1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * General FPU state handling cleanups
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 * x86-64 work by Andi Kleen 2002
9 */
10
11 #ifndef _ASM_X86_FPU_INTERNAL_H
12 #define _ASM_X86_FPU_INTERNAL_H
13
14 #include <linux/compat.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18
19 #include <asm/user.h>
20 #include <asm/fpu/api.h>
21 #include <asm/fpu/xstate.h>
22 #include <asm/cpufeature.h>
23 #include <asm/trace/fpu.h>
24
25 /*
26 * High level FPU state handling functions:
27 */
28 extern void fpu__prepare_read(struct fpu *fpu);
29 extern void fpu__prepare_write(struct fpu *fpu);
30 extern void fpu__save(struct fpu *fpu);
31 extern int fpu__restore_sig(void __user *buf, int ia32_frame);
32 extern void fpu__drop(struct fpu *fpu);
33 extern int fpu__copy(struct task_struct *dst, struct task_struct *src);
34 extern void fpu__clear(struct fpu *fpu);
35 extern int fpu__exception_code(struct fpu *fpu, int trap_nr);
36 extern int dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
37
38 /*
39 * Boot time FPU initialization functions:
40 */
41 extern void fpu__init_cpu(void);
42 extern void fpu__init_system_xstate(void);
43 extern void fpu__init_cpu_xstate(void);
44 extern void fpu__init_system(struct cpuinfo_x86 *c);
45 extern void fpu__init_check_bugs(void);
46 extern void fpu__resume_cpu(void);
47 extern u64 fpu__get_supported_xfeatures_mask(void);
48
49 /*
50 * Debugging facility:
51 */
52 #ifdef CONFIG_X86_DEBUG_FPU
53 # define WARN_ON_FPU(x) WARN_ON_ONCE(x)
54 #else
55 # define WARN_ON_FPU(x) ({ (void)(x); 0; })
56 #endif
57
58 /*
59 * FPU related CPU feature flag helper routines:
60 */
use_xsaveopt(void)61 static __always_inline __pure bool use_xsaveopt(void)
62 {
63 return static_cpu_has(X86_FEATURE_XSAVEOPT);
64 }
65
use_xsave(void)66 static __always_inline __pure bool use_xsave(void)
67 {
68 return static_cpu_has(X86_FEATURE_XSAVE);
69 }
70
use_fxsr(void)71 static __always_inline __pure bool use_fxsr(void)
72 {
73 return static_cpu_has(X86_FEATURE_FXSR);
74 }
75
76 /*
77 * fpstate handling functions:
78 */
79
80 extern union fpregs_state init_fpstate;
81
82 extern void fpstate_init(union fpregs_state *state);
83 #ifdef CONFIG_MATH_EMULATION
84 extern void fpstate_init_soft(struct swregs_state *soft);
85 #else
fpstate_init_soft(struct swregs_state * soft)86 static inline void fpstate_init_soft(struct swregs_state *soft) {}
87 #endif
88
fpstate_init_xstate(struct xregs_state * xsave)89 static inline void fpstate_init_xstate(struct xregs_state *xsave)
90 {
91 /*
92 * XRSTORS requires these bits set in xcomp_bv, or it will
93 * trigger #GP:
94 */
95 xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask;
96 }
97
fpstate_init_fxstate(struct fxregs_state * fx)98 static inline void fpstate_init_fxstate(struct fxregs_state *fx)
99 {
100 fx->cwd = 0x37f;
101 fx->mxcsr = MXCSR_DEFAULT;
102 }
103 extern void fpstate_sanitize_xstate(struct fpu *fpu);
104
105 #define user_insn(insn, output, input...) \
106 ({ \
107 int err; \
108 \
109 might_fault(); \
110 \
111 asm volatile(ASM_STAC "\n" \
112 "1:" #insn "\n\t" \
113 "2: " ASM_CLAC "\n" \
114 ".section .fixup,\"ax\"\n" \
115 "3: movl $-1,%[err]\n" \
116 " jmp 2b\n" \
117 ".previous\n" \
118 _ASM_EXTABLE(1b, 3b) \
119 : [err] "=r" (err), output \
120 : "0"(0), input); \
121 err; \
122 })
123
124 #define kernel_insn_err(insn, output, input...) \
125 ({ \
126 int err; \
127 asm volatile("1:" #insn "\n\t" \
128 "2:\n" \
129 ".section .fixup,\"ax\"\n" \
130 "3: movl $-1,%[err]\n" \
131 " jmp 2b\n" \
132 ".previous\n" \
133 _ASM_EXTABLE(1b, 3b) \
134 : [err] "=r" (err), output \
135 : "0"(0), input); \
136 err; \
137 })
138
139 #define kernel_insn(insn, output, input...) \
140 asm volatile("1:" #insn "\n\t" \
141 "2:\n" \
142 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_fprestore) \
143 : output : input)
144
copy_fregs_to_user(struct fregs_state __user * fx)145 static inline int copy_fregs_to_user(struct fregs_state __user *fx)
146 {
147 return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
148 }
149
copy_fxregs_to_user(struct fxregs_state __user * fx)150 static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
151 {
152 if (IS_ENABLED(CONFIG_X86_32))
153 return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
154 else
155 return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
156
157 }
158
copy_kernel_to_fxregs(struct fxregs_state * fx)159 static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
160 {
161 if (IS_ENABLED(CONFIG_X86_32))
162 kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
163 else
164 kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
165 }
166
copy_kernel_to_fxregs_err(struct fxregs_state * fx)167 static inline int copy_kernel_to_fxregs_err(struct fxregs_state *fx)
168 {
169 if (IS_ENABLED(CONFIG_X86_32))
170 return kernel_insn_err(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
171 else
172 return kernel_insn_err(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
173 }
174
copy_user_to_fxregs(struct fxregs_state __user * fx)175 static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
176 {
177 if (IS_ENABLED(CONFIG_X86_32))
178 return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
179 else
180 return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
181 }
182
copy_kernel_to_fregs(struct fregs_state * fx)183 static inline void copy_kernel_to_fregs(struct fregs_state *fx)
184 {
185 kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
186 }
187
copy_kernel_to_fregs_err(struct fregs_state * fx)188 static inline int copy_kernel_to_fregs_err(struct fregs_state *fx)
189 {
190 return kernel_insn_err(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
191 }
192
copy_user_to_fregs(struct fregs_state __user * fx)193 static inline int copy_user_to_fregs(struct fregs_state __user *fx)
194 {
195 return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
196 }
197
copy_fxregs_to_kernel(struct fpu * fpu)198 static inline void copy_fxregs_to_kernel(struct fpu *fpu)
199 {
200 if (IS_ENABLED(CONFIG_X86_32))
201 asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
202 else
203 asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
204 }
205
206 /* These macros all use (%edi)/(%rdi) as the single memory argument. */
207 #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
208 #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
209 #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
210 #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
211 #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
212
213 #define XSTATE_OP(op, st, lmask, hmask, err) \
214 asm volatile("1:" op "\n\t" \
215 "xor %[err], %[err]\n" \
216 "2:\n\t" \
217 ".pushsection .fixup,\"ax\"\n\t" \
218 "3: movl $-2,%[err]\n\t" \
219 "jmp 2b\n\t" \
220 ".popsection\n\t" \
221 _ASM_EXTABLE(1b, 3b) \
222 : [err] "=r" (err) \
223 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
224 : "memory")
225
226 /*
227 * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
228 * format and supervisor states in addition to modified optimization in
229 * XSAVEOPT.
230 *
231 * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
232 * supports modified optimization which is not supported by XSAVE.
233 *
234 * We use XSAVE as a fallback.
235 *
236 * The 661 label is defined in the ALTERNATIVE* macros as the address of the
237 * original instruction which gets replaced. We need to use it here as the
238 * address of the instruction where we might get an exception at.
239 */
240 #define XSTATE_XSAVE(st, lmask, hmask, err) \
241 asm volatile(ALTERNATIVE_2(XSAVE, \
242 XSAVEOPT, X86_FEATURE_XSAVEOPT, \
243 XSAVES, X86_FEATURE_XSAVES) \
244 "\n" \
245 "xor %[err], %[err]\n" \
246 "3:\n" \
247 ".pushsection .fixup,\"ax\"\n" \
248 "4: movl $-2, %[err]\n" \
249 "jmp 3b\n" \
250 ".popsection\n" \
251 _ASM_EXTABLE(661b, 4b) \
252 : [err] "=r" (err) \
253 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
254 : "memory")
255
256 /*
257 * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
258 * XSAVE area format.
259 */
260 #define XSTATE_XRESTORE(st, lmask, hmask) \
261 asm volatile(ALTERNATIVE(XRSTOR, \
262 XRSTORS, X86_FEATURE_XSAVES) \
263 "\n" \
264 "3:\n" \
265 _ASM_EXTABLE_HANDLE(661b, 3b, ex_handler_fprestore)\
266 : \
267 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
268 : "memory")
269
270 /*
271 * This function is called only during boot time when x86 caps are not set
272 * up and alternative can not be used yet.
273 */
copy_xregs_to_kernel_booting(struct xregs_state * xstate)274 static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
275 {
276 u64 mask = -1;
277 u32 lmask = mask;
278 u32 hmask = mask >> 32;
279 int err;
280
281 WARN_ON(system_state != SYSTEM_BOOTING);
282
283 if (boot_cpu_has(X86_FEATURE_XSAVES))
284 XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
285 else
286 XSTATE_OP(XSAVE, xstate, lmask, hmask, err);
287
288 /* We should never fault when copying to a kernel buffer: */
289 WARN_ON_FPU(err);
290 }
291
292 /*
293 * This function is called only during boot time when x86 caps are not set
294 * up and alternative can not be used yet.
295 */
copy_kernel_to_xregs_booting(struct xregs_state * xstate)296 static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
297 {
298 u64 mask = -1;
299 u32 lmask = mask;
300 u32 hmask = mask >> 32;
301 int err;
302
303 WARN_ON(system_state != SYSTEM_BOOTING);
304
305 if (boot_cpu_has(X86_FEATURE_XSAVES))
306 XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
307 else
308 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
309
310 /*
311 * We should never fault when copying from a kernel buffer, and the FPU
312 * state we set at boot time should be valid.
313 */
314 WARN_ON_FPU(err);
315 }
316
317 /*
318 * Save processor xstate to xsave area.
319 */
copy_xregs_to_kernel(struct xregs_state * xstate)320 static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
321 {
322 u64 mask = -1;
323 u32 lmask = mask;
324 u32 hmask = mask >> 32;
325 int err;
326
327 WARN_ON_FPU(!alternatives_patched);
328
329 XSTATE_XSAVE(xstate, lmask, hmask, err);
330
331 /* We should never fault when copying to a kernel buffer: */
332 WARN_ON_FPU(err);
333 }
334
335 /*
336 * Restore processor xstate from xsave area.
337 */
copy_kernel_to_xregs(struct xregs_state * xstate,u64 mask)338 static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
339 {
340 u32 lmask = mask;
341 u32 hmask = mask >> 32;
342
343 XSTATE_XRESTORE(xstate, lmask, hmask);
344 }
345
346 /*
347 * Save xstate to user space xsave area.
348 *
349 * We don't use modified optimization because xrstor/xrstors might track
350 * a different application.
351 *
352 * We don't use compacted format xsave area for
353 * backward compatibility for old applications which don't understand
354 * compacted format of xsave area.
355 */
copy_xregs_to_user(struct xregs_state __user * buf)356 static inline int copy_xregs_to_user(struct xregs_state __user *buf)
357 {
358 int err;
359
360 /*
361 * Clear the xsave header first, so that reserved fields are
362 * initialized to zero.
363 */
364 err = __clear_user(&buf->header, sizeof(buf->header));
365 if (unlikely(err))
366 return -EFAULT;
367
368 stac();
369 XSTATE_OP(XSAVE, buf, -1, -1, err);
370 clac();
371
372 return err;
373 }
374
375 /*
376 * Restore xstate from user space xsave area.
377 */
copy_user_to_xregs(struct xregs_state __user * buf,u64 mask)378 static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
379 {
380 struct xregs_state *xstate = ((__force struct xregs_state *)buf);
381 u32 lmask = mask;
382 u32 hmask = mask >> 32;
383 int err;
384
385 stac();
386 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
387 clac();
388
389 return err;
390 }
391
392 /*
393 * Restore xstate from kernel space xsave area, return an error code instead of
394 * an exception.
395 */
copy_kernel_to_xregs_err(struct xregs_state * xstate,u64 mask)396 static inline int copy_kernel_to_xregs_err(struct xregs_state *xstate, u64 mask)
397 {
398 u32 lmask = mask;
399 u32 hmask = mask >> 32;
400 int err;
401
402 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
403
404 return err;
405 }
406
407 /*
408 * These must be called with preempt disabled. Returns
409 * 'true' if the FPU state is still intact and we can
410 * keep registers active.
411 *
412 * The legacy FNSAVE instruction cleared all FPU state
413 * unconditionally, so registers are essentially destroyed.
414 * Modern FPU state can be kept in registers, if there are
415 * no pending FP exceptions.
416 */
copy_fpregs_to_fpstate(struct fpu * fpu)417 static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
418 {
419 if (likely(use_xsave())) {
420 copy_xregs_to_kernel(&fpu->state.xsave);
421
422 /*
423 * AVX512 state is tracked here because its use is
424 * known to slow the max clock speed of the core.
425 */
426 if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512)
427 fpu->avx512_timestamp = jiffies;
428 return 1;
429 }
430
431 if (likely(use_fxsr())) {
432 copy_fxregs_to_kernel(fpu);
433 return 1;
434 }
435
436 /*
437 * Legacy FPU register saving, FNSAVE always clears FPU registers,
438 * so we have to mark them inactive:
439 */
440 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
441
442 return 0;
443 }
444
__copy_kernel_to_fpregs(union fpregs_state * fpstate,u64 mask)445 static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask)
446 {
447 if (use_xsave()) {
448 copy_kernel_to_xregs(&fpstate->xsave, mask);
449 } else {
450 if (use_fxsr())
451 copy_kernel_to_fxregs(&fpstate->fxsave);
452 else
453 copy_kernel_to_fregs(&fpstate->fsave);
454 }
455 }
456
copy_kernel_to_fpregs(union fpregs_state * fpstate)457 static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
458 {
459 /*
460 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
461 * pending. Clear the x87 state here by setting it to fixed values.
462 * "m" is a random variable that should be in L1.
463 */
464 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
465 asm volatile(
466 "fnclex\n\t"
467 "emms\n\t"
468 "fildl %P[addr]" /* set F?P to defined value */
469 : : [addr] "m" (fpstate));
470 }
471
472 __copy_kernel_to_fpregs(fpstate, -1);
473 }
474
475 extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
476
477 /*
478 * FPU context switch related helper methods:
479 */
480
481 DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
482
483 /*
484 * The in-register FPU state for an FPU context on a CPU is assumed to be
485 * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx
486 * matches the FPU.
487 *
488 * If the FPU register state is valid, the kernel can skip restoring the
489 * FPU state from memory.
490 *
491 * Any code that clobbers the FPU registers or updates the in-memory
492 * FPU state for a task MUST let the rest of the kernel know that the
493 * FPU registers are no longer valid for this task.
494 *
495 * Either one of these invalidation functions is enough. Invalidate
496 * a resource you control: CPU if using the CPU for something else
497 * (with preemption disabled), FPU for the current task, or a task that
498 * is prevented from running by the current task.
499 */
__cpu_invalidate_fpregs_state(void)500 static inline void __cpu_invalidate_fpregs_state(void)
501 {
502 __this_cpu_write(fpu_fpregs_owner_ctx, NULL);
503 }
504
__fpu_invalidate_fpregs_state(struct fpu * fpu)505 static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu)
506 {
507 fpu->last_cpu = -1;
508 }
509
fpregs_state_valid(struct fpu * fpu,unsigned int cpu)510 static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu)
511 {
512 return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
513 }
514
515 /*
516 * These generally need preemption protection to work,
517 * do try to avoid using these on their own:
518 */
fpregs_deactivate(struct fpu * fpu)519 static inline void fpregs_deactivate(struct fpu *fpu)
520 {
521 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
522 trace_x86_fpu_regs_deactivated(fpu);
523 }
524
fpregs_activate(struct fpu * fpu)525 static inline void fpregs_activate(struct fpu *fpu)
526 {
527 this_cpu_write(fpu_fpregs_owner_ctx, fpu);
528 trace_x86_fpu_regs_activated(fpu);
529 }
530
531 /*
532 * Internal helper, do not use directly. Use switch_fpu_return() instead.
533 */
__fpregs_load_activate(void)534 static inline void __fpregs_load_activate(void)
535 {
536 struct fpu *fpu = ¤t->thread.fpu;
537 int cpu = smp_processor_id();
538
539 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
540 return;
541
542 if (!fpregs_state_valid(fpu, cpu)) {
543 copy_kernel_to_fpregs(&fpu->state);
544 fpregs_activate(fpu);
545 fpu->last_cpu = cpu;
546 }
547 clear_thread_flag(TIF_NEED_FPU_LOAD);
548 }
549
550 /*
551 * FPU state switching for scheduling.
552 *
553 * This is a two-stage process:
554 *
555 * - switch_fpu_prepare() saves the old state.
556 * This is done within the context of the old process.
557 *
558 * - switch_fpu_finish() sets TIF_NEED_FPU_LOAD; the floating point state
559 * will get loaded on return to userspace, or when the kernel needs it.
560 *
561 * If TIF_NEED_FPU_LOAD is cleared then the CPU's FPU registers
562 * are saved in the current thread's FPU register state.
563 *
564 * If TIF_NEED_FPU_LOAD is set then CPU's FPU registers may not
565 * hold current()'s FPU registers. It is required to load the
566 * registers before returning to userland or using the content
567 * otherwise.
568 *
569 * The FPU context is only stored/restored for a user task and
570 * PF_KTHREAD is used to distinguish between kernel and user threads.
571 */
switch_fpu_prepare(struct fpu * old_fpu,int cpu)572 static inline void switch_fpu_prepare(struct fpu *old_fpu, int cpu)
573 {
574 if (static_cpu_has(X86_FEATURE_FPU) && !(current->flags & PF_KTHREAD)) {
575 if (!copy_fpregs_to_fpstate(old_fpu))
576 old_fpu->last_cpu = -1;
577 else
578 old_fpu->last_cpu = cpu;
579
580 /* But leave fpu_fpregs_owner_ctx! */
581 trace_x86_fpu_regs_deactivated(old_fpu);
582 }
583 }
584
585 /*
586 * Misc helper functions:
587 */
588
589 /*
590 * Load PKRU from the FPU context if available. Delay loading of the
591 * complete FPU state until the return to userland.
592 */
switch_fpu_finish(struct fpu * new_fpu)593 static inline void switch_fpu_finish(struct fpu *new_fpu)
594 {
595 u32 pkru_val = init_pkru_value;
596 struct pkru_state *pk;
597
598 if (!static_cpu_has(X86_FEATURE_FPU))
599 return;
600
601 set_thread_flag(TIF_NEED_FPU_LOAD);
602
603 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
604 return;
605
606 /*
607 * PKRU state is switched eagerly because it needs to be valid before we
608 * return to userland e.g. for a copy_to_user() operation.
609 */
610 if (current->mm) {
611 pk = get_xsave_addr(&new_fpu->state.xsave, XFEATURE_PKRU);
612 if (pk)
613 pkru_val = pk->pkru;
614 }
615 __write_pkru(pkru_val);
616 }
617
618 /*
619 * MXCSR and XCR definitions:
620 */
621
622 extern unsigned int mxcsr_feature_mask;
623
624 #define XCR_XFEATURE_ENABLED_MASK 0x00000000
625
xgetbv(u32 index)626 static inline u64 xgetbv(u32 index)
627 {
628 u32 eax, edx;
629
630 asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
631 : "=a" (eax), "=d" (edx)
632 : "c" (index));
633 return eax + ((u64)edx << 32);
634 }
635
xsetbv(u32 index,u64 value)636 static inline void xsetbv(u32 index, u64 value)
637 {
638 u32 eax = value;
639 u32 edx = value >> 32;
640
641 asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
642 : : "a" (eax), "d" (edx), "c" (index));
643 }
644
645 #endif /* _ASM_X86_FPU_INTERNAL_H */
646