1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Time related functions for Hexagon architecture
4 *
5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
6 */
7
8 #include <linux/init.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/interrupt.h>
12 #include <linux/err.h>
13 #include <linux/platform_device.h>
14 #include <linux/ioport.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/module.h>
19
20 #include <asm/timer-regs.h>
21 #include <asm/hexagon_vm.h>
22
23 /*
24 * For the clocksource we need:
25 * pcycle frequency (600MHz)
26 * For the loops_per_jiffy we need:
27 * thread/cpu frequency (100MHz)
28 * And for the timer, we need:
29 * sleep clock rate
30 */
31
32 cycles_t pcycle_freq_mhz;
33 cycles_t thread_freq_mhz;
34 cycles_t sleep_clk_freq;
35
36 static struct resource rtos_timer_resources[] = {
37 {
38 .start = RTOS_TIMER_REGS_ADDR,
39 .end = RTOS_TIMER_REGS_ADDR+PAGE_SIZE-1,
40 .flags = IORESOURCE_MEM,
41 },
42 };
43
44 static struct platform_device rtos_timer_device = {
45 .name = "rtos_timer",
46 .id = -1,
47 .num_resources = ARRAY_SIZE(rtos_timer_resources),
48 .resource = rtos_timer_resources,
49 };
50
51 /* A lot of this stuff should move into a platform specific section. */
52 struct adsp_hw_timer_struct {
53 u32 match; /* Match value */
54 u32 count;
55 u32 enable; /* [1] - CLR_ON_MATCH_EN, [0] - EN */
56 u32 clear; /* one-shot register that clears the count */
57 };
58
59 /* Look for "TCX0" for related constants. */
60 static __iomem struct adsp_hw_timer_struct *rtos_timer;
61
timer_get_cycles(struct clocksource * cs)62 static u64 timer_get_cycles(struct clocksource *cs)
63 {
64 return (u64) __vmgettime();
65 }
66
67 static struct clocksource hexagon_clocksource = {
68 .name = "pcycles",
69 .rating = 250,
70 .read = timer_get_cycles,
71 .mask = CLOCKSOURCE_MASK(64),
72 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
73 };
74
set_next_event(unsigned long delta,struct clock_event_device * evt)75 static int set_next_event(unsigned long delta, struct clock_event_device *evt)
76 {
77 /* Assuming the timer will be disabled when we enter here. */
78
79 iowrite32(1, &rtos_timer->clear);
80 iowrite32(0, &rtos_timer->clear);
81
82 iowrite32(delta, &rtos_timer->match);
83 iowrite32(1 << TIMER_ENABLE, &rtos_timer->enable);
84 return 0;
85 }
86
87 #ifdef CONFIG_SMP
88 /* Broadcast mechanism */
broadcast(const struct cpumask * mask)89 static void broadcast(const struct cpumask *mask)
90 {
91 send_ipi(mask, IPI_TIMER);
92 }
93 #endif
94
95 /* XXX Implement set_state_shutdown() */
96 static struct clock_event_device hexagon_clockevent_dev = {
97 .name = "clockevent",
98 .features = CLOCK_EVT_FEAT_ONESHOT,
99 .rating = 400,
100 .irq = RTOS_TIMER_INT,
101 .set_next_event = set_next_event,
102 #ifdef CONFIG_SMP
103 .broadcast = broadcast,
104 #endif
105 };
106
107 #ifdef CONFIG_SMP
108 static DEFINE_PER_CPU(struct clock_event_device, clock_events);
109
setup_percpu_clockdev(void)110 void setup_percpu_clockdev(void)
111 {
112 int cpu = smp_processor_id();
113 struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
114 struct clock_event_device *dummy_clock_dev =
115 &per_cpu(clock_events, cpu);
116
117 memcpy(dummy_clock_dev, ce_dev, sizeof(*dummy_clock_dev));
118 INIT_LIST_HEAD(&dummy_clock_dev->list);
119
120 dummy_clock_dev->features = CLOCK_EVT_FEAT_DUMMY;
121 dummy_clock_dev->cpumask = cpumask_of(cpu);
122
123 clockevents_register_device(dummy_clock_dev);
124 }
125
126 /* Called from smp.c for each CPU's timer ipi call */
ipi_timer(void)127 void ipi_timer(void)
128 {
129 int cpu = smp_processor_id();
130 struct clock_event_device *ce_dev = &per_cpu(clock_events, cpu);
131
132 ce_dev->event_handler(ce_dev);
133 }
134 #endif /* CONFIG_SMP */
135
timer_interrupt(int irq,void * devid)136 static irqreturn_t timer_interrupt(int irq, void *devid)
137 {
138 struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
139
140 iowrite32(0, &rtos_timer->enable);
141 ce_dev->event_handler(ce_dev);
142
143 return IRQ_HANDLED;
144 }
145
146 /* This should also be pulled from devtree */
147 static struct irqaction rtos_timer_intdesc = {
148 .handler = timer_interrupt,
149 .flags = IRQF_TIMER | IRQF_TRIGGER_RISING,
150 .name = "rtos_timer"
151 };
152
153 /*
154 * time_init_deferred - called by start_kernel to set up timer/clock source
155 *
156 * Install the IRQ handler for the clock, setup timers.
157 * This is done late, as that way, we can use ioremap().
158 *
159 * This runs just before the delay loop is calibrated, and
160 * is used for delay calibration.
161 */
time_init_deferred(void)162 void __init time_init_deferred(void)
163 {
164 struct resource *resource = NULL;
165 struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
166
167 ce_dev->cpumask = cpu_all_mask;
168
169 if (!resource)
170 resource = rtos_timer_device.resource;
171
172 /* ioremap here means this has to run later, after paging init */
173 rtos_timer = ioremap(resource->start, resource_size(resource));
174
175 if (!rtos_timer) {
176 release_mem_region(resource->start, resource_size(resource));
177 }
178 clocksource_register_khz(&hexagon_clocksource, pcycle_freq_mhz * 1000);
179
180 /* Note: the sim generic RTOS clock is apparently really 18750Hz */
181
182 /*
183 * Last arg is some guaranteed seconds for which the conversion will
184 * work without overflow.
185 */
186 clockevents_calc_mult_shift(ce_dev, sleep_clk_freq, 4);
187
188 ce_dev->max_delta_ns = clockevent_delta2ns(0x7fffffff, ce_dev);
189 ce_dev->max_delta_ticks = 0x7fffffff;
190 ce_dev->min_delta_ns = clockevent_delta2ns(0xf, ce_dev);
191 ce_dev->min_delta_ticks = 0xf;
192
193 #ifdef CONFIG_SMP
194 setup_percpu_clockdev();
195 #endif
196
197 clockevents_register_device(ce_dev);
198 setup_irq(ce_dev->irq, &rtos_timer_intdesc);
199 }
200
time_init(void)201 void __init time_init(void)
202 {
203 late_time_init = time_init_deferred;
204 }
205
__delay(unsigned long cycles)206 void __delay(unsigned long cycles)
207 {
208 unsigned long long start = __vmgettime();
209
210 while ((__vmgettime() - start) < cycles)
211 cpu_relax();
212 }
213 EXPORT_SYMBOL(__delay);
214
215 /*
216 * This could become parametric or perhaps even computed at run-time,
217 * but for now we take the observed simulator jitter.
218 */
219 static long long fudgefactor = 350; /* Maybe lower if kernel optimized. */
220
__udelay(unsigned long usecs)221 void __udelay(unsigned long usecs)
222 {
223 unsigned long long start = __vmgettime();
224 unsigned long long finish = (pcycle_freq_mhz * usecs) - fudgefactor;
225
226 while ((__vmgettime() - start) < finish)
227 cpu_relax(); /* not sure how this improves readability */
228 }
229 EXPORT_SYMBOL(__udelay);
230