1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
4 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
5 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
6 */
7 #include <linux/dma-direct.h>
8 #include <linux/dma-noncoherent.h>
9 #include <linux/dma-contiguous.h>
10 #include <linux/highmem.h>
11
12 #include <asm/cache.h>
13 #include <asm/cpu-type.h>
14 #include <asm/dma-coherence.h>
15 #include <asm/io.h>
16
17 /*
18 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively
19 * fill random cachelines with stale data at any time, requiring an extra
20 * flush post-DMA.
21 *
22 * Warning on the terminology - Linux calls an uncached area coherent; MIPS
23 * terminology calls memory areas with hardware maintained coherency coherent.
24 *
25 * Note that the R14000 and R16000 should also be checked for in this condition.
26 * However this function is only called on non-I/O-coherent systems and only the
27 * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp.
28 * SGI IP32 aka O2.
29 */
cpu_needs_post_dma_flush(struct device * dev)30 static inline bool cpu_needs_post_dma_flush(struct device *dev)
31 {
32 switch (boot_cpu_type()) {
33 case CPU_R10000:
34 case CPU_R12000:
35 case CPU_BMIPS5000:
36 return true;
37 default:
38 /*
39 * Presence of MAARs suggests that the CPU supports
40 * speculatively prefetching data, and therefore requires
41 * the post-DMA flush/invalidate.
42 */
43 return cpu_has_maar;
44 }
45 }
46
arch_dma_prep_coherent(struct page * page,size_t size)47 void arch_dma_prep_coherent(struct page *page, size_t size)
48 {
49 dma_cache_wback_inv((unsigned long)page_address(page), size);
50 }
51
uncached_kernel_address(void * addr)52 void *uncached_kernel_address(void *addr)
53 {
54 return (void *)(__pa(addr) + UNCAC_BASE);
55 }
56
cached_kernel_address(void * addr)57 void *cached_kernel_address(void *addr)
58 {
59 return __va(addr) - UNCAC_BASE;
60 }
61
arch_dma_coherent_to_pfn(struct device * dev,void * cpu_addr,dma_addr_t dma_addr)62 long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
63 dma_addr_t dma_addr)
64 {
65 return page_to_pfn(virt_to_page(cached_kernel_address(cpu_addr)));
66 }
67
dma_sync_virt(void * addr,size_t size,enum dma_data_direction dir)68 static inline void dma_sync_virt(void *addr, size_t size,
69 enum dma_data_direction dir)
70 {
71 switch (dir) {
72 case DMA_TO_DEVICE:
73 dma_cache_wback((unsigned long)addr, size);
74 break;
75
76 case DMA_FROM_DEVICE:
77 dma_cache_inv((unsigned long)addr, size);
78 break;
79
80 case DMA_BIDIRECTIONAL:
81 dma_cache_wback_inv((unsigned long)addr, size);
82 break;
83
84 default:
85 BUG();
86 }
87 }
88
89 /*
90 * A single sg entry may refer to multiple physically contiguous pages. But
91 * we still need to process highmem pages individually. If highmem is not
92 * configured then the bulk of this loop gets optimized out.
93 */
dma_sync_phys(phys_addr_t paddr,size_t size,enum dma_data_direction dir)94 static inline void dma_sync_phys(phys_addr_t paddr, size_t size,
95 enum dma_data_direction dir)
96 {
97 struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
98 unsigned long offset = paddr & ~PAGE_MASK;
99 size_t left = size;
100
101 do {
102 size_t len = left;
103
104 if (PageHighMem(page)) {
105 void *addr;
106
107 if (offset + len > PAGE_SIZE)
108 len = PAGE_SIZE - offset;
109
110 addr = kmap_atomic(page);
111 dma_sync_virt(addr + offset, len, dir);
112 kunmap_atomic(addr);
113 } else
114 dma_sync_virt(page_address(page) + offset, size, dir);
115 offset = 0;
116 page++;
117 left -= len;
118 } while (left);
119 }
120
arch_sync_dma_for_device(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir)121 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
122 size_t size, enum dma_data_direction dir)
123 {
124 dma_sync_phys(paddr, size, dir);
125 }
126
127 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU
arch_sync_dma_for_cpu(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir)128 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
129 size_t size, enum dma_data_direction dir)
130 {
131 if (cpu_needs_post_dma_flush(dev))
132 dma_sync_phys(paddr, size, dir);
133 }
134 #endif
135
arch_dma_cache_sync(struct device * dev,void * vaddr,size_t size,enum dma_data_direction direction)136 void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size,
137 enum dma_data_direction direction)
138 {
139 BUG_ON(direction == DMA_NONE);
140
141 dma_sync_virt(vaddr, size, direction);
142 }
143
144 #ifdef CONFIG_DMA_PERDEV_COHERENT
arch_setup_dma_ops(struct device * dev,u64 dma_base,u64 size,const struct iommu_ops * iommu,bool coherent)145 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
146 const struct iommu_ops *iommu, bool coherent)
147 {
148 dev->dma_coherent = coherent;
149 }
150 #endif
151