1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/process.c
4  *
5  *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
6  *  Original Copyright (C) 1995  Linus Torvalds
7  */
8 #include <stdarg.h>
9 
10 #include <linux/export.h>
11 #include <linux/sched.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/user.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/elfcore.h>
23 #include <linux/pm.h>
24 #include <linux/tick.h>
25 #include <linux/utsname.h>
26 #include <linux/uaccess.h>
27 #include <linux/random.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/leds.h>
30 
31 #include <asm/processor.h>
32 #include <asm/thread_notify.h>
33 #include <asm/stacktrace.h>
34 #include <asm/system_misc.h>
35 #include <asm/mach/time.h>
36 #include <asm/tls.h>
37 #include <asm/vdso.h>
38 
39 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
40 #include <linux/stackprotector.h>
41 unsigned long __stack_chk_guard __read_mostly;
42 EXPORT_SYMBOL(__stack_chk_guard);
43 #endif
44 
45 static const char *processor_modes[] __maybe_unused = {
46   "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
47   "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
48   "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "MON_32" , "ABT_32" ,
49   "UK8_32" , "UK9_32" , "HYP_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
50 };
51 
52 static const char *isa_modes[] __maybe_unused = {
53   "ARM" , "Thumb" , "Jazelle", "ThumbEE"
54 };
55 
56 /*
57  * This is our default idle handler.
58  */
59 
60 void (*arm_pm_idle)(void);
61 
62 /*
63  * Called from the core idle loop.
64  */
65 
arch_cpu_idle(void)66 void arch_cpu_idle(void)
67 {
68 	if (arm_pm_idle)
69 		arm_pm_idle();
70 	else
71 		cpu_do_idle();
72 	local_irq_enable();
73 }
74 
arch_cpu_idle_prepare(void)75 void arch_cpu_idle_prepare(void)
76 {
77 	local_fiq_enable();
78 }
79 
arch_cpu_idle_enter(void)80 void arch_cpu_idle_enter(void)
81 {
82 	ledtrig_cpu(CPU_LED_IDLE_START);
83 #ifdef CONFIG_PL310_ERRATA_769419
84 	wmb();
85 #endif
86 }
87 
arch_cpu_idle_exit(void)88 void arch_cpu_idle_exit(void)
89 {
90 	ledtrig_cpu(CPU_LED_IDLE_END);
91 }
92 
__show_regs(struct pt_regs * regs)93 void __show_regs(struct pt_regs *regs)
94 {
95 	unsigned long flags;
96 	char buf[64];
97 #ifndef CONFIG_CPU_V7M
98 	unsigned int domain, fs;
99 #ifdef CONFIG_CPU_SW_DOMAIN_PAN
100 	/*
101 	 * Get the domain register for the parent context. In user
102 	 * mode, we don't save the DACR, so lets use what it should
103 	 * be. For other modes, we place it after the pt_regs struct.
104 	 */
105 	if (user_mode(regs)) {
106 		domain = DACR_UACCESS_ENABLE;
107 		fs = get_fs();
108 	} else {
109 		domain = to_svc_pt_regs(regs)->dacr;
110 		fs = to_svc_pt_regs(regs)->addr_limit;
111 	}
112 #else
113 	domain = get_domain();
114 	fs = get_fs();
115 #endif
116 #endif
117 
118 	show_regs_print_info(KERN_DEFAULT);
119 
120 	printk("PC is at %pS\n", (void *)instruction_pointer(regs));
121 	printk("LR is at %pS\n", (void *)regs->ARM_lr);
122 	printk("pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n",
123 	       regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr);
124 	printk("sp : %08lx  ip : %08lx  fp : %08lx\n",
125 	       regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
126 	printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
127 		regs->ARM_r10, regs->ARM_r9,
128 		regs->ARM_r8);
129 	printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
130 		regs->ARM_r7, regs->ARM_r6,
131 		regs->ARM_r5, regs->ARM_r4);
132 	printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
133 		regs->ARM_r3, regs->ARM_r2,
134 		regs->ARM_r1, regs->ARM_r0);
135 
136 	flags = regs->ARM_cpsr;
137 	buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
138 	buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
139 	buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
140 	buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
141 	buf[4] = '\0';
142 
143 #ifndef CONFIG_CPU_V7M
144 	{
145 		const char *segment;
146 
147 		if ((domain & domain_mask(DOMAIN_USER)) ==
148 		    domain_val(DOMAIN_USER, DOMAIN_NOACCESS))
149 			segment = "none";
150 		else if (fs == KERNEL_DS)
151 			segment = "kernel";
152 		else
153 			segment = "user";
154 
155 		printk("Flags: %s  IRQs o%s  FIQs o%s  Mode %s  ISA %s  Segment %s\n",
156 			buf, interrupts_enabled(regs) ? "n" : "ff",
157 			fast_interrupts_enabled(regs) ? "n" : "ff",
158 			processor_modes[processor_mode(regs)],
159 			isa_modes[isa_mode(regs)], segment);
160 	}
161 #else
162 	printk("xPSR: %08lx\n", regs->ARM_cpsr);
163 #endif
164 
165 #ifdef CONFIG_CPU_CP15
166 	{
167 		unsigned int ctrl;
168 
169 		buf[0] = '\0';
170 #ifdef CONFIG_CPU_CP15_MMU
171 		{
172 			unsigned int transbase;
173 			asm("mrc p15, 0, %0, c2, c0\n\t"
174 			    : "=r" (transbase));
175 			snprintf(buf, sizeof(buf), "  Table: %08x  DAC: %08x",
176 				transbase, domain);
177 		}
178 #endif
179 		asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
180 
181 		printk("Control: %08x%s\n", ctrl, buf);
182 	}
183 #endif
184 }
185 
show_regs(struct pt_regs * regs)186 void show_regs(struct pt_regs * regs)
187 {
188 	__show_regs(regs);
189 	dump_stack();
190 }
191 
192 ATOMIC_NOTIFIER_HEAD(thread_notify_head);
193 
194 EXPORT_SYMBOL_GPL(thread_notify_head);
195 
196 /*
197  * Free current thread data structures etc..
198  */
exit_thread(struct task_struct * tsk)199 void exit_thread(struct task_struct *tsk)
200 {
201 	thread_notify(THREAD_NOTIFY_EXIT, task_thread_info(tsk));
202 }
203 
flush_thread(void)204 void flush_thread(void)
205 {
206 	struct thread_info *thread = current_thread_info();
207 	struct task_struct *tsk = current;
208 
209 	flush_ptrace_hw_breakpoint(tsk);
210 
211 	memset(thread->used_cp, 0, sizeof(thread->used_cp));
212 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
213 	memset(&thread->fpstate, 0, sizeof(union fp_state));
214 
215 	flush_tls();
216 
217 	thread_notify(THREAD_NOTIFY_FLUSH, thread);
218 }
219 
release_thread(struct task_struct * dead_task)220 void release_thread(struct task_struct *dead_task)
221 {
222 }
223 
224 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
225 
226 int
copy_thread(unsigned long clone_flags,unsigned long stack_start,unsigned long stk_sz,struct task_struct * p)227 copy_thread(unsigned long clone_flags, unsigned long stack_start,
228 	    unsigned long stk_sz, struct task_struct *p)
229 {
230 	struct thread_info *thread = task_thread_info(p);
231 	struct pt_regs *childregs = task_pt_regs(p);
232 
233 	memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
234 
235 #ifdef CONFIG_CPU_USE_DOMAINS
236 	/*
237 	 * Copy the initial value of the domain access control register
238 	 * from the current thread: thread->addr_limit will have been
239 	 * copied from the current thread via setup_thread_stack() in
240 	 * kernel/fork.c
241 	 */
242 	thread->cpu_domain = get_domain();
243 #endif
244 
245 	if (likely(!(p->flags & PF_KTHREAD))) {
246 		*childregs = *current_pt_regs();
247 		childregs->ARM_r0 = 0;
248 		if (stack_start)
249 			childregs->ARM_sp = stack_start;
250 	} else {
251 		memset(childregs, 0, sizeof(struct pt_regs));
252 		thread->cpu_context.r4 = stk_sz;
253 		thread->cpu_context.r5 = stack_start;
254 		childregs->ARM_cpsr = SVC_MODE;
255 	}
256 	thread->cpu_context.pc = (unsigned long)ret_from_fork;
257 	thread->cpu_context.sp = (unsigned long)childregs;
258 
259 	clear_ptrace_hw_breakpoint(p);
260 
261 	if (clone_flags & CLONE_SETTLS)
262 		thread->tp_value[0] = childregs->ARM_r3;
263 	thread->tp_value[1] = get_tpuser();
264 
265 	thread_notify(THREAD_NOTIFY_COPY, thread);
266 
267 #ifdef CONFIG_STACKPROTECTOR_PER_TASK
268 	thread->stack_canary = p->stack_canary;
269 #endif
270 
271 	return 0;
272 }
273 
274 /*
275  * Fill in the task's elfregs structure for a core dump.
276  */
dump_task_regs(struct task_struct * t,elf_gregset_t * elfregs)277 int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
278 {
279 	elf_core_copy_regs(elfregs, task_pt_regs(t));
280 	return 1;
281 }
282 
283 /*
284  * fill in the fpe structure for a core dump...
285  */
dump_fpu(struct pt_regs * regs,struct user_fp * fp)286 int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
287 {
288 	struct thread_info *thread = current_thread_info();
289 	int used_math = thread->used_cp[1] | thread->used_cp[2];
290 
291 	if (used_math)
292 		memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
293 
294 	return used_math != 0;
295 }
296 EXPORT_SYMBOL(dump_fpu);
297 
get_wchan(struct task_struct * p)298 unsigned long get_wchan(struct task_struct *p)
299 {
300 	struct stackframe frame;
301 	unsigned long stack_page;
302 	int count = 0;
303 	if (!p || p == current || p->state == TASK_RUNNING)
304 		return 0;
305 
306 	frame.fp = thread_saved_fp(p);
307 	frame.sp = thread_saved_sp(p);
308 	frame.lr = 0;			/* recovered from the stack */
309 	frame.pc = thread_saved_pc(p);
310 	stack_page = (unsigned long)task_stack_page(p);
311 	do {
312 		if (frame.sp < stack_page ||
313 		    frame.sp >= stack_page + THREAD_SIZE ||
314 		    unwind_frame(&frame) < 0)
315 			return 0;
316 		if (!in_sched_functions(frame.pc))
317 			return frame.pc;
318 	} while (count ++ < 16);
319 	return 0;
320 }
321 
322 #ifdef CONFIG_MMU
323 #ifdef CONFIG_KUSER_HELPERS
324 /*
325  * The vectors page is always readable from user space for the
326  * atomic helpers. Insert it into the gate_vma so that it is visible
327  * through ptrace and /proc/<pid>/mem.
328  */
329 static struct vm_area_struct gate_vma;
330 
gate_vma_init(void)331 static int __init gate_vma_init(void)
332 {
333 	vma_init(&gate_vma, NULL);
334 	gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
335 	gate_vma.vm_start = 0xffff0000;
336 	gate_vma.vm_end	= 0xffff0000 + PAGE_SIZE;
337 	gate_vma.vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC;
338 	return 0;
339 }
340 arch_initcall(gate_vma_init);
341 
get_gate_vma(struct mm_struct * mm)342 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
343 {
344 	return &gate_vma;
345 }
346 
in_gate_area(struct mm_struct * mm,unsigned long addr)347 int in_gate_area(struct mm_struct *mm, unsigned long addr)
348 {
349 	return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
350 }
351 
in_gate_area_no_mm(unsigned long addr)352 int in_gate_area_no_mm(unsigned long addr)
353 {
354 	return in_gate_area(NULL, addr);
355 }
356 #define is_gate_vma(vma)	((vma) == &gate_vma)
357 #else
358 #define is_gate_vma(vma)	0
359 #endif
360 
arch_vma_name(struct vm_area_struct * vma)361 const char *arch_vma_name(struct vm_area_struct *vma)
362 {
363 	return is_gate_vma(vma) ? "[vectors]" : NULL;
364 }
365 
366 /* If possible, provide a placement hint at a random offset from the
367  * stack for the sigpage and vdso pages.
368  */
sigpage_addr(const struct mm_struct * mm,unsigned int npages)369 static unsigned long sigpage_addr(const struct mm_struct *mm,
370 				  unsigned int npages)
371 {
372 	unsigned long offset;
373 	unsigned long first;
374 	unsigned long last;
375 	unsigned long addr;
376 	unsigned int slots;
377 
378 	first = PAGE_ALIGN(mm->start_stack);
379 
380 	last = TASK_SIZE - (npages << PAGE_SHIFT);
381 
382 	/* No room after stack? */
383 	if (first > last)
384 		return 0;
385 
386 	/* Just enough room? */
387 	if (first == last)
388 		return first;
389 
390 	slots = ((last - first) >> PAGE_SHIFT) + 1;
391 
392 	offset = get_random_int() % slots;
393 
394 	addr = first + (offset << PAGE_SHIFT);
395 
396 	return addr;
397 }
398 
399 static struct page *signal_page;
400 extern struct page *get_signal_page(void);
401 
sigpage_mremap(const struct vm_special_mapping * sm,struct vm_area_struct * new_vma)402 static int sigpage_mremap(const struct vm_special_mapping *sm,
403 		struct vm_area_struct *new_vma)
404 {
405 	current->mm->context.sigpage = new_vma->vm_start;
406 	return 0;
407 }
408 
409 static const struct vm_special_mapping sigpage_mapping = {
410 	.name = "[sigpage]",
411 	.pages = &signal_page,
412 	.mremap = sigpage_mremap,
413 };
414 
arch_setup_additional_pages(struct linux_binprm * bprm,int uses_interp)415 int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
416 {
417 	struct mm_struct *mm = current->mm;
418 	struct vm_area_struct *vma;
419 	unsigned long npages;
420 	unsigned long addr;
421 	unsigned long hint;
422 	int ret = 0;
423 
424 	if (!signal_page)
425 		signal_page = get_signal_page();
426 	if (!signal_page)
427 		return -ENOMEM;
428 
429 	npages = 1; /* for sigpage */
430 	npages += vdso_total_pages;
431 
432 	if (down_write_killable(&mm->mmap_sem))
433 		return -EINTR;
434 	hint = sigpage_addr(mm, npages);
435 	addr = get_unmapped_area(NULL, hint, npages << PAGE_SHIFT, 0, 0);
436 	if (IS_ERR_VALUE(addr)) {
437 		ret = addr;
438 		goto up_fail;
439 	}
440 
441 	vma = _install_special_mapping(mm, addr, PAGE_SIZE,
442 		VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
443 		&sigpage_mapping);
444 
445 	if (IS_ERR(vma)) {
446 		ret = PTR_ERR(vma);
447 		goto up_fail;
448 	}
449 
450 	mm->context.sigpage = addr;
451 
452 	/* Unlike the sigpage, failure to install the vdso is unlikely
453 	 * to be fatal to the process, so no error check needed
454 	 * here.
455 	 */
456 	arm_install_vdso(mm, addr + PAGE_SIZE);
457 
458  up_fail:
459 	up_write(&mm->mmap_sem);
460 	return ret;
461 }
462 #endif
463