1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * numa.c
4 *
5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6 */
7
8 #include <inttypes.h>
9 /* For the CLR_() macros */
10 #include <pthread.h>
11
12 #include <subcmd/parse-options.h>
13 #include "../util/cloexec.h"
14
15 #include "bench.h"
16
17 #include <errno.h>
18 #include <sched.h>
19 #include <stdio.h>
20 #include <assert.h>
21 #include <malloc.h>
22 #include <signal.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <unistd.h>
26 #include <sys/mman.h>
27 #include <sys/time.h>
28 #include <sys/resource.h>
29 #include <sys/wait.h>
30 #include <sys/prctl.h>
31 #include <sys/types.h>
32 #include <linux/kernel.h>
33 #include <linux/time64.h>
34 #include <linux/numa.h>
35 #include <linux/zalloc.h>
36
37 #include <numa.h>
38 #include <numaif.h>
39
40 #ifndef RUSAGE_THREAD
41 # define RUSAGE_THREAD 1
42 #endif
43
44 /*
45 * Regular printout to the terminal, suppressed if -q is specified:
46 */
47 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
48
49 /*
50 * Debug printf:
51 */
52 #undef dprintf
53 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
54
55 struct thread_data {
56 int curr_cpu;
57 cpu_set_t bind_cpumask;
58 int bind_node;
59 u8 *process_data;
60 int process_nr;
61 int thread_nr;
62 int task_nr;
63 unsigned int loops_done;
64 u64 val;
65 u64 runtime_ns;
66 u64 system_time_ns;
67 u64 user_time_ns;
68 double speed_gbs;
69 pthread_mutex_t *process_lock;
70 };
71
72 /* Parameters set by options: */
73
74 struct params {
75 /* Startup synchronization: */
76 bool serialize_startup;
77
78 /* Task hierarchy: */
79 int nr_proc;
80 int nr_threads;
81
82 /* Working set sizes: */
83 const char *mb_global_str;
84 const char *mb_proc_str;
85 const char *mb_proc_locked_str;
86 const char *mb_thread_str;
87
88 double mb_global;
89 double mb_proc;
90 double mb_proc_locked;
91 double mb_thread;
92
93 /* Access patterns to the working set: */
94 bool data_reads;
95 bool data_writes;
96 bool data_backwards;
97 bool data_zero_memset;
98 bool data_rand_walk;
99 u32 nr_loops;
100 u32 nr_secs;
101 u32 sleep_usecs;
102
103 /* Working set initialization: */
104 bool init_zero;
105 bool init_random;
106 bool init_cpu0;
107
108 /* Misc options: */
109 int show_details;
110 int run_all;
111 int thp;
112
113 long bytes_global;
114 long bytes_process;
115 long bytes_process_locked;
116 long bytes_thread;
117
118 int nr_tasks;
119 bool show_quiet;
120
121 bool show_convergence;
122 bool measure_convergence;
123
124 int perturb_secs;
125 int nr_cpus;
126 int nr_nodes;
127
128 /* Affinity options -C and -N: */
129 char *cpu_list_str;
130 char *node_list_str;
131 };
132
133
134 /* Global, read-writable area, accessible to all processes and threads: */
135
136 struct global_info {
137 u8 *data;
138
139 pthread_mutex_t startup_mutex;
140 pthread_cond_t startup_cond;
141 int nr_tasks_started;
142
143 pthread_mutex_t start_work_mutex;
144 pthread_cond_t start_work_cond;
145 int nr_tasks_working;
146 bool start_work;
147
148 pthread_mutex_t stop_work_mutex;
149 u64 bytes_done;
150
151 struct thread_data *threads;
152
153 /* Convergence latency measurement: */
154 bool all_converged;
155 bool stop_work;
156
157 int print_once;
158
159 struct params p;
160 };
161
162 static struct global_info *g = NULL;
163
164 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
165 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
166
167 struct params p0;
168
169 static const struct option options[] = {
170 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
171 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
172
173 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
174 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
175 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
176 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
177
178 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
179 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
180 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
181
182 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"),
183 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
184 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
185 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
186 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
187
188
189 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
190 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
191 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
192 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
193
194 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
195 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
196 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
197 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
198 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
199 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
200 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
201 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
202
203 /* Special option string parsing callbacks: */
204 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
205 "bind the first N tasks to these specific cpus (the rest is unbound)",
206 parse_cpus_opt),
207 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
208 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
209 parse_nodes_opt),
210 OPT_END()
211 };
212
213 static const char * const bench_numa_usage[] = {
214 "perf bench numa <options>",
215 NULL
216 };
217
218 static const char * const numa_usage[] = {
219 "perf bench numa mem [<options>]",
220 NULL
221 };
222
223 /*
224 * To get number of numa nodes present.
225 */
nr_numa_nodes(void)226 static int nr_numa_nodes(void)
227 {
228 int i, nr_nodes = 0;
229
230 for (i = 0; i < g->p.nr_nodes; i++) {
231 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
232 nr_nodes++;
233 }
234
235 return nr_nodes;
236 }
237
238 /*
239 * To check if given numa node is present.
240 */
is_node_present(int node)241 static int is_node_present(int node)
242 {
243 return numa_bitmask_isbitset(numa_nodes_ptr, node);
244 }
245
246 /*
247 * To check given numa node has cpus.
248 */
node_has_cpus(int node)249 static bool node_has_cpus(int node)
250 {
251 struct bitmask *cpumask = numa_allocate_cpumask();
252 bool ret = false; /* fall back to nocpus */
253 int cpu;
254
255 BUG_ON(!cpumask);
256 if (!numa_node_to_cpus(node, cpumask)) {
257 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
258 if (numa_bitmask_isbitset(cpumask, cpu)) {
259 ret = true;
260 break;
261 }
262 }
263 }
264 numa_free_cpumask(cpumask);
265
266 return ret;
267 }
268
bind_to_cpu(int target_cpu)269 static cpu_set_t bind_to_cpu(int target_cpu)
270 {
271 cpu_set_t orig_mask, mask;
272 int ret;
273
274 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
275 BUG_ON(ret);
276
277 CPU_ZERO(&mask);
278
279 if (target_cpu == -1) {
280 int cpu;
281
282 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
283 CPU_SET(cpu, &mask);
284 } else {
285 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
286 CPU_SET(target_cpu, &mask);
287 }
288
289 ret = sched_setaffinity(0, sizeof(mask), &mask);
290 BUG_ON(ret);
291
292 return orig_mask;
293 }
294
bind_to_node(int target_node)295 static cpu_set_t bind_to_node(int target_node)
296 {
297 cpu_set_t orig_mask, mask;
298 int cpu;
299 int ret;
300
301 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
302 BUG_ON(ret);
303
304 CPU_ZERO(&mask);
305
306 if (target_node == NUMA_NO_NODE) {
307 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
308 CPU_SET(cpu, &mask);
309 } else {
310 struct bitmask *cpumask = numa_allocate_cpumask();
311
312 BUG_ON(!cpumask);
313 if (!numa_node_to_cpus(target_node, cpumask)) {
314 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
315 if (numa_bitmask_isbitset(cpumask, cpu))
316 CPU_SET(cpu, &mask);
317 }
318 }
319 numa_free_cpumask(cpumask);
320 }
321
322 ret = sched_setaffinity(0, sizeof(mask), &mask);
323 BUG_ON(ret);
324
325 return orig_mask;
326 }
327
bind_to_cpumask(cpu_set_t mask)328 static void bind_to_cpumask(cpu_set_t mask)
329 {
330 int ret;
331
332 ret = sched_setaffinity(0, sizeof(mask), &mask);
333 BUG_ON(ret);
334 }
335
mempol_restore(void)336 static void mempol_restore(void)
337 {
338 int ret;
339
340 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
341
342 BUG_ON(ret);
343 }
344
bind_to_memnode(int node)345 static void bind_to_memnode(int node)
346 {
347 struct bitmask *node_mask;
348 int ret;
349
350 if (node == NUMA_NO_NODE)
351 return;
352
353 node_mask = numa_allocate_nodemask();
354 BUG_ON(!node_mask);
355
356 numa_bitmask_clearall(node_mask);
357 numa_bitmask_setbit(node_mask, node);
358
359 ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
360 dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
361
362 numa_bitmask_free(node_mask);
363 BUG_ON(ret);
364 }
365
366 #define HPSIZE (2*1024*1024)
367
368 #define set_taskname(fmt...) \
369 do { \
370 char name[20]; \
371 \
372 snprintf(name, 20, fmt); \
373 prctl(PR_SET_NAME, name); \
374 } while (0)
375
alloc_data(ssize_t bytes0,int map_flags,int init_zero,int init_cpu0,int thp,int init_random)376 static u8 *alloc_data(ssize_t bytes0, int map_flags,
377 int init_zero, int init_cpu0, int thp, int init_random)
378 {
379 cpu_set_t orig_mask;
380 ssize_t bytes;
381 u8 *buf;
382 int ret;
383
384 if (!bytes0)
385 return NULL;
386
387 /* Allocate and initialize all memory on CPU#0: */
388 if (init_cpu0) {
389 int node = numa_node_of_cpu(0);
390
391 orig_mask = bind_to_node(node);
392 bind_to_memnode(node);
393 }
394
395 bytes = bytes0 + HPSIZE;
396
397 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
398 BUG_ON(buf == (void *)-1);
399
400 if (map_flags == MAP_PRIVATE) {
401 if (thp > 0) {
402 ret = madvise(buf, bytes, MADV_HUGEPAGE);
403 if (ret && !g->print_once) {
404 g->print_once = 1;
405 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
406 }
407 }
408 if (thp < 0) {
409 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
410 if (ret && !g->print_once) {
411 g->print_once = 1;
412 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
413 }
414 }
415 }
416
417 if (init_zero) {
418 bzero(buf, bytes);
419 } else {
420 /* Initialize random contents, different in each word: */
421 if (init_random) {
422 u64 *wbuf = (void *)buf;
423 long off = rand();
424 long i;
425
426 for (i = 0; i < bytes/8; i++)
427 wbuf[i] = i + off;
428 }
429 }
430
431 /* Align to 2MB boundary: */
432 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
433
434 /* Restore affinity: */
435 if (init_cpu0) {
436 bind_to_cpumask(orig_mask);
437 mempol_restore();
438 }
439
440 return buf;
441 }
442
free_data(void * data,ssize_t bytes)443 static void free_data(void *data, ssize_t bytes)
444 {
445 int ret;
446
447 if (!data)
448 return;
449
450 ret = munmap(data, bytes);
451 BUG_ON(ret);
452 }
453
454 /*
455 * Create a shared memory buffer that can be shared between processes, zeroed:
456 */
zalloc_shared_data(ssize_t bytes)457 static void * zalloc_shared_data(ssize_t bytes)
458 {
459 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
460 }
461
462 /*
463 * Create a shared memory buffer that can be shared between processes:
464 */
setup_shared_data(ssize_t bytes)465 static void * setup_shared_data(ssize_t bytes)
466 {
467 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
468 }
469
470 /*
471 * Allocate process-local memory - this will either be shared between
472 * threads of this process, or only be accessed by this thread:
473 */
setup_private_data(ssize_t bytes)474 static void * setup_private_data(ssize_t bytes)
475 {
476 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
477 }
478
479 /*
480 * Return a process-shared (global) mutex:
481 */
init_global_mutex(pthread_mutex_t * mutex)482 static void init_global_mutex(pthread_mutex_t *mutex)
483 {
484 pthread_mutexattr_t attr;
485
486 pthread_mutexattr_init(&attr);
487 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
488 pthread_mutex_init(mutex, &attr);
489 }
490
491 /*
492 * Return a process-shared (global) condition variable:
493 */
init_global_cond(pthread_cond_t * cond)494 static void init_global_cond(pthread_cond_t *cond)
495 {
496 pthread_condattr_t attr;
497
498 pthread_condattr_init(&attr);
499 pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
500 pthread_cond_init(cond, &attr);
501 }
502
parse_cpu_list(const char * arg)503 static int parse_cpu_list(const char *arg)
504 {
505 p0.cpu_list_str = strdup(arg);
506
507 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
508
509 return 0;
510 }
511
parse_setup_cpu_list(void)512 static int parse_setup_cpu_list(void)
513 {
514 struct thread_data *td;
515 char *str0, *str;
516 int t;
517
518 if (!g->p.cpu_list_str)
519 return 0;
520
521 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
522
523 str0 = str = strdup(g->p.cpu_list_str);
524 t = 0;
525
526 BUG_ON(!str);
527
528 tprintf("# binding tasks to CPUs:\n");
529 tprintf("# ");
530
531 while (true) {
532 int bind_cpu, bind_cpu_0, bind_cpu_1;
533 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
534 int bind_len;
535 int step;
536 int mul;
537
538 tok = strsep(&str, ",");
539 if (!tok)
540 break;
541
542 tok_end = strstr(tok, "-");
543
544 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
545 if (!tok_end) {
546 /* Single CPU specified: */
547 bind_cpu_0 = bind_cpu_1 = atol(tok);
548 } else {
549 /* CPU range specified (for example: "5-11"): */
550 bind_cpu_0 = atol(tok);
551 bind_cpu_1 = atol(tok_end + 1);
552 }
553
554 step = 1;
555 tok_step = strstr(tok, "#");
556 if (tok_step) {
557 step = atol(tok_step + 1);
558 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
559 }
560
561 /*
562 * Mask length.
563 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
564 * where the _4 means the next 4 CPUs are allowed.
565 */
566 bind_len = 1;
567 tok_len = strstr(tok, "_");
568 if (tok_len) {
569 bind_len = atol(tok_len + 1);
570 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
571 }
572
573 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
574 mul = 1;
575 tok_mul = strstr(tok, "x");
576 if (tok_mul) {
577 mul = atol(tok_mul + 1);
578 BUG_ON(mul <= 0);
579 }
580
581 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
582
583 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
584 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
585 return -1;
586 }
587
588 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
589 BUG_ON(bind_cpu_0 > bind_cpu_1);
590
591 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
592 int i;
593
594 for (i = 0; i < mul; i++) {
595 int cpu;
596
597 if (t >= g->p.nr_tasks) {
598 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
599 goto out;
600 }
601 td = g->threads + t;
602
603 if (t)
604 tprintf(",");
605 if (bind_len > 1) {
606 tprintf("%2d/%d", bind_cpu, bind_len);
607 } else {
608 tprintf("%2d", bind_cpu);
609 }
610
611 CPU_ZERO(&td->bind_cpumask);
612 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
613 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
614 CPU_SET(cpu, &td->bind_cpumask);
615 }
616 t++;
617 }
618 }
619 }
620 out:
621
622 tprintf("\n");
623
624 if (t < g->p.nr_tasks)
625 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
626
627 free(str0);
628 return 0;
629 }
630
parse_cpus_opt(const struct option * opt __maybe_unused,const char * arg,int unset __maybe_unused)631 static int parse_cpus_opt(const struct option *opt __maybe_unused,
632 const char *arg, int unset __maybe_unused)
633 {
634 if (!arg)
635 return -1;
636
637 return parse_cpu_list(arg);
638 }
639
parse_node_list(const char * arg)640 static int parse_node_list(const char *arg)
641 {
642 p0.node_list_str = strdup(arg);
643
644 dprintf("got NODE list: {%s}\n", p0.node_list_str);
645
646 return 0;
647 }
648
parse_setup_node_list(void)649 static int parse_setup_node_list(void)
650 {
651 struct thread_data *td;
652 char *str0, *str;
653 int t;
654
655 if (!g->p.node_list_str)
656 return 0;
657
658 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
659
660 str0 = str = strdup(g->p.node_list_str);
661 t = 0;
662
663 BUG_ON(!str);
664
665 tprintf("# binding tasks to NODEs:\n");
666 tprintf("# ");
667
668 while (true) {
669 int bind_node, bind_node_0, bind_node_1;
670 char *tok, *tok_end, *tok_step, *tok_mul;
671 int step;
672 int mul;
673
674 tok = strsep(&str, ",");
675 if (!tok)
676 break;
677
678 tok_end = strstr(tok, "-");
679
680 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
681 if (!tok_end) {
682 /* Single NODE specified: */
683 bind_node_0 = bind_node_1 = atol(tok);
684 } else {
685 /* NODE range specified (for example: "5-11"): */
686 bind_node_0 = atol(tok);
687 bind_node_1 = atol(tok_end + 1);
688 }
689
690 step = 1;
691 tok_step = strstr(tok, "#");
692 if (tok_step) {
693 step = atol(tok_step + 1);
694 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
695 }
696
697 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
698 mul = 1;
699 tok_mul = strstr(tok, "x");
700 if (tok_mul) {
701 mul = atol(tok_mul + 1);
702 BUG_ON(mul <= 0);
703 }
704
705 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
706
707 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
708 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
709 return -1;
710 }
711
712 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
713 BUG_ON(bind_node_0 > bind_node_1);
714
715 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
716 int i;
717
718 for (i = 0; i < mul; i++) {
719 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
720 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
721 goto out;
722 }
723 td = g->threads + t;
724
725 if (!t)
726 tprintf(" %2d", bind_node);
727 else
728 tprintf(",%2d", bind_node);
729
730 td->bind_node = bind_node;
731 t++;
732 }
733 }
734 }
735 out:
736
737 tprintf("\n");
738
739 if (t < g->p.nr_tasks)
740 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
741
742 free(str0);
743 return 0;
744 }
745
parse_nodes_opt(const struct option * opt __maybe_unused,const char * arg,int unset __maybe_unused)746 static int parse_nodes_opt(const struct option *opt __maybe_unused,
747 const char *arg, int unset __maybe_unused)
748 {
749 if (!arg)
750 return -1;
751
752 return parse_node_list(arg);
753 }
754
755 #define BIT(x) (1ul << x)
756
lfsr_32(uint32_t lfsr)757 static inline uint32_t lfsr_32(uint32_t lfsr)
758 {
759 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
760 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
761 }
762
763 /*
764 * Make sure there's real data dependency to RAM (when read
765 * accesses are enabled), so the compiler, the CPU and the
766 * kernel (KSM, zero page, etc.) cannot optimize away RAM
767 * accesses:
768 */
access_data(u64 * data,u64 val)769 static inline u64 access_data(u64 *data, u64 val)
770 {
771 if (g->p.data_reads)
772 val += *data;
773 if (g->p.data_writes)
774 *data = val + 1;
775 return val;
776 }
777
778 /*
779 * The worker process does two types of work, a forwards going
780 * loop and a backwards going loop.
781 *
782 * We do this so that on multiprocessor systems we do not create
783 * a 'train' of processing, with highly synchronized processes,
784 * skewing the whole benchmark.
785 */
do_work(u8 * __data,long bytes,int nr,int nr_max,int loop,u64 val)786 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
787 {
788 long words = bytes/sizeof(u64);
789 u64 *data = (void *)__data;
790 long chunk_0, chunk_1;
791 u64 *d0, *d, *d1;
792 long off;
793 long i;
794
795 BUG_ON(!data && words);
796 BUG_ON(data && !words);
797
798 if (!data)
799 return val;
800
801 /* Very simple memset() work variant: */
802 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
803 bzero(data, bytes);
804 return val;
805 }
806
807 /* Spread out by PID/TID nr and by loop nr: */
808 chunk_0 = words/nr_max;
809 chunk_1 = words/g->p.nr_loops;
810 off = nr*chunk_0 + loop*chunk_1;
811
812 while (off >= words)
813 off -= words;
814
815 if (g->p.data_rand_walk) {
816 u32 lfsr = nr + loop + val;
817 int j;
818
819 for (i = 0; i < words/1024; i++) {
820 long start, end;
821
822 lfsr = lfsr_32(lfsr);
823
824 start = lfsr % words;
825 end = min(start + 1024, words-1);
826
827 if (g->p.data_zero_memset) {
828 bzero(data + start, (end-start) * sizeof(u64));
829 } else {
830 for (j = start; j < end; j++)
831 val = access_data(data + j, val);
832 }
833 }
834 } else if (!g->p.data_backwards || (nr + loop) & 1) {
835 /* Process data forwards: */
836
837 d0 = data + off;
838 d = data + off + 1;
839 d1 = data + words;
840
841 for (;;) {
842 if (unlikely(d >= d1))
843 d = data;
844 if (unlikely(d == d0))
845 break;
846
847 val = access_data(d, val);
848
849 d++;
850 }
851 } else {
852 /* Process data backwards: */
853
854 d0 = data + off;
855 d = data + off - 1;
856 d1 = data + words;
857
858 for (;;) {
859 if (unlikely(d < data))
860 d = data + words-1;
861 if (unlikely(d == d0))
862 break;
863
864 val = access_data(d, val);
865
866 d--;
867 }
868 }
869
870 return val;
871 }
872
update_curr_cpu(int task_nr,unsigned long bytes_worked)873 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
874 {
875 unsigned int cpu;
876
877 cpu = sched_getcpu();
878
879 g->threads[task_nr].curr_cpu = cpu;
880 prctl(0, bytes_worked);
881 }
882
883 /*
884 * Count the number of nodes a process's threads
885 * are spread out on.
886 *
887 * A count of 1 means that the process is compressed
888 * to a single node. A count of g->p.nr_nodes means it's
889 * spread out on the whole system.
890 */
count_process_nodes(int process_nr)891 static int count_process_nodes(int process_nr)
892 {
893 char *node_present;
894 int nodes;
895 int n, t;
896
897 node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
898 BUG_ON(!node_present);
899 for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
900 node_present[nodes] = 0;
901
902 for (t = 0; t < g->p.nr_threads; t++) {
903 struct thread_data *td;
904 int task_nr;
905 int node;
906
907 task_nr = process_nr*g->p.nr_threads + t;
908 td = g->threads + task_nr;
909
910 node = numa_node_of_cpu(td->curr_cpu);
911 if (node < 0) /* curr_cpu was likely still -1 */ {
912 free(node_present);
913 return 0;
914 }
915
916 node_present[node] = 1;
917 }
918
919 nodes = 0;
920
921 for (n = 0; n < g->p.nr_nodes; n++)
922 nodes += node_present[n];
923
924 free(node_present);
925 return nodes;
926 }
927
928 /*
929 * Count the number of distinct process-threads a node contains.
930 *
931 * A count of 1 means that the node contains only a single
932 * process. If all nodes on the system contain at most one
933 * process then we are well-converged.
934 */
count_node_processes(int node)935 static int count_node_processes(int node)
936 {
937 int processes = 0;
938 int t, p;
939
940 for (p = 0; p < g->p.nr_proc; p++) {
941 for (t = 0; t < g->p.nr_threads; t++) {
942 struct thread_data *td;
943 int task_nr;
944 int n;
945
946 task_nr = p*g->p.nr_threads + t;
947 td = g->threads + task_nr;
948
949 n = numa_node_of_cpu(td->curr_cpu);
950 if (n == node) {
951 processes++;
952 break;
953 }
954 }
955 }
956
957 return processes;
958 }
959
calc_convergence_compression(int * strong)960 static void calc_convergence_compression(int *strong)
961 {
962 unsigned int nodes_min, nodes_max;
963 int p;
964
965 nodes_min = -1;
966 nodes_max = 0;
967
968 for (p = 0; p < g->p.nr_proc; p++) {
969 unsigned int nodes = count_process_nodes(p);
970
971 if (!nodes) {
972 *strong = 0;
973 return;
974 }
975
976 nodes_min = min(nodes, nodes_min);
977 nodes_max = max(nodes, nodes_max);
978 }
979
980 /* Strong convergence: all threads compress on a single node: */
981 if (nodes_min == 1 && nodes_max == 1) {
982 *strong = 1;
983 } else {
984 *strong = 0;
985 tprintf(" {%d-%d}", nodes_min, nodes_max);
986 }
987 }
988
calc_convergence(double runtime_ns_max,double * convergence)989 static void calc_convergence(double runtime_ns_max, double *convergence)
990 {
991 unsigned int loops_done_min, loops_done_max;
992 int process_groups;
993 int *nodes;
994 int distance;
995 int nr_min;
996 int nr_max;
997 int strong;
998 int sum;
999 int nr;
1000 int node;
1001 int cpu;
1002 int t;
1003
1004 if (!g->p.show_convergence && !g->p.measure_convergence)
1005 return;
1006
1007 nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1008 BUG_ON(!nodes);
1009 for (node = 0; node < g->p.nr_nodes; node++)
1010 nodes[node] = 0;
1011
1012 loops_done_min = -1;
1013 loops_done_max = 0;
1014
1015 for (t = 0; t < g->p.nr_tasks; t++) {
1016 struct thread_data *td = g->threads + t;
1017 unsigned int loops_done;
1018
1019 cpu = td->curr_cpu;
1020
1021 /* Not all threads have written it yet: */
1022 if (cpu < 0)
1023 continue;
1024
1025 node = numa_node_of_cpu(cpu);
1026
1027 nodes[node]++;
1028
1029 loops_done = td->loops_done;
1030 loops_done_min = min(loops_done, loops_done_min);
1031 loops_done_max = max(loops_done, loops_done_max);
1032 }
1033
1034 nr_max = 0;
1035 nr_min = g->p.nr_tasks;
1036 sum = 0;
1037
1038 for (node = 0; node < g->p.nr_nodes; node++) {
1039 if (!is_node_present(node))
1040 continue;
1041 nr = nodes[node];
1042 nr_min = min(nr, nr_min);
1043 nr_max = max(nr, nr_max);
1044 sum += nr;
1045 }
1046 BUG_ON(nr_min > nr_max);
1047
1048 BUG_ON(sum > g->p.nr_tasks);
1049
1050 if (0 && (sum < g->p.nr_tasks)) {
1051 free(nodes);
1052 return;
1053 }
1054
1055 /*
1056 * Count the number of distinct process groups present
1057 * on nodes - when we are converged this will decrease
1058 * to g->p.nr_proc:
1059 */
1060 process_groups = 0;
1061
1062 for (node = 0; node < g->p.nr_nodes; node++) {
1063 int processes;
1064
1065 if (!is_node_present(node))
1066 continue;
1067 processes = count_node_processes(node);
1068 nr = nodes[node];
1069 tprintf(" %2d/%-2d", nr, processes);
1070
1071 process_groups += processes;
1072 }
1073
1074 distance = nr_max - nr_min;
1075
1076 tprintf(" [%2d/%-2d]", distance, process_groups);
1077
1078 tprintf(" l:%3d-%-3d (%3d)",
1079 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1080
1081 if (loops_done_min && loops_done_max) {
1082 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1083
1084 tprintf(" [%4.1f%%]", skew * 100.0);
1085 }
1086
1087 calc_convergence_compression(&strong);
1088
1089 if (strong && process_groups == g->p.nr_proc) {
1090 if (!*convergence) {
1091 *convergence = runtime_ns_max;
1092 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1093 if (g->p.measure_convergence) {
1094 g->all_converged = true;
1095 g->stop_work = true;
1096 }
1097 }
1098 } else {
1099 if (*convergence) {
1100 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1101 *convergence = 0;
1102 }
1103 tprintf("\n");
1104 }
1105
1106 free(nodes);
1107 }
1108
show_summary(double runtime_ns_max,int l,double * convergence)1109 static void show_summary(double runtime_ns_max, int l, double *convergence)
1110 {
1111 tprintf("\r # %5.1f%% [%.1f mins]",
1112 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1113
1114 calc_convergence(runtime_ns_max, convergence);
1115
1116 if (g->p.show_details >= 0)
1117 fflush(stdout);
1118 }
1119
worker_thread(void * __tdata)1120 static void *worker_thread(void *__tdata)
1121 {
1122 struct thread_data *td = __tdata;
1123 struct timeval start0, start, stop, diff;
1124 int process_nr = td->process_nr;
1125 int thread_nr = td->thread_nr;
1126 unsigned long last_perturbance;
1127 int task_nr = td->task_nr;
1128 int details = g->p.show_details;
1129 int first_task, last_task;
1130 double convergence = 0;
1131 u64 val = td->val;
1132 double runtime_ns_max;
1133 u8 *global_data;
1134 u8 *process_data;
1135 u8 *thread_data;
1136 u64 bytes_done, secs;
1137 long work_done;
1138 u32 l;
1139 struct rusage rusage;
1140
1141 bind_to_cpumask(td->bind_cpumask);
1142 bind_to_memnode(td->bind_node);
1143
1144 set_taskname("thread %d/%d", process_nr, thread_nr);
1145
1146 global_data = g->data;
1147 process_data = td->process_data;
1148 thread_data = setup_private_data(g->p.bytes_thread);
1149
1150 bytes_done = 0;
1151
1152 last_task = 0;
1153 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1154 last_task = 1;
1155
1156 first_task = 0;
1157 if (process_nr == 0 && thread_nr == 0)
1158 first_task = 1;
1159
1160 if (details >= 2) {
1161 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1162 process_nr, thread_nr, global_data, process_data, thread_data);
1163 }
1164
1165 if (g->p.serialize_startup) {
1166 pthread_mutex_lock(&g->startup_mutex);
1167 g->nr_tasks_started++;
1168 /* The last thread wakes the main process. */
1169 if (g->nr_tasks_started == g->p.nr_tasks)
1170 pthread_cond_signal(&g->startup_cond);
1171
1172 pthread_mutex_unlock(&g->startup_mutex);
1173
1174 /* Here we will wait for the main process to start us all at once: */
1175 pthread_mutex_lock(&g->start_work_mutex);
1176 g->start_work = false;
1177 g->nr_tasks_working++;
1178 while (!g->start_work)
1179 pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex);
1180
1181 pthread_mutex_unlock(&g->start_work_mutex);
1182 }
1183
1184 gettimeofday(&start0, NULL);
1185
1186 start = stop = start0;
1187 last_perturbance = start.tv_sec;
1188
1189 for (l = 0; l < g->p.nr_loops; l++) {
1190 start = stop;
1191
1192 if (g->stop_work)
1193 break;
1194
1195 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1196 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1197 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1198
1199 if (g->p.sleep_usecs) {
1200 pthread_mutex_lock(td->process_lock);
1201 usleep(g->p.sleep_usecs);
1202 pthread_mutex_unlock(td->process_lock);
1203 }
1204 /*
1205 * Amount of work to be done under a process-global lock:
1206 */
1207 if (g->p.bytes_process_locked) {
1208 pthread_mutex_lock(td->process_lock);
1209 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1210 pthread_mutex_unlock(td->process_lock);
1211 }
1212
1213 work_done = g->p.bytes_global + g->p.bytes_process +
1214 g->p.bytes_process_locked + g->p.bytes_thread;
1215
1216 update_curr_cpu(task_nr, work_done);
1217 bytes_done += work_done;
1218
1219 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1220 continue;
1221
1222 td->loops_done = l;
1223
1224 gettimeofday(&stop, NULL);
1225
1226 /* Check whether our max runtime timed out: */
1227 if (g->p.nr_secs) {
1228 timersub(&stop, &start0, &diff);
1229 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1230 g->stop_work = true;
1231 break;
1232 }
1233 }
1234
1235 /* Update the summary at most once per second: */
1236 if (start.tv_sec == stop.tv_sec)
1237 continue;
1238
1239 /*
1240 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1241 * by migrating to CPU#0:
1242 */
1243 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1244 cpu_set_t orig_mask;
1245 int target_cpu;
1246 int this_cpu;
1247
1248 last_perturbance = stop.tv_sec;
1249
1250 /*
1251 * Depending on where we are running, move into
1252 * the other half of the system, to create some
1253 * real disturbance:
1254 */
1255 this_cpu = g->threads[task_nr].curr_cpu;
1256 if (this_cpu < g->p.nr_cpus/2)
1257 target_cpu = g->p.nr_cpus-1;
1258 else
1259 target_cpu = 0;
1260
1261 orig_mask = bind_to_cpu(target_cpu);
1262
1263 /* Here we are running on the target CPU already */
1264 if (details >= 1)
1265 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1266
1267 bind_to_cpumask(orig_mask);
1268 }
1269
1270 if (details >= 3) {
1271 timersub(&stop, &start, &diff);
1272 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1273 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1274
1275 if (details >= 0) {
1276 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1277 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1278 }
1279 fflush(stdout);
1280 }
1281 if (!last_task)
1282 continue;
1283
1284 timersub(&stop, &start0, &diff);
1285 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1286 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1287
1288 show_summary(runtime_ns_max, l, &convergence);
1289 }
1290
1291 gettimeofday(&stop, NULL);
1292 timersub(&stop, &start0, &diff);
1293 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1294 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1295 secs = td->runtime_ns / NSEC_PER_SEC;
1296 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1297
1298 getrusage(RUSAGE_THREAD, &rusage);
1299 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1300 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1301 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1302 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1303
1304 free_data(thread_data, g->p.bytes_thread);
1305
1306 pthread_mutex_lock(&g->stop_work_mutex);
1307 g->bytes_done += bytes_done;
1308 pthread_mutex_unlock(&g->stop_work_mutex);
1309
1310 return NULL;
1311 }
1312
1313 /*
1314 * A worker process starts a couple of threads:
1315 */
worker_process(int process_nr)1316 static void worker_process(int process_nr)
1317 {
1318 pthread_mutex_t process_lock;
1319 struct thread_data *td;
1320 pthread_t *pthreads;
1321 u8 *process_data;
1322 int task_nr;
1323 int ret;
1324 int t;
1325
1326 pthread_mutex_init(&process_lock, NULL);
1327 set_taskname("process %d", process_nr);
1328
1329 /*
1330 * Pick up the memory policy and the CPU binding of our first thread,
1331 * so that we initialize memory accordingly:
1332 */
1333 task_nr = process_nr*g->p.nr_threads;
1334 td = g->threads + task_nr;
1335
1336 bind_to_memnode(td->bind_node);
1337 bind_to_cpumask(td->bind_cpumask);
1338
1339 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1340 process_data = setup_private_data(g->p.bytes_process);
1341
1342 if (g->p.show_details >= 3) {
1343 printf(" # process %2d global mem: %p, process mem: %p\n",
1344 process_nr, g->data, process_data);
1345 }
1346
1347 for (t = 0; t < g->p.nr_threads; t++) {
1348 task_nr = process_nr*g->p.nr_threads + t;
1349 td = g->threads + task_nr;
1350
1351 td->process_data = process_data;
1352 td->process_nr = process_nr;
1353 td->thread_nr = t;
1354 td->task_nr = task_nr;
1355 td->val = rand();
1356 td->curr_cpu = -1;
1357 td->process_lock = &process_lock;
1358
1359 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1360 BUG_ON(ret);
1361 }
1362
1363 for (t = 0; t < g->p.nr_threads; t++) {
1364 ret = pthread_join(pthreads[t], NULL);
1365 BUG_ON(ret);
1366 }
1367
1368 free_data(process_data, g->p.bytes_process);
1369 free(pthreads);
1370 }
1371
print_summary(void)1372 static void print_summary(void)
1373 {
1374 if (g->p.show_details < 0)
1375 return;
1376
1377 printf("\n ###\n");
1378 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1379 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1380 printf(" # %5dx %5ldMB global shared mem operations\n",
1381 g->p.nr_loops, g->p.bytes_global/1024/1024);
1382 printf(" # %5dx %5ldMB process shared mem operations\n",
1383 g->p.nr_loops, g->p.bytes_process/1024/1024);
1384 printf(" # %5dx %5ldMB thread local mem operations\n",
1385 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1386
1387 printf(" ###\n");
1388
1389 printf("\n ###\n"); fflush(stdout);
1390 }
1391
init_thread_data(void)1392 static void init_thread_data(void)
1393 {
1394 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1395 int t;
1396
1397 g->threads = zalloc_shared_data(size);
1398
1399 for (t = 0; t < g->p.nr_tasks; t++) {
1400 struct thread_data *td = g->threads + t;
1401 int cpu;
1402
1403 /* Allow all nodes by default: */
1404 td->bind_node = NUMA_NO_NODE;
1405
1406 /* Allow all CPUs by default: */
1407 CPU_ZERO(&td->bind_cpumask);
1408 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1409 CPU_SET(cpu, &td->bind_cpumask);
1410 }
1411 }
1412
deinit_thread_data(void)1413 static void deinit_thread_data(void)
1414 {
1415 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1416
1417 free_data(g->threads, size);
1418 }
1419
init(void)1420 static int init(void)
1421 {
1422 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1423
1424 /* Copy over options: */
1425 g->p = p0;
1426
1427 g->p.nr_cpus = numa_num_configured_cpus();
1428
1429 g->p.nr_nodes = numa_max_node() + 1;
1430
1431 /* char array in count_process_nodes(): */
1432 BUG_ON(g->p.nr_nodes < 0);
1433
1434 if (g->p.show_quiet && !g->p.show_details)
1435 g->p.show_details = -1;
1436
1437 /* Some memory should be specified: */
1438 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1439 return -1;
1440
1441 if (g->p.mb_global_str) {
1442 g->p.mb_global = atof(g->p.mb_global_str);
1443 BUG_ON(g->p.mb_global < 0);
1444 }
1445
1446 if (g->p.mb_proc_str) {
1447 g->p.mb_proc = atof(g->p.mb_proc_str);
1448 BUG_ON(g->p.mb_proc < 0);
1449 }
1450
1451 if (g->p.mb_proc_locked_str) {
1452 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1453 BUG_ON(g->p.mb_proc_locked < 0);
1454 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1455 }
1456
1457 if (g->p.mb_thread_str) {
1458 g->p.mb_thread = atof(g->p.mb_thread_str);
1459 BUG_ON(g->p.mb_thread < 0);
1460 }
1461
1462 BUG_ON(g->p.nr_threads <= 0);
1463 BUG_ON(g->p.nr_proc <= 0);
1464
1465 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1466
1467 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1468 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1469 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1470 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1471
1472 g->data = setup_shared_data(g->p.bytes_global);
1473
1474 /* Startup serialization: */
1475 init_global_mutex(&g->start_work_mutex);
1476 init_global_cond(&g->start_work_cond);
1477 init_global_mutex(&g->startup_mutex);
1478 init_global_cond(&g->startup_cond);
1479 init_global_mutex(&g->stop_work_mutex);
1480
1481 init_thread_data();
1482
1483 tprintf("#\n");
1484 if (parse_setup_cpu_list() || parse_setup_node_list())
1485 return -1;
1486 tprintf("#\n");
1487
1488 print_summary();
1489
1490 return 0;
1491 }
1492
deinit(void)1493 static void deinit(void)
1494 {
1495 free_data(g->data, g->p.bytes_global);
1496 g->data = NULL;
1497
1498 deinit_thread_data();
1499
1500 free_data(g, sizeof(*g));
1501 g = NULL;
1502 }
1503
1504 /*
1505 * Print a short or long result, depending on the verbosity setting:
1506 */
print_res(const char * name,double val,const char * txt_unit,const char * txt_short,const char * txt_long)1507 static void print_res(const char *name, double val,
1508 const char *txt_unit, const char *txt_short, const char *txt_long)
1509 {
1510 if (!name)
1511 name = "main,";
1512
1513 if (!g->p.show_quiet)
1514 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1515 else
1516 printf(" %14.3f %s\n", val, txt_long);
1517 }
1518
__bench_numa(const char * name)1519 static int __bench_numa(const char *name)
1520 {
1521 struct timeval start, stop, diff;
1522 u64 runtime_ns_min, runtime_ns_sum;
1523 pid_t *pids, pid, wpid;
1524 double delta_runtime;
1525 double runtime_avg;
1526 double runtime_sec_max;
1527 double runtime_sec_min;
1528 int wait_stat;
1529 double bytes;
1530 int i, t, p;
1531
1532 if (init())
1533 return -1;
1534
1535 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1536 pid = -1;
1537
1538 if (g->p.serialize_startup) {
1539 tprintf(" #\n");
1540 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1541 }
1542
1543 gettimeofday(&start, NULL);
1544
1545 for (i = 0; i < g->p.nr_proc; i++) {
1546 pid = fork();
1547 dprintf(" # process %2d: PID %d\n", i, pid);
1548
1549 BUG_ON(pid < 0);
1550 if (!pid) {
1551 /* Child process: */
1552 worker_process(i);
1553
1554 exit(0);
1555 }
1556 pids[i] = pid;
1557
1558 }
1559
1560 if (g->p.serialize_startup) {
1561 bool threads_ready = false;
1562 double startup_sec;
1563
1564 /*
1565 * Wait for all the threads to start up. The last thread will
1566 * signal this process.
1567 */
1568 pthread_mutex_lock(&g->startup_mutex);
1569 while (g->nr_tasks_started != g->p.nr_tasks)
1570 pthread_cond_wait(&g->startup_cond, &g->startup_mutex);
1571
1572 pthread_mutex_unlock(&g->startup_mutex);
1573
1574 /* Wait for all threads to be at the start_work_cond. */
1575 while (!threads_ready) {
1576 pthread_mutex_lock(&g->start_work_mutex);
1577 threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1578 pthread_mutex_unlock(&g->start_work_mutex);
1579 if (!threads_ready)
1580 usleep(1);
1581 }
1582
1583 gettimeofday(&stop, NULL);
1584
1585 timersub(&stop, &start, &diff);
1586
1587 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1588 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1589 startup_sec /= NSEC_PER_SEC;
1590
1591 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1592 tprintf(" #\n");
1593
1594 start = stop;
1595 /* Start all threads running. */
1596 pthread_mutex_lock(&g->start_work_mutex);
1597 g->start_work = true;
1598 pthread_mutex_unlock(&g->start_work_mutex);
1599 pthread_cond_broadcast(&g->start_work_cond);
1600 } else {
1601 gettimeofday(&start, NULL);
1602 }
1603
1604 /* Parent process: */
1605
1606
1607 for (i = 0; i < g->p.nr_proc; i++) {
1608 wpid = waitpid(pids[i], &wait_stat, 0);
1609 BUG_ON(wpid < 0);
1610 BUG_ON(!WIFEXITED(wait_stat));
1611
1612 }
1613
1614 runtime_ns_sum = 0;
1615 runtime_ns_min = -1LL;
1616
1617 for (t = 0; t < g->p.nr_tasks; t++) {
1618 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1619
1620 runtime_ns_sum += thread_runtime_ns;
1621 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1622 }
1623
1624 gettimeofday(&stop, NULL);
1625 timersub(&stop, &start, &diff);
1626
1627 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1628
1629 tprintf("\n ###\n");
1630 tprintf("\n");
1631
1632 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1633 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1634 runtime_sec_max /= NSEC_PER_SEC;
1635
1636 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1637
1638 bytes = g->bytes_done;
1639 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1640
1641 if (g->p.measure_convergence) {
1642 print_res(name, runtime_sec_max,
1643 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1644 }
1645
1646 print_res(name, runtime_sec_max,
1647 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1648
1649 print_res(name, runtime_sec_min,
1650 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1651
1652 print_res(name, runtime_avg,
1653 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1654
1655 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1656 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1657 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1658
1659 print_res(name, bytes / g->p.nr_tasks / 1e9,
1660 "GB,", "data/thread", "GB data processed, per thread");
1661
1662 print_res(name, bytes / 1e9,
1663 "GB,", "data-total", "GB data processed, total");
1664
1665 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1666 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1667
1668 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1669 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1670
1671 print_res(name, bytes / runtime_sec_max / 1e9,
1672 "GB/sec,", "total-speed", "GB/sec total speed");
1673
1674 if (g->p.show_details >= 2) {
1675 char tname[14 + 2 * 10 + 1];
1676 struct thread_data *td;
1677 for (p = 0; p < g->p.nr_proc; p++) {
1678 for (t = 0; t < g->p.nr_threads; t++) {
1679 memset(tname, 0, sizeof(tname));
1680 td = g->threads + p*g->p.nr_threads + t;
1681 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1682 print_res(tname, td->speed_gbs,
1683 "GB/sec", "thread-speed", "GB/sec/thread speed");
1684 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1685 "secs", "thread-system-time", "system CPU time/thread");
1686 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1687 "secs", "thread-user-time", "user CPU time/thread");
1688 }
1689 }
1690 }
1691
1692 free(pids);
1693
1694 deinit();
1695
1696 return 0;
1697 }
1698
1699 #define MAX_ARGS 50
1700
command_size(const char ** argv)1701 static int command_size(const char **argv)
1702 {
1703 int size = 0;
1704
1705 while (*argv) {
1706 size++;
1707 argv++;
1708 }
1709
1710 BUG_ON(size >= MAX_ARGS);
1711
1712 return size;
1713 }
1714
init_params(struct params * p,const char * name,int argc,const char ** argv)1715 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1716 {
1717 int i;
1718
1719 printf("\n # Running %s \"perf bench numa", name);
1720
1721 for (i = 0; i < argc; i++)
1722 printf(" %s", argv[i]);
1723
1724 printf("\"\n");
1725
1726 memset(p, 0, sizeof(*p));
1727
1728 /* Initialize nonzero defaults: */
1729
1730 p->serialize_startup = 1;
1731 p->data_reads = true;
1732 p->data_writes = true;
1733 p->data_backwards = true;
1734 p->data_rand_walk = true;
1735 p->nr_loops = -1;
1736 p->init_random = true;
1737 p->mb_global_str = "1";
1738 p->nr_proc = 1;
1739 p->nr_threads = 1;
1740 p->nr_secs = 5;
1741 p->run_all = argc == 1;
1742 }
1743
run_bench_numa(const char * name,const char ** argv)1744 static int run_bench_numa(const char *name, const char **argv)
1745 {
1746 int argc = command_size(argv);
1747
1748 init_params(&p0, name, argc, argv);
1749 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1750 if (argc)
1751 goto err;
1752
1753 if (__bench_numa(name))
1754 goto err;
1755
1756 return 0;
1757
1758 err:
1759 return -1;
1760 }
1761
1762 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1763 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1764
1765 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1766 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1767
1768 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1769 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1770
1771 /*
1772 * The built-in test-suite executed by "perf bench numa -a".
1773 *
1774 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1775 */
1776 static const char *tests[][MAX_ARGS] = {
1777 /* Basic single-stream NUMA bandwidth measurements: */
1778 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1779 "-C" , "0", "-M", "0", OPT_BW_RAM },
1780 { "RAM-bw-local-NOTHP,",
1781 "mem", "-p", "1", "-t", "1", "-P", "1024",
1782 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1783 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1784 "-C" , "0", "-M", "1", OPT_BW_RAM },
1785
1786 /* 2-stream NUMA bandwidth measurements: */
1787 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1788 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1789 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1790 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1791
1792 /* Cross-stream NUMA bandwidth measurement: */
1793 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1794 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1795
1796 /* Convergence latency measurements: */
1797 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1798 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1799 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1800 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV },
1801 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1802 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1803 { " 4x4-convergence-NOTHP,",
1804 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1805 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1806 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1807 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1808 { " 8x4-convergence-NOTHP,",
1809 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1810 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1811 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1812 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1813 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1814 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1815
1816 /* Various NUMA process/thread layout bandwidth measurements: */
1817 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1818 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1819 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1820 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1821 { " 8x1-bw-process-NOTHP,",
1822 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1823 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1824
1825 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1826 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1827 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1828 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1829
1830 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1831 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1832 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1833 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1834 { " 4x8-bw-process-NOTHP,",
1835 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1836 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1837 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1838
1839 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1840 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1841
1842 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1843 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1844 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1845 { "numa01-bw-thread-NOTHP,",
1846 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1847 };
1848
bench_all(void)1849 static int bench_all(void)
1850 {
1851 int nr = ARRAY_SIZE(tests);
1852 int ret;
1853 int i;
1854
1855 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1856 BUG_ON(ret < 0);
1857
1858 for (i = 0; i < nr; i++) {
1859 run_bench_numa(tests[i][0], tests[i] + 1);
1860 }
1861
1862 printf("\n");
1863
1864 return 0;
1865 }
1866
bench_numa(int argc,const char ** argv)1867 int bench_numa(int argc, const char **argv)
1868 {
1869 init_params(&p0, "main,", argc, argv);
1870 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1871 if (argc)
1872 goto err;
1873
1874 if (p0.run_all)
1875 return bench_all();
1876
1877 if (__bench_numa(NULL))
1878 goto err;
1879
1880 return 0;
1881
1882 err:
1883 usage_with_options(numa_usage, options);
1884 return -1;
1885 }
1886