsigned long entropy;
130 
131 		/*
132 		 * Select a random virtual address using the extra entropy
133 		 * available.
134 		 */
135 		entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
136 		prandom_bytes_state(&rand_state, &rand, sizeof(rand));
137 		entropy = (rand % (entropy + 1)) & PUD_MASK;
138 		vaddr += entropy;
139 		*kaslr_regions[i].base = vaddr;
140 
141 		/*
142 		 * Jump the region and add a minimum padding based on
143 		 * randomization alignment.
144 		 */
145 		vaddr += get_padding(&kaslr_regions[i]);
146 		vaddr = round_up(vaddr + 1, PUD_SIZE);
147 		remain_entropy -= entropy;
148 	}
149 }
150 
init_trampoline_pud(void)151 static void __meminit init_trampoline_pud(void)
152 {
153 	pud_t *pud_page_tramp, *pud, *pud_tramp;
154 	p4d_t *p4d_page_tramp, *p4d, *p4d_tramp;
155 	unsigned long paddr, vaddr;
156 	pgd_t *pgd;
157 
158 	pud_page_tramp = alloc_low_page();
159 
160 	/*
161 	 * There are two mappings for the low 1MB area, the direct mapping
162 	 * and the 1:1 mapping for the real mode trampoline:
163 	 *
164 	 * Direct mapping: virt_addr = phys_addr + PAGE_OFFSET
165 	 * 1:1 mapping:    virt_addr = phys_addr
166 	 */
167 	paddr = 0;
168 	vaddr = (unsigned long)__va(paddr);
169 	pgd = pgd_offset_k(vaddr);
170 
171 	p4d = p4d_offset(pgd, vaddr);
172 	pud = pud_offset(p4d, vaddr);
173 
174 	pud_tramp = pud_page_tramp + pud_index(paddr);
175 	*pud_tramp = *pud;
176 
177 	if (pgtable_l5_enabled()) {
178 		p4d_page_tramp = alloc_low_page();
179 
180 		p4d_tramp = p4d_page_tramp + p4d_index(paddr);
181 
182 		set_p4d(p4d_tramp,
183 			__p4d(_KERNPG_TABLE | __pa(pud_page_tramp)));
184 
185 		set_pgd(&trampoline_pgd_entry,
186 			__pgd(_KERNPG_TABLE | __pa(p4d_page_tramp)));
187 	} else {
188 		set_pgd(&trampoline_pgd_entry,
189 			__pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
190 	}
191 }
192 
193 /*
194  * The real mode trampoline, which is required for bootstrapping CPUs
195  * occupies only a small area under the low 1MB.  See reserve_real_mode()
196  * for details.
197  *
198  * If KASLR is disabled the first PGD entry of the direct mapping is copied
199  * to map the real mode trampoline.
200  *
201  * If KASLR is enabled, copy only the PUD which covers the low 1MB
202  * area. This limits the randomization granularity to 1GB for both 4-level
203  * and 5-level paging.
204  */
init_trampoline(void)205 void __meminit init_trampoline(void)
206 {
207 	if (!kaslr_memory_enabled()) {
208 		init_trampoline_default();
209 		return;
210 	}
211 
212 	init_trampoline_pud();
213 }
214