1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * {read,write}{b,w,l,q} based on arch/arm64/include/asm/io.h
4 * which was based on arch/arm/include/io.h
5 *
6 * Copyright (C) 1996-2000 Russell King
7 * Copyright (C) 2012 ARM Ltd.
8 * Copyright (C) 2014 Regents of the University of California
9 */
10
11 #ifndef _ASM_RISCV_IO_H
12 #define _ASM_RISCV_IO_H
13
14 #include <linux/types.h>
15 #include <asm/mmiowb.h>
16 #include <asm/pgtable.h>
17
18 extern void __iomem *ioremap(phys_addr_t offset, unsigned long size);
19
20 /*
21 * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
22 * change the properties of memory regions. This should be fixed by the
23 * upcoming platform spec.
24 */
25 #define ioremap_nocache(addr, size) ioremap((addr), (size))
26 #define ioremap_wc(addr, size) ioremap((addr), (size))
27 #define ioremap_wt(addr, size) ioremap((addr), (size))
28
29 extern void iounmap(volatile void __iomem *addr);
30
31 /* Generic IO read/write. These perform native-endian accesses. */
32 #define __raw_writeb __raw_writeb
__raw_writeb(u8 val,volatile void __iomem * addr)33 static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
34 {
35 asm volatile("sb %0, 0(%1)" : : "r" (val), "r" (addr));
36 }
37
38 #define __raw_writew __raw_writew
__raw_writew(u16 val,volatile void __iomem * addr)39 static inline void __raw_writew(u16 val, volatile void __iomem *addr)
40 {
41 asm volatile("sh %0, 0(%1)" : : "r" (val), "r" (addr));
42 }
43
44 #define __raw_writel __raw_writel
__raw_writel(u32 val,volatile void __iomem * addr)45 static inline void __raw_writel(u32 val, volatile void __iomem *addr)
46 {
47 asm volatile("sw %0, 0(%1)" : : "r" (val), "r" (addr));
48 }
49
50 #ifdef CONFIG_64BIT
51 #define __raw_writeq __raw_writeq
__raw_writeq(u64 val,volatile void __iomem * addr)52 static inline void __raw_writeq(u64 val, volatile void __iomem *addr)
53 {
54 asm volatile("sd %0, 0(%1)" : : "r" (val), "r" (addr));
55 }
56 #endif
57
58 #define __raw_readb __raw_readb
__raw_readb(const volatile void __iomem * addr)59 static inline u8 __raw_readb(const volatile void __iomem *addr)
60 {
61 u8 val;
62
63 asm volatile("lb %0, 0(%1)" : "=r" (val) : "r" (addr));
64 return val;
65 }
66
67 #define __raw_readw __raw_readw
__raw_readw(const volatile void __iomem * addr)68 static inline u16 __raw_readw(const volatile void __iomem *addr)
69 {
70 u16 val;
71
72 asm volatile("lh %0, 0(%1)" : "=r" (val) : "r" (addr));
73 return val;
74 }
75
76 #define __raw_readl __raw_readl
__raw_readl(const volatile void __iomem * addr)77 static inline u32 __raw_readl(const volatile void __iomem *addr)
78 {
79 u32 val;
80
81 asm volatile("lw %0, 0(%1)" : "=r" (val) : "r" (addr));
82 return val;
83 }
84
85 #ifdef CONFIG_64BIT
86 #define __raw_readq __raw_readq
__raw_readq(const volatile void __iomem * addr)87 static inline u64 __raw_readq(const volatile void __iomem *addr)
88 {
89 u64 val;
90
91 asm volatile("ld %0, 0(%1)" : "=r" (val) : "r" (addr));
92 return val;
93 }
94 #endif
95
96 /*
97 * Unordered I/O memory access primitives. These are even more relaxed than
98 * the relaxed versions, as they don't even order accesses between successive
99 * operations to the I/O regions.
100 */
101 #define readb_cpu(c) ({ u8 __r = __raw_readb(c); __r; })
102 #define readw_cpu(c) ({ u16 __r = le16_to_cpu((__force __le16)__raw_readw(c)); __r; })
103 #define readl_cpu(c) ({ u32 __r = le32_to_cpu((__force __le32)__raw_readl(c)); __r; })
104
105 #define writeb_cpu(v,c) ((void)__raw_writeb((v),(c)))
106 #define writew_cpu(v,c) ((void)__raw_writew((__force u16)cpu_to_le16(v),(c)))
107 #define writel_cpu(v,c) ((void)__raw_writel((__force u32)cpu_to_le32(v),(c)))
108
109 #ifdef CONFIG_64BIT
110 #define readq_cpu(c) ({ u64 __r = le64_to_cpu((__force __le64)__raw_readq(c)); __r; })
111 #define writeq_cpu(v,c) ((void)__raw_writeq((__force u64)cpu_to_le64(v),(c)))
112 #endif
113
114 /*
115 * Relaxed I/O memory access primitives. These follow the Device memory
116 * ordering rules but do not guarantee any ordering relative to Normal memory
117 * accesses. These are defined to order the indicated access (either a read or
118 * write) with all other I/O memory accesses. Since the platform specification
119 * defines that all I/O regions are strongly ordered on channel 2, no explicit
120 * fences are required to enforce this ordering.
121 */
122 /* FIXME: These are now the same as asm-generic */
123 #define __io_rbr() do {} while (0)
124 #define __io_rar() do {} while (0)
125 #define __io_rbw() do {} while (0)
126 #define __io_raw() do {} while (0)
127
128 #define readb_relaxed(c) ({ u8 __v; __io_rbr(); __v = readb_cpu(c); __io_rar(); __v; })
129 #define readw_relaxed(c) ({ u16 __v; __io_rbr(); __v = readw_cpu(c); __io_rar(); __v; })
130 #define readl_relaxed(c) ({ u32 __v; __io_rbr(); __v = readl_cpu(c); __io_rar(); __v; })
131
132 #define writeb_relaxed(v,c) ({ __io_rbw(); writeb_cpu((v),(c)); __io_raw(); })
133 #define writew_relaxed(v,c) ({ __io_rbw(); writew_cpu((v),(c)); __io_raw(); })
134 #define writel_relaxed(v,c) ({ __io_rbw(); writel_cpu((v),(c)); __io_raw(); })
135
136 #ifdef CONFIG_64BIT
137 #define readq_relaxed(c) ({ u64 __v; __io_rbr(); __v = readq_cpu(c); __io_rar(); __v; })
138 #define writeq_relaxed(v,c) ({ __io_rbw(); writeq_cpu((v),(c)); __io_raw(); })
139 #endif
140
141 /*
142 * I/O memory access primitives. Reads are ordered relative to any
143 * following Normal memory access. Writes are ordered relative to any prior
144 * Normal memory access. The memory barriers here are necessary as RISC-V
145 * doesn't define any ordering between the memory space and the I/O space.
146 */
147 #define __io_br() do {} while (0)
148 #define __io_ar(v) __asm__ __volatile__ ("fence i,r" : : : "memory");
149 #define __io_bw() __asm__ __volatile__ ("fence w,o" : : : "memory");
150 #define __io_aw() mmiowb_set_pending()
151
152 #define readb(c) ({ u8 __v; __io_br(); __v = readb_cpu(c); __io_ar(__v); __v; })
153 #define readw(c) ({ u16 __v; __io_br(); __v = readw_cpu(c); __io_ar(__v); __v; })
154 #define readl(c) ({ u32 __v; __io_br(); __v = readl_cpu(c); __io_ar(__v); __v; })
155
156 #define writeb(v,c) ({ __io_bw(); writeb_cpu((v),(c)); __io_aw(); })
157 #define writew(v,c) ({ __io_bw(); writew_cpu((v),(c)); __io_aw(); })
158 #define writel(v,c) ({ __io_bw(); writel_cpu((v),(c)); __io_aw(); })
159
160 #ifdef CONFIG_64BIT
161 #define readq(c) ({ u64 __v; __io_br(); __v = readq_cpu(c); __io_ar(__v); __v; })
162 #define writeq(v,c) ({ __io_bw(); writeq_cpu((v),(c)); __io_aw(); })
163 #endif
164
165 /*
166 * I/O port access constants.
167 */
168 #define IO_SPACE_LIMIT (PCI_IO_SIZE - 1)
169 #define PCI_IOBASE ((void __iomem *)PCI_IO_START)
170
171 /*
172 * Emulation routines for the port-mapped IO space used by some PCI drivers.
173 * These are defined as being "fully synchronous", but also "not guaranteed to
174 * be fully ordered with respect to other memory and I/O operations". We're
175 * going to be on the safe side here and just make them:
176 * - Fully ordered WRT each other, by bracketing them with two fences. The
177 * outer set contains both I/O so inX is ordered with outX, while the inner just
178 * needs the type of the access (I for inX and O for outX).
179 * - Ordered in the same manner as readX/writeX WRT memory by subsuming their
180 * fences.
181 * - Ordered WRT timer reads, so udelay and friends don't get elided by the
182 * implementation.
183 * Note that there is no way to actually enforce that outX is a non-posted
184 * operation on RISC-V, but hopefully the timer ordering constraint is
185 * sufficient to ensure this works sanely on controllers that support I/O
186 * writes.
187 */
188 #define __io_pbr() __asm__ __volatile__ ("fence io,i" : : : "memory");
189 #define __io_par(v) __asm__ __volatile__ ("fence i,ior" : : : "memory");
190 #define __io_pbw() __asm__ __volatile__ ("fence iow,o" : : : "memory");
191 #define __io_paw() __asm__ __volatile__ ("fence o,io" : : : "memory");
192
193 #define inb(c) ({ u8 __v; __io_pbr(); __v = readb_cpu((void*)(PCI_IOBASE + (c))); __io_par(__v); __v; })
194 #define inw(c) ({ u16 __v; __io_pbr(); __v = readw_cpu((void*)(PCI_IOBASE + (c))); __io_par(__v); __v; })
195 #define inl(c) ({ u32 __v; __io_pbr(); __v = readl_cpu((void*)(PCI_IOBASE + (c))); __io_par(__v); __v; })
196
197 #define outb(v,c) ({ __io_pbw(); writeb_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
198 #define outw(v,c) ({ __io_pbw(); writew_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
199 #define outl(v,c) ({ __io_pbw(); writel_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
200
201 #ifdef CONFIG_64BIT
202 #define inq(c) ({ u64 __v; __io_pbr(); __v = readq_cpu((void*)(c)); __io_par(__v); __v; })
203 #define outq(v,c) ({ __io_pbw(); writeq_cpu((v),(void*)(c)); __io_paw(); })
204 #endif
205
206 /*
207 * Accesses from a single hart to a single I/O address must be ordered. This
208 * allows us to use the raw read macros, but we still need to fence before and
209 * after the block to ensure ordering WRT other macros. These are defined to
210 * perform host-endian accesses so we use __raw instead of __cpu.
211 */
212 #define __io_reads_ins(port, ctype, len, bfence, afence) \
213 static inline void __ ## port ## len(const volatile void __iomem *addr, \
214 void *buffer, \
215 unsigned int count) \
216 { \
217 bfence; \
218 if (count) { \
219 ctype *buf = buffer; \
220 \
221 do { \
222 ctype x = __raw_read ## len(addr); \
223 *buf++ = x; \
224 } while (--count); \
225 } \
226 afence; \
227 }
228
229 #define __io_writes_outs(port, ctype, len, bfence, afence) \
230 static inline void __ ## port ## len(volatile void __iomem *addr, \
231 const void *buffer, \
232 unsigned int count) \
233 { \
234 bfence; \
235 if (count) { \
236 const ctype *buf = buffer; \
237 \
238 do { \
239 __raw_write ## len(*buf++, addr); \
240 } while (--count); \
241 } \
242 afence; \
243 }
244
245 __io_reads_ins(reads, u8, b, __io_br(), __io_ar(addr))
246 __io_reads_ins(reads, u16, w, __io_br(), __io_ar(addr))
247 __io_reads_ins(reads, u32, l, __io_br(), __io_ar(addr))
248 #define readsb(addr, buffer, count) __readsb(addr, buffer, count)
249 #define readsw(addr, buffer, count) __readsw(addr, buffer, count)
250 #define readsl(addr, buffer, count) __readsl(addr, buffer, count)
251
252 __io_reads_ins(ins, u8, b, __io_pbr(), __io_par(addr))
253 __io_reads_ins(ins, u16, w, __io_pbr(), __io_par(addr))
254 __io_reads_ins(ins, u32, l, __io_pbr(), __io_par(addr))
255 #define insb(addr, buffer, count) __insb((void __iomem *)(long)addr, buffer, count)
256 #define insw(addr, buffer, count) __insw((void __iomem *)(long)addr, buffer, count)
257 #define insl(addr, buffer, count) __insl((void __iomem *)(long)addr, buffer, count)
258
259 __io_writes_outs(writes, u8, b, __io_bw(), __io_aw())
260 __io_writes_outs(writes, u16, w, __io_bw(), __io_aw())
261 __io_writes_outs(writes, u32, l, __io_bw(), __io_aw())
262 #define writesb(addr, buffer, count) __writesb(addr, buffer, count)
263 #define writesw(addr, buffer, count) __writesw(addr, buffer, count)
264 #define writesl(addr, buffer, count) __writesl(addr, buffer, count)
265
266 __io_writes_outs(outs, u8, b, __io_pbw(), __io_paw())
267 __io_writes_outs(outs, u16, w, __io_pbw(), __io_paw())
268 __io_writes_outs(outs, u32, l, __io_pbw(), __io_paw())
269 #define outsb(addr, buffer, count) __outsb((void __iomem *)(long)addr, buffer, count)
270 #define outsw(addr, buffer, count) __outsw((void __iomem *)(long)addr, buffer, count)
271 #define outsl(addr, buffer, count) __outsl((void __iomem *)(long)addr, buffer, count)
272
273 #ifdef CONFIG_64BIT
274 __io_reads_ins(reads, u64, q, __io_br(), __io_ar(addr))
275 #define readsq(addr, buffer, count) __readsq(addr, buffer, count)
276
277 __io_reads_ins(ins, u64, q, __io_pbr(), __io_par(addr))
278 #define insq(addr, buffer, count) __insq((void __iomem *)addr, buffer, count)
279
280 __io_writes_outs(writes, u64, q, __io_bw(), __io_aw())
281 #define writesq(addr, buffer, count) __writesq(addr, buffer, count)
282
283 __io_writes_outs(outs, u64, q, __io_pbr(), __io_paw())
284 #define outsq(addr, buffer, count) __outsq((void __iomem *)addr, buffer, count)
285 #endif
286
287 #include <asm-generic/io.h>
288
289 #endif /* _ASM_RISCV_IO_H */
290