1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/x86_64/mm/init.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8 */
9
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57
58 #include "mm_internal.h"
59
60 #include "ident_map.c"
61
62 #define DEFINE_POPULATE(fname, type1, type2, init) \
63 static inline void fname##_init(struct mm_struct *mm, \
64 type1##_t *arg1, type2##_t *arg2, bool init) \
65 { \
66 if (init) \
67 fname##_safe(mm, arg1, arg2); \
68 else \
69 fname(mm, arg1, arg2); \
70 }
71
72 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
73 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
74 DEFINE_POPULATE(pud_populate, pud, pmd, init)
75 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
76
77 #define DEFINE_ENTRY(type1, type2, init) \
78 static inline void set_##type1##_init(type1##_t *arg1, \
79 type2##_t arg2, bool init) \
80 { \
81 if (init) \
82 set_##type1##_safe(arg1, arg2); \
83 else \
84 set_##type1(arg1, arg2); \
85 }
86
87 DEFINE_ENTRY(p4d, p4d, init)
88 DEFINE_ENTRY(pud, pud, init)
89 DEFINE_ENTRY(pmd, pmd, init)
90 DEFINE_ENTRY(pte, pte, init)
91
92
93 /*
94 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
95 * physical space so we can cache the place of the first one and move
96 * around without checking the pgd every time.
97 */
98
99 /* Bits supported by the hardware: */
100 pteval_t __supported_pte_mask __read_mostly = ~0;
101 /* Bits allowed in normal kernel mappings: */
102 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
103 EXPORT_SYMBOL_GPL(__supported_pte_mask);
104 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
105 EXPORT_SYMBOL(__default_kernel_pte_mask);
106
107 int force_personality32;
108
109 /*
110 * noexec32=on|off
111 * Control non executable heap for 32bit processes.
112 * To control the stack too use noexec=off
113 *
114 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
115 * off PROT_READ implies PROT_EXEC
116 */
nonx32_setup(char * str)117 static int __init nonx32_setup(char *str)
118 {
119 if (!strcmp(str, "on"))
120 force_personality32 &= ~READ_IMPLIES_EXEC;
121 else if (!strcmp(str, "off"))
122 force_personality32 |= READ_IMPLIES_EXEC;
123 return 1;
124 }
125 __setup("noexec32=", nonx32_setup);
126
sync_global_pgds_l5(unsigned long start,unsigned long end)127 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
128 {
129 unsigned long addr;
130
131 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
132 const pgd_t *pgd_ref = pgd_offset_k(addr);
133 struct page *page;
134
135 /* Check for overflow */
136 if (addr < start)
137 break;
138
139 if (pgd_none(*pgd_ref))
140 continue;
141
142 spin_lock(&pgd_lock);
143 list_for_each_entry(page, &pgd_list, lru) {
144 pgd_t *pgd;
145 spinlock_t *pgt_lock;
146
147 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
148 /* the pgt_lock only for Xen */
149 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
150 spin_lock(pgt_lock);
151
152 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
153 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
154
155 if (pgd_none(*pgd))
156 set_pgd(pgd, *pgd_ref);
157
158 spin_unlock(pgt_lock);
159 }
160 spin_unlock(&pgd_lock);
161 }
162 }
163
sync_global_pgds_l4(unsigned long start,unsigned long end)164 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
165 {
166 unsigned long addr;
167
168 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
169 pgd_t *pgd_ref = pgd_offset_k(addr);
170 const p4d_t *p4d_ref;
171 struct page *page;
172
173 /*
174 * With folded p4d, pgd_none() is always false, we need to
175 * handle synchonization on p4d level.
176 */
177 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
178 p4d_ref = p4d_offset(pgd_ref, addr);
179
180 if (p4d_none(*p4d_ref))
181 continue;
182
183 spin_lock(&pgd_lock);
184 list_for_each_entry(page, &pgd_list, lru) {
185 pgd_t *pgd;
186 p4d_t *p4d;
187 spinlock_t *pgt_lock;
188
189 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
190 p4d = p4d_offset(pgd, addr);
191 /* the pgt_lock only for Xen */
192 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
193 spin_lock(pgt_lock);
194
195 if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
196 BUG_ON(p4d_page_vaddr(*p4d)
197 != p4d_page_vaddr(*p4d_ref));
198
199 if (p4d_none(*p4d))
200 set_p4d(p4d, *p4d_ref);
201
202 spin_unlock(pgt_lock);
203 }
204 spin_unlock(&pgd_lock);
205 }
206 }
207
208 /*
209 * When memory was added make sure all the processes MM have
210 * suitable PGD entries in the local PGD level page.
211 */
sync_global_pgds(unsigned long start,unsigned long end)212 void sync_global_pgds(unsigned long start, unsigned long end)
213 {
214 if (pgtable_l5_enabled())
215 sync_global_pgds_l5(start, end);
216 else
217 sync_global_pgds_l4(start, end);
218 }
219
220 /*
221 * NOTE: This function is marked __ref because it calls __init function
222 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
223 */
spp_getpage(void)224 static __ref void *spp_getpage(void)
225 {
226 void *ptr;
227
228 if (after_bootmem)
229 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
230 else
231 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
232
233 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
234 panic("set_pte_phys: cannot allocate page data %s\n",
235 after_bootmem ? "after bootmem" : "");
236 }
237
238 pr_debug("spp_getpage %p\n", ptr);
239
240 return ptr;
241 }
242
fill_p4d(pgd_t * pgd,unsigned long vaddr)243 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
244 {
245 if (pgd_none(*pgd)) {
246 p4d_t *p4d = (p4d_t *)spp_getpage();
247 pgd_populate(&init_mm, pgd, p4d);
248 if (p4d != p4d_offset(pgd, 0))
249 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
250 p4d, p4d_offset(pgd, 0));
251 }
252 return p4d_offset(pgd, vaddr);
253 }
254
fill_pud(p4d_t * p4d,unsigned long vaddr)255 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
256 {
257 if (p4d_none(*p4d)) {
258 pud_t *pud = (pud_t *)spp_getpage();
259 p4d_populate(&init_mm, p4d, pud);
260 if (pud != pud_offset(p4d, 0))
261 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
262 pud, pud_offset(p4d, 0));
263 }
264 return pud_offset(p4d, vaddr);
265 }
266
fill_pmd(pud_t * pud,unsigned long vaddr)267 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
268 {
269 if (pud_none(*pud)) {
270 pmd_t *pmd = (pmd_t *) spp_getpage();
271 pud_populate(&init_mm, pud, pmd);
272 if (pmd != pmd_offset(pud, 0))
273 printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
274 pmd, pmd_offset(pud, 0));
275 }
276 return pmd_offset(pud, vaddr);
277 }
278
fill_pte(pmd_t * pmd,unsigned long vaddr)279 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
280 {
281 if (pmd_none(*pmd)) {
282 pte_t *pte = (pte_t *) spp_getpage();
283 pmd_populate_kernel(&init_mm, pmd, pte);
284 if (pte != pte_offset_kernel(pmd, 0))
285 printk(KERN_ERR "PAGETABLE BUG #03!\n");
286 }
287 return pte_offset_kernel(pmd, vaddr);
288 }
289
__set_pte_vaddr(pud_t * pud,unsigned long vaddr,pte_t new_pte)290 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
291 {
292 pmd_t *pmd = fill_pmd(pud, vaddr);
293 pte_t *pte = fill_pte(pmd, vaddr);
294
295 set_pte(pte, new_pte);
296
297 /*
298 * It's enough to flush this one mapping.
299 * (PGE mappings get flushed as well)
300 */
301 __flush_tlb_one_kernel(vaddr);
302 }
303
set_pte_vaddr_p4d(p4d_t * p4d_page,unsigned long vaddr,pte_t new_pte)304 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
305 {
306 p4d_t *p4d = p4d_page + p4d_index(vaddr);
307 pud_t *pud = fill_pud(p4d, vaddr);
308
309 __set_pte_vaddr(pud, vaddr, new_pte);
310 }
311
set_pte_vaddr_pud(pud_t * pud_page,unsigned long vaddr,pte_t new_pte)312 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
313 {
314 pud_t *pud = pud_page + pud_index(vaddr);
315
316 __set_pte_vaddr(pud, vaddr, new_pte);
317 }
318
set_pte_vaddr(unsigned long vaddr,pte_t pteval)319 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
320 {
321 pgd_t *pgd;
322 p4d_t *p4d_page;
323
324 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
325
326 pgd = pgd_offset_k(vaddr);
327 if (pgd_none(*pgd)) {
328 printk(KERN_ERR
329 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
330 return;
331 }
332
333 p4d_page = p4d_offset(pgd, 0);
334 set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
335 }
336
populate_extra_pmd(unsigned long vaddr)337 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
338 {
339 pgd_t *pgd;
340 p4d_t *p4d;
341 pud_t *pud;
342
343 pgd = pgd_offset_k(vaddr);
344 p4d = fill_p4d(pgd, vaddr);
345 pud = fill_pud(p4d, vaddr);
346 return fill_pmd(pud, vaddr);
347 }
348
populate_extra_pte(unsigned long vaddr)349 pte_t * __init populate_extra_pte(unsigned long vaddr)
350 {
351 pmd_t *pmd;
352
353 pmd = populate_extra_pmd(vaddr);
354 return fill_pte(pmd, vaddr);
355 }
356
357 /*
358 * Create large page table mappings for a range of physical addresses.
359 */
__init_extra_mapping(unsigned long phys,unsigned long size,enum page_cache_mode cache)360 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
361 enum page_cache_mode cache)
362 {
363 pgd_t *pgd;
364 p4d_t *p4d;
365 pud_t *pud;
366 pmd_t *pmd;
367 pgprot_t prot;
368
369 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
370 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
371 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
372 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
373 pgd = pgd_offset_k((unsigned long)__va(phys));
374 if (pgd_none(*pgd)) {
375 p4d = (p4d_t *) spp_getpage();
376 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
377 _PAGE_USER));
378 }
379 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
380 if (p4d_none(*p4d)) {
381 pud = (pud_t *) spp_getpage();
382 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
383 _PAGE_USER));
384 }
385 pud = pud_offset(p4d, (unsigned long)__va(phys));
386 if (pud_none(*pud)) {
387 pmd = (pmd_t *) spp_getpage();
388 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
389 _PAGE_USER));
390 }
391 pmd = pmd_offset(pud, phys);
392 BUG_ON(!pmd_none(*pmd));
393 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
394 }
395 }
396
init_extra_mapping_wb(unsigned long phys,unsigned long size)397 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
398 {
399 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
400 }
401
init_extra_mapping_uc(unsigned long phys,unsigned long size)402 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
403 {
404 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
405 }
406
407 /*
408 * The head.S code sets up the kernel high mapping:
409 *
410 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
411 *
412 * phys_base holds the negative offset to the kernel, which is added
413 * to the compile time generated pmds. This results in invalid pmds up
414 * to the point where we hit the physaddr 0 mapping.
415 *
416 * We limit the mappings to the region from _text to _brk_end. _brk_end
417 * is rounded up to the 2MB boundary. This catches the invalid pmds as
418 * well, as they are located before _text:
419 */
cleanup_highmap(void)420 void __init cleanup_highmap(void)
421 {
422 unsigned long vaddr = __START_KERNEL_map;
423 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
424 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
425 pmd_t *pmd = level2_kernel_pgt;
426
427 /*
428 * Native path, max_pfn_mapped is not set yet.
429 * Xen has valid max_pfn_mapped set in
430 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
431 */
432 if (max_pfn_mapped)
433 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
434
435 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
436 if (pmd_none(*pmd))
437 continue;
438 if (vaddr < (unsigned long) _text || vaddr > end)
439 set_pmd(pmd, __pmd(0));
440 }
441 }
442
443 /*
444 * Create PTE level page table mapping for physical addresses.
445 * It returns the last physical address mapped.
446 */
447 static unsigned long __meminit
phys_pte_init(pte_t * pte_page,unsigned long paddr,unsigned long paddr_end,pgprot_t prot,bool init)448 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
449 pgprot_t prot, bool init)
450 {
451 unsigned long pages = 0, paddr_next;
452 unsigned long paddr_last = paddr_end;
453 pte_t *pte;
454 int i;
455
456 pte = pte_page + pte_index(paddr);
457 i = pte_index(paddr);
458
459 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
460 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
461 if (paddr >= paddr_end) {
462 if (!after_bootmem &&
463 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
464 E820_TYPE_RAM) &&
465 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
466 E820_TYPE_RESERVED_KERN))
467 set_pte_init(pte, __pte(0), init);
468 continue;
469 }
470
471 /*
472 * We will re-use the existing mapping.
473 * Xen for example has some special requirements, like mapping
474 * pagetable pages as RO. So assume someone who pre-setup
475 * these mappings are more intelligent.
476 */
477 if (!pte_none(*pte)) {
478 if (!after_bootmem)
479 pages++;
480 continue;
481 }
482
483 if (0)
484 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
485 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
486 pages++;
487 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
488 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
489 }
490
491 update_page_count(PG_LEVEL_4K, pages);
492
493 return paddr_last;
494 }
495
496 /*
497 * Create PMD level page table mapping for physical addresses. The virtual
498 * and physical address have to be aligned at this level.
499 * It returns the last physical address mapped.
500 */
501 static unsigned long __meminit
phys_pmd_init(pmd_t * pmd_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)502 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
503 unsigned long page_size_mask, pgprot_t prot, bool init)
504 {
505 unsigned long pages = 0, paddr_next;
506 unsigned long paddr_last = paddr_end;
507
508 int i = pmd_index(paddr);
509
510 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
511 pmd_t *pmd = pmd_page + pmd_index(paddr);
512 pte_t *pte;
513 pgprot_t new_prot = prot;
514
515 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
516 if (paddr >= paddr_end) {
517 if (!after_bootmem &&
518 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
519 E820_TYPE_RAM) &&
520 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
521 E820_TYPE_RESERVED_KERN))
522 set_pmd_init(pmd, __pmd(0), init);
523 continue;
524 }
525
526 if (!pmd_none(*pmd)) {
527 if (!pmd_large(*pmd)) {
528 spin_lock(&init_mm.page_table_lock);
529 pte = (pte_t *)pmd_page_vaddr(*pmd);
530 paddr_last = phys_pte_init(pte, paddr,
531 paddr_end, prot,
532 init);
533 spin_unlock(&init_mm.page_table_lock);
534 continue;
535 }
536 /*
537 * If we are ok with PG_LEVEL_2M mapping, then we will
538 * use the existing mapping,
539 *
540 * Otherwise, we will split the large page mapping but
541 * use the same existing protection bits except for
542 * large page, so that we don't violate Intel's TLB
543 * Application note (317080) which says, while changing
544 * the page sizes, new and old translations should
545 * not differ with respect to page frame and
546 * attributes.
547 */
548 if (page_size_mask & (1 << PG_LEVEL_2M)) {
549 if (!after_bootmem)
550 pages++;
551 paddr_last = paddr_next;
552 continue;
553 }
554 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
555 }
556
557 if (page_size_mask & (1<<PG_LEVEL_2M)) {
558 pages++;
559 spin_lock(&init_mm.page_table_lock);
560 set_pte_init((pte_t *)pmd,
561 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
562 __pgprot(pgprot_val(prot) | _PAGE_PSE)),
563 init);
564 spin_unlock(&init_mm.page_table_lock);
565 paddr_last = paddr_next;
566 continue;
567 }
568
569 pte = alloc_low_page();
570 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
571
572 spin_lock(&init_mm.page_table_lock);
573 pmd_populate_kernel_init(&init_mm, pmd, pte, init);
574 spin_unlock(&init_mm.page_table_lock);
575 }
576 update_page_count(PG_LEVEL_2M, pages);
577 return paddr_last;
578 }
579
580 /*
581 * Create PUD level page table mapping for physical addresses. The virtual
582 * and physical address do not have to be aligned at this level. KASLR can
583 * randomize virtual addresses up to this level.
584 * It returns the last physical address mapped.
585 */
586 static unsigned long __meminit
phys_pud_init(pud_t * pud_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,bool init)587 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
588 unsigned long page_size_mask, bool init)
589 {
590 unsigned long pages = 0, paddr_next;
591 unsigned long paddr_last = paddr_end;
592 unsigned long vaddr = (unsigned long)__va(paddr);
593 int i = pud_index(vaddr);
594
595 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
596 pud_t *pud;
597 pmd_t *pmd;
598 pgprot_t prot = PAGE_KERNEL;
599
600 vaddr = (unsigned long)__va(paddr);
601 pud = pud_page + pud_index(vaddr);
602 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
603
604 if (paddr >= paddr_end) {
605 if (!after_bootmem &&
606 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
607 E820_TYPE_RAM) &&
608 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
609 E820_TYPE_RESERVED_KERN))
610 set_pud_init(pud, __pud(0), init);
611 continue;
612 }
613
614 if (!pud_none(*pud)) {
615 if (!pud_large(*pud)) {
616 pmd = pmd_offset(pud, 0);
617 paddr_last = phys_pmd_init(pmd, paddr,
618 paddr_end,
619 page_size_mask,
620 prot, init);
621 continue;
622 }
623 /*
624 * If we are ok with PG_LEVEL_1G mapping, then we will
625 * use the existing mapping.
626 *
627 * Otherwise, we will split the gbpage mapping but use
628 * the same existing protection bits except for large
629 * page, so that we don't violate Intel's TLB
630 * Application note (317080) which says, while changing
631 * the page sizes, new and old translations should
632 * not differ with respect to page frame and
633 * attributes.
634 */
635 if (page_size_mask & (1 << PG_LEVEL_1G)) {
636 if (!after_bootmem)
637 pages++;
638 paddr_last = paddr_next;
639 continue;
640 }
641 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
642 }
643
644 if (page_size_mask & (1<<PG_LEVEL_1G)) {
645 pages++;
646 spin_lock(&init_mm.page_table_lock);
647 set_pte_init((pte_t *)pud,
648 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
649 PAGE_KERNEL_LARGE),
650 init);
651 spin_unlock(&init_mm.page_table_lock);
652 paddr_last = paddr_next;
653 continue;
654 }
655
656 pmd = alloc_low_page();
657 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
658 page_size_mask, prot, init);
659
660 spin_lock(&init_mm.page_table_lock);
661 pud_populate_init(&init_mm, pud, pmd, init);
662 spin_unlock(&init_mm.page_table_lock);
663 }
664
665 update_page_count(PG_LEVEL_1G, pages);
666
667 return paddr_last;
668 }
669
670 static unsigned long __meminit
phys_p4d_init(p4d_t * p4d_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,bool init)671 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
672 unsigned long page_size_mask, bool init)
673 {
674 unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
675
676 paddr_last = paddr_end;
677 vaddr = (unsigned long)__va(paddr);
678 vaddr_end = (unsigned long)__va(paddr_end);
679
680 if (!pgtable_l5_enabled())
681 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
682 page_size_mask, init);
683
684 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
685 p4d_t *p4d = p4d_page + p4d_index(vaddr);
686 pud_t *pud;
687
688 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
689 paddr = __pa(vaddr);
690
691 if (paddr >= paddr_end) {
692 paddr_next = __pa(vaddr_next);
693 if (!after_bootmem &&
694 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
695 E820_TYPE_RAM) &&
696 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
697 E820_TYPE_RESERVED_KERN))
698 set_p4d_init(p4d, __p4d(0), init);
699 continue;
700 }
701
702 if (!p4d_none(*p4d)) {
703 pud = pud_offset(p4d, 0);
704 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
705 page_size_mask, init);
706 continue;
707 }
708
709 pud = alloc_low_page();
710 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
711 page_size_mask, init);
712
713 spin_lock(&init_mm.page_table_lock);
714 p4d_populate_init(&init_mm, p4d, pud, init);
715 spin_unlock(&init_mm.page_table_lock);
716 }
717
718 return paddr_last;
719 }
720
721 static unsigned long __meminit
__kernel_physical_mapping_init(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask,bool init)722 __kernel_physical_mapping_init(unsigned long paddr_start,
723 unsigned long paddr_end,
724 unsigned long page_size_mask,
725 bool init)
726 {
727 bool pgd_changed = false;
728 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
729
730 paddr_last = paddr_end;
731 vaddr = (unsigned long)__va(paddr_start);
732 vaddr_end = (unsigned long)__va(paddr_end);
733 vaddr_start = vaddr;
734
735 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
736 pgd_t *pgd = pgd_offset_k(vaddr);
737 p4d_t *p4d;
738
739 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
740
741 if (pgd_val(*pgd)) {
742 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
743 paddr_last = phys_p4d_init(p4d, __pa(vaddr),
744 __pa(vaddr_end),
745 page_size_mask,
746 init);
747 continue;
748 }
749
750 p4d = alloc_low_page();
751 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
752 page_size_mask, init);
753
754 spin_lock(&init_mm.page_table_lock);
755 if (pgtable_l5_enabled())
756 pgd_populate_init(&init_mm, pgd, p4d, init);
757 else
758 p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
759 (pud_t *) p4d, init);
760
761 spin_unlock(&init_mm.page_table_lock);
762 pgd_changed = true;
763 }
764
765 if (pgd_changed)
766 sync_global_pgds(vaddr_start, vaddr_end - 1);
767
768 return paddr_last;
769 }
770
771
772 /*
773 * Create page table mapping for the physical memory for specific physical
774 * addresses. Note that it can only be used to populate non-present entries.
775 * The virtual and physical addresses have to be aligned on PMD level
776 * down. It returns the last physical address mapped.
777 */
778 unsigned long __meminit
kernel_physical_mapping_init(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask)779 kernel_physical_mapping_init(unsigned long paddr_start,
780 unsigned long paddr_end,
781 unsigned long page_size_mask)
782 {
783 return __kernel_physical_mapping_init(paddr_start, paddr_end,
784 page_size_mask, true);
785 }
786
787 /*
788 * This function is similar to kernel_physical_mapping_init() above with the
789 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
790 * when updating the mapping. The caller is responsible to flush the TLBs after
791 * the function returns.
792 */
793 unsigned long __meminit
kernel_physical_mapping_change(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask)794 kernel_physical_mapping_change(unsigned long paddr_start,
795 unsigned long paddr_end,
796 unsigned long page_size_mask)
797 {
798 return __kernel_physical_mapping_init(paddr_start, paddr_end,
799 page_size_mask, false);
800 }
801
802 #ifndef CONFIG_NUMA
initmem_init(void)803 void __init initmem_init(void)
804 {
805 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
806 }
807 #endif
808
paging_init(void)809 void __init paging_init(void)
810 {
811 sparse_memory_present_with_active_regions(MAX_NUMNODES);
812 sparse_init();
813
814 /*
815 * clear the default setting with node 0
816 * note: don't use nodes_clear here, that is really clearing when
817 * numa support is not compiled in, and later node_set_state
818 * will not set it back.
819 */
820 node_clear_state(0, N_MEMORY);
821 if (N_MEMORY != N_NORMAL_MEMORY)
822 node_clear_state(0, N_NORMAL_MEMORY);
823
824 zone_sizes_init();
825 }
826
827 /*
828 * Memory hotplug specific functions
829 */
830 #ifdef CONFIG_MEMORY_HOTPLUG
831 /*
832 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
833 * updating.
834 */
update_end_of_memory_vars(u64 start,u64 size)835 static void update_end_of_memory_vars(u64 start, u64 size)
836 {
837 unsigned long end_pfn = PFN_UP(start + size);
838
839 if (end_pfn > max_pfn) {
840 max_pfn = end_pfn;
841 max_low_pfn = end_pfn;
842 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
843 }
844 }
845
add_pages(int nid,unsigned long start_pfn,unsigned long nr_pages,struct mhp_restrictions * restrictions)846 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
847 struct mhp_restrictions *restrictions)
848 {
849 int ret;
850
851 ret = __add_pages(nid, start_pfn, nr_pages, restrictions);
852 WARN_ON_ONCE(ret);
853
854 /* update max_pfn, max_low_pfn and high_memory */
855 update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
856 nr_pages << PAGE_SHIFT);
857
858 return ret;
859 }
860
arch_add_memory(int nid,u64 start,u64 size,struct mhp_restrictions * restrictions)861 int arch_add_memory(int nid, u64 start, u64 size,
862 struct mhp_restrictions *restrictions)
863 {
864 unsigned long start_pfn = start >> PAGE_SHIFT;
865 unsigned long nr_pages = size >> PAGE_SHIFT;
866
867 init_memory_mapping(start, start + size);
868
869 return add_pages(nid, start_pfn, nr_pages, restrictions);
870 }
871
872 #define PAGE_INUSE 0xFD
873
free_pagetable(struct page * page,int order)874 static void __meminit free_pagetable(struct page *page, int order)
875 {
876 unsigned long magic;
877 unsigned int nr_pages = 1 << order;
878
879 /* bootmem page has reserved flag */
880 if (PageReserved(page)) {
881 __ClearPageReserved(page);
882
883 magic = (unsigned long)page->freelist;
884 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
885 while (nr_pages--)
886 put_page_bootmem(page++);
887 } else
888 while (nr_pages--)
889 free_reserved_page(page++);
890 } else
891 free_pages((unsigned long)page_address(page), order);
892 }
893
free_hugepage_table(struct page * page,struct vmem_altmap * altmap)894 static void __meminit free_hugepage_table(struct page *page,
895 struct vmem_altmap *altmap)
896 {
897 if (altmap)
898 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
899 else
900 free_pagetable(page, get_order(PMD_SIZE));
901 }
902
free_pte_table(pte_t * pte_start,pmd_t * pmd)903 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
904 {
905 pte_t *pte;
906 int i;
907
908 for (i = 0; i < PTRS_PER_PTE; i++) {
909 pte = pte_start + i;
910 if (!pte_none(*pte))
911 return;
912 }
913
914 /* free a pte talbe */
915 free_pagetable(pmd_page(*pmd), 0);
916 spin_lock(&init_mm.page_table_lock);
917 pmd_clear(pmd);
918 spin_unlock(&init_mm.page_table_lock);
919 }
920
free_pmd_table(pmd_t * pmd_start,pud_t * pud)921 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
922 {
923 pmd_t *pmd;
924 int i;
925
926 for (i = 0; i < PTRS_PER_PMD; i++) {
927 pmd = pmd_start + i;
928 if (!pmd_none(*pmd))
929 return;
930 }
931
932 /* free a pmd talbe */
933 free_pagetable(pud_page(*pud), 0);
934 spin_lock(&init_mm.page_table_lock);
935 pud_clear(pud);
936 spin_unlock(&init_mm.page_table_lock);
937 }
938
free_pud_table(pud_t * pud_start,p4d_t * p4d)939 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
940 {
941 pud_t *pud;
942 int i;
943
944 for (i = 0; i < PTRS_PER_PUD; i++) {
945 pud = pud_start + i;
946 if (!pud_none(*pud))
947 return;
948 }
949
950 /* free a pud talbe */
951 free_pagetable(p4d_page(*p4d), 0);
952 spin_lock(&init_mm.page_table_lock);
953 p4d_clear(p4d);
954 spin_unlock(&init_mm.page_table_lock);
955 }
956
957 static void __meminit
remove_pte_table(pte_t * pte_start,unsigned long addr,unsigned long end,bool direct)958 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
959 bool direct)
960 {
961 unsigned long next, pages = 0;
962 pte_t *pte;
963 void *page_addr;
964 phys_addr_t phys_addr;
965
966 pte = pte_start + pte_index(addr);
967 for (; addr < end; addr = next, pte++) {
968 next = (addr + PAGE_SIZE) & PAGE_MASK;
969 if (next > end)
970 next = end;
971
972 if (!pte_present(*pte))
973 continue;
974
975 /*
976 * We mapped [0,1G) memory as identity mapping when
977 * initializing, in arch/x86/kernel/head_64.S. These
978 * pagetables cannot be removed.
979 */
980 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
981 if (phys_addr < (phys_addr_t)0x40000000)
982 return;
983
984 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
985 /*
986 * Do not free direct mapping pages since they were
987 * freed when offlining, or simplely not in use.
988 */
989 if (!direct)
990 free_pagetable(pte_page(*pte), 0);
991
992 spin_lock(&init_mm.page_table_lock);
993 pte_clear(&init_mm, addr, pte);
994 spin_unlock(&init_mm.page_table_lock);
995
996 /* For non-direct mapping, pages means nothing. */
997 pages++;
998 } else {
999 /*
1000 * If we are here, we are freeing vmemmap pages since
1001 * direct mapped memory ranges to be freed are aligned.
1002 *
1003 * If we are not removing the whole page, it means
1004 * other page structs in this page are being used and
1005 * we canot remove them. So fill the unused page_structs
1006 * with 0xFD, and remove the page when it is wholly
1007 * filled with 0xFD.
1008 */
1009 memset((void *)addr, PAGE_INUSE, next - addr);
1010
1011 page_addr = page_address(pte_page(*pte));
1012 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
1013 free_pagetable(pte_page(*pte), 0);
1014
1015 spin_lock(&init_mm.page_table_lock);
1016 pte_clear(&init_mm, addr, pte);
1017 spin_unlock(&init_mm.page_table_lock);
1018 }
1019 }
1020 }
1021
1022 /* Call free_pte_table() in remove_pmd_table(). */
1023 flush_tlb_all();
1024 if (direct)
1025 update_page_count(PG_LEVEL_4K, -pages);
1026 }
1027
1028 static void __meminit
remove_pmd_table(pmd_t * pmd_start,unsigned long addr,unsigned long end,bool direct,struct vmem_altmap * altmap)1029 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1030 bool direct, struct vmem_altmap *altmap)
1031 {
1032 unsigned long next, pages = 0;
1033 pte_t *pte_base;
1034 pmd_t *pmd;
1035 void *page_addr;
1036
1037 pmd = pmd_start + pmd_index(addr);
1038 for (; addr < end; addr = next, pmd++) {
1039 next = pmd_addr_end(addr, end);
1040
1041 if (!pmd_present(*pmd))
1042 continue;
1043
1044 if (pmd_large(*pmd)) {
1045 if (IS_ALIGNED(addr, PMD_SIZE) &&
1046 IS_ALIGNED(next, PMD_SIZE)) {
1047 if (!direct)
1048 free_hugepage_table(pmd_page(*pmd),
1049 altmap);
1050
1051 spin_lock(&init_mm.page_table_lock);
1052 pmd_clear(pmd);
1053 spin_unlock(&init_mm.page_table_lock);
1054 pages++;
1055 } else {
1056 /* If here, we are freeing vmemmap pages. */
1057 memset((void *)addr, PAGE_INUSE, next - addr);
1058
1059 page_addr = page_address(pmd_page(*pmd));
1060 if (!memchr_inv(page_addr, PAGE_INUSE,
1061 PMD_SIZE)) {
1062 free_hugepage_table(pmd_page(*pmd),
1063 altmap);
1064
1065 spin_lock(&init_mm.page_table_lock);
1066 pmd_clear(pmd);
1067 spin_unlock(&init_mm.page_table_lock);
1068 }
1069 }
1070
1071 continue;
1072 }
1073
1074 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1075 remove_pte_table(pte_base, addr, next, direct);
1076 free_pte_table(pte_base, pmd);
1077 }
1078
1079 /* Call free_pmd_table() in remove_pud_table(). */
1080 if (direct)
1081 update_page_count(PG_LEVEL_2M, -pages);
1082 }
1083
1084 static void __meminit
remove_pud_table(pud_t * pud_start,unsigned long addr,unsigned long end,struct vmem_altmap * altmap,bool direct)1085 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1086 struct vmem_altmap *altmap, bool direct)
1087 {
1088 unsigned long next, pages = 0;
1089 pmd_t *pmd_base;
1090 pud_t *pud;
1091 void *page_addr;
1092
1093 pud = pud_start + pud_index(addr);
1094 for (; addr < end; addr = next, pud++) {
1095 next = pud_addr_end(addr, end);
1096
1097 if (!pud_present(*pud))
1098 continue;
1099
1100 if (pud_large(*pud)) {
1101 if (IS_ALIGNED(addr, PUD_SIZE) &&
1102 IS_ALIGNED(next, PUD_SIZE)) {
1103 if (!direct)
1104 free_pagetable(pud_page(*pud),
1105 get_order(PUD_SIZE));
1106
1107 spin_lock(&init_mm.page_table_lock);
1108 pud_clear(pud);
1109 spin_unlock(&init_mm.page_table_lock);
1110 pages++;
1111 } else {
1112 /* If here, we are freeing vmemmap pages. */
1113 memset((void *)addr, PAGE_INUSE, next - addr);
1114
1115 page_addr = page_address(pud_page(*pud));
1116 if (!memchr_inv(page_addr, PAGE_INUSE,
1117 PUD_SIZE)) {
1118 free_pagetable(pud_page(*pud),
1119 get_order(PUD_SIZE));
1120
1121 spin_lock(&init_mm.page_table_lock);
1122 pud_clear(pud);
1123 spin_unlock(&init_mm.page_table_lock);
1124 }
1125 }
1126
1127 continue;
1128 }
1129
1130 pmd_base = pmd_offset(pud, 0);
1131 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1132 free_pmd_table(pmd_base, pud);
1133 }
1134
1135 if (direct)
1136 update_page_count(PG_LEVEL_1G, -pages);
1137 }
1138
1139 static void __meminit
remove_p4d_table(p4d_t * p4d_start,unsigned long addr,unsigned long end,struct vmem_altmap * altmap,bool direct)1140 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1141 struct vmem_altmap *altmap, bool direct)
1142 {
1143 unsigned long next, pages = 0;
1144 pud_t *pud_base;
1145 p4d_t *p4d;
1146
1147 p4d = p4d_start + p4d_index(addr);
1148 for (; addr < end; addr = next, p4d++) {
1149 next = p4d_addr_end(addr, end);
1150
1151 if (!p4d_present(*p4d))
1152 continue;
1153
1154 BUILD_BUG_ON(p4d_large(*p4d));
1155
1156 pud_base = pud_offset(p4d, 0);
1157 remove_pud_table(pud_base, addr, next, altmap, direct);
1158 /*
1159 * For 4-level page tables we do not want to free PUDs, but in the
1160 * 5-level case we should free them. This code will have to change
1161 * to adapt for boot-time switching between 4 and 5 level page tables.
1162 */
1163 if (pgtable_l5_enabled())
1164 free_pud_table(pud_base, p4d);
1165 }
1166
1167 if (direct)
1168 update_page_count(PG_LEVEL_512G, -pages);
1169 }
1170
1171 /* start and end are both virtual address. */
1172 static void __meminit
remove_pagetable(unsigned long start,unsigned long end,bool direct,struct vmem_altmap * altmap)1173 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1174 struct vmem_altmap *altmap)
1175 {
1176 unsigned long next;
1177 unsigned long addr;
1178 pgd_t *pgd;
1179 p4d_t *p4d;
1180
1181 for (addr = start; addr < end; addr = next) {
1182 next = pgd_addr_end(addr, end);
1183
1184 pgd = pgd_offset_k(addr);
1185 if (!pgd_present(*pgd))
1186 continue;
1187
1188 p4d = p4d_offset(pgd, 0);
1189 remove_p4d_table(p4d, addr, next, altmap, direct);
1190 }
1191
1192 flush_tlb_all();
1193 }
1194
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1195 void __ref vmemmap_free(unsigned long start, unsigned long end,
1196 struct vmem_altmap *altmap)
1197 {
1198 remove_pagetable(start, end, false, altmap);
1199 }
1200
1201 static void __meminit
kernel_physical_mapping_remove(unsigned long start,unsigned long end)1202 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1203 {
1204 start = (unsigned long)__va(start);
1205 end = (unsigned long)__va(end);
1206
1207 remove_pagetable(start, end, true, NULL);
1208 }
1209
arch_remove_memory(int nid,u64 start,u64 size,struct vmem_altmap * altmap)1210 void __ref arch_remove_memory(int nid, u64 start, u64 size,
1211 struct vmem_altmap *altmap)
1212 {
1213 unsigned long start_pfn = start >> PAGE_SHIFT;
1214 unsigned long nr_pages = size >> PAGE_SHIFT;
1215 struct page *page = pfn_to_page(start_pfn) + vmem_altmap_offset(altmap);
1216 struct zone *zone = page_zone(page);
1217
1218 __remove_pages(zone, start_pfn, nr_pages, altmap);
1219 kernel_physical_mapping_remove(start, start + size);
1220 }
1221 #endif /* CONFIG_MEMORY_HOTPLUG */
1222
1223 static struct kcore_list kcore_vsyscall;
1224
register_page_bootmem_info(void)1225 static void __init register_page_bootmem_info(void)
1226 {
1227 #ifdef CONFIG_NUMA
1228 int i;
1229
1230 for_each_online_node(i)
1231 register_page_bootmem_info_node(NODE_DATA(i));
1232 #endif
1233 }
1234
mem_init(void)1235 void __init mem_init(void)
1236 {
1237 pci_iommu_alloc();
1238
1239 /* clear_bss() already clear the empty_zero_page */
1240
1241 /* this will put all memory onto the freelists */
1242 memblock_free_all();
1243 after_bootmem = 1;
1244 x86_init.hyper.init_after_bootmem();
1245
1246 /*
1247 * Must be done after boot memory is put on freelist, because here we
1248 * might set fields in deferred struct pages that have not yet been
1249 * initialized, and memblock_free_all() initializes all the reserved
1250 * deferred pages for us.
1251 */
1252 register_page_bootmem_info();
1253
1254 /* Register memory areas for /proc/kcore */
1255 if (get_gate_vma(&init_mm))
1256 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1257
1258 mem_init_print_info(NULL);
1259 }
1260
1261 int kernel_set_to_readonly;
1262
set_kernel_text_rw(void)1263 void set_kernel_text_rw(void)
1264 {
1265 unsigned long start = PFN_ALIGN(_text);
1266 unsigned long end = PFN_ALIGN(__stop___ex_table);
1267
1268 if (!kernel_set_to_readonly)
1269 return;
1270
1271 pr_debug("Set kernel text: %lx - %lx for read write\n",
1272 start, end);
1273
1274 /*
1275 * Make the kernel identity mapping for text RW. Kernel text
1276 * mapping will always be RO. Refer to the comment in
1277 * static_protections() in pageattr.c
1278 */
1279 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1280 }
1281
set_kernel_text_ro(void)1282 void set_kernel_text_ro(void)
1283 {
1284 unsigned long start = PFN_ALIGN(_text);
1285 unsigned long end = PFN_ALIGN(__stop___ex_table);
1286
1287 if (!kernel_set_to_readonly)
1288 return;
1289
1290 pr_debug("Set kernel text: %lx - %lx for read only\n",
1291 start, end);
1292
1293 /*
1294 * Set the kernel identity mapping for text RO.
1295 */
1296 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1297 }
1298
mark_rodata_ro(void)1299 void mark_rodata_ro(void)
1300 {
1301 unsigned long start = PFN_ALIGN(_text);
1302 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1303 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1304 unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1305 unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1306 unsigned long all_end;
1307
1308 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1309 (end - start) >> 10);
1310 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1311
1312 kernel_set_to_readonly = 1;
1313
1314 /*
1315 * The rodata/data/bss/brk section (but not the kernel text!)
1316 * should also be not-executable.
1317 *
1318 * We align all_end to PMD_SIZE because the existing mapping
1319 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1320 * split the PMD and the reminder between _brk_end and the end
1321 * of the PMD will remain mapped executable.
1322 *
1323 * Any PMD which was setup after the one which covers _brk_end
1324 * has been zapped already via cleanup_highmem().
1325 */
1326 all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1327 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1328
1329 #ifdef CONFIG_CPA_DEBUG
1330 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1331 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1332
1333 printk(KERN_INFO "Testing CPA: again\n");
1334 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1335 #endif
1336
1337 free_kernel_image_pages((void *)text_end, (void *)rodata_start);
1338 free_kernel_image_pages((void *)rodata_end, (void *)_sdata);
1339
1340 debug_checkwx();
1341 }
1342
kern_addr_valid(unsigned long addr)1343 int kern_addr_valid(unsigned long addr)
1344 {
1345 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1346 pgd_t *pgd;
1347 p4d_t *p4d;
1348 pud_t *pud;
1349 pmd_t *pmd;
1350 pte_t *pte;
1351
1352 if (above != 0 && above != -1UL)
1353 return 0;
1354
1355 pgd = pgd_offset_k(addr);
1356 if (pgd_none(*pgd))
1357 return 0;
1358
1359 p4d = p4d_offset(pgd, addr);
1360 if (p4d_none(*p4d))
1361 return 0;
1362
1363 pud = pud_offset(p4d, addr);
1364 if (pud_none(*pud))
1365 return 0;
1366
1367 if (pud_large(*pud))
1368 return pfn_valid(pud_pfn(*pud));
1369
1370 pmd = pmd_offset(pud, addr);
1371 if (pmd_none(*pmd))
1372 return 0;
1373
1374 if (pmd_large(*pmd))
1375 return pfn_valid(pmd_pfn(*pmd));
1376
1377 pte = pte_offset_kernel(pmd, addr);
1378 if (pte_none(*pte))
1379 return 0;
1380
1381 return pfn_valid(pte_pfn(*pte));
1382 }
1383
1384 /*
1385 * Block size is the minimum amount of memory which can be hotplugged or
1386 * hotremoved. It must be power of two and must be equal or larger than
1387 * MIN_MEMORY_BLOCK_SIZE.
1388 */
1389 #define MAX_BLOCK_SIZE (2UL << 30)
1390
1391 /* Amount of ram needed to start using large blocks */
1392 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1393
1394 /* Adjustable memory block size */
1395 static unsigned long set_memory_block_size;
set_memory_block_size_order(unsigned int order)1396 int __init set_memory_block_size_order(unsigned int order)
1397 {
1398 unsigned long size = 1UL << order;
1399
1400 if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1401 return -EINVAL;
1402
1403 set_memory_block_size = size;
1404 return 0;
1405 }
1406
probe_memory_block_size(void)1407 static unsigned long probe_memory_block_size(void)
1408 {
1409 unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1410 unsigned long bz;
1411
1412 /* If memory block size has been set, then use it */
1413 bz = set_memory_block_size;
1414 if (bz)
1415 goto done;
1416
1417 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1418 if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1419 bz = MIN_MEMORY_BLOCK_SIZE;
1420 goto done;
1421 }
1422
1423 /* Find the largest allowed block size that aligns to memory end */
1424 for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1425 if (IS_ALIGNED(boot_mem_end, bz))
1426 break;
1427 }
1428 done:
1429 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1430
1431 return bz;
1432 }
1433
1434 static unsigned long memory_block_size_probed;
memory_block_size_bytes(void)1435 unsigned long memory_block_size_bytes(void)
1436 {
1437 if (!memory_block_size_probed)
1438 memory_block_size_probed = probe_memory_block_size();
1439
1440 return memory_block_size_probed;
1441 }
1442
1443 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1444 /*
1445 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1446 */
1447 static long __meminitdata addr_start, addr_end;
1448 static void __meminitdata *p_start, *p_end;
1449 static int __meminitdata node_start;
1450
vmemmap_populate_hugepages(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1451 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1452 unsigned long end, int node, struct vmem_altmap *altmap)
1453 {
1454 unsigned long addr;
1455 unsigned long next;
1456 pgd_t *pgd;
1457 p4d_t *p4d;
1458 pud_t *pud;
1459 pmd_t *pmd;
1460
1461 for (addr = start; addr < end; addr = next) {
1462 next = pmd_addr_end(addr, end);
1463
1464 pgd = vmemmap_pgd_populate(addr, node);
1465 if (!pgd)
1466 return -ENOMEM;
1467
1468 p4d = vmemmap_p4d_populate(pgd, addr, node);
1469 if (!p4d)
1470 return -ENOMEM;
1471
1472 pud = vmemmap_pud_populate(p4d, addr, node);
1473 if (!pud)
1474 return -ENOMEM;
1475
1476 pmd = pmd_offset(pud, addr);
1477 if (pmd_none(*pmd)) {
1478 void *p;
1479
1480 if (altmap)
1481 p = altmap_alloc_block_buf(PMD_SIZE, altmap);
1482 else
1483 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1484 if (p) {
1485 pte_t entry;
1486
1487 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1488 PAGE_KERNEL_LARGE);
1489 set_pmd(pmd, __pmd(pte_val(entry)));
1490
1491 /* check to see if we have contiguous blocks */
1492 if (p_end != p || node_start != node) {
1493 if (p_start)
1494 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1495 addr_start, addr_end-1, p_start, p_end-1, node_start);
1496 addr_start = addr;
1497 node_start = node;
1498 p_start = p;
1499 }
1500
1501 addr_end = addr + PMD_SIZE;
1502 p_end = p + PMD_SIZE;
1503 continue;
1504 } else if (altmap)
1505 return -ENOMEM; /* no fallback */
1506 } else if (pmd_large(*pmd)) {
1507 vmemmap_verify((pte_t *)pmd, node, addr, next);
1508 continue;
1509 }
1510 if (vmemmap_populate_basepages(addr, next, node))
1511 return -ENOMEM;
1512 }
1513 return 0;
1514 }
1515
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1516 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1517 struct vmem_altmap *altmap)
1518 {
1519 int err;
1520
1521 if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1522 err = vmemmap_populate_basepages(start, end, node);
1523 else if (boot_cpu_has(X86_FEATURE_PSE))
1524 err = vmemmap_populate_hugepages(start, end, node, altmap);
1525 else if (altmap) {
1526 pr_err_once("%s: no cpu support for altmap allocations\n",
1527 __func__);
1528 err = -ENOMEM;
1529 } else
1530 err = vmemmap_populate_basepages(start, end, node);
1531 if (!err)
1532 sync_global_pgds(start, end - 1);
1533 return err;
1534 }
1535
1536 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
register_page_bootmem_memmap(unsigned long section_nr,struct page * start_page,unsigned long nr_pages)1537 void register_page_bootmem_memmap(unsigned long section_nr,
1538 struct page *start_page, unsigned long nr_pages)
1539 {
1540 unsigned long addr = (unsigned long)start_page;
1541 unsigned long end = (unsigned long)(start_page + nr_pages);
1542 unsigned long next;
1543 pgd_t *pgd;
1544 p4d_t *p4d;
1545 pud_t *pud;
1546 pmd_t *pmd;
1547 unsigned int nr_pmd_pages;
1548 struct page *page;
1549
1550 for (; addr < end; addr = next) {
1551 pte_t *pte = NULL;
1552
1553 pgd = pgd_offset_k(addr);
1554 if (pgd_none(*pgd)) {
1555 next = (addr + PAGE_SIZE) & PAGE_MASK;
1556 continue;
1557 }
1558 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1559
1560 p4d = p4d_offset(pgd, addr);
1561 if (p4d_none(*p4d)) {
1562 next = (addr + PAGE_SIZE) & PAGE_MASK;
1563 continue;
1564 }
1565 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1566
1567 pud = pud_offset(p4d, addr);
1568 if (pud_none(*pud)) {
1569 next = (addr + PAGE_SIZE) & PAGE_MASK;
1570 continue;
1571 }
1572 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1573
1574 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1575 next = (addr + PAGE_SIZE) & PAGE_MASK;
1576 pmd = pmd_offset(pud, addr);
1577 if (pmd_none(*pmd))
1578 continue;
1579 get_page_bootmem(section_nr, pmd_page(*pmd),
1580 MIX_SECTION_INFO);
1581
1582 pte = pte_offset_kernel(pmd, addr);
1583 if (pte_none(*pte))
1584 continue;
1585 get_page_bootmem(section_nr, pte_page(*pte),
1586 SECTION_INFO);
1587 } else {
1588 next = pmd_addr_end(addr, end);
1589
1590 pmd = pmd_offset(pud, addr);
1591 if (pmd_none(*pmd))
1592 continue;
1593
1594 nr_pmd_pages = 1 << get_order(PMD_SIZE);
1595 page = pmd_page(*pmd);
1596 while (nr_pmd_pages--)
1597 get_page_bootmem(section_nr, page++,
1598 SECTION_INFO);
1599 }
1600 }
1601 }
1602 #endif
1603
vmemmap_populate_print_last(void)1604 void __meminit vmemmap_populate_print_last(void)
1605 {
1606 if (p_start) {
1607 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1608 addr_start, addr_end-1, p_start, p_end-1, node_start);
1609 p_start = NULL;
1610 p_end = NULL;
1611 node_start = 0;
1612 }
1613 }
1614 #endif
1615