1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * cs53l30.c -- CS53l30 ALSA Soc Audio driver
4 *
5 * Copyright 2015 Cirrus Logic, Inc.
6 *
7 * Authors: Paul Handrigan <Paul.Handrigan@cirrus.com>,
8 * Tim Howe <Tim.Howe@cirrus.com>
9 */
10
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/i2c.h>
14 #include <linux/module.h>
15 #include <linux/of_gpio.h>
16 #include <linux/gpio/consumer.h>
17 #include <linux/regulator/consumer.h>
18 #include <sound/pcm_params.h>
19 #include <sound/soc.h>
20 #include <sound/tlv.h>
21
22 #include "cs53l30.h"
23 #include "cirrus_legacy.h"
24
25 #define CS53L30_NUM_SUPPLIES 2
26 static const char *const cs53l30_supply_names[CS53L30_NUM_SUPPLIES] = {
27 "VA",
28 "VP",
29 };
30
31 struct cs53l30_private {
32 struct regulator_bulk_data supplies[CS53L30_NUM_SUPPLIES];
33 struct regmap *regmap;
34 struct gpio_desc *reset_gpio;
35 struct gpio_desc *mute_gpio;
36 struct clk *mclk;
37 bool use_sdout2;
38 u32 mclk_rate;
39 };
40
41 static const struct reg_default cs53l30_reg_defaults[] = {
42 { CS53L30_PWRCTL, CS53L30_PWRCTL_DEFAULT },
43 { CS53L30_MCLKCTL, CS53L30_MCLKCTL_DEFAULT },
44 { CS53L30_INT_SR_CTL, CS53L30_INT_SR_CTL_DEFAULT },
45 { CS53L30_MICBIAS_CTL, CS53L30_MICBIAS_CTL_DEFAULT },
46 { CS53L30_ASPCFG_CTL, CS53L30_ASPCFG_CTL_DEFAULT },
47 { CS53L30_ASP_CTL1, CS53L30_ASP_CTL1_DEFAULT },
48 { CS53L30_ASP_TDMTX_CTL1, CS53L30_ASP_TDMTX_CTLx_DEFAULT },
49 { CS53L30_ASP_TDMTX_CTL2, CS53L30_ASP_TDMTX_CTLx_DEFAULT },
50 { CS53L30_ASP_TDMTX_CTL3, CS53L30_ASP_TDMTX_CTLx_DEFAULT },
51 { CS53L30_ASP_TDMTX_CTL4, CS53L30_ASP_TDMTX_CTLx_DEFAULT },
52 { CS53L30_ASP_TDMTX_EN1, CS53L30_ASP_TDMTX_ENx_DEFAULT },
53 { CS53L30_ASP_TDMTX_EN2, CS53L30_ASP_TDMTX_ENx_DEFAULT },
54 { CS53L30_ASP_TDMTX_EN3, CS53L30_ASP_TDMTX_ENx_DEFAULT },
55 { CS53L30_ASP_TDMTX_EN4, CS53L30_ASP_TDMTX_ENx_DEFAULT },
56 { CS53L30_ASP_TDMTX_EN5, CS53L30_ASP_TDMTX_ENx_DEFAULT },
57 { CS53L30_ASP_TDMTX_EN6, CS53L30_ASP_TDMTX_ENx_DEFAULT },
58 { CS53L30_ASP_CTL2, CS53L30_ASP_CTL2_DEFAULT },
59 { CS53L30_SFT_RAMP, CS53L30_SFT_RMP_DEFAULT },
60 { CS53L30_LRCK_CTL1, CS53L30_LRCK_CTLx_DEFAULT },
61 { CS53L30_LRCK_CTL2, CS53L30_LRCK_CTLx_DEFAULT },
62 { CS53L30_MUTEP_CTL1, CS53L30_MUTEP_CTL1_DEFAULT },
63 { CS53L30_MUTEP_CTL2, CS53L30_MUTEP_CTL2_DEFAULT },
64 { CS53L30_INBIAS_CTL1, CS53L30_INBIAS_CTL1_DEFAULT },
65 { CS53L30_INBIAS_CTL2, CS53L30_INBIAS_CTL2_DEFAULT },
66 { CS53L30_DMIC1_STR_CTL, CS53L30_DMIC1_STR_CTL_DEFAULT },
67 { CS53L30_DMIC2_STR_CTL, CS53L30_DMIC2_STR_CTL_DEFAULT },
68 { CS53L30_ADCDMIC1_CTL1, CS53L30_ADCDMICx_CTL1_DEFAULT },
69 { CS53L30_ADCDMIC1_CTL2, CS53L30_ADCDMIC1_CTL2_DEFAULT },
70 { CS53L30_ADC1_CTL3, CS53L30_ADCx_CTL3_DEFAULT },
71 { CS53L30_ADC1_NG_CTL, CS53L30_ADCx_NG_CTL_DEFAULT },
72 { CS53L30_ADC1A_AFE_CTL, CS53L30_ADCxy_AFE_CTL_DEFAULT },
73 { CS53L30_ADC1B_AFE_CTL, CS53L30_ADCxy_AFE_CTL_DEFAULT },
74 { CS53L30_ADC1A_DIG_VOL, CS53L30_ADCxy_DIG_VOL_DEFAULT },
75 { CS53L30_ADC1B_DIG_VOL, CS53L30_ADCxy_DIG_VOL_DEFAULT },
76 { CS53L30_ADCDMIC2_CTL1, CS53L30_ADCDMICx_CTL1_DEFAULT },
77 { CS53L30_ADCDMIC2_CTL2, CS53L30_ADCDMIC1_CTL2_DEFAULT },
78 { CS53L30_ADC2_CTL3, CS53L30_ADCx_CTL3_DEFAULT },
79 { CS53L30_ADC2_NG_CTL, CS53L30_ADCx_NG_CTL_DEFAULT },
80 { CS53L30_ADC2A_AFE_CTL, CS53L30_ADCxy_AFE_CTL_DEFAULT },
81 { CS53L30_ADC2B_AFE_CTL, CS53L30_ADCxy_AFE_CTL_DEFAULT },
82 { CS53L30_ADC2A_DIG_VOL, CS53L30_ADCxy_DIG_VOL_DEFAULT },
83 { CS53L30_ADC2B_DIG_VOL, CS53L30_ADCxy_DIG_VOL_DEFAULT },
84 { CS53L30_INT_MASK, CS53L30_DEVICE_INT_MASK },
85 };
86
cs53l30_volatile_register(struct device * dev,unsigned int reg)87 static bool cs53l30_volatile_register(struct device *dev, unsigned int reg)
88 {
89 if (reg == CS53L30_IS)
90 return true;
91 else
92 return false;
93 }
94
cs53l30_writeable_register(struct device * dev,unsigned int reg)95 static bool cs53l30_writeable_register(struct device *dev, unsigned int reg)
96 {
97 switch (reg) {
98 case CS53L30_DEVID_AB:
99 case CS53L30_DEVID_CD:
100 case CS53L30_DEVID_E:
101 case CS53L30_REVID:
102 case CS53L30_IS:
103 return false;
104 default:
105 return true;
106 }
107 }
108
cs53l30_readable_register(struct device * dev,unsigned int reg)109 static bool cs53l30_readable_register(struct device *dev, unsigned int reg)
110 {
111 switch (reg) {
112 case CS53L30_DEVID_AB:
113 case CS53L30_DEVID_CD:
114 case CS53L30_DEVID_E:
115 case CS53L30_REVID:
116 case CS53L30_PWRCTL:
117 case CS53L30_MCLKCTL:
118 case CS53L30_INT_SR_CTL:
119 case CS53L30_MICBIAS_CTL:
120 case CS53L30_ASPCFG_CTL:
121 case CS53L30_ASP_CTL1:
122 case CS53L30_ASP_TDMTX_CTL1:
123 case CS53L30_ASP_TDMTX_CTL2:
124 case CS53L30_ASP_TDMTX_CTL3:
125 case CS53L30_ASP_TDMTX_CTL4:
126 case CS53L30_ASP_TDMTX_EN1:
127 case CS53L30_ASP_TDMTX_EN2:
128 case CS53L30_ASP_TDMTX_EN3:
129 case CS53L30_ASP_TDMTX_EN4:
130 case CS53L30_ASP_TDMTX_EN5:
131 case CS53L30_ASP_TDMTX_EN6:
132 case CS53L30_ASP_CTL2:
133 case CS53L30_SFT_RAMP:
134 case CS53L30_LRCK_CTL1:
135 case CS53L30_LRCK_CTL2:
136 case CS53L30_MUTEP_CTL1:
137 case CS53L30_MUTEP_CTL2:
138 case CS53L30_INBIAS_CTL1:
139 case CS53L30_INBIAS_CTL2:
140 case CS53L30_DMIC1_STR_CTL:
141 case CS53L30_DMIC2_STR_CTL:
142 case CS53L30_ADCDMIC1_CTL1:
143 case CS53L30_ADCDMIC1_CTL2:
144 case CS53L30_ADC1_CTL3:
145 case CS53L30_ADC1_NG_CTL:
146 case CS53L30_ADC1A_AFE_CTL:
147 case CS53L30_ADC1B_AFE_CTL:
148 case CS53L30_ADC1A_DIG_VOL:
149 case CS53L30_ADC1B_DIG_VOL:
150 case CS53L30_ADCDMIC2_CTL1:
151 case CS53L30_ADCDMIC2_CTL2:
152 case CS53L30_ADC2_CTL3:
153 case CS53L30_ADC2_NG_CTL:
154 case CS53L30_ADC2A_AFE_CTL:
155 case CS53L30_ADC2B_AFE_CTL:
156 case CS53L30_ADC2A_DIG_VOL:
157 case CS53L30_ADC2B_DIG_VOL:
158 case CS53L30_INT_MASK:
159 return true;
160 default:
161 return false;
162 }
163 }
164
165 static DECLARE_TLV_DB_SCALE(adc_boost_tlv, 0, 2000, 0);
166 static DECLARE_TLV_DB_SCALE(adc_ng_boost_tlv, 0, 3000, 0);
167 static DECLARE_TLV_DB_SCALE(pga_tlv, -600, 50, 0);
168 static DECLARE_TLV_DB_SCALE(dig_tlv, -9600, 100, 1);
169 static DECLARE_TLV_DB_SCALE(pga_preamp_tlv, 0, 10000, 0);
170
171 static const char * const input1_sel_text[] = {
172 "DMIC1 On AB In",
173 "DMIC1 On A In",
174 "DMIC1 On B In",
175 "ADC1 On AB In",
176 "ADC1 On A In",
177 "ADC1 On B In",
178 "DMIC1 Off ADC1 Off",
179 };
180
181 static unsigned int const input1_sel_values[] = {
182 CS53L30_CH_TYPE,
183 CS53L30_ADCxB_PDN | CS53L30_CH_TYPE,
184 CS53L30_ADCxA_PDN | CS53L30_CH_TYPE,
185 CS53L30_DMICx_PDN,
186 CS53L30_ADCxB_PDN | CS53L30_DMICx_PDN,
187 CS53L30_ADCxA_PDN | CS53L30_DMICx_PDN,
188 CS53L30_ADCxA_PDN | CS53L30_ADCxB_PDN | CS53L30_DMICx_PDN,
189 };
190
191 static const char * const input2_sel_text[] = {
192 "DMIC2 On AB In",
193 "DMIC2 On A In",
194 "DMIC2 On B In",
195 "ADC2 On AB In",
196 "ADC2 On A In",
197 "ADC2 On B In",
198 "DMIC2 Off ADC2 Off",
199 };
200
201 static unsigned int const input2_sel_values[] = {
202 0x0,
203 CS53L30_ADCxB_PDN,
204 CS53L30_ADCxA_PDN,
205 CS53L30_DMICx_PDN,
206 CS53L30_ADCxB_PDN | CS53L30_DMICx_PDN,
207 CS53L30_ADCxA_PDN | CS53L30_DMICx_PDN,
208 CS53L30_ADCxA_PDN | CS53L30_ADCxB_PDN | CS53L30_DMICx_PDN,
209 };
210
211 static const char * const input1_route_sel_text[] = {
212 "ADC1_SEL", "DMIC1_SEL",
213 };
214
215 static const struct soc_enum input1_route_sel_enum =
216 SOC_ENUM_SINGLE(CS53L30_ADCDMIC1_CTL1, CS53L30_CH_TYPE_SHIFT,
217 ARRAY_SIZE(input1_route_sel_text),
218 input1_route_sel_text);
219
220 static SOC_VALUE_ENUM_SINGLE_DECL(input1_sel_enum, CS53L30_ADCDMIC1_CTL1, 0,
221 CS53L30_ADCDMICx_PDN_MASK, input1_sel_text,
222 input1_sel_values);
223
224 static const struct snd_kcontrol_new input1_route_sel_mux =
225 SOC_DAPM_ENUM("Input 1 Route", input1_route_sel_enum);
226
227 static const char * const input2_route_sel_text[] = {
228 "ADC2_SEL", "DMIC2_SEL",
229 };
230
231 /* Note: CS53L30_ADCDMIC1_CTL1 CH_TYPE controls inputs 1 and 2 */
232 static const struct soc_enum input2_route_sel_enum =
233 SOC_ENUM_SINGLE(CS53L30_ADCDMIC1_CTL1, 0,
234 ARRAY_SIZE(input2_route_sel_text),
235 input2_route_sel_text);
236
237 static SOC_VALUE_ENUM_SINGLE_DECL(input2_sel_enum, CS53L30_ADCDMIC2_CTL1, 0,
238 CS53L30_ADCDMICx_PDN_MASK, input2_sel_text,
239 input2_sel_values);
240
241 static const struct snd_kcontrol_new input2_route_sel_mux =
242 SOC_DAPM_ENUM("Input 2 Route", input2_route_sel_enum);
243
244 /*
245 * TB = 6144*(MCLK(int) scaling factor)/MCLK(internal)
246 * TB - Time base
247 * NOTE: If MCLK_INT_SCALE = 0, then TB=1
248 */
249 static const char * const cs53l30_ng_delay_text[] = {
250 "TB*50ms", "TB*100ms", "TB*150ms", "TB*200ms",
251 };
252
253 static const struct soc_enum adc1_ng_delay_enum =
254 SOC_ENUM_SINGLE(CS53L30_ADC1_NG_CTL, CS53L30_ADCx_NG_DELAY_SHIFT,
255 ARRAY_SIZE(cs53l30_ng_delay_text),
256 cs53l30_ng_delay_text);
257
258 static const struct soc_enum adc2_ng_delay_enum =
259 SOC_ENUM_SINGLE(CS53L30_ADC2_NG_CTL, CS53L30_ADCx_NG_DELAY_SHIFT,
260 ARRAY_SIZE(cs53l30_ng_delay_text),
261 cs53l30_ng_delay_text);
262
263 /* The noise gate threshold selected will depend on NG Boost */
264 static const char * const cs53l30_ng_thres_text[] = {
265 "-64dB/-34dB", "-66dB/-36dB", "-70dB/-40dB", "-73dB/-43dB",
266 "-76dB/-46dB", "-82dB/-52dB", "-58dB", "-64dB",
267 };
268
269 static const struct soc_enum adc1_ng_thres_enum =
270 SOC_ENUM_SINGLE(CS53L30_ADC1_NG_CTL, CS53L30_ADCx_NG_THRESH_SHIFT,
271 ARRAY_SIZE(cs53l30_ng_thres_text),
272 cs53l30_ng_thres_text);
273
274 static const struct soc_enum adc2_ng_thres_enum =
275 SOC_ENUM_SINGLE(CS53L30_ADC2_NG_CTL, CS53L30_ADCx_NG_THRESH_SHIFT,
276 ARRAY_SIZE(cs53l30_ng_thres_text),
277 cs53l30_ng_thres_text);
278
279 /* Corner frequencies are with an Fs of 48kHz. */
280 static const char * const hpf_corner_freq_text[] = {
281 "1.86Hz", "120Hz", "235Hz", "466Hz",
282 };
283
284 static const struct soc_enum adc1_hpf_enum =
285 SOC_ENUM_SINGLE(CS53L30_ADC1_CTL3, CS53L30_ADCx_HPF_CF_SHIFT,
286 ARRAY_SIZE(hpf_corner_freq_text), hpf_corner_freq_text);
287
288 static const struct soc_enum adc2_hpf_enum =
289 SOC_ENUM_SINGLE(CS53L30_ADC2_CTL3, CS53L30_ADCx_HPF_CF_SHIFT,
290 ARRAY_SIZE(hpf_corner_freq_text), hpf_corner_freq_text);
291
292 static const struct snd_kcontrol_new cs53l30_snd_controls[] = {
293 SOC_SINGLE("Digital Soft-Ramp Switch", CS53L30_SFT_RAMP,
294 CS53L30_DIGSFT_SHIFT, 1, 0),
295 SOC_SINGLE("ADC1 Noise Gate Ganging Switch", CS53L30_ADC1_CTL3,
296 CS53L30_ADCx_NG_ALL_SHIFT, 1, 0),
297 SOC_SINGLE("ADC2 Noise Gate Ganging Switch", CS53L30_ADC2_CTL3,
298 CS53L30_ADCx_NG_ALL_SHIFT, 1, 0),
299 SOC_SINGLE("ADC1A Noise Gate Enable Switch", CS53L30_ADC1_NG_CTL,
300 CS53L30_ADCxA_NG_SHIFT, 1, 0),
301 SOC_SINGLE("ADC1B Noise Gate Enable Switch", CS53L30_ADC1_NG_CTL,
302 CS53L30_ADCxB_NG_SHIFT, 1, 0),
303 SOC_SINGLE("ADC2A Noise Gate Enable Switch", CS53L30_ADC2_NG_CTL,
304 CS53L30_ADCxA_NG_SHIFT, 1, 0),
305 SOC_SINGLE("ADC2B Noise Gate Enable Switch", CS53L30_ADC2_NG_CTL,
306 CS53L30_ADCxB_NG_SHIFT, 1, 0),
307 SOC_SINGLE("ADC1 Notch Filter Switch", CS53L30_ADCDMIC1_CTL2,
308 CS53L30_ADCx_NOTCH_DIS_SHIFT, 1, 1),
309 SOC_SINGLE("ADC2 Notch Filter Switch", CS53L30_ADCDMIC2_CTL2,
310 CS53L30_ADCx_NOTCH_DIS_SHIFT, 1, 1),
311 SOC_SINGLE("ADC1A Invert Switch", CS53L30_ADCDMIC1_CTL2,
312 CS53L30_ADCxA_INV_SHIFT, 1, 0),
313 SOC_SINGLE("ADC1B Invert Switch", CS53L30_ADCDMIC1_CTL2,
314 CS53L30_ADCxB_INV_SHIFT, 1, 0),
315 SOC_SINGLE("ADC2A Invert Switch", CS53L30_ADCDMIC2_CTL2,
316 CS53L30_ADCxA_INV_SHIFT, 1, 0),
317 SOC_SINGLE("ADC2B Invert Switch", CS53L30_ADCDMIC2_CTL2,
318 CS53L30_ADCxB_INV_SHIFT, 1, 0),
319
320 SOC_SINGLE_TLV("ADC1A Digital Boost Volume", CS53L30_ADCDMIC1_CTL2,
321 CS53L30_ADCxA_DIG_BOOST_SHIFT, 1, 0, adc_boost_tlv),
322 SOC_SINGLE_TLV("ADC1B Digital Boost Volume", CS53L30_ADCDMIC1_CTL2,
323 CS53L30_ADCxB_DIG_BOOST_SHIFT, 1, 0, adc_boost_tlv),
324 SOC_SINGLE_TLV("ADC2A Digital Boost Volume", CS53L30_ADCDMIC2_CTL2,
325 CS53L30_ADCxA_DIG_BOOST_SHIFT, 1, 0, adc_boost_tlv),
326 SOC_SINGLE_TLV("ADC2B Digital Boost Volume", CS53L30_ADCDMIC2_CTL2,
327 CS53L30_ADCxB_DIG_BOOST_SHIFT, 1, 0, adc_boost_tlv),
328 SOC_SINGLE_TLV("ADC1 NG Boost Volume", CS53L30_ADC1_NG_CTL,
329 CS53L30_ADCx_NG_BOOST_SHIFT, 1, 0, adc_ng_boost_tlv),
330 SOC_SINGLE_TLV("ADC2 NG Boost Volume", CS53L30_ADC2_NG_CTL,
331 CS53L30_ADCx_NG_BOOST_SHIFT, 1, 0, adc_ng_boost_tlv),
332
333 SOC_DOUBLE_R_TLV("ADC1 Preamplifier Volume", CS53L30_ADC1A_AFE_CTL,
334 CS53L30_ADC1B_AFE_CTL, CS53L30_ADCxy_PREAMP_SHIFT,
335 2, 0, pga_preamp_tlv),
336 SOC_DOUBLE_R_TLV("ADC2 Preamplifier Volume", CS53L30_ADC2A_AFE_CTL,
337 CS53L30_ADC2B_AFE_CTL, CS53L30_ADCxy_PREAMP_SHIFT,
338 2, 0, pga_preamp_tlv),
339
340 SOC_ENUM("Input 1 Channel Select", input1_sel_enum),
341 SOC_ENUM("Input 2 Channel Select", input2_sel_enum),
342
343 SOC_ENUM("ADC1 HPF Select", adc1_hpf_enum),
344 SOC_ENUM("ADC2 HPF Select", adc2_hpf_enum),
345 SOC_ENUM("ADC1 NG Threshold", adc1_ng_thres_enum),
346 SOC_ENUM("ADC2 NG Threshold", adc2_ng_thres_enum),
347 SOC_ENUM("ADC1 NG Delay", adc1_ng_delay_enum),
348 SOC_ENUM("ADC2 NG Delay", adc2_ng_delay_enum),
349
350 SOC_SINGLE_SX_TLV("ADC1A PGA Volume",
351 CS53L30_ADC1A_AFE_CTL, 0, 0x34, 0x18, pga_tlv),
352 SOC_SINGLE_SX_TLV("ADC1B PGA Volume",
353 CS53L30_ADC1B_AFE_CTL, 0, 0x34, 0x18, pga_tlv),
354 SOC_SINGLE_SX_TLV("ADC2A PGA Volume",
355 CS53L30_ADC2A_AFE_CTL, 0, 0x34, 0x18, pga_tlv),
356 SOC_SINGLE_SX_TLV("ADC2B PGA Volume",
357 CS53L30_ADC2B_AFE_CTL, 0, 0x34, 0x18, pga_tlv),
358
359 SOC_SINGLE_SX_TLV("ADC1A Digital Volume",
360 CS53L30_ADC1A_DIG_VOL, 0, 0xA0, 0x0C, dig_tlv),
361 SOC_SINGLE_SX_TLV("ADC1B Digital Volume",
362 CS53L30_ADC1B_DIG_VOL, 0, 0xA0, 0x0C, dig_tlv),
363 SOC_SINGLE_SX_TLV("ADC2A Digital Volume",
364 CS53L30_ADC2A_DIG_VOL, 0, 0xA0, 0x0C, dig_tlv),
365 SOC_SINGLE_SX_TLV("ADC2B Digital Volume",
366 CS53L30_ADC2B_DIG_VOL, 0, 0xA0, 0x0C, dig_tlv),
367 };
368
369 static const struct snd_soc_dapm_widget cs53l30_dapm_widgets[] = {
370 SND_SOC_DAPM_INPUT("IN1_DMIC1"),
371 SND_SOC_DAPM_INPUT("IN2"),
372 SND_SOC_DAPM_INPUT("IN3_DMIC2"),
373 SND_SOC_DAPM_INPUT("IN4"),
374 SND_SOC_DAPM_SUPPLY("MIC1 Bias", CS53L30_MICBIAS_CTL,
375 CS53L30_MIC1_BIAS_PDN_SHIFT, 1, NULL, 0),
376 SND_SOC_DAPM_SUPPLY("MIC2 Bias", CS53L30_MICBIAS_CTL,
377 CS53L30_MIC2_BIAS_PDN_SHIFT, 1, NULL, 0),
378 SND_SOC_DAPM_SUPPLY("MIC3 Bias", CS53L30_MICBIAS_CTL,
379 CS53L30_MIC3_BIAS_PDN_SHIFT, 1, NULL, 0),
380 SND_SOC_DAPM_SUPPLY("MIC4 Bias", CS53L30_MICBIAS_CTL,
381 CS53L30_MIC4_BIAS_PDN_SHIFT, 1, NULL, 0),
382
383 SND_SOC_DAPM_AIF_OUT("ASP_SDOUT1", NULL, 0, CS53L30_ASP_CTL1,
384 CS53L30_ASP_SDOUTx_PDN_SHIFT, 1),
385 SND_SOC_DAPM_AIF_OUT("ASP_SDOUT2", NULL, 0, CS53L30_ASP_CTL2,
386 CS53L30_ASP_SDOUTx_PDN_SHIFT, 1),
387
388 SND_SOC_DAPM_MUX("Input Mux 1", SND_SOC_NOPM, 0, 0,
389 &input1_route_sel_mux),
390 SND_SOC_DAPM_MUX("Input Mux 2", SND_SOC_NOPM, 0, 0,
391 &input2_route_sel_mux),
392
393 SND_SOC_DAPM_ADC("ADC1A", NULL, CS53L30_ADCDMIC1_CTL1,
394 CS53L30_ADCxA_PDN_SHIFT, 1),
395 SND_SOC_DAPM_ADC("ADC1B", NULL, CS53L30_ADCDMIC1_CTL1,
396 CS53L30_ADCxB_PDN_SHIFT, 1),
397 SND_SOC_DAPM_ADC("ADC2A", NULL, CS53L30_ADCDMIC2_CTL1,
398 CS53L30_ADCxA_PDN_SHIFT, 1),
399 SND_SOC_DAPM_ADC("ADC2B", NULL, CS53L30_ADCDMIC2_CTL1,
400 CS53L30_ADCxB_PDN_SHIFT, 1),
401 SND_SOC_DAPM_ADC("DMIC1", NULL, CS53L30_ADCDMIC1_CTL1,
402 CS53L30_DMICx_PDN_SHIFT, 1),
403 SND_SOC_DAPM_ADC("DMIC2", NULL, CS53L30_ADCDMIC2_CTL1,
404 CS53L30_DMICx_PDN_SHIFT, 1),
405 };
406
407 static const struct snd_soc_dapm_route cs53l30_dapm_routes[] = {
408 /* ADC Input Paths */
409 {"ADC1A", NULL, "IN1_DMIC1"},
410 {"Input Mux 1", "ADC1_SEL", "ADC1A"},
411 {"ADC1B", NULL, "IN2"},
412
413 {"ADC2A", NULL, "IN3_DMIC2"},
414 {"Input Mux 2", "ADC2_SEL", "ADC2A"},
415 {"ADC2B", NULL, "IN4"},
416
417 /* MIC Bias Paths */
418 {"ADC1A", NULL, "MIC1 Bias"},
419 {"ADC1B", NULL, "MIC2 Bias"},
420 {"ADC2A", NULL, "MIC3 Bias"},
421 {"ADC2B", NULL, "MIC4 Bias"},
422
423 /* DMIC Paths */
424 {"DMIC1", NULL, "IN1_DMIC1"},
425 {"Input Mux 1", "DMIC1_SEL", "DMIC1"},
426
427 {"DMIC2", NULL, "IN3_DMIC2"},
428 {"Input Mux 2", "DMIC2_SEL", "DMIC2"},
429 };
430
431 static const struct snd_soc_dapm_route cs53l30_dapm_routes_sdout1[] = {
432 /* Output Paths when using SDOUT1 only */
433 {"ASP_SDOUT1", NULL, "ADC1A" },
434 {"ASP_SDOUT1", NULL, "Input Mux 1"},
435 {"ASP_SDOUT1", NULL, "ADC1B"},
436
437 {"ASP_SDOUT1", NULL, "ADC2A"},
438 {"ASP_SDOUT1", NULL, "Input Mux 2"},
439 {"ASP_SDOUT1", NULL, "ADC2B"},
440
441 {"Capture", NULL, "ASP_SDOUT1"},
442 };
443
444 static const struct snd_soc_dapm_route cs53l30_dapm_routes_sdout2[] = {
445 /* Output Paths when using both SDOUT1 and SDOUT2 */
446 {"ASP_SDOUT1", NULL, "ADC1A" },
447 {"ASP_SDOUT1", NULL, "Input Mux 1"},
448 {"ASP_SDOUT1", NULL, "ADC1B"},
449
450 {"ASP_SDOUT2", NULL, "ADC2A"},
451 {"ASP_SDOUT2", NULL, "Input Mux 2"},
452 {"ASP_SDOUT2", NULL, "ADC2B"},
453
454 {"Capture", NULL, "ASP_SDOUT1"},
455 {"Capture", NULL, "ASP_SDOUT2"},
456 };
457
458 struct cs53l30_mclk_div {
459 u32 mclk_rate;
460 u32 srate;
461 u8 asp_rate;
462 u8 internal_fs_ratio;
463 u8 mclk_int_scale;
464 };
465
466 static const struct cs53l30_mclk_div cs53l30_mclk_coeffs[] = {
467 /* NOTE: Enable MCLK_INT_SCALE to save power. */
468
469 /* MCLK, Sample Rate, asp_rate, internal_fs_ratio, mclk_int_scale */
470 {5644800, 11025, 0x4, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
471 {5644800, 22050, 0x8, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
472 {5644800, 44100, 0xC, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
473
474 {6000000, 8000, 0x1, 0, CS53L30_MCLK_INT_SCALE},
475 {6000000, 11025, 0x2, 0, CS53L30_MCLK_INT_SCALE},
476 {6000000, 12000, 0x4, 0, CS53L30_MCLK_INT_SCALE},
477 {6000000, 16000, 0x5, 0, CS53L30_MCLK_INT_SCALE},
478 {6000000, 22050, 0x6, 0, CS53L30_MCLK_INT_SCALE},
479 {6000000, 24000, 0x8, 0, CS53L30_MCLK_INT_SCALE},
480 {6000000, 32000, 0x9, 0, CS53L30_MCLK_INT_SCALE},
481 {6000000, 44100, 0xA, 0, CS53L30_MCLK_INT_SCALE},
482 {6000000, 48000, 0xC, 0, CS53L30_MCLK_INT_SCALE},
483
484 {6144000, 8000, 0x1, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
485 {6144000, 11025, 0x2, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
486 {6144000, 12000, 0x4, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
487 {6144000, 16000, 0x5, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
488 {6144000, 22050, 0x6, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
489 {6144000, 24000, 0x8, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
490 {6144000, 32000, 0x9, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
491 {6144000, 44100, 0xA, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
492 {6144000, 48000, 0xC, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
493
494 {6400000, 8000, 0x1, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
495 {6400000, 11025, 0x2, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
496 {6400000, 12000, 0x4, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
497 {6400000, 16000, 0x5, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
498 {6400000, 22050, 0x6, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
499 {6400000, 24000, 0x8, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
500 {6400000, 32000, 0x9, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
501 {6400000, 44100, 0xA, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
502 {6400000, 48000, 0xC, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE},
503 };
504
505 struct cs53l30_mclkx_div {
506 u32 mclkx;
507 u8 ratio;
508 u8 mclkdiv;
509 };
510
511 static const struct cs53l30_mclkx_div cs53l30_mclkx_coeffs[] = {
512 {5644800, 1, CS53L30_MCLK_DIV_BY_1},
513 {6000000, 1, CS53L30_MCLK_DIV_BY_1},
514 {6144000, 1, CS53L30_MCLK_DIV_BY_1},
515 {11289600, 2, CS53L30_MCLK_DIV_BY_2},
516 {12288000, 2, CS53L30_MCLK_DIV_BY_2},
517 {12000000, 2, CS53L30_MCLK_DIV_BY_2},
518 {19200000, 3, CS53L30_MCLK_DIV_BY_3},
519 };
520
cs53l30_get_mclkx_coeff(int mclkx)521 static int cs53l30_get_mclkx_coeff(int mclkx)
522 {
523 int i;
524
525 for (i = 0; i < ARRAY_SIZE(cs53l30_mclkx_coeffs); i++) {
526 if (cs53l30_mclkx_coeffs[i].mclkx == mclkx)
527 return i;
528 }
529
530 return -EINVAL;
531 }
532
cs53l30_get_mclk_coeff(int mclk_rate,int srate)533 static int cs53l30_get_mclk_coeff(int mclk_rate, int srate)
534 {
535 int i;
536
537 for (i = 0; i < ARRAY_SIZE(cs53l30_mclk_coeffs); i++) {
538 if (cs53l30_mclk_coeffs[i].mclk_rate == mclk_rate &&
539 cs53l30_mclk_coeffs[i].srate == srate)
540 return i;
541 }
542
543 return -EINVAL;
544 }
545
cs53l30_set_sysclk(struct snd_soc_dai * dai,int clk_id,unsigned int freq,int dir)546 static int cs53l30_set_sysclk(struct snd_soc_dai *dai,
547 int clk_id, unsigned int freq, int dir)
548 {
549 struct cs53l30_private *priv = snd_soc_component_get_drvdata(dai->component);
550 int mclkx_coeff;
551 u32 mclk_rate;
552
553 /* MCLKX -> MCLK */
554 mclkx_coeff = cs53l30_get_mclkx_coeff(freq);
555 if (mclkx_coeff < 0)
556 return mclkx_coeff;
557
558 mclk_rate = cs53l30_mclkx_coeffs[mclkx_coeff].mclkx /
559 cs53l30_mclkx_coeffs[mclkx_coeff].ratio;
560
561 regmap_update_bits(priv->regmap, CS53L30_MCLKCTL,
562 CS53L30_MCLK_DIV_MASK,
563 cs53l30_mclkx_coeffs[mclkx_coeff].mclkdiv);
564
565 priv->mclk_rate = mclk_rate;
566
567 return 0;
568 }
569
cs53l30_set_dai_fmt(struct snd_soc_dai * dai,unsigned int fmt)570 static int cs53l30_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
571 {
572 struct cs53l30_private *priv = snd_soc_component_get_drvdata(dai->component);
573 u8 aspcfg = 0, aspctl1 = 0;
574
575 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
576 case SND_SOC_DAIFMT_CBM_CFM:
577 aspcfg |= CS53L30_ASP_MS;
578 break;
579 case SND_SOC_DAIFMT_CBS_CFS:
580 break;
581 default:
582 return -EINVAL;
583 }
584
585 /* DAI mode */
586 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
587 case SND_SOC_DAIFMT_I2S:
588 /* Set TDM_PDN to turn off TDM mode -- Reset default */
589 aspctl1 |= CS53L30_ASP_TDM_PDN;
590 break;
591 case SND_SOC_DAIFMT_DSP_A:
592 /*
593 * Clear TDM_PDN to turn on TDM mode; Use ASP_SCLK_INV = 0
594 * with SHIFT_LEFT = 1 combination as Figure 4-13 shows in
595 * the CS53L30 datasheet
596 */
597 aspctl1 |= CS53L30_SHIFT_LEFT;
598 break;
599 default:
600 return -EINVAL;
601 }
602
603 /* Check to see if the SCLK is inverted */
604 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
605 case SND_SOC_DAIFMT_IB_NF:
606 case SND_SOC_DAIFMT_IB_IF:
607 aspcfg ^= CS53L30_ASP_SCLK_INV;
608 break;
609 default:
610 break;
611 }
612
613 regmap_update_bits(priv->regmap, CS53L30_ASPCFG_CTL,
614 CS53L30_ASP_MS | CS53L30_ASP_SCLK_INV, aspcfg);
615
616 regmap_update_bits(priv->regmap, CS53L30_ASP_CTL1,
617 CS53L30_ASP_TDM_PDN | CS53L30_SHIFT_LEFT, aspctl1);
618
619 return 0;
620 }
621
cs53l30_pcm_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * dai)622 static int cs53l30_pcm_hw_params(struct snd_pcm_substream *substream,
623 struct snd_pcm_hw_params *params,
624 struct snd_soc_dai *dai)
625 {
626 struct cs53l30_private *priv = snd_soc_component_get_drvdata(dai->component);
627 int srate = params_rate(params);
628 int mclk_coeff;
629
630 /* MCLK -> srate */
631 mclk_coeff = cs53l30_get_mclk_coeff(priv->mclk_rate, srate);
632 if (mclk_coeff < 0)
633 return -EINVAL;
634
635 regmap_update_bits(priv->regmap, CS53L30_INT_SR_CTL,
636 CS53L30_INTRNL_FS_RATIO_MASK,
637 cs53l30_mclk_coeffs[mclk_coeff].internal_fs_ratio);
638
639 regmap_update_bits(priv->regmap, CS53L30_MCLKCTL,
640 CS53L30_MCLK_INT_SCALE_MASK,
641 cs53l30_mclk_coeffs[mclk_coeff].mclk_int_scale);
642
643 regmap_update_bits(priv->regmap, CS53L30_ASPCFG_CTL,
644 CS53L30_ASP_RATE_MASK,
645 cs53l30_mclk_coeffs[mclk_coeff].asp_rate);
646
647 return 0;
648 }
649
cs53l30_set_bias_level(struct snd_soc_component * component,enum snd_soc_bias_level level)650 static int cs53l30_set_bias_level(struct snd_soc_component *component,
651 enum snd_soc_bias_level level)
652 {
653 struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
654 struct cs53l30_private *priv = snd_soc_component_get_drvdata(component);
655 unsigned int reg;
656 int i, inter_max_check, ret;
657
658 switch (level) {
659 case SND_SOC_BIAS_ON:
660 break;
661 case SND_SOC_BIAS_PREPARE:
662 if (dapm->bias_level == SND_SOC_BIAS_STANDBY)
663 regmap_update_bits(priv->regmap, CS53L30_PWRCTL,
664 CS53L30_PDN_LP_MASK, 0);
665 break;
666 case SND_SOC_BIAS_STANDBY:
667 if (dapm->bias_level == SND_SOC_BIAS_OFF) {
668 ret = clk_prepare_enable(priv->mclk);
669 if (ret) {
670 dev_err(component->dev,
671 "failed to enable MCLK: %d\n", ret);
672 return ret;
673 }
674 regmap_update_bits(priv->regmap, CS53L30_MCLKCTL,
675 CS53L30_MCLK_DIS_MASK, 0);
676 regmap_update_bits(priv->regmap, CS53L30_PWRCTL,
677 CS53L30_PDN_ULP_MASK, 0);
678 msleep(50);
679 } else {
680 regmap_update_bits(priv->regmap, CS53L30_PWRCTL,
681 CS53L30_PDN_ULP_MASK,
682 CS53L30_PDN_ULP);
683 }
684 break;
685 case SND_SOC_BIAS_OFF:
686 regmap_update_bits(priv->regmap, CS53L30_INT_MASK,
687 CS53L30_PDN_DONE, 0);
688 /*
689 * If digital softramp is set, the amount of time required
690 * for power down increases and depends on the digital
691 * volume setting.
692 */
693
694 /* Set the max possible time if digsft is set */
695 regmap_read(priv->regmap, CS53L30_SFT_RAMP, ®);
696 if (reg & CS53L30_DIGSFT_MASK)
697 inter_max_check = CS53L30_PDN_POLL_MAX;
698 else
699 inter_max_check = 10;
700
701 regmap_update_bits(priv->regmap, CS53L30_PWRCTL,
702 CS53L30_PDN_ULP_MASK,
703 CS53L30_PDN_ULP);
704 /* PDN_DONE will take a min of 20ms to be set.*/
705 msleep(20);
706 /* Clr status */
707 regmap_read(priv->regmap, CS53L30_IS, ®);
708 for (i = 0; i < inter_max_check; i++) {
709 if (inter_max_check < 10) {
710 usleep_range(1000, 1100);
711 regmap_read(priv->regmap, CS53L30_IS, ®);
712 if (reg & CS53L30_PDN_DONE)
713 break;
714 } else {
715 usleep_range(10000, 10100);
716 regmap_read(priv->regmap, CS53L30_IS, ®);
717 if (reg & CS53L30_PDN_DONE)
718 break;
719 }
720 }
721 /* PDN_DONE is set. We now can disable the MCLK */
722 regmap_update_bits(priv->regmap, CS53L30_INT_MASK,
723 CS53L30_PDN_DONE, CS53L30_PDN_DONE);
724 regmap_update_bits(priv->regmap, CS53L30_MCLKCTL,
725 CS53L30_MCLK_DIS_MASK,
726 CS53L30_MCLK_DIS);
727 clk_disable_unprepare(priv->mclk);
728 break;
729 }
730
731 return 0;
732 }
733
cs53l30_set_tristate(struct snd_soc_dai * dai,int tristate)734 static int cs53l30_set_tristate(struct snd_soc_dai *dai, int tristate)
735 {
736 struct cs53l30_private *priv = snd_soc_component_get_drvdata(dai->component);
737 u8 val = tristate ? CS53L30_ASP_3ST : 0;
738
739 return regmap_update_bits(priv->regmap, CS53L30_ASP_CTL1,
740 CS53L30_ASP_3ST_MASK, val);
741 }
742
743 static unsigned int const cs53l30_src_rates[] = {
744 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000
745 };
746
747 static const struct snd_pcm_hw_constraint_list src_constraints = {
748 .count = ARRAY_SIZE(cs53l30_src_rates),
749 .list = cs53l30_src_rates,
750 };
751
cs53l30_pcm_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)752 static int cs53l30_pcm_startup(struct snd_pcm_substream *substream,
753 struct snd_soc_dai *dai)
754 {
755 snd_pcm_hw_constraint_list(substream->runtime, 0,
756 SNDRV_PCM_HW_PARAM_RATE, &src_constraints);
757
758 return 0;
759 }
760
761 /*
762 * Note: CS53L30 counts the slot number per byte while ASoC counts the slot
763 * number per slot_width. So there is a difference between the slots of ASoC
764 * and the slots of CS53L30.
765 */
cs53l30_set_dai_tdm_slot(struct snd_soc_dai * dai,unsigned int tx_mask,unsigned int rx_mask,int slots,int slot_width)766 static int cs53l30_set_dai_tdm_slot(struct snd_soc_dai *dai,
767 unsigned int tx_mask, unsigned int rx_mask,
768 int slots, int slot_width)
769 {
770 struct cs53l30_private *priv = snd_soc_component_get_drvdata(dai->component);
771 unsigned int loc[CS53L30_TDM_SLOT_MAX] = {48, 48, 48, 48};
772 unsigned int slot_next, slot_step;
773 u64 tx_enable = 0;
774 int i;
775
776 if (!rx_mask) {
777 dev_err(dai->dev, "rx masks must not be 0\n");
778 return -EINVAL;
779 }
780
781 /* Assuming slot_width is not supposed to be greater than 64 */
782 if (slots <= 0 || slot_width <= 0 || slot_width > 64) {
783 dev_err(dai->dev, "invalid slot number or slot width\n");
784 return -EINVAL;
785 }
786
787 if (slot_width & 0x7) {
788 dev_err(dai->dev, "slot width must count in byte\n");
789 return -EINVAL;
790 }
791
792 /* How many bytes in each ASoC slot */
793 slot_step = slot_width >> 3;
794
795 for (i = 0; rx_mask && i < CS53L30_TDM_SLOT_MAX; i++) {
796 /* Find the first slot from LSB */
797 slot_next = __ffs(rx_mask);
798 /* Save the slot location by converting to CS53L30 slot */
799 loc[i] = slot_next * slot_step;
800 /* Create the mask of CS53L30 slot */
801 tx_enable |= (u64)((u64)(1 << slot_step) - 1) << (u64)loc[i];
802 /* Clear this slot from rx_mask */
803 rx_mask &= ~(1 << slot_next);
804 }
805
806 /* Error out to avoid slot shift */
807 if (rx_mask && i == CS53L30_TDM_SLOT_MAX) {
808 dev_err(dai->dev, "rx_mask exceeds max slot number: %d\n",
809 CS53L30_TDM_SLOT_MAX);
810 return -EINVAL;
811 }
812
813 /* Validate the last active CS53L30 slot */
814 slot_next = loc[i - 1] + slot_step - 1;
815 if (slot_next > 47) {
816 dev_err(dai->dev, "slot selection out of bounds: %u\n",
817 slot_next);
818 return -EINVAL;
819 }
820
821 for (i = 0; i < CS53L30_TDM_SLOT_MAX && loc[i] != 48; i++) {
822 regmap_update_bits(priv->regmap, CS53L30_ASP_TDMTX_CTL(i),
823 CS53L30_ASP_CHx_TX_LOC_MASK, loc[i]);
824 dev_dbg(dai->dev, "loc[%d]=%x\n", i, loc[i]);
825 }
826
827 for (i = 0; i < CS53L30_ASP_TDMTX_ENx_MAX && tx_enable; i++) {
828 regmap_write(priv->regmap, CS53L30_ASP_TDMTX_ENx(i),
829 tx_enable & 0xff);
830 tx_enable >>= 8;
831 dev_dbg(dai->dev, "en_reg=%x, tx_enable=%llx\n",
832 CS53L30_ASP_TDMTX_ENx(i), tx_enable & 0xff);
833 }
834
835 return 0;
836 }
837
cs53l30_mute_stream(struct snd_soc_dai * dai,int mute,int stream)838 static int cs53l30_mute_stream(struct snd_soc_dai *dai, int mute, int stream)
839 {
840 struct cs53l30_private *priv = snd_soc_component_get_drvdata(dai->component);
841
842 gpiod_set_value_cansleep(priv->mute_gpio, mute);
843
844 return 0;
845 }
846
847 /* SNDRV_PCM_RATE_KNOT -> 12000, 24000 Hz, limit with constraint list */
848 #define CS53L30_RATES (SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_KNOT)
849
850 #define CS53L30_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE |\
851 SNDRV_PCM_FMTBIT_S24_LE)
852
853 static const struct snd_soc_dai_ops cs53l30_ops = {
854 .startup = cs53l30_pcm_startup,
855 .hw_params = cs53l30_pcm_hw_params,
856 .set_fmt = cs53l30_set_dai_fmt,
857 .set_sysclk = cs53l30_set_sysclk,
858 .set_tristate = cs53l30_set_tristate,
859 .set_tdm_slot = cs53l30_set_dai_tdm_slot,
860 .mute_stream = cs53l30_mute_stream,
861 };
862
863 static struct snd_soc_dai_driver cs53l30_dai = {
864 .name = "cs53l30",
865 .capture = {
866 .stream_name = "Capture",
867 .channels_min = 1,
868 .channels_max = 4,
869 .rates = CS53L30_RATES,
870 .formats = CS53L30_FORMATS,
871 },
872 .ops = &cs53l30_ops,
873 .symmetric_rate = 1,
874 };
875
cs53l30_component_probe(struct snd_soc_component * component)876 static int cs53l30_component_probe(struct snd_soc_component *component)
877 {
878 struct cs53l30_private *priv = snd_soc_component_get_drvdata(component);
879 struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
880
881 if (priv->use_sdout2)
882 snd_soc_dapm_add_routes(dapm, cs53l30_dapm_routes_sdout2,
883 ARRAY_SIZE(cs53l30_dapm_routes_sdout2));
884 else
885 snd_soc_dapm_add_routes(dapm, cs53l30_dapm_routes_sdout1,
886 ARRAY_SIZE(cs53l30_dapm_routes_sdout1));
887
888 return 0;
889 }
890
891 static const struct snd_soc_component_driver cs53l30_driver = {
892 .probe = cs53l30_component_probe,
893 .set_bias_level = cs53l30_set_bias_level,
894 .controls = cs53l30_snd_controls,
895 .num_controls = ARRAY_SIZE(cs53l30_snd_controls),
896 .dapm_widgets = cs53l30_dapm_widgets,
897 .num_dapm_widgets = ARRAY_SIZE(cs53l30_dapm_widgets),
898 .dapm_routes = cs53l30_dapm_routes,
899 .num_dapm_routes = ARRAY_SIZE(cs53l30_dapm_routes),
900 .use_pmdown_time = 1,
901 .endianness = 1,
902 .non_legacy_dai_naming = 1,
903 };
904
905 static struct regmap_config cs53l30_regmap = {
906 .reg_bits = 8,
907 .val_bits = 8,
908
909 .max_register = CS53L30_MAX_REGISTER,
910 .reg_defaults = cs53l30_reg_defaults,
911 .num_reg_defaults = ARRAY_SIZE(cs53l30_reg_defaults),
912 .volatile_reg = cs53l30_volatile_register,
913 .writeable_reg = cs53l30_writeable_register,
914 .readable_reg = cs53l30_readable_register,
915 .cache_type = REGCACHE_RBTREE,
916
917 .use_single_read = true,
918 .use_single_write = true,
919 };
920
cs53l30_i2c_probe(struct i2c_client * client,const struct i2c_device_id * id)921 static int cs53l30_i2c_probe(struct i2c_client *client,
922 const struct i2c_device_id *id)
923 {
924 const struct device_node *np = client->dev.of_node;
925 struct device *dev = &client->dev;
926 struct cs53l30_private *cs53l30;
927 unsigned int reg;
928 int ret = 0, i, devid;
929 u8 val;
930
931 cs53l30 = devm_kzalloc(dev, sizeof(*cs53l30), GFP_KERNEL);
932 if (!cs53l30)
933 return -ENOMEM;
934
935 for (i = 0; i < ARRAY_SIZE(cs53l30->supplies); i++)
936 cs53l30->supplies[i].supply = cs53l30_supply_names[i];
937
938 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(cs53l30->supplies),
939 cs53l30->supplies);
940 if (ret) {
941 dev_err(dev, "failed to get supplies: %d\n", ret);
942 return ret;
943 }
944
945 ret = regulator_bulk_enable(ARRAY_SIZE(cs53l30->supplies),
946 cs53l30->supplies);
947 if (ret) {
948 dev_err(dev, "failed to enable supplies: %d\n", ret);
949 return ret;
950 }
951
952 /* Reset the Device */
953 cs53l30->reset_gpio = devm_gpiod_get_optional(dev, "reset",
954 GPIOD_OUT_LOW);
955 if (IS_ERR(cs53l30->reset_gpio)) {
956 ret = PTR_ERR(cs53l30->reset_gpio);
957 goto error_supplies;
958 }
959
960 gpiod_set_value_cansleep(cs53l30->reset_gpio, 1);
961
962 i2c_set_clientdata(client, cs53l30);
963
964 cs53l30->mclk_rate = 0;
965
966 cs53l30->regmap = devm_regmap_init_i2c(client, &cs53l30_regmap);
967 if (IS_ERR(cs53l30->regmap)) {
968 ret = PTR_ERR(cs53l30->regmap);
969 dev_err(dev, "regmap_init() failed: %d\n", ret);
970 goto error;
971 }
972
973 /* Initialize codec */
974 devid = cirrus_read_device_id(cs53l30->regmap, CS53L30_DEVID_AB);
975 if (devid < 0) {
976 ret = devid;
977 dev_err(dev, "Failed to read device ID: %d\n", ret);
978 goto error;
979 }
980
981 if (devid != CS53L30_DEVID) {
982 ret = -ENODEV;
983 dev_err(dev, "Device ID (%X). Expected %X\n",
984 devid, CS53L30_DEVID);
985 goto error;
986 }
987
988 ret = regmap_read(cs53l30->regmap, CS53L30_REVID, ®);
989 if (ret < 0) {
990 dev_err(dev, "failed to get Revision ID: %d\n", ret);
991 goto error;
992 }
993
994 /* Check if MCLK provided */
995 cs53l30->mclk = devm_clk_get(dev, "mclk");
996 if (IS_ERR(cs53l30->mclk)) {
997 if (PTR_ERR(cs53l30->mclk) != -ENOENT) {
998 ret = PTR_ERR(cs53l30->mclk);
999 goto error;
1000 }
1001 /* Otherwise mark the mclk pointer to NULL */
1002 cs53l30->mclk = NULL;
1003 }
1004
1005 /* Fetch the MUTE control */
1006 cs53l30->mute_gpio = devm_gpiod_get_optional(dev, "mute",
1007 GPIOD_OUT_HIGH);
1008 if (IS_ERR(cs53l30->mute_gpio)) {
1009 ret = PTR_ERR(cs53l30->mute_gpio);
1010 goto error;
1011 }
1012
1013 if (cs53l30->mute_gpio) {
1014 /* Enable MUTE controls via MUTE pin */
1015 regmap_write(cs53l30->regmap, CS53L30_MUTEP_CTL1,
1016 CS53L30_MUTEP_CTL1_MUTEALL);
1017 /* Flip the polarity of MUTE pin */
1018 if (gpiod_is_active_low(cs53l30->mute_gpio))
1019 regmap_update_bits(cs53l30->regmap, CS53L30_MUTEP_CTL2,
1020 CS53L30_MUTE_PIN_POLARITY, 0);
1021 }
1022
1023 if (!of_property_read_u8(np, "cirrus,micbias-lvl", &val))
1024 regmap_update_bits(cs53l30->regmap, CS53L30_MICBIAS_CTL,
1025 CS53L30_MIC_BIAS_CTRL_MASK, val);
1026
1027 if (of_property_read_bool(np, "cirrus,use-sdout2"))
1028 cs53l30->use_sdout2 = true;
1029
1030 dev_info(dev, "Cirrus Logic CS53L30, Revision: %02X\n", reg & 0xFF);
1031
1032 ret = devm_snd_soc_register_component(dev, &cs53l30_driver, &cs53l30_dai, 1);
1033 if (ret) {
1034 dev_err(dev, "failed to register component: %d\n", ret);
1035 goto error;
1036 }
1037
1038 return 0;
1039
1040 error:
1041 gpiod_set_value_cansleep(cs53l30->reset_gpio, 0);
1042 error_supplies:
1043 regulator_bulk_disable(ARRAY_SIZE(cs53l30->supplies),
1044 cs53l30->supplies);
1045 return ret;
1046 }
1047
cs53l30_i2c_remove(struct i2c_client * client)1048 static int cs53l30_i2c_remove(struct i2c_client *client)
1049 {
1050 struct cs53l30_private *cs53l30 = i2c_get_clientdata(client);
1051
1052 /* Hold down reset */
1053 gpiod_set_value_cansleep(cs53l30->reset_gpio, 0);
1054
1055 regulator_bulk_disable(ARRAY_SIZE(cs53l30->supplies),
1056 cs53l30->supplies);
1057
1058 return 0;
1059 }
1060
1061 #ifdef CONFIG_PM
cs53l30_runtime_suspend(struct device * dev)1062 static int cs53l30_runtime_suspend(struct device *dev)
1063 {
1064 struct cs53l30_private *cs53l30 = dev_get_drvdata(dev);
1065
1066 regcache_cache_only(cs53l30->regmap, true);
1067
1068 /* Hold down reset */
1069 gpiod_set_value_cansleep(cs53l30->reset_gpio, 0);
1070
1071 regulator_bulk_disable(ARRAY_SIZE(cs53l30->supplies),
1072 cs53l30->supplies);
1073
1074 return 0;
1075 }
1076
cs53l30_runtime_resume(struct device * dev)1077 static int cs53l30_runtime_resume(struct device *dev)
1078 {
1079 struct cs53l30_private *cs53l30 = dev_get_drvdata(dev);
1080 int ret;
1081
1082 ret = regulator_bulk_enable(ARRAY_SIZE(cs53l30->supplies),
1083 cs53l30->supplies);
1084 if (ret) {
1085 dev_err(dev, "failed to enable supplies: %d\n", ret);
1086 return ret;
1087 }
1088
1089 gpiod_set_value_cansleep(cs53l30->reset_gpio, 1);
1090
1091 regcache_cache_only(cs53l30->regmap, false);
1092 ret = regcache_sync(cs53l30->regmap);
1093 if (ret) {
1094 dev_err(dev, "failed to synchronize regcache: %d\n", ret);
1095 return ret;
1096 }
1097
1098 return 0;
1099 }
1100 #endif
1101
1102 static const struct dev_pm_ops cs53l30_runtime_pm = {
1103 SET_RUNTIME_PM_OPS(cs53l30_runtime_suspend, cs53l30_runtime_resume,
1104 NULL)
1105 };
1106
1107 static const struct of_device_id cs53l30_of_match[] = {
1108 { .compatible = "cirrus,cs53l30", },
1109 {},
1110 };
1111
1112 MODULE_DEVICE_TABLE(of, cs53l30_of_match);
1113
1114 static const struct i2c_device_id cs53l30_id[] = {
1115 { "cs53l30", 0 },
1116 {}
1117 };
1118
1119 MODULE_DEVICE_TABLE(i2c, cs53l30_id);
1120
1121 static struct i2c_driver cs53l30_i2c_driver = {
1122 .driver = {
1123 .name = "cs53l30",
1124 .of_match_table = cs53l30_of_match,
1125 .pm = &cs53l30_runtime_pm,
1126 },
1127 .id_table = cs53l30_id,
1128 .probe = cs53l30_i2c_probe,
1129 .remove = cs53l30_i2c_remove,
1130 };
1131
1132 module_i2c_driver(cs53l30_i2c_driver);
1133
1134 MODULE_DESCRIPTION("ASoC CS53L30 driver");
1135 MODULE_AUTHOR("Paul Handrigan, Cirrus Logic Inc, <Paul.Handrigan@cirrus.com>");
1136 MODULE_LICENSE("GPL");
1137