1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include <linux/ctype.h>
7 #include <linux/zalloc.h>
8 #include "cgroup.h"
9 #include <errno.h>
10 #include <sys/utsname.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include "strbuf.h"
14
15 struct perf_env perf_env;
16
17 #ifdef HAVE_LIBBPF_SUPPORT
18 #include "bpf-event.h"
19 #include <bpf/libbpf.h>
20
perf_env__insert_bpf_prog_info(struct perf_env * env,struct bpf_prog_info_node * info_node)21 void perf_env__insert_bpf_prog_info(struct perf_env *env,
22 struct bpf_prog_info_node *info_node)
23 {
24 __u32 prog_id = info_node->info_linear->info.id;
25 struct bpf_prog_info_node *node;
26 struct rb_node *parent = NULL;
27 struct rb_node **p;
28
29 down_write(&env->bpf_progs.lock);
30 p = &env->bpf_progs.infos.rb_node;
31
32 while (*p != NULL) {
33 parent = *p;
34 node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
35 if (prog_id < node->info_linear->info.id) {
36 p = &(*p)->rb_left;
37 } else if (prog_id > node->info_linear->info.id) {
38 p = &(*p)->rb_right;
39 } else {
40 pr_debug("duplicated bpf prog info %u\n", prog_id);
41 goto out;
42 }
43 }
44
45 rb_link_node(&info_node->rb_node, parent, p);
46 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
47 env->bpf_progs.infos_cnt++;
48 out:
49 up_write(&env->bpf_progs.lock);
50 }
51
perf_env__find_bpf_prog_info(struct perf_env * env,__u32 prog_id)52 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
53 __u32 prog_id)
54 {
55 struct bpf_prog_info_node *node = NULL;
56 struct rb_node *n;
57
58 down_read(&env->bpf_progs.lock);
59 n = env->bpf_progs.infos.rb_node;
60
61 while (n) {
62 node = rb_entry(n, struct bpf_prog_info_node, rb_node);
63 if (prog_id < node->info_linear->info.id)
64 n = n->rb_left;
65 else if (prog_id > node->info_linear->info.id)
66 n = n->rb_right;
67 else
68 goto out;
69 }
70 node = NULL;
71
72 out:
73 up_read(&env->bpf_progs.lock);
74 return node;
75 }
76
perf_env__insert_btf(struct perf_env * env,struct btf_node * btf_node)77 void perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
78 {
79 struct rb_node *parent = NULL;
80 __u32 btf_id = btf_node->id;
81 struct btf_node *node;
82 struct rb_node **p;
83
84 down_write(&env->bpf_progs.lock);
85 p = &env->bpf_progs.btfs.rb_node;
86
87 while (*p != NULL) {
88 parent = *p;
89 node = rb_entry(parent, struct btf_node, rb_node);
90 if (btf_id < node->id) {
91 p = &(*p)->rb_left;
92 } else if (btf_id > node->id) {
93 p = &(*p)->rb_right;
94 } else {
95 pr_debug("duplicated btf %u\n", btf_id);
96 goto out;
97 }
98 }
99
100 rb_link_node(&btf_node->rb_node, parent, p);
101 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
102 env->bpf_progs.btfs_cnt++;
103 out:
104 up_write(&env->bpf_progs.lock);
105 }
106
perf_env__find_btf(struct perf_env * env,__u32 btf_id)107 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
108 {
109 struct btf_node *node = NULL;
110 struct rb_node *n;
111
112 down_read(&env->bpf_progs.lock);
113 n = env->bpf_progs.btfs.rb_node;
114
115 while (n) {
116 node = rb_entry(n, struct btf_node, rb_node);
117 if (btf_id < node->id)
118 n = n->rb_left;
119 else if (btf_id > node->id)
120 n = n->rb_right;
121 else
122 goto out;
123 }
124 node = NULL;
125
126 out:
127 up_read(&env->bpf_progs.lock);
128 return node;
129 }
130
131 /* purge data in bpf_progs.infos tree */
perf_env__purge_bpf(struct perf_env * env)132 static void perf_env__purge_bpf(struct perf_env *env)
133 {
134 struct rb_root *root;
135 struct rb_node *next;
136
137 down_write(&env->bpf_progs.lock);
138
139 root = &env->bpf_progs.infos;
140 next = rb_first(root);
141
142 while (next) {
143 struct bpf_prog_info_node *node;
144
145 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
146 next = rb_next(&node->rb_node);
147 rb_erase(&node->rb_node, root);
148 free(node->info_linear);
149 free(node);
150 }
151
152 env->bpf_progs.infos_cnt = 0;
153
154 root = &env->bpf_progs.btfs;
155 next = rb_first(root);
156
157 while (next) {
158 struct btf_node *node;
159
160 node = rb_entry(next, struct btf_node, rb_node);
161 next = rb_next(&node->rb_node);
162 rb_erase(&node->rb_node, root);
163 free(node);
164 }
165
166 env->bpf_progs.btfs_cnt = 0;
167
168 up_write(&env->bpf_progs.lock);
169 }
170 #else // HAVE_LIBBPF_SUPPORT
perf_env__purge_bpf(struct perf_env * env __maybe_unused)171 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
172 {
173 }
174 #endif // HAVE_LIBBPF_SUPPORT
175
perf_env__exit(struct perf_env * env)176 void perf_env__exit(struct perf_env *env)
177 {
178 int i;
179
180 perf_env__purge_bpf(env);
181 perf_env__purge_cgroups(env);
182 zfree(&env->hostname);
183 zfree(&env->os_release);
184 zfree(&env->version);
185 zfree(&env->arch);
186 zfree(&env->cpu_desc);
187 zfree(&env->cpuid);
188 zfree(&env->cmdline);
189 zfree(&env->cmdline_argv);
190 zfree(&env->sibling_dies);
191 zfree(&env->sibling_cores);
192 zfree(&env->sibling_threads);
193 zfree(&env->pmu_mappings);
194 zfree(&env->cpu);
195 zfree(&env->cpu_pmu_caps);
196 zfree(&env->numa_map);
197
198 for (i = 0; i < env->nr_numa_nodes; i++)
199 perf_cpu_map__put(env->numa_nodes[i].map);
200 zfree(&env->numa_nodes);
201
202 for (i = 0; i < env->caches_cnt; i++)
203 cpu_cache_level__free(&env->caches[i]);
204 zfree(&env->caches);
205
206 for (i = 0; i < env->nr_memory_nodes; i++)
207 zfree(&env->memory_nodes[i].set);
208 zfree(&env->memory_nodes);
209
210 for (i = 0; i < env->nr_hybrid_nodes; i++) {
211 zfree(&env->hybrid_nodes[i].pmu_name);
212 zfree(&env->hybrid_nodes[i].cpus);
213 }
214 zfree(&env->hybrid_nodes);
215
216 for (i = 0; i < env->nr_hybrid_cpc_nodes; i++) {
217 zfree(&env->hybrid_cpc_nodes[i].cpu_pmu_caps);
218 zfree(&env->hybrid_cpc_nodes[i].pmu_name);
219 }
220 zfree(&env->hybrid_cpc_nodes);
221 }
222
perf_env__init(struct perf_env * env)223 void perf_env__init(struct perf_env *env)
224 {
225 #ifdef HAVE_LIBBPF_SUPPORT
226 env->bpf_progs.infos = RB_ROOT;
227 env->bpf_progs.btfs = RB_ROOT;
228 init_rwsem(&env->bpf_progs.lock);
229 #endif
230 env->kernel_is_64_bit = -1;
231 }
232
perf_env__init_kernel_mode(struct perf_env * env)233 static void perf_env__init_kernel_mode(struct perf_env *env)
234 {
235 const char *arch = perf_env__raw_arch(env);
236
237 if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
238 !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
239 !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
240 !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
241 env->kernel_is_64_bit = 1;
242 else
243 env->kernel_is_64_bit = 0;
244 }
245
perf_env__kernel_is_64_bit(struct perf_env * env)246 int perf_env__kernel_is_64_bit(struct perf_env *env)
247 {
248 if (env->kernel_is_64_bit == -1)
249 perf_env__init_kernel_mode(env);
250
251 return env->kernel_is_64_bit;
252 }
253
perf_env__set_cmdline(struct perf_env * env,int argc,const char * argv[])254 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
255 {
256 int i;
257
258 /* do not include NULL termination */
259 env->cmdline_argv = calloc(argc, sizeof(char *));
260 if (env->cmdline_argv == NULL)
261 goto out_enomem;
262
263 /*
264 * Must copy argv contents because it gets moved around during option
265 * parsing:
266 */
267 for (i = 0; i < argc ; i++) {
268 env->cmdline_argv[i] = argv[i];
269 if (env->cmdline_argv[i] == NULL)
270 goto out_free;
271 }
272
273 env->nr_cmdline = argc;
274
275 return 0;
276 out_free:
277 zfree(&env->cmdline_argv);
278 out_enomem:
279 return -ENOMEM;
280 }
281
perf_env__read_cpu_topology_map(struct perf_env * env)282 int perf_env__read_cpu_topology_map(struct perf_env *env)
283 {
284 int cpu, nr_cpus;
285
286 if (env->cpu != NULL)
287 return 0;
288
289 if (env->nr_cpus_avail == 0)
290 env->nr_cpus_avail = cpu__max_present_cpu();
291
292 nr_cpus = env->nr_cpus_avail;
293 if (nr_cpus == -1)
294 return -EINVAL;
295
296 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
297 if (env->cpu == NULL)
298 return -ENOMEM;
299
300 for (cpu = 0; cpu < nr_cpus; ++cpu) {
301 env->cpu[cpu].core_id = cpu_map__get_core_id(cpu);
302 env->cpu[cpu].socket_id = cpu_map__get_socket_id(cpu);
303 env->cpu[cpu].die_id = cpu_map__get_die_id(cpu);
304 }
305
306 env->nr_cpus_avail = nr_cpus;
307 return 0;
308 }
309
perf_env__read_pmu_mappings(struct perf_env * env)310 int perf_env__read_pmu_mappings(struct perf_env *env)
311 {
312 struct perf_pmu *pmu = NULL;
313 u32 pmu_num = 0;
314 struct strbuf sb;
315
316 while ((pmu = perf_pmu__scan(pmu))) {
317 if (!pmu->name)
318 continue;
319 pmu_num++;
320 }
321 if (!pmu_num) {
322 pr_debug("pmu mappings not available\n");
323 return -ENOENT;
324 }
325 env->nr_pmu_mappings = pmu_num;
326
327 if (strbuf_init(&sb, 128 * pmu_num) < 0)
328 return -ENOMEM;
329
330 while ((pmu = perf_pmu__scan(pmu))) {
331 if (!pmu->name)
332 continue;
333 if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
334 goto error;
335 /* include a NULL character at the end */
336 if (strbuf_add(&sb, "", 1) < 0)
337 goto error;
338 }
339
340 env->pmu_mappings = strbuf_detach(&sb, NULL);
341
342 return 0;
343
344 error:
345 strbuf_release(&sb);
346 return -1;
347 }
348
perf_env__read_cpuid(struct perf_env * env)349 int perf_env__read_cpuid(struct perf_env *env)
350 {
351 char cpuid[128];
352 int err = get_cpuid(cpuid, sizeof(cpuid));
353
354 if (err)
355 return err;
356
357 free(env->cpuid);
358 env->cpuid = strdup(cpuid);
359 if (env->cpuid == NULL)
360 return ENOMEM;
361 return 0;
362 }
363
perf_env__read_arch(struct perf_env * env)364 static int perf_env__read_arch(struct perf_env *env)
365 {
366 struct utsname uts;
367
368 if (env->arch)
369 return 0;
370
371 if (!uname(&uts))
372 env->arch = strdup(uts.machine);
373
374 return env->arch ? 0 : -ENOMEM;
375 }
376
perf_env__read_nr_cpus_avail(struct perf_env * env)377 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
378 {
379 if (env->nr_cpus_avail == 0)
380 env->nr_cpus_avail = cpu__max_present_cpu();
381
382 return env->nr_cpus_avail ? 0 : -ENOENT;
383 }
384
perf_env__raw_arch(struct perf_env * env)385 const char *perf_env__raw_arch(struct perf_env *env)
386 {
387 return env && !perf_env__read_arch(env) ? env->arch : "unknown";
388 }
389
perf_env__nr_cpus_avail(struct perf_env * env)390 int perf_env__nr_cpus_avail(struct perf_env *env)
391 {
392 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
393 }
394
cpu_cache_level__free(struct cpu_cache_level * cache)395 void cpu_cache_level__free(struct cpu_cache_level *cache)
396 {
397 zfree(&cache->type);
398 zfree(&cache->map);
399 zfree(&cache->size);
400 }
401
402 /*
403 * Return architecture name in a normalized form.
404 * The conversion logic comes from the Makefile.
405 */
normalize_arch(char * arch)406 static const char *normalize_arch(char *arch)
407 {
408 if (!strcmp(arch, "x86_64"))
409 return "x86";
410 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
411 return "x86";
412 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
413 return "sparc";
414 if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
415 return "arm64";
416 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
417 return "arm";
418 if (!strncmp(arch, "s390", 4))
419 return "s390";
420 if (!strncmp(arch, "parisc", 6))
421 return "parisc";
422 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
423 return "powerpc";
424 if (!strncmp(arch, "mips", 4))
425 return "mips";
426 if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
427 return "sh";
428
429 return arch;
430 }
431
perf_env__arch(struct perf_env * env)432 const char *perf_env__arch(struct perf_env *env)
433 {
434 char *arch_name;
435
436 if (!env || !env->arch) { /* Assume local operation */
437 static struct utsname uts = { .machine[0] = '\0', };
438 if (uts.machine[0] == '\0' && uname(&uts) < 0)
439 return NULL;
440 arch_name = uts.machine;
441 } else
442 arch_name = env->arch;
443
444 return normalize_arch(arch_name);
445 }
446
perf_env__cpuid(struct perf_env * env)447 const char *perf_env__cpuid(struct perf_env *env)
448 {
449 int status;
450
451 if (!env || !env->cpuid) { /* Assume local operation */
452 status = perf_env__read_cpuid(env);
453 if (status)
454 return NULL;
455 }
456
457 return env->cpuid;
458 }
459
perf_env__nr_pmu_mappings(struct perf_env * env)460 int perf_env__nr_pmu_mappings(struct perf_env *env)
461 {
462 int status;
463
464 if (!env || !env->nr_pmu_mappings) { /* Assume local operation */
465 status = perf_env__read_pmu_mappings(env);
466 if (status)
467 return 0;
468 }
469
470 return env->nr_pmu_mappings;
471 }
472
perf_env__pmu_mappings(struct perf_env * env)473 const char *perf_env__pmu_mappings(struct perf_env *env)
474 {
475 int status;
476
477 if (!env || !env->pmu_mappings) { /* Assume local operation */
478 status = perf_env__read_pmu_mappings(env);
479 if (status)
480 return NULL;
481 }
482
483 return env->pmu_mappings;
484 }
485
perf_env__numa_node(struct perf_env * env,int cpu)486 int perf_env__numa_node(struct perf_env *env, int cpu)
487 {
488 if (!env->nr_numa_map) {
489 struct numa_node *nn;
490 int i, nr = 0;
491
492 for (i = 0; i < env->nr_numa_nodes; i++) {
493 nn = &env->numa_nodes[i];
494 nr = max(nr, perf_cpu_map__max(nn->map));
495 }
496
497 nr++;
498
499 /*
500 * We initialize the numa_map array to prepare
501 * it for missing cpus, which return node -1
502 */
503 env->numa_map = malloc(nr * sizeof(int));
504 if (!env->numa_map)
505 return -1;
506
507 for (i = 0; i < nr; i++)
508 env->numa_map[i] = -1;
509
510 env->nr_numa_map = nr;
511
512 for (i = 0; i < env->nr_numa_nodes; i++) {
513 int tmp, j;
514
515 nn = &env->numa_nodes[i];
516 perf_cpu_map__for_each_cpu(j, tmp, nn->map)
517 env->numa_map[j] = i;
518 }
519 }
520
521 return cpu >= 0 && cpu < env->nr_numa_map ? env->numa_map[cpu] : -1;
522 }
523