1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/kernel.h>
18 #include <linux/linkage.h>
19 #include <linux/irqflags.h>
20 #include <linux/init.h>
21 #include <linux/percpu.h>
22 #include <linux/prctl.h>
23 #include <linux/preempt.h>
24 #include <linux/ptrace.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/signal.h>
28 #include <linux/slab.h>
29 #include <linux/stddef.h>
30 #include <linux/sysctl.h>
31 #include <linux/swab.h>
32
33 #include <asm/esr.h>
34 #include <asm/fpsimd.h>
35 #include <asm/cpufeature.h>
36 #include <asm/cputype.h>
37 #include <asm/processor.h>
38 #include <asm/simd.h>
39 #include <asm/sigcontext.h>
40 #include <asm/sysreg.h>
41 #include <asm/traps.h>
42 #include <asm/virt.h>
43
44 #define FPEXC_IOF (1 << 0)
45 #define FPEXC_DZF (1 << 1)
46 #define FPEXC_OFF (1 << 2)
47 #define FPEXC_UFF (1 << 3)
48 #define FPEXC_IXF (1 << 4)
49 #define FPEXC_IDF (1 << 7)
50
51 /*
52 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
53 *
54 * In order to reduce the number of times the FPSIMD state is needlessly saved
55 * and restored, we need to keep track of two things:
56 * (a) for each task, we need to remember which CPU was the last one to have
57 * the task's FPSIMD state loaded into its FPSIMD registers;
58 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
59 * been loaded into its FPSIMD registers most recently, or whether it has
60 * been used to perform kernel mode NEON in the meantime.
61 *
62 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
63 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
64 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
65 * address of the userland FPSIMD state of the task that was loaded onto the CPU
66 * the most recently, or NULL if kernel mode NEON has been performed after that.
67 *
68 * With this in place, we no longer have to restore the next FPSIMD state right
69 * when switching between tasks. Instead, we can defer this check to userland
70 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
71 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
72 * can omit the FPSIMD restore.
73 *
74 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
75 * indicate whether or not the userland FPSIMD state of the current task is
76 * present in the registers. The flag is set unless the FPSIMD registers of this
77 * CPU currently contain the most recent userland FPSIMD state of the current
78 * task.
79 *
80 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
81 * save the task's FPSIMD context back to task_struct from softirq context.
82 * To prevent this from racing with the manipulation of the task's FPSIMD state
83 * from task context and thereby corrupting the state, it is necessary to
84 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
85 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
86 * run but prevent them to use FPSIMD.
87 *
88 * For a certain task, the sequence may look something like this:
89 * - the task gets scheduled in; if both the task's fpsimd_cpu field
90 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
91 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
92 * cleared, otherwise it is set;
93 *
94 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
95 * userland FPSIMD state is copied from memory to the registers, the task's
96 * fpsimd_cpu field is set to the id of the current CPU, the current
97 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
98 * TIF_FOREIGN_FPSTATE flag is cleared;
99 *
100 * - the task executes an ordinary syscall; upon return to userland, the
101 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
102 * restored;
103 *
104 * - the task executes a syscall which executes some NEON instructions; this is
105 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
106 * register contents to memory, clears the fpsimd_last_state per-cpu variable
107 * and sets the TIF_FOREIGN_FPSTATE flag;
108 *
109 * - the task gets preempted after kernel_neon_end() is called; as we have not
110 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
111 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
112 */
113 struct fpsimd_last_state_struct {
114 struct user_fpsimd_state *st;
115 void *sve_state;
116 unsigned int sve_vl;
117 };
118
119 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
120
121 /* Default VL for tasks that don't set it explicitly: */
122 static int sve_default_vl = -1;
123
124 #ifdef CONFIG_ARM64_SVE
125
126 /* Maximum supported vector length across all CPUs (initially poisoned) */
127 int __ro_after_init sve_max_vl = SVE_VL_MIN;
128 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN;
129
130 /*
131 * Set of available vector lengths,
132 * where length vq encoded as bit __vq_to_bit(vq):
133 */
134 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
135 /* Set of vector lengths present on at least one cpu: */
136 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
137
138 static void __percpu *efi_sve_state;
139
140 #else /* ! CONFIG_ARM64_SVE */
141
142 /* Dummy declaration for code that will be optimised out: */
143 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
144 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
145 extern void __percpu *efi_sve_state;
146
147 #endif /* ! CONFIG_ARM64_SVE */
148
149 DEFINE_PER_CPU(bool, fpsimd_context_busy);
150 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
151
__get_cpu_fpsimd_context(void)152 static void __get_cpu_fpsimd_context(void)
153 {
154 bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
155
156 WARN_ON(busy);
157 }
158
159 /*
160 * Claim ownership of the CPU FPSIMD context for use by the calling context.
161 *
162 * The caller may freely manipulate the FPSIMD context metadata until
163 * put_cpu_fpsimd_context() is called.
164 *
165 * The double-underscore version must only be called if you know the task
166 * can't be preempted.
167 */
get_cpu_fpsimd_context(void)168 static void get_cpu_fpsimd_context(void)
169 {
170 preempt_disable();
171 __get_cpu_fpsimd_context();
172 }
173
__put_cpu_fpsimd_context(void)174 static void __put_cpu_fpsimd_context(void)
175 {
176 bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
177
178 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
179 }
180
181 /*
182 * Release the CPU FPSIMD context.
183 *
184 * Must be called from a context in which get_cpu_fpsimd_context() was
185 * previously called, with no call to put_cpu_fpsimd_context() in the
186 * meantime.
187 */
put_cpu_fpsimd_context(void)188 static void put_cpu_fpsimd_context(void)
189 {
190 __put_cpu_fpsimd_context();
191 preempt_enable();
192 }
193
have_cpu_fpsimd_context(void)194 static bool have_cpu_fpsimd_context(void)
195 {
196 return !preemptible() && __this_cpu_read(fpsimd_context_busy);
197 }
198
199 /*
200 * Call __sve_free() directly only if you know task can't be scheduled
201 * or preempted.
202 */
__sve_free(struct task_struct * task)203 static void __sve_free(struct task_struct *task)
204 {
205 kfree(task->thread.sve_state);
206 task->thread.sve_state = NULL;
207 }
208
sve_free(struct task_struct * task)209 static void sve_free(struct task_struct *task)
210 {
211 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
212
213 __sve_free(task);
214 }
215
216 /*
217 * TIF_SVE controls whether a task can use SVE without trapping while
218 * in userspace, and also the way a task's FPSIMD/SVE state is stored
219 * in thread_struct.
220 *
221 * The kernel uses this flag to track whether a user task is actively
222 * using SVE, and therefore whether full SVE register state needs to
223 * be tracked. If not, the cheaper FPSIMD context handling code can
224 * be used instead of the more costly SVE equivalents.
225 *
226 * * TIF_SVE set:
227 *
228 * The task can execute SVE instructions while in userspace without
229 * trapping to the kernel.
230 *
231 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
232 * corresponding Zn), P0-P15 and FFR are encoded in in
233 * task->thread.sve_state, formatted appropriately for vector
234 * length task->thread.sve_vl.
235 *
236 * task->thread.sve_state must point to a valid buffer at least
237 * sve_state_size(task) bytes in size.
238 *
239 * During any syscall, the kernel may optionally clear TIF_SVE and
240 * discard the vector state except for the FPSIMD subset.
241 *
242 * * TIF_SVE clear:
243 *
244 * An attempt by the user task to execute an SVE instruction causes
245 * do_sve_acc() to be called, which does some preparation and then
246 * sets TIF_SVE.
247 *
248 * When stored, FPSIMD registers V0-V31 are encoded in
249 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
250 * logically zero but not stored anywhere; P0-P15 and FFR are not
251 * stored and have unspecified values from userspace's point of
252 * view. For hygiene purposes, the kernel zeroes them on next use,
253 * but userspace is discouraged from relying on this.
254 *
255 * task->thread.sve_state does not need to be non-NULL, valid or any
256 * particular size: it must not be dereferenced.
257 *
258 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
259 * irrespective of whether TIF_SVE is clear or set, since these are
260 * not vector length dependent.
261 */
262
263 /*
264 * Update current's FPSIMD/SVE registers from thread_struct.
265 *
266 * This function should be called only when the FPSIMD/SVE state in
267 * thread_struct is known to be up to date, when preparing to enter
268 * userspace.
269 */
task_fpsimd_load(void)270 static void task_fpsimd_load(void)
271 {
272 WARN_ON(!have_cpu_fpsimd_context());
273
274 if (system_supports_sve() && test_thread_flag(TIF_SVE))
275 sve_load_state(sve_pffr(¤t->thread),
276 ¤t->thread.uw.fpsimd_state.fpsr,
277 sve_vq_from_vl(current->thread.sve_vl) - 1);
278 else
279 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
280 }
281
282 /*
283 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
284 * date with respect to the CPU registers.
285 */
fpsimd_save(void)286 static void fpsimd_save(void)
287 {
288 struct fpsimd_last_state_struct const *last =
289 this_cpu_ptr(&fpsimd_last_state);
290 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
291
292 WARN_ON(!have_cpu_fpsimd_context());
293
294 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
295 if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
296 if (WARN_ON(sve_get_vl() != last->sve_vl)) {
297 /*
298 * Can't save the user regs, so current would
299 * re-enter user with corrupt state.
300 * There's no way to recover, so kill it:
301 */
302 force_signal_inject(SIGKILL, SI_KERNEL, 0);
303 return;
304 }
305
306 sve_save_state((char *)last->sve_state +
307 sve_ffr_offset(last->sve_vl),
308 &last->st->fpsr);
309 } else
310 fpsimd_save_state(last->st);
311 }
312 }
313
314 /*
315 * All vector length selection from userspace comes through here.
316 * We're on a slow path, so some sanity-checks are included.
317 * If things go wrong there's a bug somewhere, but try to fall back to a
318 * safe choice.
319 */
find_supported_vector_length(unsigned int vl)320 static unsigned int find_supported_vector_length(unsigned int vl)
321 {
322 int bit;
323 int max_vl = sve_max_vl;
324
325 if (WARN_ON(!sve_vl_valid(vl)))
326 vl = SVE_VL_MIN;
327
328 if (WARN_ON(!sve_vl_valid(max_vl)))
329 max_vl = SVE_VL_MIN;
330
331 if (vl > max_vl)
332 vl = max_vl;
333
334 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
335 __vq_to_bit(sve_vq_from_vl(vl)));
336 return sve_vl_from_vq(__bit_to_vq(bit));
337 }
338
339 #ifdef CONFIG_SYSCTL
340
sve_proc_do_default_vl(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)341 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
342 void __user *buffer, size_t *lenp,
343 loff_t *ppos)
344 {
345 int ret;
346 int vl = sve_default_vl;
347 struct ctl_table tmp_table = {
348 .data = &vl,
349 .maxlen = sizeof(vl),
350 };
351
352 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
353 if (ret || !write)
354 return ret;
355
356 /* Writing -1 has the special meaning "set to max": */
357 if (vl == -1)
358 vl = sve_max_vl;
359
360 if (!sve_vl_valid(vl))
361 return -EINVAL;
362
363 sve_default_vl = find_supported_vector_length(vl);
364 return 0;
365 }
366
367 static struct ctl_table sve_default_vl_table[] = {
368 {
369 .procname = "sve_default_vector_length",
370 .mode = 0644,
371 .proc_handler = sve_proc_do_default_vl,
372 },
373 { }
374 };
375
sve_sysctl_init(void)376 static int __init sve_sysctl_init(void)
377 {
378 if (system_supports_sve())
379 if (!register_sysctl("abi", sve_default_vl_table))
380 return -EINVAL;
381
382 return 0;
383 }
384
385 #else /* ! CONFIG_SYSCTL */
sve_sysctl_init(void)386 static int __init sve_sysctl_init(void) { return 0; }
387 #endif /* ! CONFIG_SYSCTL */
388
389 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
390 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
391
392 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)393 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
394 {
395 u64 a = swab64(x);
396 u64 b = swab64(x >> 64);
397
398 return ((__uint128_t)a << 64) | b;
399 }
400 #else
arm64_cpu_to_le128(__uint128_t x)401 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
402 {
403 return x;
404 }
405 #endif
406
407 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
408
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)409 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
410 unsigned int vq)
411 {
412 unsigned int i;
413 __uint128_t *p;
414
415 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
416 p = (__uint128_t *)ZREG(sst, vq, i);
417 *p = arm64_cpu_to_le128(fst->vregs[i]);
418 }
419 }
420
421 /*
422 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
423 * task->thread.sve_state.
424 *
425 * Task can be a non-runnable task, or current. In the latter case,
426 * the caller must have ownership of the cpu FPSIMD context before calling
427 * this function.
428 * task->thread.sve_state must point to at least sve_state_size(task)
429 * bytes of allocated kernel memory.
430 * task->thread.uw.fpsimd_state must be up to date before calling this
431 * function.
432 */
fpsimd_to_sve(struct task_struct * task)433 static void fpsimd_to_sve(struct task_struct *task)
434 {
435 unsigned int vq;
436 void *sst = task->thread.sve_state;
437 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
438
439 if (!system_supports_sve())
440 return;
441
442 vq = sve_vq_from_vl(task->thread.sve_vl);
443 __fpsimd_to_sve(sst, fst, vq);
444 }
445
446 /*
447 * Transfer the SVE state in task->thread.sve_state to
448 * task->thread.uw.fpsimd_state.
449 *
450 * Task can be a non-runnable task, or current. In the latter case,
451 * the caller must have ownership of the cpu FPSIMD context before calling
452 * this function.
453 * task->thread.sve_state must point to at least sve_state_size(task)
454 * bytes of allocated kernel memory.
455 * task->thread.sve_state must be up to date before calling this function.
456 */
sve_to_fpsimd(struct task_struct * task)457 static void sve_to_fpsimd(struct task_struct *task)
458 {
459 unsigned int vq;
460 void const *sst = task->thread.sve_state;
461 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
462 unsigned int i;
463 __uint128_t const *p;
464
465 if (!system_supports_sve())
466 return;
467
468 vq = sve_vq_from_vl(task->thread.sve_vl);
469 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
470 p = (__uint128_t const *)ZREG(sst, vq, i);
471 fst->vregs[i] = arm64_le128_to_cpu(*p);
472 }
473 }
474
475 #ifdef CONFIG_ARM64_SVE
476
477 /*
478 * Return how many bytes of memory are required to store the full SVE
479 * state for task, given task's currently configured vector length.
480 */
sve_state_size(struct task_struct const * task)481 size_t sve_state_size(struct task_struct const *task)
482 {
483 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
484 }
485
486 /*
487 * Ensure that task->thread.sve_state is allocated and sufficiently large.
488 *
489 * This function should be used only in preparation for replacing
490 * task->thread.sve_state with new data. The memory is always zeroed
491 * here to prevent stale data from showing through: this is done in
492 * the interest of testability and predictability: except in the
493 * do_sve_acc() case, there is no ABI requirement to hide stale data
494 * written previously be task.
495 */
sve_alloc(struct task_struct * task)496 void sve_alloc(struct task_struct *task)
497 {
498 if (task->thread.sve_state) {
499 memset(task->thread.sve_state, 0, sve_state_size(current));
500 return;
501 }
502
503 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
504 task->thread.sve_state =
505 kzalloc(sve_state_size(task), GFP_KERNEL);
506
507 /*
508 * If future SVE revisions can have larger vectors though,
509 * this may cease to be true:
510 */
511 BUG_ON(!task->thread.sve_state);
512 }
513
514
515 /*
516 * Ensure that task->thread.sve_state is up to date with respect to
517 * the user task, irrespective of when SVE is in use or not.
518 *
519 * This should only be called by ptrace. task must be non-runnable.
520 * task->thread.sve_state must point to at least sve_state_size(task)
521 * bytes of allocated kernel memory.
522 */
fpsimd_sync_to_sve(struct task_struct * task)523 void fpsimd_sync_to_sve(struct task_struct *task)
524 {
525 if (!test_tsk_thread_flag(task, TIF_SVE))
526 fpsimd_to_sve(task);
527 }
528
529 /*
530 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
531 * the user task, irrespective of whether SVE is in use or not.
532 *
533 * This should only be called by ptrace. task must be non-runnable.
534 * task->thread.sve_state must point to at least sve_state_size(task)
535 * bytes of allocated kernel memory.
536 */
sve_sync_to_fpsimd(struct task_struct * task)537 void sve_sync_to_fpsimd(struct task_struct *task)
538 {
539 if (test_tsk_thread_flag(task, TIF_SVE))
540 sve_to_fpsimd(task);
541 }
542
543 /*
544 * Ensure that task->thread.sve_state is up to date with respect to
545 * the task->thread.uw.fpsimd_state.
546 *
547 * This should only be called by ptrace to merge new FPSIMD register
548 * values into a task for which SVE is currently active.
549 * task must be non-runnable.
550 * task->thread.sve_state must point to at least sve_state_size(task)
551 * bytes of allocated kernel memory.
552 * task->thread.uw.fpsimd_state must already have been initialised with
553 * the new FPSIMD register values to be merged in.
554 */
sve_sync_from_fpsimd_zeropad(struct task_struct * task)555 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
556 {
557 unsigned int vq;
558 void *sst = task->thread.sve_state;
559 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
560
561 if (!test_tsk_thread_flag(task, TIF_SVE))
562 return;
563
564 vq = sve_vq_from_vl(task->thread.sve_vl);
565
566 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
567 __fpsimd_to_sve(sst, fst, vq);
568 }
569
sve_set_vector_length(struct task_struct * task,unsigned long vl,unsigned long flags)570 int sve_set_vector_length(struct task_struct *task,
571 unsigned long vl, unsigned long flags)
572 {
573 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
574 PR_SVE_SET_VL_ONEXEC))
575 return -EINVAL;
576
577 if (!sve_vl_valid(vl))
578 return -EINVAL;
579
580 /*
581 * Clamp to the maximum vector length that VL-agnostic SVE code can
582 * work with. A flag may be assigned in the future to allow setting
583 * of larger vector lengths without confusing older software.
584 */
585 if (vl > SVE_VL_ARCH_MAX)
586 vl = SVE_VL_ARCH_MAX;
587
588 vl = find_supported_vector_length(vl);
589
590 if (flags & (PR_SVE_VL_INHERIT |
591 PR_SVE_SET_VL_ONEXEC))
592 task->thread.sve_vl_onexec = vl;
593 else
594 /* Reset VL to system default on next exec: */
595 task->thread.sve_vl_onexec = 0;
596
597 /* Only actually set the VL if not deferred: */
598 if (flags & PR_SVE_SET_VL_ONEXEC)
599 goto out;
600
601 if (vl == task->thread.sve_vl)
602 goto out;
603
604 /*
605 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
606 * write any live register state back to task_struct, and convert to a
607 * non-SVE thread.
608 */
609 if (task == current) {
610 get_cpu_fpsimd_context();
611
612 fpsimd_save();
613 }
614
615 fpsimd_flush_task_state(task);
616 if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
617 sve_to_fpsimd(task);
618
619 if (task == current)
620 put_cpu_fpsimd_context();
621
622 /*
623 * Force reallocation of task SVE state to the correct size
624 * on next use:
625 */
626 sve_free(task);
627
628 task->thread.sve_vl = vl;
629
630 out:
631 update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
632 flags & PR_SVE_VL_INHERIT);
633
634 return 0;
635 }
636
637 /*
638 * Encode the current vector length and flags for return.
639 * This is only required for prctl(): ptrace has separate fields
640 *
641 * flags are as for sve_set_vector_length().
642 */
sve_prctl_status(unsigned long flags)643 static int sve_prctl_status(unsigned long flags)
644 {
645 int ret;
646
647 if (flags & PR_SVE_SET_VL_ONEXEC)
648 ret = current->thread.sve_vl_onexec;
649 else
650 ret = current->thread.sve_vl;
651
652 if (test_thread_flag(TIF_SVE_VL_INHERIT))
653 ret |= PR_SVE_VL_INHERIT;
654
655 return ret;
656 }
657
658 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)659 int sve_set_current_vl(unsigned long arg)
660 {
661 unsigned long vl, flags;
662 int ret;
663
664 vl = arg & PR_SVE_VL_LEN_MASK;
665 flags = arg & ~vl;
666
667 if (!system_supports_sve())
668 return -EINVAL;
669
670 ret = sve_set_vector_length(current, vl, flags);
671 if (ret)
672 return ret;
673
674 return sve_prctl_status(flags);
675 }
676
677 /* PR_SVE_GET_VL */
sve_get_current_vl(void)678 int sve_get_current_vl(void)
679 {
680 if (!system_supports_sve())
681 return -EINVAL;
682
683 return sve_prctl_status(0);
684 }
685
sve_probe_vqs(DECLARE_BITMAP (map,SVE_VQ_MAX))686 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
687 {
688 unsigned int vq, vl;
689 unsigned long zcr;
690
691 bitmap_zero(map, SVE_VQ_MAX);
692
693 zcr = ZCR_ELx_LEN_MASK;
694 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
695
696 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
697 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
698 vl = sve_get_vl();
699 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
700 set_bit(__vq_to_bit(vq), map);
701 }
702 }
703
704 /*
705 * Initialise the set of known supported VQs for the boot CPU.
706 * This is called during kernel boot, before secondary CPUs are brought up.
707 */
sve_init_vq_map(void)708 void __init sve_init_vq_map(void)
709 {
710 sve_probe_vqs(sve_vq_map);
711 bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX);
712 }
713
714 /*
715 * If we haven't committed to the set of supported VQs yet, filter out
716 * those not supported by the current CPU.
717 * This function is called during the bring-up of early secondary CPUs only.
718 */
sve_update_vq_map(void)719 void sve_update_vq_map(void)
720 {
721 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
722
723 sve_probe_vqs(tmp_map);
724 bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX);
725 bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX);
726 }
727
728 /*
729 * Check whether the current CPU supports all VQs in the committed set.
730 * This function is called during the bring-up of late secondary CPUs only.
731 */
sve_verify_vq_map(void)732 int sve_verify_vq_map(void)
733 {
734 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
735 unsigned long b;
736
737 sve_probe_vqs(tmp_map);
738
739 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
740 if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) {
741 pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
742 smp_processor_id());
743 return -EINVAL;
744 }
745
746 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
747 return 0;
748
749 /*
750 * For KVM, it is necessary to ensure that this CPU doesn't
751 * support any vector length that guests may have probed as
752 * unsupported.
753 */
754
755 /* Recover the set of supported VQs: */
756 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
757 /* Find VQs supported that are not globally supported: */
758 bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX);
759
760 /* Find the lowest such VQ, if any: */
761 b = find_last_bit(tmp_map, SVE_VQ_MAX);
762 if (b >= SVE_VQ_MAX)
763 return 0; /* no mismatches */
764
765 /*
766 * Mismatches above sve_max_virtualisable_vl are fine, since
767 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
768 */
769 if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) {
770 pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n",
771 smp_processor_id());
772 return -EINVAL;
773 }
774
775 return 0;
776 }
777
sve_efi_setup(void)778 static void __init sve_efi_setup(void)
779 {
780 if (!IS_ENABLED(CONFIG_EFI))
781 return;
782
783 /*
784 * alloc_percpu() warns and prints a backtrace if this goes wrong.
785 * This is evidence of a crippled system and we are returning void,
786 * so no attempt is made to handle this situation here.
787 */
788 if (!sve_vl_valid(sve_max_vl))
789 goto fail;
790
791 efi_sve_state = __alloc_percpu(
792 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
793 if (!efi_sve_state)
794 goto fail;
795
796 return;
797
798 fail:
799 panic("Cannot allocate percpu memory for EFI SVE save/restore");
800 }
801
802 /*
803 * Enable SVE for EL1.
804 * Intended for use by the cpufeatures code during CPU boot.
805 */
sve_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)806 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
807 {
808 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
809 isb();
810 }
811
812 /*
813 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
814 * vector length.
815 *
816 * Use only if SVE is present.
817 * This function clobbers the SVE vector length.
818 */
read_zcr_features(void)819 u64 read_zcr_features(void)
820 {
821 u64 zcr;
822 unsigned int vq_max;
823
824 /*
825 * Set the maximum possible VL, and write zeroes to all other
826 * bits to see if they stick.
827 */
828 sve_kernel_enable(NULL);
829 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
830
831 zcr = read_sysreg_s(SYS_ZCR_EL1);
832 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
833 vq_max = sve_vq_from_vl(sve_get_vl());
834 zcr |= vq_max - 1; /* set LEN field to maximum effective value */
835
836 return zcr;
837 }
838
sve_setup(void)839 void __init sve_setup(void)
840 {
841 u64 zcr;
842 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
843 unsigned long b;
844
845 if (!system_supports_sve())
846 return;
847
848 /*
849 * The SVE architecture mandates support for 128-bit vectors,
850 * so sve_vq_map must have at least SVE_VQ_MIN set.
851 * If something went wrong, at least try to patch it up:
852 */
853 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
854 set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map);
855
856 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
857 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
858
859 /*
860 * Sanity-check that the max VL we determined through CPU features
861 * corresponds properly to sve_vq_map. If not, do our best:
862 */
863 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
864 sve_max_vl = find_supported_vector_length(sve_max_vl);
865
866 /*
867 * For the default VL, pick the maximum supported value <= 64.
868 * VL == 64 is guaranteed not to grow the signal frame.
869 */
870 sve_default_vl = find_supported_vector_length(64);
871
872 bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map,
873 SVE_VQ_MAX);
874
875 b = find_last_bit(tmp_map, SVE_VQ_MAX);
876 if (b >= SVE_VQ_MAX)
877 /* No non-virtualisable VLs found */
878 sve_max_virtualisable_vl = SVE_VQ_MAX;
879 else if (WARN_ON(b == SVE_VQ_MAX - 1))
880 /* No virtualisable VLs? This is architecturally forbidden. */
881 sve_max_virtualisable_vl = SVE_VQ_MIN;
882 else /* b + 1 < SVE_VQ_MAX */
883 sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
884
885 if (sve_max_virtualisable_vl > sve_max_vl)
886 sve_max_virtualisable_vl = sve_max_vl;
887
888 pr_info("SVE: maximum available vector length %u bytes per vector\n",
889 sve_max_vl);
890 pr_info("SVE: default vector length %u bytes per vector\n",
891 sve_default_vl);
892
893 /* KVM decides whether to support mismatched systems. Just warn here: */
894 if (sve_max_virtualisable_vl < sve_max_vl)
895 pr_warn("SVE: unvirtualisable vector lengths present\n");
896
897 sve_efi_setup();
898 }
899
900 /*
901 * Called from the put_task_struct() path, which cannot get here
902 * unless dead_task is really dead and not schedulable.
903 */
fpsimd_release_task(struct task_struct * dead_task)904 void fpsimd_release_task(struct task_struct *dead_task)
905 {
906 __sve_free(dead_task);
907 }
908
909 #endif /* CONFIG_ARM64_SVE */
910
911 /*
912 * Trapped SVE access
913 *
914 * Storage is allocated for the full SVE state, the current FPSIMD
915 * register contents are migrated across, and TIF_SVE is set so that
916 * the SVE access trap will be disabled the next time this task
917 * reaches ret_to_user.
918 *
919 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
920 * would have disabled the SVE access trap for userspace during
921 * ret_to_user, making an SVE access trap impossible in that case.
922 */
do_sve_acc(unsigned int esr,struct pt_regs * regs)923 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
924 {
925 /* Even if we chose not to use SVE, the hardware could still trap: */
926 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
927 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
928 return;
929 }
930
931 sve_alloc(current);
932
933 get_cpu_fpsimd_context();
934
935 fpsimd_save();
936
937 /* Force ret_to_user to reload the registers: */
938 fpsimd_flush_task_state(current);
939
940 fpsimd_to_sve(current);
941 if (test_and_set_thread_flag(TIF_SVE))
942 WARN_ON(1); /* SVE access shouldn't have trapped */
943
944 put_cpu_fpsimd_context();
945 }
946
947 /*
948 * Trapped FP/ASIMD access.
949 */
do_fpsimd_acc(unsigned int esr,struct pt_regs * regs)950 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
951 {
952 /* TODO: implement lazy context saving/restoring */
953 WARN_ON(1);
954 }
955
956 /*
957 * Raise a SIGFPE for the current process.
958 */
do_fpsimd_exc(unsigned int esr,struct pt_regs * regs)959 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
960 {
961 unsigned int si_code = FPE_FLTUNK;
962
963 if (esr & ESR_ELx_FP_EXC_TFV) {
964 if (esr & FPEXC_IOF)
965 si_code = FPE_FLTINV;
966 else if (esr & FPEXC_DZF)
967 si_code = FPE_FLTDIV;
968 else if (esr & FPEXC_OFF)
969 si_code = FPE_FLTOVF;
970 else if (esr & FPEXC_UFF)
971 si_code = FPE_FLTUND;
972 else if (esr & FPEXC_IXF)
973 si_code = FPE_FLTRES;
974 }
975
976 send_sig_fault(SIGFPE, si_code,
977 (void __user *)instruction_pointer(regs),
978 current);
979 }
980
fpsimd_thread_switch(struct task_struct * next)981 void fpsimd_thread_switch(struct task_struct *next)
982 {
983 bool wrong_task, wrong_cpu;
984
985 if (!system_supports_fpsimd())
986 return;
987
988 __get_cpu_fpsimd_context();
989
990 /* Save unsaved fpsimd state, if any: */
991 fpsimd_save();
992
993 /*
994 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
995 * state. For kernel threads, FPSIMD registers are never loaded
996 * and wrong_task and wrong_cpu will always be true.
997 */
998 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
999 &next->thread.uw.fpsimd_state;
1000 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1001
1002 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1003 wrong_task || wrong_cpu);
1004
1005 __put_cpu_fpsimd_context();
1006 }
1007
fpsimd_flush_thread(void)1008 void fpsimd_flush_thread(void)
1009 {
1010 int vl, supported_vl;
1011
1012 if (!system_supports_fpsimd())
1013 return;
1014
1015 get_cpu_fpsimd_context();
1016
1017 fpsimd_flush_task_state(current);
1018 memset(¤t->thread.uw.fpsimd_state, 0,
1019 sizeof(current->thread.uw.fpsimd_state));
1020
1021 if (system_supports_sve()) {
1022 clear_thread_flag(TIF_SVE);
1023 sve_free(current);
1024
1025 /*
1026 * Reset the task vector length as required.
1027 * This is where we ensure that all user tasks have a valid
1028 * vector length configured: no kernel task can become a user
1029 * task without an exec and hence a call to this function.
1030 * By the time the first call to this function is made, all
1031 * early hardware probing is complete, so sve_default_vl
1032 * should be valid.
1033 * If a bug causes this to go wrong, we make some noise and
1034 * try to fudge thread.sve_vl to a safe value here.
1035 */
1036 vl = current->thread.sve_vl_onexec ?
1037 current->thread.sve_vl_onexec : sve_default_vl;
1038
1039 if (WARN_ON(!sve_vl_valid(vl)))
1040 vl = SVE_VL_MIN;
1041
1042 supported_vl = find_supported_vector_length(vl);
1043 if (WARN_ON(supported_vl != vl))
1044 vl = supported_vl;
1045
1046 current->thread.sve_vl = vl;
1047
1048 /*
1049 * If the task is not set to inherit, ensure that the vector
1050 * length will be reset by a subsequent exec:
1051 */
1052 if (!test_thread_flag(TIF_SVE_VL_INHERIT))
1053 current->thread.sve_vl_onexec = 0;
1054 }
1055
1056 put_cpu_fpsimd_context();
1057 }
1058
1059 /*
1060 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1061 * currently held in the registers does in fact belong to 'current'
1062 */
fpsimd_preserve_current_state(void)1063 void fpsimd_preserve_current_state(void)
1064 {
1065 if (!system_supports_fpsimd())
1066 return;
1067
1068 get_cpu_fpsimd_context();
1069 fpsimd_save();
1070 put_cpu_fpsimd_context();
1071 }
1072
1073 /*
1074 * Like fpsimd_preserve_current_state(), but ensure that
1075 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1076 * the signal frame.
1077 */
fpsimd_signal_preserve_current_state(void)1078 void fpsimd_signal_preserve_current_state(void)
1079 {
1080 fpsimd_preserve_current_state();
1081 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1082 sve_to_fpsimd(current);
1083 }
1084
1085 /*
1086 * Associate current's FPSIMD context with this cpu
1087 * The caller must have ownership of the cpu FPSIMD context before calling
1088 * this function.
1089 */
fpsimd_bind_task_to_cpu(void)1090 void fpsimd_bind_task_to_cpu(void)
1091 {
1092 struct fpsimd_last_state_struct *last =
1093 this_cpu_ptr(&fpsimd_last_state);
1094
1095 last->st = ¤t->thread.uw.fpsimd_state;
1096 last->sve_state = current->thread.sve_state;
1097 last->sve_vl = current->thread.sve_vl;
1098 current->thread.fpsimd_cpu = smp_processor_id();
1099
1100 if (system_supports_sve()) {
1101 /* Toggle SVE trapping for userspace if needed */
1102 if (test_thread_flag(TIF_SVE))
1103 sve_user_enable();
1104 else
1105 sve_user_disable();
1106
1107 /* Serialised by exception return to user */
1108 }
1109 }
1110
fpsimd_bind_state_to_cpu(struct user_fpsimd_state * st,void * sve_state,unsigned int sve_vl)1111 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1112 unsigned int sve_vl)
1113 {
1114 struct fpsimd_last_state_struct *last =
1115 this_cpu_ptr(&fpsimd_last_state);
1116
1117 WARN_ON(!in_softirq() && !irqs_disabled());
1118
1119 last->st = st;
1120 last->sve_state = sve_state;
1121 last->sve_vl = sve_vl;
1122 }
1123
1124 /*
1125 * Load the userland FPSIMD state of 'current' from memory, but only if the
1126 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1127 * state of 'current'
1128 */
fpsimd_restore_current_state(void)1129 void fpsimd_restore_current_state(void)
1130 {
1131 if (!system_supports_fpsimd())
1132 return;
1133
1134 get_cpu_fpsimd_context();
1135
1136 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1137 task_fpsimd_load();
1138 fpsimd_bind_task_to_cpu();
1139 }
1140
1141 put_cpu_fpsimd_context();
1142 }
1143
1144 /*
1145 * Load an updated userland FPSIMD state for 'current' from memory and set the
1146 * flag that indicates that the FPSIMD register contents are the most recent
1147 * FPSIMD state of 'current'
1148 */
fpsimd_update_current_state(struct user_fpsimd_state const * state)1149 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1150 {
1151 if (!system_supports_fpsimd())
1152 return;
1153
1154 get_cpu_fpsimd_context();
1155
1156 current->thread.uw.fpsimd_state = *state;
1157 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1158 fpsimd_to_sve(current);
1159
1160 task_fpsimd_load();
1161 fpsimd_bind_task_to_cpu();
1162
1163 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1164
1165 put_cpu_fpsimd_context();
1166 }
1167
1168 /*
1169 * Invalidate live CPU copies of task t's FPSIMD state
1170 *
1171 * This function may be called with preemption enabled. The barrier()
1172 * ensures that the assignment to fpsimd_cpu is visible to any
1173 * preemption/softirq that could race with set_tsk_thread_flag(), so
1174 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1175 *
1176 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1177 * subsequent code.
1178 */
fpsimd_flush_task_state(struct task_struct * t)1179 void fpsimd_flush_task_state(struct task_struct *t)
1180 {
1181 t->thread.fpsimd_cpu = NR_CPUS;
1182
1183 barrier();
1184 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1185
1186 barrier();
1187 }
1188
1189 /*
1190 * Invalidate any task's FPSIMD state that is present on this cpu.
1191 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1192 * before calling this function.
1193 */
fpsimd_flush_cpu_state(void)1194 static void fpsimd_flush_cpu_state(void)
1195 {
1196 __this_cpu_write(fpsimd_last_state.st, NULL);
1197 set_thread_flag(TIF_FOREIGN_FPSTATE);
1198 }
1199
1200 /*
1201 * Save the FPSIMD state to memory and invalidate cpu view.
1202 * This function must be called with preemption disabled.
1203 */
fpsimd_save_and_flush_cpu_state(void)1204 void fpsimd_save_and_flush_cpu_state(void)
1205 {
1206 WARN_ON(preemptible());
1207 __get_cpu_fpsimd_context();
1208 fpsimd_save();
1209 fpsimd_flush_cpu_state();
1210 __put_cpu_fpsimd_context();
1211 }
1212
1213 #ifdef CONFIG_KERNEL_MODE_NEON
1214
1215 /*
1216 * Kernel-side NEON support functions
1217 */
1218
1219 /*
1220 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1221 * context
1222 *
1223 * Must not be called unless may_use_simd() returns true.
1224 * Task context in the FPSIMD registers is saved back to memory as necessary.
1225 *
1226 * A matching call to kernel_neon_end() must be made before returning from the
1227 * calling context.
1228 *
1229 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1230 * called.
1231 */
kernel_neon_begin(void)1232 void kernel_neon_begin(void)
1233 {
1234 if (WARN_ON(!system_supports_fpsimd()))
1235 return;
1236
1237 BUG_ON(!may_use_simd());
1238
1239 get_cpu_fpsimd_context();
1240
1241 /* Save unsaved fpsimd state, if any: */
1242 fpsimd_save();
1243
1244 /* Invalidate any task state remaining in the fpsimd regs: */
1245 fpsimd_flush_cpu_state();
1246 }
1247 EXPORT_SYMBOL(kernel_neon_begin);
1248
1249 /*
1250 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1251 *
1252 * Must be called from a context in which kernel_neon_begin() was previously
1253 * called, with no call to kernel_neon_end() in the meantime.
1254 *
1255 * The caller must not use the FPSIMD registers after this function is called,
1256 * unless kernel_neon_begin() is called again in the meantime.
1257 */
kernel_neon_end(void)1258 void kernel_neon_end(void)
1259 {
1260 if (!system_supports_fpsimd())
1261 return;
1262
1263 put_cpu_fpsimd_context();
1264 }
1265 EXPORT_SYMBOL(kernel_neon_end);
1266
1267 #ifdef CONFIG_EFI
1268
1269 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1270 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1271 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1272
1273 /*
1274 * EFI runtime services support functions
1275 *
1276 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1277 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1278 * is always used rather than being an optional accelerator.
1279 *
1280 * These functions provide the necessary support for ensuring FPSIMD
1281 * save/restore in the contexts from which EFI is used.
1282 *
1283 * Do not use them for any other purpose -- if tempted to do so, you are
1284 * either doing something wrong or you need to propose some refactoring.
1285 */
1286
1287 /*
1288 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1289 */
__efi_fpsimd_begin(void)1290 void __efi_fpsimd_begin(void)
1291 {
1292 if (!system_supports_fpsimd())
1293 return;
1294
1295 WARN_ON(preemptible());
1296
1297 if (may_use_simd()) {
1298 kernel_neon_begin();
1299 } else {
1300 /*
1301 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1302 * preserving:
1303 */
1304 if (system_supports_sve() && likely(efi_sve_state)) {
1305 char *sve_state = this_cpu_ptr(efi_sve_state);
1306
1307 __this_cpu_write(efi_sve_state_used, true);
1308
1309 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1310 &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1311 } else {
1312 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1313 }
1314
1315 __this_cpu_write(efi_fpsimd_state_used, true);
1316 }
1317 }
1318
1319 /*
1320 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1321 */
__efi_fpsimd_end(void)1322 void __efi_fpsimd_end(void)
1323 {
1324 if (!system_supports_fpsimd())
1325 return;
1326
1327 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1328 kernel_neon_end();
1329 } else {
1330 if (system_supports_sve() &&
1331 likely(__this_cpu_read(efi_sve_state_used))) {
1332 char const *sve_state = this_cpu_ptr(efi_sve_state);
1333
1334 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1335 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1336 sve_vq_from_vl(sve_get_vl()) - 1);
1337
1338 __this_cpu_write(efi_sve_state_used, false);
1339 } else {
1340 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1341 }
1342 }
1343 }
1344
1345 #endif /* CONFIG_EFI */
1346
1347 #endif /* CONFIG_KERNEL_MODE_NEON */
1348
1349 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1350 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1351 unsigned long cmd, void *v)
1352 {
1353 switch (cmd) {
1354 case CPU_PM_ENTER:
1355 fpsimd_save_and_flush_cpu_state();
1356 break;
1357 case CPU_PM_EXIT:
1358 break;
1359 case CPU_PM_ENTER_FAILED:
1360 default:
1361 return NOTIFY_DONE;
1362 }
1363 return NOTIFY_OK;
1364 }
1365
1366 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1367 .notifier_call = fpsimd_cpu_pm_notifier,
1368 };
1369
fpsimd_pm_init(void)1370 static void __init fpsimd_pm_init(void)
1371 {
1372 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1373 }
1374
1375 #else
fpsimd_pm_init(void)1376 static inline void fpsimd_pm_init(void) { }
1377 #endif /* CONFIG_CPU_PM */
1378
1379 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)1380 static int fpsimd_cpu_dead(unsigned int cpu)
1381 {
1382 per_cpu(fpsimd_last_state.st, cpu) = NULL;
1383 return 0;
1384 }
1385
fpsimd_hotplug_init(void)1386 static inline void fpsimd_hotplug_init(void)
1387 {
1388 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1389 NULL, fpsimd_cpu_dead);
1390 }
1391
1392 #else
fpsimd_hotplug_init(void)1393 static inline void fpsimd_hotplug_init(void) { }
1394 #endif
1395
1396 /*
1397 * FP/SIMD support code initialisation.
1398 */
fpsimd_init(void)1399 static int __init fpsimd_init(void)
1400 {
1401 if (cpu_have_named_feature(FP)) {
1402 fpsimd_pm_init();
1403 fpsimd_hotplug_init();
1404 } else {
1405 pr_notice("Floating-point is not implemented\n");
1406 }
1407
1408 if (!cpu_have_named_feature(ASIMD))
1409 pr_notice("Advanced SIMD is not implemented\n");
1410
1411 return sve_sysctl_init();
1412 }
1413 core_initcall(fpsimd_init);
1414