1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PARISC64 Huge TLB page support.
4  *
5  * This parisc implementation is heavily based on the SPARC and x86 code.
6  *
7  * Copyright (C) 2015 Helge Deller <deller@gmx.de>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/sched/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/sysctl.h>
16 
17 #include <asm/mman.h>
18 #include <asm/pgalloc.h>
19 #include <asm/tlb.h>
20 #include <asm/tlbflush.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 
24 
25 unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)26 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
27 		unsigned long len, unsigned long pgoff, unsigned long flags)
28 {
29 	struct hstate *h = hstate_file(file);
30 
31 	if (len & ~huge_page_mask(h))
32 		return -EINVAL;
33 	if (len > TASK_SIZE)
34 		return -ENOMEM;
35 
36 	if (flags & MAP_FIXED)
37 		if (prepare_hugepage_range(file, addr, len))
38 			return -EINVAL;
39 
40 	if (addr)
41 		addr = ALIGN(addr, huge_page_size(h));
42 
43 	/* we need to make sure the colouring is OK */
44 	return arch_get_unmapped_area(file, addr, len, pgoff, flags);
45 }
46 
47 
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)48 pte_t *huge_pte_alloc(struct mm_struct *mm,
49 			unsigned long addr, unsigned long sz)
50 {
51 	pgd_t *pgd;
52 	pud_t *pud;
53 	pmd_t *pmd;
54 	pte_t *pte = NULL;
55 
56 	/* We must align the address, because our caller will run
57 	 * set_huge_pte_at() on whatever we return, which writes out
58 	 * all of the sub-ptes for the hugepage range.  So we have
59 	 * to give it the first such sub-pte.
60 	 */
61 	addr &= HPAGE_MASK;
62 
63 	pgd = pgd_offset(mm, addr);
64 	pud = pud_alloc(mm, pgd, addr);
65 	if (pud) {
66 		pmd = pmd_alloc(mm, pud, addr);
67 		if (pmd)
68 			pte = pte_alloc_map(mm, pmd, addr);
69 	}
70 	return pte;
71 }
72 
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)73 pte_t *huge_pte_offset(struct mm_struct *mm,
74 		       unsigned long addr, unsigned long sz)
75 {
76 	pgd_t *pgd;
77 	pud_t *pud;
78 	pmd_t *pmd;
79 	pte_t *pte = NULL;
80 
81 	addr &= HPAGE_MASK;
82 
83 	pgd = pgd_offset(mm, addr);
84 	if (!pgd_none(*pgd)) {
85 		pud = pud_offset(pgd, addr);
86 		if (!pud_none(*pud)) {
87 			pmd = pmd_offset(pud, addr);
88 			if (!pmd_none(*pmd))
89 				pte = pte_offset_map(pmd, addr);
90 		}
91 	}
92 	return pte;
93 }
94 
95 /* Purge data and instruction TLB entries.  Must be called holding
96  * the pa_tlb_lock.  The TLB purge instructions are slow on SMP
97  * machines since the purge must be broadcast to all CPUs.
98  */
purge_tlb_entries_huge(struct mm_struct * mm,unsigned long addr)99 static inline void purge_tlb_entries_huge(struct mm_struct *mm, unsigned long addr)
100 {
101 	int i;
102 
103 	/* We may use multiple physical huge pages (e.g. 2x1 MB) to emulate
104 	 * Linux standard huge pages (e.g. 2 MB) */
105 	BUILD_BUG_ON(REAL_HPAGE_SHIFT > HPAGE_SHIFT);
106 
107 	addr &= HPAGE_MASK;
108 	addr |= _HUGE_PAGE_SIZE_ENCODING_DEFAULT;
109 
110 	for (i = 0; i < (1 << (HPAGE_SHIFT-REAL_HPAGE_SHIFT)); i++) {
111 		purge_tlb_entries(mm, addr);
112 		addr += (1UL << REAL_HPAGE_SHIFT);
113 	}
114 }
115 
116 /* __set_huge_pte_at() must be called holding the pa_tlb_lock. */
__set_huge_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)117 static void __set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
118 		     pte_t *ptep, pte_t entry)
119 {
120 	unsigned long addr_start;
121 	int i;
122 
123 	addr &= HPAGE_MASK;
124 	addr_start = addr;
125 
126 	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
127 		set_pte(ptep, entry);
128 		ptep++;
129 
130 		addr += PAGE_SIZE;
131 		pte_val(entry) += PAGE_SIZE;
132 	}
133 
134 	purge_tlb_entries_huge(mm, addr_start);
135 }
136 
set_huge_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)137 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
138 		     pte_t *ptep, pte_t entry)
139 {
140 	unsigned long flags;
141 
142 	spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);
143 	__set_huge_pte_at(mm, addr, ptep, entry);
144 	spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);
145 }
146 
147 
huge_ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)148 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
149 			      pte_t *ptep)
150 {
151 	unsigned long flags;
152 	pte_t entry;
153 
154 	spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);
155 	entry = *ptep;
156 	__set_huge_pte_at(mm, addr, ptep, __pte(0));
157 	spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);
158 
159 	return entry;
160 }
161 
162 
huge_ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)163 void huge_ptep_set_wrprotect(struct mm_struct *mm,
164 				unsigned long addr, pte_t *ptep)
165 {
166 	unsigned long flags;
167 	pte_t old_pte;
168 
169 	spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);
170 	old_pte = *ptep;
171 	__set_huge_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
172 	spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);
173 }
174 
huge_ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte,int dirty)175 int huge_ptep_set_access_flags(struct vm_area_struct *vma,
176 				unsigned long addr, pte_t *ptep,
177 				pte_t pte, int dirty)
178 {
179 	unsigned long flags;
180 	int changed;
181 	struct mm_struct *mm = vma->vm_mm;
182 
183 	spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);
184 	changed = !pte_same(*ptep, pte);
185 	if (changed) {
186 		__set_huge_pte_at(mm, addr, ptep, pte);
187 	}
188 	spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);
189 	return changed;
190 }
191 
192 
pmd_huge(pmd_t pmd)193 int pmd_huge(pmd_t pmd)
194 {
195 	return 0;
196 }
197 
pud_huge(pud_t pud)198 int pud_huge(pud_t pud)
199 {
200 	return 0;
201 }
202