1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/perf_event.h>
3 #include <linux/export.h>
4 #include <linux/types.h>
5 #include <linux/init.h>
6 #include <linux/slab.h>
7 #include <linux/delay.h>
8 #include <linux/jiffies.h>
9 #include <asm/apicdef.h>
10 #include <asm/nmi.h>
11
12 #include "../perf_event.h"
13
14 static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
15 static unsigned long perf_nmi_window;
16
17 static __initconst const u64 amd_hw_cache_event_ids
18 [PERF_COUNT_HW_CACHE_MAX]
19 [PERF_COUNT_HW_CACHE_OP_MAX]
20 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
21 {
22 [ C(L1D) ] = {
23 [ C(OP_READ) ] = {
24 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
25 [ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */
26 },
27 [ C(OP_WRITE) ] = {
28 [ C(RESULT_ACCESS) ] = 0,
29 [ C(RESULT_MISS) ] = 0,
30 },
31 [ C(OP_PREFETCH) ] = {
32 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
33 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
34 },
35 },
36 [ C(L1I ) ] = {
37 [ C(OP_READ) ] = {
38 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
39 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
40 },
41 [ C(OP_WRITE) ] = {
42 [ C(RESULT_ACCESS) ] = -1,
43 [ C(RESULT_MISS) ] = -1,
44 },
45 [ C(OP_PREFETCH) ] = {
46 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
47 [ C(RESULT_MISS) ] = 0,
48 },
49 },
50 [ C(LL ) ] = {
51 [ C(OP_READ) ] = {
52 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
53 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
54 },
55 [ C(OP_WRITE) ] = {
56 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
57 [ C(RESULT_MISS) ] = 0,
58 },
59 [ C(OP_PREFETCH) ] = {
60 [ C(RESULT_ACCESS) ] = 0,
61 [ C(RESULT_MISS) ] = 0,
62 },
63 },
64 [ C(DTLB) ] = {
65 [ C(OP_READ) ] = {
66 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
67 [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
68 },
69 [ C(OP_WRITE) ] = {
70 [ C(RESULT_ACCESS) ] = 0,
71 [ C(RESULT_MISS) ] = 0,
72 },
73 [ C(OP_PREFETCH) ] = {
74 [ C(RESULT_ACCESS) ] = 0,
75 [ C(RESULT_MISS) ] = 0,
76 },
77 },
78 [ C(ITLB) ] = {
79 [ C(OP_READ) ] = {
80 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
81 [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
82 },
83 [ C(OP_WRITE) ] = {
84 [ C(RESULT_ACCESS) ] = -1,
85 [ C(RESULT_MISS) ] = -1,
86 },
87 [ C(OP_PREFETCH) ] = {
88 [ C(RESULT_ACCESS) ] = -1,
89 [ C(RESULT_MISS) ] = -1,
90 },
91 },
92 [ C(BPU ) ] = {
93 [ C(OP_READ) ] = {
94 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
95 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
96 },
97 [ C(OP_WRITE) ] = {
98 [ C(RESULT_ACCESS) ] = -1,
99 [ C(RESULT_MISS) ] = -1,
100 },
101 [ C(OP_PREFETCH) ] = {
102 [ C(RESULT_ACCESS) ] = -1,
103 [ C(RESULT_MISS) ] = -1,
104 },
105 },
106 [ C(NODE) ] = {
107 [ C(OP_READ) ] = {
108 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
109 [ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */
110 },
111 [ C(OP_WRITE) ] = {
112 [ C(RESULT_ACCESS) ] = -1,
113 [ C(RESULT_MISS) ] = -1,
114 },
115 [ C(OP_PREFETCH) ] = {
116 [ C(RESULT_ACCESS) ] = -1,
117 [ C(RESULT_MISS) ] = -1,
118 },
119 },
120 };
121
122 static __initconst const u64 amd_hw_cache_event_ids_f17h
123 [PERF_COUNT_HW_CACHE_MAX]
124 [PERF_COUNT_HW_CACHE_OP_MAX]
125 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
126 [C(L1D)] = {
127 [C(OP_READ)] = {
128 [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
129 [C(RESULT_MISS)] = 0xc860, /* L2$ access from DC Miss */
130 },
131 [C(OP_WRITE)] = {
132 [C(RESULT_ACCESS)] = 0,
133 [C(RESULT_MISS)] = 0,
134 },
135 [C(OP_PREFETCH)] = {
136 [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
137 [C(RESULT_MISS)] = 0,
138 },
139 },
140 [C(L1I)] = {
141 [C(OP_READ)] = {
142 [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches */
143 [C(RESULT_MISS)] = 0x0081, /* Instruction cache misses */
144 },
145 [C(OP_WRITE)] = {
146 [C(RESULT_ACCESS)] = -1,
147 [C(RESULT_MISS)] = -1,
148 },
149 [C(OP_PREFETCH)] = {
150 [C(RESULT_ACCESS)] = 0,
151 [C(RESULT_MISS)] = 0,
152 },
153 },
154 [C(LL)] = {
155 [C(OP_READ)] = {
156 [C(RESULT_ACCESS)] = 0,
157 [C(RESULT_MISS)] = 0,
158 },
159 [C(OP_WRITE)] = {
160 [C(RESULT_ACCESS)] = 0,
161 [C(RESULT_MISS)] = 0,
162 },
163 [C(OP_PREFETCH)] = {
164 [C(RESULT_ACCESS)] = 0,
165 [C(RESULT_MISS)] = 0,
166 },
167 },
168 [C(DTLB)] = {
169 [C(OP_READ)] = {
170 [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
171 [C(RESULT_MISS)] = 0xf045, /* L2 DTLB misses (PT walks) */
172 },
173 [C(OP_WRITE)] = {
174 [C(RESULT_ACCESS)] = 0,
175 [C(RESULT_MISS)] = 0,
176 },
177 [C(OP_PREFETCH)] = {
178 [C(RESULT_ACCESS)] = 0,
179 [C(RESULT_MISS)] = 0,
180 },
181 },
182 [C(ITLB)] = {
183 [C(OP_READ)] = {
184 [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
185 [C(RESULT_MISS)] = 0xff85, /* L1 ITLB misses, L2 misses */
186 },
187 [C(OP_WRITE)] = {
188 [C(RESULT_ACCESS)] = -1,
189 [C(RESULT_MISS)] = -1,
190 },
191 [C(OP_PREFETCH)] = {
192 [C(RESULT_ACCESS)] = -1,
193 [C(RESULT_MISS)] = -1,
194 },
195 },
196 [C(BPU)] = {
197 [C(OP_READ)] = {
198 [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr. */
199 [C(RESULT_MISS)] = 0x00c3, /* Retired Mispredicted BI */
200 },
201 [C(OP_WRITE)] = {
202 [C(RESULT_ACCESS)] = -1,
203 [C(RESULT_MISS)] = -1,
204 },
205 [C(OP_PREFETCH)] = {
206 [C(RESULT_ACCESS)] = -1,
207 [C(RESULT_MISS)] = -1,
208 },
209 },
210 [C(NODE)] = {
211 [C(OP_READ)] = {
212 [C(RESULT_ACCESS)] = 0,
213 [C(RESULT_MISS)] = 0,
214 },
215 [C(OP_WRITE)] = {
216 [C(RESULT_ACCESS)] = -1,
217 [C(RESULT_MISS)] = -1,
218 },
219 [C(OP_PREFETCH)] = {
220 [C(RESULT_ACCESS)] = -1,
221 [C(RESULT_MISS)] = -1,
222 },
223 },
224 };
225
226 /*
227 * AMD Performance Monitor K7 and later, up to and including Family 16h:
228 */
229 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
230 {
231 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
232 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
233 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x077d,
234 [PERF_COUNT_HW_CACHE_MISSES] = 0x077e,
235 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
236 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
237 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
238 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */
239 };
240
241 /*
242 * AMD Performance Monitor Family 17h and later:
243 */
244 static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] =
245 {
246 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
247 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
248 [PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60,
249 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
250 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
251 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287,
252 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x0187,
253 };
254
amd_pmu_event_map(int hw_event)255 static u64 amd_pmu_event_map(int hw_event)
256 {
257 if (boot_cpu_data.x86 >= 0x17)
258 return amd_f17h_perfmon_event_map[hw_event];
259
260 return amd_perfmon_event_map[hw_event];
261 }
262
263 /*
264 * Previously calculated offsets
265 */
266 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
267 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
268
269 /*
270 * Legacy CPUs:
271 * 4 counters starting at 0xc0010000 each offset by 1
272 *
273 * CPUs with core performance counter extensions:
274 * 6 counters starting at 0xc0010200 each offset by 2
275 */
amd_pmu_addr_offset(int index,bool eventsel)276 static inline int amd_pmu_addr_offset(int index, bool eventsel)
277 {
278 int offset;
279
280 if (!index)
281 return index;
282
283 if (eventsel)
284 offset = event_offsets[index];
285 else
286 offset = count_offsets[index];
287
288 if (offset)
289 return offset;
290
291 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
292 offset = index;
293 else
294 offset = index << 1;
295
296 if (eventsel)
297 event_offsets[index] = offset;
298 else
299 count_offsets[index] = offset;
300
301 return offset;
302 }
303
amd_core_hw_config(struct perf_event * event)304 static int amd_core_hw_config(struct perf_event *event)
305 {
306 if (event->attr.exclude_host && event->attr.exclude_guest)
307 /*
308 * When HO == GO == 1 the hardware treats that as GO == HO == 0
309 * and will count in both modes. We don't want to count in that
310 * case so we emulate no-counting by setting US = OS = 0.
311 */
312 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
313 ARCH_PERFMON_EVENTSEL_OS);
314 else if (event->attr.exclude_host)
315 event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
316 else if (event->attr.exclude_guest)
317 event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
318
319 return 0;
320 }
321
322 /*
323 * AMD64 events are detected based on their event codes.
324 */
amd_get_event_code(struct hw_perf_event * hwc)325 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
326 {
327 return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
328 }
329
amd_is_nb_event(struct hw_perf_event * hwc)330 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
331 {
332 return (hwc->config & 0xe0) == 0xe0;
333 }
334
amd_has_nb(struct cpu_hw_events * cpuc)335 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
336 {
337 struct amd_nb *nb = cpuc->amd_nb;
338
339 return nb && nb->nb_id != -1;
340 }
341
amd_pmu_hw_config(struct perf_event * event)342 static int amd_pmu_hw_config(struct perf_event *event)
343 {
344 int ret;
345
346 /* pass precise event sampling to ibs: */
347 if (event->attr.precise_ip && get_ibs_caps())
348 return -ENOENT;
349
350 if (has_branch_stack(event))
351 return -EOPNOTSUPP;
352
353 ret = x86_pmu_hw_config(event);
354 if (ret)
355 return ret;
356
357 if (event->attr.type == PERF_TYPE_RAW)
358 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
359
360 return amd_core_hw_config(event);
361 }
362
__amd_put_nb_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)363 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
364 struct perf_event *event)
365 {
366 struct amd_nb *nb = cpuc->amd_nb;
367 int i;
368
369 /*
370 * need to scan whole list because event may not have
371 * been assigned during scheduling
372 *
373 * no race condition possible because event can only
374 * be removed on one CPU at a time AND PMU is disabled
375 * when we come here
376 */
377 for (i = 0; i < x86_pmu.num_counters; i++) {
378 if (cmpxchg(nb->owners + i, event, NULL) == event)
379 break;
380 }
381 }
382
383 /*
384 * AMD64 NorthBridge events need special treatment because
385 * counter access needs to be synchronized across all cores
386 * of a package. Refer to BKDG section 3.12
387 *
388 * NB events are events measuring L3 cache, Hypertransport
389 * traffic. They are identified by an event code >= 0xe00.
390 * They measure events on the NorthBride which is shared
391 * by all cores on a package. NB events are counted on a
392 * shared set of counters. When a NB event is programmed
393 * in a counter, the data actually comes from a shared
394 * counter. Thus, access to those counters needs to be
395 * synchronized.
396 *
397 * We implement the synchronization such that no two cores
398 * can be measuring NB events using the same counters. Thus,
399 * we maintain a per-NB allocation table. The available slot
400 * is propagated using the event_constraint structure.
401 *
402 * We provide only one choice for each NB event based on
403 * the fact that only NB events have restrictions. Consequently,
404 * if a counter is available, there is a guarantee the NB event
405 * will be assigned to it. If no slot is available, an empty
406 * constraint is returned and scheduling will eventually fail
407 * for this event.
408 *
409 * Note that all cores attached the same NB compete for the same
410 * counters to host NB events, this is why we use atomic ops. Some
411 * multi-chip CPUs may have more than one NB.
412 *
413 * Given that resources are allocated (cmpxchg), they must be
414 * eventually freed for others to use. This is accomplished by
415 * calling __amd_put_nb_event_constraints()
416 *
417 * Non NB events are not impacted by this restriction.
418 */
419 static struct event_constraint *
__amd_get_nb_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct event_constraint * c)420 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
421 struct event_constraint *c)
422 {
423 struct hw_perf_event *hwc = &event->hw;
424 struct amd_nb *nb = cpuc->amd_nb;
425 struct perf_event *old;
426 int idx, new = -1;
427
428 if (!c)
429 c = &unconstrained;
430
431 if (cpuc->is_fake)
432 return c;
433
434 /*
435 * detect if already present, if so reuse
436 *
437 * cannot merge with actual allocation
438 * because of possible holes
439 *
440 * event can already be present yet not assigned (in hwc->idx)
441 * because of successive calls to x86_schedule_events() from
442 * hw_perf_group_sched_in() without hw_perf_enable()
443 */
444 for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
445 if (new == -1 || hwc->idx == idx)
446 /* assign free slot, prefer hwc->idx */
447 old = cmpxchg(nb->owners + idx, NULL, event);
448 else if (nb->owners[idx] == event)
449 /* event already present */
450 old = event;
451 else
452 continue;
453
454 if (old && old != event)
455 continue;
456
457 /* reassign to this slot */
458 if (new != -1)
459 cmpxchg(nb->owners + new, event, NULL);
460 new = idx;
461
462 /* already present, reuse */
463 if (old == event)
464 break;
465 }
466
467 if (new == -1)
468 return &emptyconstraint;
469
470 return &nb->event_constraints[new];
471 }
472
amd_alloc_nb(int cpu)473 static struct amd_nb *amd_alloc_nb(int cpu)
474 {
475 struct amd_nb *nb;
476 int i;
477
478 nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
479 if (!nb)
480 return NULL;
481
482 nb->nb_id = -1;
483
484 /*
485 * initialize all possible NB constraints
486 */
487 for (i = 0; i < x86_pmu.num_counters; i++) {
488 __set_bit(i, nb->event_constraints[i].idxmsk);
489 nb->event_constraints[i].weight = 1;
490 }
491 return nb;
492 }
493
amd_pmu_cpu_prepare(int cpu)494 static int amd_pmu_cpu_prepare(int cpu)
495 {
496 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
497
498 WARN_ON_ONCE(cpuc->amd_nb);
499
500 if (!x86_pmu.amd_nb_constraints)
501 return 0;
502
503 cpuc->amd_nb = amd_alloc_nb(cpu);
504 if (!cpuc->amd_nb)
505 return -ENOMEM;
506
507 return 0;
508 }
509
amd_pmu_cpu_starting(int cpu)510 static void amd_pmu_cpu_starting(int cpu)
511 {
512 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
513 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
514 struct amd_nb *nb;
515 int i, nb_id;
516
517 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
518
519 if (!x86_pmu.amd_nb_constraints)
520 return;
521
522 nb_id = amd_get_nb_id(cpu);
523 WARN_ON_ONCE(nb_id == BAD_APICID);
524
525 for_each_online_cpu(i) {
526 nb = per_cpu(cpu_hw_events, i).amd_nb;
527 if (WARN_ON_ONCE(!nb))
528 continue;
529
530 if (nb->nb_id == nb_id) {
531 *onln = cpuc->amd_nb;
532 cpuc->amd_nb = nb;
533 break;
534 }
535 }
536
537 cpuc->amd_nb->nb_id = nb_id;
538 cpuc->amd_nb->refcnt++;
539 }
540
amd_pmu_cpu_dead(int cpu)541 static void amd_pmu_cpu_dead(int cpu)
542 {
543 struct cpu_hw_events *cpuhw;
544
545 if (!x86_pmu.amd_nb_constraints)
546 return;
547
548 cpuhw = &per_cpu(cpu_hw_events, cpu);
549
550 if (cpuhw->amd_nb) {
551 struct amd_nb *nb = cpuhw->amd_nb;
552
553 if (nb->nb_id == -1 || --nb->refcnt == 0)
554 kfree(nb);
555
556 cpuhw->amd_nb = NULL;
557 }
558 }
559
560 /*
561 * When a PMC counter overflows, an NMI is used to process the event and
562 * reset the counter. NMI latency can result in the counter being updated
563 * before the NMI can run, which can result in what appear to be spurious
564 * NMIs. This function is intended to wait for the NMI to run and reset
565 * the counter to avoid possible unhandled NMI messages.
566 */
567 #define OVERFLOW_WAIT_COUNT 50
568
amd_pmu_wait_on_overflow(int idx)569 static void amd_pmu_wait_on_overflow(int idx)
570 {
571 unsigned int i;
572 u64 counter;
573
574 /*
575 * Wait for the counter to be reset if it has overflowed. This loop
576 * should exit very, very quickly, but just in case, don't wait
577 * forever...
578 */
579 for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
580 rdmsrl(x86_pmu_event_addr(idx), counter);
581 if (counter & (1ULL << (x86_pmu.cntval_bits - 1)))
582 break;
583
584 /* Might be in IRQ context, so can't sleep */
585 udelay(1);
586 }
587 }
588
amd_pmu_disable_all(void)589 static void amd_pmu_disable_all(void)
590 {
591 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
592 int idx;
593
594 x86_pmu_disable_all();
595
596 /*
597 * This shouldn't be called from NMI context, but add a safeguard here
598 * to return, since if we're in NMI context we can't wait for an NMI
599 * to reset an overflowed counter value.
600 */
601 if (in_nmi())
602 return;
603
604 /*
605 * Check each counter for overflow and wait for it to be reset by the
606 * NMI if it has overflowed. This relies on the fact that all active
607 * counters are always enabled when this function is caled and
608 * ARCH_PERFMON_EVENTSEL_INT is always set.
609 */
610 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
611 if (!test_bit(idx, cpuc->active_mask))
612 continue;
613
614 amd_pmu_wait_on_overflow(idx);
615 }
616 }
617
amd_pmu_disable_event(struct perf_event * event)618 static void amd_pmu_disable_event(struct perf_event *event)
619 {
620 x86_pmu_disable_event(event);
621
622 /*
623 * This can be called from NMI context (via x86_pmu_stop). The counter
624 * may have overflowed, but either way, we'll never see it get reset
625 * by the NMI if we're already in the NMI. And the NMI latency support
626 * below will take care of any pending NMI that might have been
627 * generated by the overflow.
628 */
629 if (in_nmi())
630 return;
631
632 amd_pmu_wait_on_overflow(event->hw.idx);
633 }
634
635 /*
636 * Because of NMI latency, if multiple PMC counters are active or other sources
637 * of NMIs are received, the perf NMI handler can handle one or more overflowed
638 * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
639 * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
640 * back-to-back NMI support won't be active. This PMC handler needs to take into
641 * account that this can occur, otherwise this could result in unknown NMI
642 * messages being issued. Examples of this is PMC overflow while in the NMI
643 * handler when multiple PMCs are active or PMC overflow while handling some
644 * other source of an NMI.
645 *
646 * Attempt to mitigate this by creating an NMI window in which un-handled NMIs
647 * received during this window will be claimed. This prevents extending the
648 * window past when it is possible that latent NMIs should be received. The
649 * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
650 * handled a counter. When an un-handled NMI is received, it will be claimed
651 * only if arriving within that window.
652 */
amd_pmu_handle_irq(struct pt_regs * regs)653 static int amd_pmu_handle_irq(struct pt_regs *regs)
654 {
655 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
656 int active, handled;
657
658 /*
659 * Obtain the active count before calling x86_pmu_handle_irq() since
660 * it is possible that x86_pmu_handle_irq() may make a counter
661 * inactive (through x86_pmu_stop).
662 */
663 active = __bitmap_weight(cpuc->active_mask, X86_PMC_IDX_MAX);
664
665 /* Process any counter overflows */
666 handled = x86_pmu_handle_irq(regs);
667
668 /*
669 * If a counter was handled, record a timestamp such that un-handled
670 * NMIs will be claimed if arriving within that window.
671 */
672 if (handled) {
673 this_cpu_write(perf_nmi_tstamp,
674 jiffies + perf_nmi_window);
675
676 return handled;
677 }
678
679 if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
680 return NMI_DONE;
681
682 return NMI_HANDLED;
683 }
684
685 static struct event_constraint *
amd_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)686 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
687 struct perf_event *event)
688 {
689 /*
690 * if not NB event or no NB, then no constraints
691 */
692 if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
693 return &unconstrained;
694
695 return __amd_get_nb_event_constraints(cpuc, event, NULL);
696 }
697
amd_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)698 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
699 struct perf_event *event)
700 {
701 if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
702 __amd_put_nb_event_constraints(cpuc, event);
703 }
704
705 PMU_FORMAT_ATTR(event, "config:0-7,32-35");
706 PMU_FORMAT_ATTR(umask, "config:8-15" );
707 PMU_FORMAT_ATTR(edge, "config:18" );
708 PMU_FORMAT_ATTR(inv, "config:23" );
709 PMU_FORMAT_ATTR(cmask, "config:24-31" );
710
711 static struct attribute *amd_format_attr[] = {
712 &format_attr_event.attr,
713 &format_attr_umask.attr,
714 &format_attr_edge.attr,
715 &format_attr_inv.attr,
716 &format_attr_cmask.attr,
717 NULL,
718 };
719
720 /* AMD Family 15h */
721
722 #define AMD_EVENT_TYPE_MASK 0x000000F0ULL
723
724 #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
725 #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
726 #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
727 #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
728 #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
729 #define AMD_EVENT_EX_LS 0x000000C0ULL
730 #define AMD_EVENT_DE 0x000000D0ULL
731 #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
732
733 /*
734 * AMD family 15h event code/PMC mappings:
735 *
736 * type = event_code & 0x0F0:
737 *
738 * 0x000 FP PERF_CTL[5:3]
739 * 0x010 FP PERF_CTL[5:3]
740 * 0x020 LS PERF_CTL[5:0]
741 * 0x030 LS PERF_CTL[5:0]
742 * 0x040 DC PERF_CTL[5:0]
743 * 0x050 DC PERF_CTL[5:0]
744 * 0x060 CU PERF_CTL[2:0]
745 * 0x070 CU PERF_CTL[2:0]
746 * 0x080 IC/DE PERF_CTL[2:0]
747 * 0x090 IC/DE PERF_CTL[2:0]
748 * 0x0A0 ---
749 * 0x0B0 ---
750 * 0x0C0 EX/LS PERF_CTL[5:0]
751 * 0x0D0 DE PERF_CTL[2:0]
752 * 0x0E0 NB NB_PERF_CTL[3:0]
753 * 0x0F0 NB NB_PERF_CTL[3:0]
754 *
755 * Exceptions:
756 *
757 * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
758 * 0x003 FP PERF_CTL[3]
759 * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
760 * 0x00B FP PERF_CTL[3]
761 * 0x00D FP PERF_CTL[3]
762 * 0x023 DE PERF_CTL[2:0]
763 * 0x02D LS PERF_CTL[3]
764 * 0x02E LS PERF_CTL[3,0]
765 * 0x031 LS PERF_CTL[2:0] (**)
766 * 0x043 CU PERF_CTL[2:0]
767 * 0x045 CU PERF_CTL[2:0]
768 * 0x046 CU PERF_CTL[2:0]
769 * 0x054 CU PERF_CTL[2:0]
770 * 0x055 CU PERF_CTL[2:0]
771 * 0x08F IC PERF_CTL[0]
772 * 0x187 DE PERF_CTL[0]
773 * 0x188 DE PERF_CTL[0]
774 * 0x0DB EX PERF_CTL[5:0]
775 * 0x0DC LS PERF_CTL[5:0]
776 * 0x0DD LS PERF_CTL[5:0]
777 * 0x0DE LS PERF_CTL[5:0]
778 * 0x0DF LS PERF_CTL[5:0]
779 * 0x1C0 EX PERF_CTL[5:3]
780 * 0x1D6 EX PERF_CTL[5:0]
781 * 0x1D8 EX PERF_CTL[5:0]
782 *
783 * (*) depending on the umask all FPU counters may be used
784 * (**) only one unitmask enabled at a time
785 */
786
787 static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0);
788 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
789 static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0);
790 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
791 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
792 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
793
794 static struct event_constraint *
amd_get_event_constraints_f15h(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)795 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
796 struct perf_event *event)
797 {
798 struct hw_perf_event *hwc = &event->hw;
799 unsigned int event_code = amd_get_event_code(hwc);
800
801 switch (event_code & AMD_EVENT_TYPE_MASK) {
802 case AMD_EVENT_FP:
803 switch (event_code) {
804 case 0x000:
805 if (!(hwc->config & 0x0000F000ULL))
806 break;
807 if (!(hwc->config & 0x00000F00ULL))
808 break;
809 return &amd_f15_PMC3;
810 case 0x004:
811 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
812 break;
813 return &amd_f15_PMC3;
814 case 0x003:
815 case 0x00B:
816 case 0x00D:
817 return &amd_f15_PMC3;
818 }
819 return &amd_f15_PMC53;
820 case AMD_EVENT_LS:
821 case AMD_EVENT_DC:
822 case AMD_EVENT_EX_LS:
823 switch (event_code) {
824 case 0x023:
825 case 0x043:
826 case 0x045:
827 case 0x046:
828 case 0x054:
829 case 0x055:
830 return &amd_f15_PMC20;
831 case 0x02D:
832 return &amd_f15_PMC3;
833 case 0x02E:
834 return &amd_f15_PMC30;
835 case 0x031:
836 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
837 return &amd_f15_PMC20;
838 return &emptyconstraint;
839 case 0x1C0:
840 return &amd_f15_PMC53;
841 default:
842 return &amd_f15_PMC50;
843 }
844 case AMD_EVENT_CU:
845 case AMD_EVENT_IC_DE:
846 case AMD_EVENT_DE:
847 switch (event_code) {
848 case 0x08F:
849 case 0x187:
850 case 0x188:
851 return &amd_f15_PMC0;
852 case 0x0DB ... 0x0DF:
853 case 0x1D6:
854 case 0x1D8:
855 return &amd_f15_PMC50;
856 default:
857 return &amd_f15_PMC20;
858 }
859 case AMD_EVENT_NB:
860 /* moved to uncore.c */
861 return &emptyconstraint;
862 default:
863 return &emptyconstraint;
864 }
865 }
866
amd_event_sysfs_show(char * page,u64 config)867 static ssize_t amd_event_sysfs_show(char *page, u64 config)
868 {
869 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
870 (config & AMD64_EVENTSEL_EVENT) >> 24;
871
872 return x86_event_sysfs_show(page, config, event);
873 }
874
875 static __initconst const struct x86_pmu amd_pmu = {
876 .name = "AMD",
877 .handle_irq = amd_pmu_handle_irq,
878 .disable_all = amd_pmu_disable_all,
879 .enable_all = x86_pmu_enable_all,
880 .enable = x86_pmu_enable_event,
881 .disable = amd_pmu_disable_event,
882 .hw_config = amd_pmu_hw_config,
883 .schedule_events = x86_schedule_events,
884 .eventsel = MSR_K7_EVNTSEL0,
885 .perfctr = MSR_K7_PERFCTR0,
886 .addr_offset = amd_pmu_addr_offset,
887 .event_map = amd_pmu_event_map,
888 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
889 .num_counters = AMD64_NUM_COUNTERS,
890 .cntval_bits = 48,
891 .cntval_mask = (1ULL << 48) - 1,
892 .apic = 1,
893 /* use highest bit to detect overflow */
894 .max_period = (1ULL << 47) - 1,
895 .get_event_constraints = amd_get_event_constraints,
896 .put_event_constraints = amd_put_event_constraints,
897
898 .format_attrs = amd_format_attr,
899 .events_sysfs_show = amd_event_sysfs_show,
900
901 .cpu_prepare = amd_pmu_cpu_prepare,
902 .cpu_starting = amd_pmu_cpu_starting,
903 .cpu_dead = amd_pmu_cpu_dead,
904
905 .amd_nb_constraints = 1,
906 };
907
amd_core_pmu_init(void)908 static int __init amd_core_pmu_init(void)
909 {
910 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
911 return 0;
912
913 /* Avoid calulating the value each time in the NMI handler */
914 perf_nmi_window = msecs_to_jiffies(100);
915
916 switch (boot_cpu_data.x86) {
917 case 0x15:
918 pr_cont("Fam15h ");
919 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
920 break;
921 case 0x17:
922 pr_cont("Fam17h ");
923 /*
924 * In family 17h, there are no event constraints in the PMC hardware.
925 * We fallback to using default amd_get_event_constraints.
926 */
927 break;
928 case 0x18:
929 pr_cont("Fam18h ");
930 /* Using default amd_get_event_constraints. */
931 break;
932 default:
933 pr_err("core perfctr but no constraints; unknown hardware!\n");
934 return -ENODEV;
935 }
936
937 /*
938 * If core performance counter extensions exists, we must use
939 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
940 * amd_pmu_addr_offset().
941 */
942 x86_pmu.eventsel = MSR_F15H_PERF_CTL;
943 x86_pmu.perfctr = MSR_F15H_PERF_CTR;
944 x86_pmu.num_counters = AMD64_NUM_COUNTERS_CORE;
945 /*
946 * AMD Core perfctr has separate MSRs for the NB events, see
947 * the amd/uncore.c driver.
948 */
949 x86_pmu.amd_nb_constraints = 0;
950
951 pr_cont("core perfctr, ");
952 return 0;
953 }
954
amd_pmu_init(void)955 __init int amd_pmu_init(void)
956 {
957 int ret;
958
959 /* Performance-monitoring supported from K7 and later: */
960 if (boot_cpu_data.x86 < 6)
961 return -ENODEV;
962
963 x86_pmu = amd_pmu;
964
965 ret = amd_core_pmu_init();
966 if (ret)
967 return ret;
968
969 if (num_possible_cpus() == 1) {
970 /*
971 * No point in allocating data structures to serialize
972 * against other CPUs, when there is only the one CPU.
973 */
974 x86_pmu.amd_nb_constraints = 0;
975 }
976
977 if (boot_cpu_data.x86 >= 0x17)
978 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
979 else
980 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
981
982 return 0;
983 }
984
amd_pmu_enable_virt(void)985 void amd_pmu_enable_virt(void)
986 {
987 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
988
989 cpuc->perf_ctr_virt_mask = 0;
990
991 /* Reload all events */
992 amd_pmu_disable_all();
993 x86_pmu_enable_all(0);
994 }
995 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
996
amd_pmu_disable_virt(void)997 void amd_pmu_disable_virt(void)
998 {
999 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1000
1001 /*
1002 * We only mask out the Host-only bit so that host-only counting works
1003 * when SVM is disabled. If someone sets up a guest-only counter when
1004 * SVM is disabled the Guest-only bits still gets set and the counter
1005 * will not count anything.
1006 */
1007 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1008
1009 /* Reload all events */
1010 amd_pmu_disable_all();
1011 x86_pmu_enable_all(0);
1012 }
1013 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);
1014