1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2021 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64 /*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79 /**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100 struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114 };
115
bss_free(struct cfg80211_internal_bss * bss)116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138 }
139
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142 {
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146 if (bss->pub.hidden_beacon_bss) {
147 bss = container_of(bss->pub.hidden_beacon_bss,
148 struct cfg80211_internal_bss,
149 pub);
150 bss->refcount++;
151 }
152 if (bss->pub.transmitted_bss) {
153 bss = container_of(bss->pub.transmitted_bss,
154 struct cfg80211_internal_bss,
155 pub);
156 bss->refcount++;
157 }
158 }
159
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161 struct cfg80211_internal_bss *bss)
162 {
163 lockdep_assert_held(&rdev->bss_lock);
164
165 if (bss->pub.hidden_beacon_bss) {
166 struct cfg80211_internal_bss *hbss;
167 hbss = container_of(bss->pub.hidden_beacon_bss,
168 struct cfg80211_internal_bss,
169 pub);
170 hbss->refcount--;
171 if (hbss->refcount == 0)
172 bss_free(hbss);
173 }
174
175 if (bss->pub.transmitted_bss) {
176 struct cfg80211_internal_bss *tbss;
177
178 tbss = container_of(bss->pub.transmitted_bss,
179 struct cfg80211_internal_bss,
180 pub);
181 tbss->refcount--;
182 if (tbss->refcount == 0)
183 bss_free(tbss);
184 }
185
186 bss->refcount--;
187 if (bss->refcount == 0)
188 bss_free(bss);
189 }
190
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192 struct cfg80211_internal_bss *bss)
193 {
194 lockdep_assert_held(&rdev->bss_lock);
195
196 if (!list_empty(&bss->hidden_list)) {
197 /*
198 * don't remove the beacon entry if it has
199 * probe responses associated with it
200 */
201 if (!bss->pub.hidden_beacon_bss)
202 return false;
203 /*
204 * if it's a probe response entry break its
205 * link to the other entries in the group
206 */
207 list_del_init(&bss->hidden_list);
208 }
209
210 list_del_init(&bss->list);
211 list_del_init(&bss->pub.nontrans_list);
212 rb_erase(&bss->rbn, &rdev->bss_tree);
213 rdev->bss_entries--;
214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215 "rdev bss entries[%d]/list[empty:%d] corruption\n",
216 rdev->bss_entries, list_empty(&rdev->bss_list));
217 bss_ref_put(rdev, bss);
218 return true;
219 }
220
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)221 bool cfg80211_is_element_inherited(const struct element *elem,
222 const struct element *non_inherit_elem)
223 {
224 u8 id_len, ext_id_len, i, loop_len, id;
225 const u8 *list;
226
227 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228 return false;
229
230 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 return true;
232
233 /*
234 * non inheritance element format is:
235 * ext ID (56) | IDs list len | list | extension IDs list len | list
236 * Both lists are optional. Both lengths are mandatory.
237 * This means valid length is:
238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239 */
240 id_len = non_inherit_elem->data[1];
241 if (non_inherit_elem->datalen < 3 + id_len)
242 return true;
243
244 ext_id_len = non_inherit_elem->data[2 + id_len];
245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246 return true;
247
248 if (elem->id == WLAN_EID_EXTENSION) {
249 if (!ext_id_len)
250 return true;
251 loop_len = ext_id_len;
252 list = &non_inherit_elem->data[3 + id_len];
253 id = elem->data[0];
254 } else {
255 if (!id_len)
256 return true;
257 loop_len = id_len;
258 list = &non_inherit_elem->data[2];
259 id = elem->id;
260 }
261
262 for (i = 0; i < loop_len; i++) {
263 if (list[i] == id)
264 return false;
265 }
266
267 return true;
268 }
269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
270
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subelement,size_t subie_len,u8 * new_ie,gfp_t gfp)271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272 const u8 *subelement, size_t subie_len,
273 u8 *new_ie, gfp_t gfp)
274 {
275 u8 *pos, *tmp;
276 const u8 *tmp_old, *tmp_new;
277 const struct element *non_inherit_elem;
278 u8 *sub_copy;
279
280 /* copy subelement as we need to change its content to
281 * mark an ie after it is processed.
282 */
283 sub_copy = kmemdup(subelement, subie_len, gfp);
284 if (!sub_copy)
285 return 0;
286
287 pos = &new_ie[0];
288
289 /* set new ssid */
290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291 if (tmp_new) {
292 memcpy(pos, tmp_new, tmp_new[1] + 2);
293 pos += (tmp_new[1] + 2);
294 }
295
296 /* get non inheritance list if exists */
297 non_inherit_elem =
298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299 sub_copy, subie_len);
300
301 /* go through IEs in ie (skip SSID) and subelement,
302 * merge them into new_ie
303 */
304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306
307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308 if (tmp_old[0] == 0) {
309 tmp_old++;
310 continue;
311 }
312
313 if (tmp_old[0] == WLAN_EID_EXTENSION)
314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315 subie_len);
316 else
317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318 subie_len);
319
320 if (!tmp) {
321 const struct element *old_elem = (void *)tmp_old;
322
323 /* ie in old ie but not in subelement */
324 if (cfg80211_is_element_inherited(old_elem,
325 non_inherit_elem)) {
326 memcpy(pos, tmp_old, tmp_old[1] + 2);
327 pos += tmp_old[1] + 2;
328 }
329 } else {
330 /* ie in transmitting ie also in subelement,
331 * copy from subelement and flag the ie in subelement
332 * as copied (by setting eid field to WLAN_EID_SSID,
333 * which is skipped anyway).
334 * For vendor ie, compare OUI + type + subType to
335 * determine if they are the same ie.
336 */
337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339 /* same vendor ie, copy from
340 * subelement
341 */
342 memcpy(pos, tmp, tmp[1] + 2);
343 pos += tmp[1] + 2;
344 tmp[0] = WLAN_EID_SSID;
345 } else {
346 memcpy(pos, tmp_old, tmp_old[1] + 2);
347 pos += tmp_old[1] + 2;
348 }
349 } else {
350 /* copy ie from subelement into new ie */
351 memcpy(pos, tmp, tmp[1] + 2);
352 pos += tmp[1] + 2;
353 tmp[0] = WLAN_EID_SSID;
354 }
355 }
356
357 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358 break;
359
360 tmp_old += tmp_old[1] + 2;
361 }
362
363 /* go through subelement again to check if there is any ie not
364 * copied to new ie, skip ssid, capability, bssid-index ie
365 */
366 tmp_new = sub_copy;
367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369 tmp_new[0] == WLAN_EID_SSID)) {
370 memcpy(pos, tmp_new, tmp_new[1] + 2);
371 pos += tmp_new[1] + 2;
372 }
373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374 break;
375 tmp_new += tmp_new[1] + 2;
376 }
377
378 kfree(sub_copy);
379 return pos - new_ie;
380 }
381
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383 const u8 *ssid, size_t ssid_len)
384 {
385 const struct cfg80211_bss_ies *ies;
386 const u8 *ssidie;
387
388 if (bssid && !ether_addr_equal(a->bssid, bssid))
389 return false;
390
391 if (!ssid)
392 return true;
393
394 ies = rcu_access_pointer(a->ies);
395 if (!ies)
396 return false;
397 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
398 if (!ssidie)
399 return false;
400 if (ssidie[1] != ssid_len)
401 return false;
402 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
403 }
404
405 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407 struct cfg80211_bss *nontrans_bss)
408 {
409 const u8 *ssid;
410 size_t ssid_len;
411 struct cfg80211_bss *bss = NULL;
412
413 rcu_read_lock();
414 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415 if (!ssid) {
416 rcu_read_unlock();
417 return -EINVAL;
418 }
419 ssid_len = ssid[1];
420 ssid = ssid + 2;
421
422 /* check if nontrans_bss is in the list */
423 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
424 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len)) {
425 rcu_read_unlock();
426 return 0;
427 }
428 }
429
430 rcu_read_unlock();
431
432 /* add to the list */
433 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
434 return 0;
435 }
436
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)437 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
438 unsigned long expire_time)
439 {
440 struct cfg80211_internal_bss *bss, *tmp;
441 bool expired = false;
442
443 lockdep_assert_held(&rdev->bss_lock);
444
445 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
446 if (atomic_read(&bss->hold))
447 continue;
448 if (!time_after(expire_time, bss->ts))
449 continue;
450
451 if (__cfg80211_unlink_bss(rdev, bss))
452 expired = true;
453 }
454
455 if (expired)
456 rdev->bss_generation++;
457 }
458
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)459 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
460 {
461 struct cfg80211_internal_bss *bss, *oldest = NULL;
462 bool ret;
463
464 lockdep_assert_held(&rdev->bss_lock);
465
466 list_for_each_entry(bss, &rdev->bss_list, list) {
467 if (atomic_read(&bss->hold))
468 continue;
469
470 if (!list_empty(&bss->hidden_list) &&
471 !bss->pub.hidden_beacon_bss)
472 continue;
473
474 if (oldest && time_before(oldest->ts, bss->ts))
475 continue;
476 oldest = bss;
477 }
478
479 if (WARN_ON(!oldest))
480 return false;
481
482 /*
483 * The callers make sure to increase rdev->bss_generation if anything
484 * gets removed (and a new entry added), so there's no need to also do
485 * it here.
486 */
487
488 ret = __cfg80211_unlink_bss(rdev, oldest);
489 WARN_ON(!ret);
490 return ret;
491 }
492
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)493 static u8 cfg80211_parse_bss_param(u8 data,
494 struct cfg80211_colocated_ap *coloc_ap)
495 {
496 coloc_ap->oct_recommended =
497 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
498 coloc_ap->same_ssid =
499 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
500 coloc_ap->multi_bss =
501 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
502 coloc_ap->transmitted_bssid =
503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
504 coloc_ap->unsolicited_probe =
505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
506 coloc_ap->colocated_ess =
507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
508
509 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
510 }
511
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)512 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
513 const struct element **elem, u32 *s_ssid)
514 {
515
516 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
517 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
518 return -EINVAL;
519
520 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
521 return 0;
522 }
523
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)524 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
525 {
526 struct cfg80211_colocated_ap *ap, *tmp_ap;
527
528 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
529 list_del(&ap->list);
530 kfree(ap);
531 }
532 }
533
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,int s_ssid_tmp)534 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
535 const u8 *pos, u8 length,
536 const struct element *ssid_elem,
537 int s_ssid_tmp)
538 {
539 /* skip the TBTT offset */
540 pos++;
541
542 memcpy(entry->bssid, pos, ETH_ALEN);
543 pos += ETH_ALEN;
544
545 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
546 memcpy(&entry->short_ssid, pos,
547 sizeof(entry->short_ssid));
548 entry->short_ssid_valid = true;
549 pos += 4;
550 }
551
552 /* skip non colocated APs */
553 if (!cfg80211_parse_bss_param(*pos, entry))
554 return -EINVAL;
555 pos++;
556
557 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
558 /*
559 * no information about the short ssid. Consider the entry valid
560 * for now. It would later be dropped in case there are explicit
561 * SSIDs that need to be matched
562 */
563 if (!entry->same_ssid)
564 return 0;
565 }
566
567 if (entry->same_ssid) {
568 entry->short_ssid = s_ssid_tmp;
569 entry->short_ssid_valid = true;
570
571 /*
572 * This is safe because we validate datalen in
573 * cfg80211_parse_colocated_ap(), before calling this
574 * function.
575 */
576 memcpy(&entry->ssid, &ssid_elem->data,
577 ssid_elem->datalen);
578 entry->ssid_len = ssid_elem->datalen;
579 }
580 return 0;
581 }
582
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)583 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
584 struct list_head *list)
585 {
586 struct ieee80211_neighbor_ap_info *ap_info;
587 const struct element *elem, *ssid_elem;
588 const u8 *pos, *end;
589 u32 s_ssid_tmp;
590 int n_coloc = 0, ret;
591 LIST_HEAD(ap_list);
592
593 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
594 ies->len);
595 if (!elem)
596 return 0;
597
598 pos = elem->data;
599 end = pos + elem->datalen;
600
601 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
602 if (ret)
603 return ret;
604
605 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
606 while (pos + sizeof(*ap_info) <= end) {
607 enum nl80211_band band;
608 int freq;
609 u8 length, i, count;
610
611 ap_info = (void *)pos;
612 count = u8_get_bits(ap_info->tbtt_info_hdr,
613 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
614 length = ap_info->tbtt_info_len;
615
616 pos += sizeof(*ap_info);
617
618 if (!ieee80211_operating_class_to_band(ap_info->op_class,
619 &band))
620 break;
621
622 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
623
624 if (end - pos < count * length)
625 break;
626
627 /*
628 * TBTT info must include bss param + BSSID +
629 * (short SSID or same_ssid bit to be set).
630 * ignore other options, and move to the
631 * next AP info
632 */
633 if (band != NL80211_BAND_6GHZ ||
634 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
635 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
636 pos += count * length;
637 continue;
638 }
639
640 for (i = 0; i < count; i++) {
641 struct cfg80211_colocated_ap *entry;
642
643 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
644 GFP_ATOMIC);
645
646 if (!entry)
647 break;
648
649 entry->center_freq = freq;
650
651 if (!cfg80211_parse_ap_info(entry, pos, length,
652 ssid_elem, s_ssid_tmp)) {
653 n_coloc++;
654 list_add_tail(&entry->list, &ap_list);
655 } else {
656 kfree(entry);
657 }
658
659 pos += length;
660 }
661 }
662
663 if (pos != end) {
664 cfg80211_free_coloc_ap_list(&ap_list);
665 return 0;
666 }
667
668 list_splice_tail(&ap_list, list);
669 return n_coloc;
670 }
671
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)672 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
673 struct ieee80211_channel *chan,
674 bool add_to_6ghz)
675 {
676 int i;
677 u32 n_channels = request->n_channels;
678 struct cfg80211_scan_6ghz_params *params =
679 &request->scan_6ghz_params[request->n_6ghz_params];
680
681 for (i = 0; i < n_channels; i++) {
682 if (request->channels[i] == chan) {
683 if (add_to_6ghz)
684 params->channel_idx = i;
685 return;
686 }
687 }
688
689 request->channels[n_channels] = chan;
690 if (add_to_6ghz)
691 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
692 n_channels;
693
694 request->n_channels++;
695 }
696
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)697 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
698 struct cfg80211_scan_request *request)
699 {
700 int i;
701 u32 s_ssid;
702
703 for (i = 0; i < request->n_ssids; i++) {
704 /* wildcard ssid in the scan request */
705 if (!request->ssids[i].ssid_len)
706 return true;
707
708 if (ap->ssid_len &&
709 ap->ssid_len == request->ssids[i].ssid_len) {
710 if (!memcmp(request->ssids[i].ssid, ap->ssid,
711 ap->ssid_len))
712 return true;
713 } else if (ap->short_ssid_valid) {
714 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
715 request->ssids[i].ssid_len);
716
717 if (ap->short_ssid == s_ssid)
718 return true;
719 }
720 }
721
722 return false;
723 }
724
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)725 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
726 {
727 u8 i;
728 struct cfg80211_colocated_ap *ap;
729 int n_channels, count = 0, err;
730 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
731 LIST_HEAD(coloc_ap_list);
732 bool need_scan_psc = true;
733 const struct ieee80211_sband_iftype_data *iftd;
734
735 rdev_req->scan_6ghz = true;
736
737 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
738 return -EOPNOTSUPP;
739
740 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
741 rdev_req->wdev->iftype);
742 if (!iftd || !iftd->he_cap.has_he)
743 return -EOPNOTSUPP;
744
745 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
746
747 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
748 struct cfg80211_internal_bss *intbss;
749
750 spin_lock_bh(&rdev->bss_lock);
751 list_for_each_entry(intbss, &rdev->bss_list, list) {
752 struct cfg80211_bss *res = &intbss->pub;
753 const struct cfg80211_bss_ies *ies;
754
755 ies = rcu_access_pointer(res->ies);
756 count += cfg80211_parse_colocated_ap(ies,
757 &coloc_ap_list);
758 }
759 spin_unlock_bh(&rdev->bss_lock);
760 }
761
762 request = kzalloc(struct_size(request, channels, n_channels) +
763 sizeof(*request->scan_6ghz_params) * count +
764 sizeof(*request->ssids) * rdev_req->n_ssids,
765 GFP_KERNEL);
766 if (!request) {
767 cfg80211_free_coloc_ap_list(&coloc_ap_list);
768 return -ENOMEM;
769 }
770
771 *request = *rdev_req;
772 request->n_channels = 0;
773 request->scan_6ghz_params =
774 (void *)&request->channels[n_channels];
775
776 /*
777 * PSC channels should not be scanned in case of direct scan with 1 SSID
778 * and at least one of the reported co-located APs with same SSID
779 * indicating that all APs in the same ESS are co-located
780 */
781 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
782 list_for_each_entry(ap, &coloc_ap_list, list) {
783 if (ap->colocated_ess &&
784 cfg80211_find_ssid_match(ap, request)) {
785 need_scan_psc = false;
786 break;
787 }
788 }
789 }
790
791 /*
792 * add to the scan request the channels that need to be scanned
793 * regardless of the collocated APs (PSC channels or all channels
794 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
795 */
796 for (i = 0; i < rdev_req->n_channels; i++) {
797 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
798 ((need_scan_psc &&
799 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
800 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
801 cfg80211_scan_req_add_chan(request,
802 rdev_req->channels[i],
803 false);
804 }
805 }
806
807 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
808 goto skip;
809
810 list_for_each_entry(ap, &coloc_ap_list, list) {
811 bool found = false;
812 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
813 &request->scan_6ghz_params[request->n_6ghz_params];
814 struct ieee80211_channel *chan =
815 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
816
817 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
818 continue;
819
820 for (i = 0; i < rdev_req->n_channels; i++) {
821 if (rdev_req->channels[i] == chan)
822 found = true;
823 }
824
825 if (!found)
826 continue;
827
828 if (request->n_ssids > 0 &&
829 !cfg80211_find_ssid_match(ap, request))
830 continue;
831
832 cfg80211_scan_req_add_chan(request, chan, true);
833 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
834 scan_6ghz_params->short_ssid = ap->short_ssid;
835 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
836 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
837
838 /*
839 * If a PSC channel is added to the scan and 'need_scan_psc' is
840 * set to false, then all the APs that the scan logic is
841 * interested with on the channel are collocated and thus there
842 * is no need to perform the initial PSC channel listen.
843 */
844 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
845 scan_6ghz_params->psc_no_listen = true;
846
847 request->n_6ghz_params++;
848 }
849
850 skip:
851 cfg80211_free_coloc_ap_list(&coloc_ap_list);
852
853 if (request->n_channels) {
854 struct cfg80211_scan_request *old = rdev->int_scan_req;
855 rdev->int_scan_req = request;
856
857 /*
858 * Add the ssids from the parent scan request to the new scan
859 * request, so the driver would be able to use them in its
860 * probe requests to discover hidden APs on PSC channels.
861 */
862 request->ssids = (void *)&request->channels[request->n_channels];
863 request->n_ssids = rdev_req->n_ssids;
864 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
865 request->n_ssids);
866
867 /*
868 * If this scan follows a previous scan, save the scan start
869 * info from the first part of the scan
870 */
871 if (old)
872 rdev->int_scan_req->info = old->info;
873
874 err = rdev_scan(rdev, request);
875 if (err) {
876 rdev->int_scan_req = old;
877 kfree(request);
878 } else {
879 kfree(old);
880 }
881
882 return err;
883 }
884
885 kfree(request);
886 return -EINVAL;
887 }
888
cfg80211_scan(struct cfg80211_registered_device * rdev)889 int cfg80211_scan(struct cfg80211_registered_device *rdev)
890 {
891 struct cfg80211_scan_request *request;
892 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
893 u32 n_channels = 0, idx, i;
894
895 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
896 return rdev_scan(rdev, rdev_req);
897
898 for (i = 0; i < rdev_req->n_channels; i++) {
899 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
900 n_channels++;
901 }
902
903 if (!n_channels)
904 return cfg80211_scan_6ghz(rdev);
905
906 request = kzalloc(struct_size(request, channels, n_channels),
907 GFP_KERNEL);
908 if (!request)
909 return -ENOMEM;
910
911 *request = *rdev_req;
912 request->n_channels = n_channels;
913
914 for (i = idx = 0; i < rdev_req->n_channels; i++) {
915 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
916 request->channels[idx++] = rdev_req->channels[i];
917 }
918
919 rdev_req->scan_6ghz = false;
920 rdev->int_scan_req = request;
921 return rdev_scan(rdev, request);
922 }
923
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)924 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
925 bool send_message)
926 {
927 struct cfg80211_scan_request *request, *rdev_req;
928 struct wireless_dev *wdev;
929 struct sk_buff *msg;
930 #ifdef CONFIG_CFG80211_WEXT
931 union iwreq_data wrqu;
932 #endif
933
934 lockdep_assert_held(&rdev->wiphy.mtx);
935
936 if (rdev->scan_msg) {
937 nl80211_send_scan_msg(rdev, rdev->scan_msg);
938 rdev->scan_msg = NULL;
939 return;
940 }
941
942 rdev_req = rdev->scan_req;
943 if (!rdev_req)
944 return;
945
946 wdev = rdev_req->wdev;
947 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
948
949 if (wdev_running(wdev) &&
950 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
951 !rdev_req->scan_6ghz && !request->info.aborted &&
952 !cfg80211_scan_6ghz(rdev))
953 return;
954
955 /*
956 * This must be before sending the other events!
957 * Otherwise, wpa_supplicant gets completely confused with
958 * wext events.
959 */
960 if (wdev->netdev)
961 cfg80211_sme_scan_done(wdev->netdev);
962
963 if (!request->info.aborted &&
964 request->flags & NL80211_SCAN_FLAG_FLUSH) {
965 /* flush entries from previous scans */
966 spin_lock_bh(&rdev->bss_lock);
967 __cfg80211_bss_expire(rdev, request->scan_start);
968 spin_unlock_bh(&rdev->bss_lock);
969 }
970
971 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
972
973 #ifdef CONFIG_CFG80211_WEXT
974 if (wdev->netdev && !request->info.aborted) {
975 memset(&wrqu, 0, sizeof(wrqu));
976
977 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
978 }
979 #endif
980
981 dev_put(wdev->netdev);
982
983 kfree(rdev->int_scan_req);
984 rdev->int_scan_req = NULL;
985
986 kfree(rdev->scan_req);
987 rdev->scan_req = NULL;
988
989 if (!send_message)
990 rdev->scan_msg = msg;
991 else
992 nl80211_send_scan_msg(rdev, msg);
993 }
994
__cfg80211_scan_done(struct work_struct * wk)995 void __cfg80211_scan_done(struct work_struct *wk)
996 {
997 struct cfg80211_registered_device *rdev;
998
999 rdev = container_of(wk, struct cfg80211_registered_device,
1000 scan_done_wk);
1001
1002 wiphy_lock(&rdev->wiphy);
1003 ___cfg80211_scan_done(rdev, true);
1004 wiphy_unlock(&rdev->wiphy);
1005 }
1006
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1007 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1008 struct cfg80211_scan_info *info)
1009 {
1010 struct cfg80211_scan_info old_info = request->info;
1011
1012 trace_cfg80211_scan_done(request, info);
1013 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1014 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1015
1016 request->info = *info;
1017
1018 /*
1019 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1020 * be of the first part. In such a case old_info.scan_start_tsf should
1021 * be non zero.
1022 */
1023 if (request->scan_6ghz && old_info.scan_start_tsf) {
1024 request->info.scan_start_tsf = old_info.scan_start_tsf;
1025 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1026 sizeof(request->info.tsf_bssid));
1027 }
1028
1029 request->notified = true;
1030 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1031 }
1032 EXPORT_SYMBOL(cfg80211_scan_done);
1033
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1034 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1035 struct cfg80211_sched_scan_request *req)
1036 {
1037 lockdep_assert_held(&rdev->wiphy.mtx);
1038
1039 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1040 }
1041
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1042 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1043 struct cfg80211_sched_scan_request *req)
1044 {
1045 lockdep_assert_held(&rdev->wiphy.mtx);
1046
1047 list_del_rcu(&req->list);
1048 kfree_rcu(req, rcu_head);
1049 }
1050
1051 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1052 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1053 {
1054 struct cfg80211_sched_scan_request *pos;
1055
1056 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1057 lockdep_is_held(&rdev->wiphy.mtx)) {
1058 if (pos->reqid == reqid)
1059 return pos;
1060 }
1061 return NULL;
1062 }
1063
1064 /*
1065 * Determines if a scheduled scan request can be handled. When a legacy
1066 * scheduled scan is running no other scheduled scan is allowed regardless
1067 * whether the request is for legacy or multi-support scan. When a multi-support
1068 * scheduled scan is running a request for legacy scan is not allowed. In this
1069 * case a request for multi-support scan can be handled if resources are
1070 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1071 */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1072 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1073 bool want_multi)
1074 {
1075 struct cfg80211_sched_scan_request *pos;
1076 int i = 0;
1077
1078 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1079 /* request id zero means legacy in progress */
1080 if (!i && !pos->reqid)
1081 return -EINPROGRESS;
1082 i++;
1083 }
1084
1085 if (i) {
1086 /* no legacy allowed when multi request(s) are active */
1087 if (!want_multi)
1088 return -EINPROGRESS;
1089
1090 /* resource limit reached */
1091 if (i == rdev->wiphy.max_sched_scan_reqs)
1092 return -ENOSPC;
1093 }
1094 return 0;
1095 }
1096
cfg80211_sched_scan_results_wk(struct work_struct * work)1097 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1098 {
1099 struct cfg80211_registered_device *rdev;
1100 struct cfg80211_sched_scan_request *req, *tmp;
1101
1102 rdev = container_of(work, struct cfg80211_registered_device,
1103 sched_scan_res_wk);
1104
1105 wiphy_lock(&rdev->wiphy);
1106 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1107 if (req->report_results) {
1108 req->report_results = false;
1109 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1110 /* flush entries from previous scans */
1111 spin_lock_bh(&rdev->bss_lock);
1112 __cfg80211_bss_expire(rdev, req->scan_start);
1113 spin_unlock_bh(&rdev->bss_lock);
1114 req->scan_start = jiffies;
1115 }
1116 nl80211_send_sched_scan(req,
1117 NL80211_CMD_SCHED_SCAN_RESULTS);
1118 }
1119 }
1120 wiphy_unlock(&rdev->wiphy);
1121 }
1122
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1123 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1124 {
1125 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1126 struct cfg80211_sched_scan_request *request;
1127
1128 trace_cfg80211_sched_scan_results(wiphy, reqid);
1129 /* ignore if we're not scanning */
1130
1131 rcu_read_lock();
1132 request = cfg80211_find_sched_scan_req(rdev, reqid);
1133 if (request) {
1134 request->report_results = true;
1135 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1136 }
1137 rcu_read_unlock();
1138 }
1139 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1140
cfg80211_sched_scan_stopped_locked(struct wiphy * wiphy,u64 reqid)1141 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1142 {
1143 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1144
1145 lockdep_assert_held(&wiphy->mtx);
1146
1147 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1148
1149 __cfg80211_stop_sched_scan(rdev, reqid, true);
1150 }
1151 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1152
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1153 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1154 {
1155 wiphy_lock(wiphy);
1156 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1157 wiphy_unlock(wiphy);
1158 }
1159 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1160
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1161 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1162 struct cfg80211_sched_scan_request *req,
1163 bool driver_initiated)
1164 {
1165 lockdep_assert_held(&rdev->wiphy.mtx);
1166
1167 if (!driver_initiated) {
1168 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1169 if (err)
1170 return err;
1171 }
1172
1173 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1174
1175 cfg80211_del_sched_scan_req(rdev, req);
1176
1177 return 0;
1178 }
1179
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1180 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1181 u64 reqid, bool driver_initiated)
1182 {
1183 struct cfg80211_sched_scan_request *sched_scan_req;
1184
1185 lockdep_assert_held(&rdev->wiphy.mtx);
1186
1187 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1188 if (!sched_scan_req)
1189 return -ENOENT;
1190
1191 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1192 driver_initiated);
1193 }
1194
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1195 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1196 unsigned long age_secs)
1197 {
1198 struct cfg80211_internal_bss *bss;
1199 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1200
1201 spin_lock_bh(&rdev->bss_lock);
1202 list_for_each_entry(bss, &rdev->bss_list, list)
1203 bss->ts -= age_jiffies;
1204 spin_unlock_bh(&rdev->bss_lock);
1205 }
1206
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1207 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1208 {
1209 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1210 }
1211
cfg80211_bss_flush(struct wiphy * wiphy)1212 void cfg80211_bss_flush(struct wiphy *wiphy)
1213 {
1214 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1215
1216 spin_lock_bh(&rdev->bss_lock);
1217 __cfg80211_bss_expire(rdev, jiffies);
1218 spin_unlock_bh(&rdev->bss_lock);
1219 }
1220 EXPORT_SYMBOL(cfg80211_bss_flush);
1221
1222 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1223 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1224 const u8 *match, unsigned int match_len,
1225 unsigned int match_offset)
1226 {
1227 const struct element *elem;
1228
1229 for_each_element_id(elem, eid, ies, len) {
1230 if (elem->datalen >= match_offset + match_len &&
1231 !memcmp(elem->data + match_offset, match, match_len))
1232 return elem;
1233 }
1234
1235 return NULL;
1236 }
1237 EXPORT_SYMBOL(cfg80211_find_elem_match);
1238
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1239 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1240 const u8 *ies,
1241 unsigned int len)
1242 {
1243 const struct element *elem;
1244 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1245 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1246
1247 if (WARN_ON(oui_type > 0xff))
1248 return NULL;
1249
1250 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1251 match, match_len, 0);
1252
1253 if (!elem || elem->datalen < 4)
1254 return NULL;
1255
1256 return elem;
1257 }
1258 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1259
1260 /**
1261 * enum bss_compare_mode - BSS compare mode
1262 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1263 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1264 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1265 */
1266 enum bss_compare_mode {
1267 BSS_CMP_REGULAR,
1268 BSS_CMP_HIDE_ZLEN,
1269 BSS_CMP_HIDE_NUL,
1270 };
1271
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1272 static int cmp_bss(struct cfg80211_bss *a,
1273 struct cfg80211_bss *b,
1274 enum bss_compare_mode mode)
1275 {
1276 const struct cfg80211_bss_ies *a_ies, *b_ies;
1277 const u8 *ie1 = NULL;
1278 const u8 *ie2 = NULL;
1279 int i, r;
1280
1281 if (a->channel != b->channel)
1282 return b->channel->center_freq - a->channel->center_freq;
1283
1284 a_ies = rcu_access_pointer(a->ies);
1285 if (!a_ies)
1286 return -1;
1287 b_ies = rcu_access_pointer(b->ies);
1288 if (!b_ies)
1289 return 1;
1290
1291 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1292 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1293 a_ies->data, a_ies->len);
1294 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1295 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1296 b_ies->data, b_ies->len);
1297 if (ie1 && ie2) {
1298 int mesh_id_cmp;
1299
1300 if (ie1[1] == ie2[1])
1301 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1302 else
1303 mesh_id_cmp = ie2[1] - ie1[1];
1304
1305 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1306 a_ies->data, a_ies->len);
1307 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1308 b_ies->data, b_ies->len);
1309 if (ie1 && ie2) {
1310 if (mesh_id_cmp)
1311 return mesh_id_cmp;
1312 if (ie1[1] != ie2[1])
1313 return ie2[1] - ie1[1];
1314 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1315 }
1316 }
1317
1318 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1319 if (r)
1320 return r;
1321
1322 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1323 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1324
1325 if (!ie1 && !ie2)
1326 return 0;
1327
1328 /*
1329 * Note that with "hide_ssid", the function returns a match if
1330 * the already-present BSS ("b") is a hidden SSID beacon for
1331 * the new BSS ("a").
1332 */
1333
1334 /* sort missing IE before (left of) present IE */
1335 if (!ie1)
1336 return -1;
1337 if (!ie2)
1338 return 1;
1339
1340 switch (mode) {
1341 case BSS_CMP_HIDE_ZLEN:
1342 /*
1343 * In ZLEN mode we assume the BSS entry we're
1344 * looking for has a zero-length SSID. So if
1345 * the one we're looking at right now has that,
1346 * return 0. Otherwise, return the difference
1347 * in length, but since we're looking for the
1348 * 0-length it's really equivalent to returning
1349 * the length of the one we're looking at.
1350 *
1351 * No content comparison is needed as we assume
1352 * the content length is zero.
1353 */
1354 return ie2[1];
1355 case BSS_CMP_REGULAR:
1356 default:
1357 /* sort by length first, then by contents */
1358 if (ie1[1] != ie2[1])
1359 return ie2[1] - ie1[1];
1360 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1361 case BSS_CMP_HIDE_NUL:
1362 if (ie1[1] != ie2[1])
1363 return ie2[1] - ie1[1];
1364 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1365 for (i = 0; i < ie2[1]; i++)
1366 if (ie2[i + 2])
1367 return -1;
1368 return 0;
1369 }
1370 }
1371
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1372 static bool cfg80211_bss_type_match(u16 capability,
1373 enum nl80211_band band,
1374 enum ieee80211_bss_type bss_type)
1375 {
1376 bool ret = true;
1377 u16 mask, val;
1378
1379 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1380 return ret;
1381
1382 if (band == NL80211_BAND_60GHZ) {
1383 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1384 switch (bss_type) {
1385 case IEEE80211_BSS_TYPE_ESS:
1386 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1387 break;
1388 case IEEE80211_BSS_TYPE_PBSS:
1389 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1390 break;
1391 case IEEE80211_BSS_TYPE_IBSS:
1392 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1393 break;
1394 default:
1395 return false;
1396 }
1397 } else {
1398 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1399 switch (bss_type) {
1400 case IEEE80211_BSS_TYPE_ESS:
1401 val = WLAN_CAPABILITY_ESS;
1402 break;
1403 case IEEE80211_BSS_TYPE_IBSS:
1404 val = WLAN_CAPABILITY_IBSS;
1405 break;
1406 case IEEE80211_BSS_TYPE_MBSS:
1407 val = 0;
1408 break;
1409 default:
1410 return false;
1411 }
1412 }
1413
1414 ret = ((capability & mask) == val);
1415 return ret;
1416 }
1417
1418 /* Returned bss is reference counted and must be cleaned up appropriately. */
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)1419 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1420 struct ieee80211_channel *channel,
1421 const u8 *bssid,
1422 const u8 *ssid, size_t ssid_len,
1423 enum ieee80211_bss_type bss_type,
1424 enum ieee80211_privacy privacy)
1425 {
1426 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1427 struct cfg80211_internal_bss *bss, *res = NULL;
1428 unsigned long now = jiffies;
1429 int bss_privacy;
1430
1431 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1432 privacy);
1433
1434 spin_lock_bh(&rdev->bss_lock);
1435
1436 list_for_each_entry(bss, &rdev->bss_list, list) {
1437 if (!cfg80211_bss_type_match(bss->pub.capability,
1438 bss->pub.channel->band, bss_type))
1439 continue;
1440
1441 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1442 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1443 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1444 continue;
1445 if (channel && bss->pub.channel != channel)
1446 continue;
1447 if (!is_valid_ether_addr(bss->pub.bssid))
1448 continue;
1449 /* Don't get expired BSS structs */
1450 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1451 !atomic_read(&bss->hold))
1452 continue;
1453 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1454 res = bss;
1455 bss_ref_get(rdev, res);
1456 break;
1457 }
1458 }
1459
1460 spin_unlock_bh(&rdev->bss_lock);
1461 if (!res)
1462 return NULL;
1463 trace_cfg80211_return_bss(&res->pub);
1464 return &res->pub;
1465 }
1466 EXPORT_SYMBOL(cfg80211_get_bss);
1467
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1468 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1469 struct cfg80211_internal_bss *bss)
1470 {
1471 struct rb_node **p = &rdev->bss_tree.rb_node;
1472 struct rb_node *parent = NULL;
1473 struct cfg80211_internal_bss *tbss;
1474 int cmp;
1475
1476 while (*p) {
1477 parent = *p;
1478 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1479
1480 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1481
1482 if (WARN_ON(!cmp)) {
1483 /* will sort of leak this BSS */
1484 return;
1485 }
1486
1487 if (cmp < 0)
1488 p = &(*p)->rb_left;
1489 else
1490 p = &(*p)->rb_right;
1491 }
1492
1493 rb_link_node(&bss->rbn, parent, p);
1494 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1495 }
1496
1497 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1498 rb_find_bss(struct cfg80211_registered_device *rdev,
1499 struct cfg80211_internal_bss *res,
1500 enum bss_compare_mode mode)
1501 {
1502 struct rb_node *n = rdev->bss_tree.rb_node;
1503 struct cfg80211_internal_bss *bss;
1504 int r;
1505
1506 while (n) {
1507 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1508 r = cmp_bss(&res->pub, &bss->pub, mode);
1509
1510 if (r == 0)
1511 return bss;
1512 else if (r < 0)
1513 n = n->rb_left;
1514 else
1515 n = n->rb_right;
1516 }
1517
1518 return NULL;
1519 }
1520
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1521 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1522 struct cfg80211_internal_bss *new)
1523 {
1524 const struct cfg80211_bss_ies *ies;
1525 struct cfg80211_internal_bss *bss;
1526 const u8 *ie;
1527 int i, ssidlen;
1528 u8 fold = 0;
1529 u32 n_entries = 0;
1530
1531 ies = rcu_access_pointer(new->pub.beacon_ies);
1532 if (WARN_ON(!ies))
1533 return false;
1534
1535 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1536 if (!ie) {
1537 /* nothing to do */
1538 return true;
1539 }
1540
1541 ssidlen = ie[1];
1542 for (i = 0; i < ssidlen; i++)
1543 fold |= ie[2 + i];
1544
1545 if (fold) {
1546 /* not a hidden SSID */
1547 return true;
1548 }
1549
1550 /* This is the bad part ... */
1551
1552 list_for_each_entry(bss, &rdev->bss_list, list) {
1553 /*
1554 * we're iterating all the entries anyway, so take the
1555 * opportunity to validate the list length accounting
1556 */
1557 n_entries++;
1558
1559 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1560 continue;
1561 if (bss->pub.channel != new->pub.channel)
1562 continue;
1563 if (bss->pub.scan_width != new->pub.scan_width)
1564 continue;
1565 if (rcu_access_pointer(bss->pub.beacon_ies))
1566 continue;
1567 ies = rcu_access_pointer(bss->pub.ies);
1568 if (!ies)
1569 continue;
1570 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1571 if (!ie)
1572 continue;
1573 if (ssidlen && ie[1] != ssidlen)
1574 continue;
1575 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1576 continue;
1577 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1578 list_del(&bss->hidden_list);
1579 /* combine them */
1580 list_add(&bss->hidden_list, &new->hidden_list);
1581 bss->pub.hidden_beacon_bss = &new->pub;
1582 new->refcount += bss->refcount;
1583 rcu_assign_pointer(bss->pub.beacon_ies,
1584 new->pub.beacon_ies);
1585 }
1586
1587 WARN_ONCE(n_entries != rdev->bss_entries,
1588 "rdev bss entries[%d]/list[len:%d] corruption\n",
1589 rdev->bss_entries, n_entries);
1590
1591 return true;
1592 }
1593
1594 struct cfg80211_non_tx_bss {
1595 struct cfg80211_bss *tx_bss;
1596 u8 max_bssid_indicator;
1597 u8 bssid_index;
1598 };
1599
1600 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1601 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1602 struct cfg80211_internal_bss *known,
1603 struct cfg80211_internal_bss *new,
1604 bool signal_valid)
1605 {
1606 lockdep_assert_held(&rdev->bss_lock);
1607
1608 /* Update IEs */
1609 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1610 const struct cfg80211_bss_ies *old;
1611
1612 old = rcu_access_pointer(known->pub.proberesp_ies);
1613
1614 rcu_assign_pointer(known->pub.proberesp_ies,
1615 new->pub.proberesp_ies);
1616 /* Override possible earlier Beacon frame IEs */
1617 rcu_assign_pointer(known->pub.ies,
1618 new->pub.proberesp_ies);
1619 if (old)
1620 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1621 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1622 const struct cfg80211_bss_ies *old;
1623 struct cfg80211_internal_bss *bss;
1624
1625 if (known->pub.hidden_beacon_bss &&
1626 !list_empty(&known->hidden_list)) {
1627 const struct cfg80211_bss_ies *f;
1628
1629 /* The known BSS struct is one of the probe
1630 * response members of a group, but we're
1631 * receiving a beacon (beacon_ies in the new
1632 * bss is used). This can only mean that the
1633 * AP changed its beacon from not having an
1634 * SSID to showing it, which is confusing so
1635 * drop this information.
1636 */
1637
1638 f = rcu_access_pointer(new->pub.beacon_ies);
1639 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1640 return false;
1641 }
1642
1643 old = rcu_access_pointer(known->pub.beacon_ies);
1644
1645 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1646
1647 /* Override IEs if they were from a beacon before */
1648 if (old == rcu_access_pointer(known->pub.ies))
1649 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1650
1651 /* Assign beacon IEs to all sub entries */
1652 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1653 const struct cfg80211_bss_ies *ies;
1654
1655 ies = rcu_access_pointer(bss->pub.beacon_ies);
1656 WARN_ON(ies != old);
1657
1658 rcu_assign_pointer(bss->pub.beacon_ies,
1659 new->pub.beacon_ies);
1660 }
1661
1662 if (old)
1663 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1664 }
1665
1666 known->pub.beacon_interval = new->pub.beacon_interval;
1667
1668 /* don't update the signal if beacon was heard on
1669 * adjacent channel.
1670 */
1671 if (signal_valid)
1672 known->pub.signal = new->pub.signal;
1673 known->pub.capability = new->pub.capability;
1674 known->ts = new->ts;
1675 known->ts_boottime = new->ts_boottime;
1676 known->parent_tsf = new->parent_tsf;
1677 known->pub.chains = new->pub.chains;
1678 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1679 IEEE80211_MAX_CHAINS);
1680 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1681 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1682 known->pub.bssid_index = new->pub.bssid_index;
1683
1684 return true;
1685 }
1686
1687 /* Returned bss is reference counted and must be cleaned up appropriately. */
1688 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1689 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1690 struct cfg80211_internal_bss *tmp,
1691 bool signal_valid, unsigned long ts)
1692 {
1693 struct cfg80211_internal_bss *found = NULL;
1694
1695 if (WARN_ON(!tmp->pub.channel))
1696 return NULL;
1697
1698 tmp->ts = ts;
1699
1700 spin_lock_bh(&rdev->bss_lock);
1701
1702 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1703 spin_unlock_bh(&rdev->bss_lock);
1704 return NULL;
1705 }
1706
1707 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1708
1709 if (found) {
1710 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1711 goto drop;
1712 } else {
1713 struct cfg80211_internal_bss *new;
1714 struct cfg80211_internal_bss *hidden;
1715 struct cfg80211_bss_ies *ies;
1716
1717 /*
1718 * create a copy -- the "res" variable that is passed in
1719 * is allocated on the stack since it's not needed in the
1720 * more common case of an update
1721 */
1722 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1723 GFP_ATOMIC);
1724 if (!new) {
1725 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1726 if (ies)
1727 kfree_rcu(ies, rcu_head);
1728 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1729 if (ies)
1730 kfree_rcu(ies, rcu_head);
1731 goto drop;
1732 }
1733 memcpy(new, tmp, sizeof(*new));
1734 new->refcount = 1;
1735 INIT_LIST_HEAD(&new->hidden_list);
1736 INIT_LIST_HEAD(&new->pub.nontrans_list);
1737
1738 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1739 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1740 if (!hidden)
1741 hidden = rb_find_bss(rdev, tmp,
1742 BSS_CMP_HIDE_NUL);
1743 if (hidden) {
1744 new->pub.hidden_beacon_bss = &hidden->pub;
1745 list_add(&new->hidden_list,
1746 &hidden->hidden_list);
1747 hidden->refcount++;
1748 rcu_assign_pointer(new->pub.beacon_ies,
1749 hidden->pub.beacon_ies);
1750 }
1751 } else {
1752 /*
1753 * Ok so we found a beacon, and don't have an entry. If
1754 * it's a beacon with hidden SSID, we might be in for an
1755 * expensive search for any probe responses that should
1756 * be grouped with this beacon for updates ...
1757 */
1758 if (!cfg80211_combine_bsses(rdev, new)) {
1759 bss_ref_put(rdev, new);
1760 goto drop;
1761 }
1762 }
1763
1764 if (rdev->bss_entries >= bss_entries_limit &&
1765 !cfg80211_bss_expire_oldest(rdev)) {
1766 bss_ref_put(rdev, new);
1767 goto drop;
1768 }
1769
1770 /* This must be before the call to bss_ref_get */
1771 if (tmp->pub.transmitted_bss) {
1772 struct cfg80211_internal_bss *pbss =
1773 container_of(tmp->pub.transmitted_bss,
1774 struct cfg80211_internal_bss,
1775 pub);
1776
1777 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1778 bss_ref_get(rdev, pbss);
1779 }
1780
1781 list_add_tail(&new->list, &rdev->bss_list);
1782 rdev->bss_entries++;
1783 rb_insert_bss(rdev, new);
1784 found = new;
1785 }
1786
1787 rdev->bss_generation++;
1788 bss_ref_get(rdev, found);
1789 spin_unlock_bh(&rdev->bss_lock);
1790
1791 return found;
1792 drop:
1793 spin_unlock_bh(&rdev->bss_lock);
1794 return NULL;
1795 }
1796
1797 /*
1798 * Update RX channel information based on the available frame payload
1799 * information. This is mainly for the 2.4 GHz band where frames can be received
1800 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1801 * element to indicate the current (transmitting) channel, but this might also
1802 * be needed on other bands if RX frequency does not match with the actual
1803 * operating channel of a BSS.
1804 */
1805 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel,enum nl80211_bss_scan_width scan_width)1806 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1807 struct ieee80211_channel *channel,
1808 enum nl80211_bss_scan_width scan_width)
1809 {
1810 const u8 *tmp;
1811 u32 freq;
1812 int channel_number = -1;
1813 struct ieee80211_channel *alt_channel;
1814
1815 if (channel->band == NL80211_BAND_S1GHZ) {
1816 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1817 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1818 struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1819
1820 channel_number = s1gop->primary_ch;
1821 }
1822 } else {
1823 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1824 if (tmp && tmp[1] == 1) {
1825 channel_number = tmp[2];
1826 } else {
1827 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1828 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1829 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1830
1831 channel_number = htop->primary_chan;
1832 }
1833 }
1834 }
1835
1836 if (channel_number < 0) {
1837 /* No channel information in frame payload */
1838 return channel;
1839 }
1840
1841 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1842 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1843 if (!alt_channel) {
1844 if (channel->band == NL80211_BAND_2GHZ) {
1845 /*
1846 * Better not allow unexpected channels when that could
1847 * be going beyond the 1-11 range (e.g., discovering
1848 * BSS on channel 12 when radio is configured for
1849 * channel 11.
1850 */
1851 return NULL;
1852 }
1853
1854 /* No match for the payload channel number - ignore it */
1855 return channel;
1856 }
1857
1858 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1859 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1860 /*
1861 * Ignore channel number in 5 and 10 MHz channels where there
1862 * may not be an n:1 or 1:n mapping between frequencies and
1863 * channel numbers.
1864 */
1865 return channel;
1866 }
1867
1868 /*
1869 * Use the channel determined through the payload channel number
1870 * instead of the RX channel reported by the driver.
1871 */
1872 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1873 return NULL;
1874 return alt_channel;
1875 }
1876
1877 /* Returned bss is reference counted and must be cleaned up appropriately. */
1878 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)1879 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1880 struct cfg80211_inform_bss *data,
1881 enum cfg80211_bss_frame_type ftype,
1882 const u8 *bssid, u64 tsf, u16 capability,
1883 u16 beacon_interval, const u8 *ie, size_t ielen,
1884 struct cfg80211_non_tx_bss *non_tx_data,
1885 gfp_t gfp)
1886 {
1887 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1888 struct cfg80211_bss_ies *ies;
1889 struct ieee80211_channel *channel;
1890 struct cfg80211_internal_bss tmp = {}, *res;
1891 int bss_type;
1892 bool signal_valid;
1893 unsigned long ts;
1894
1895 if (WARN_ON(!wiphy))
1896 return NULL;
1897
1898 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1899 (data->signal < 0 || data->signal > 100)))
1900 return NULL;
1901
1902 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1903 data->scan_width);
1904 if (!channel)
1905 return NULL;
1906
1907 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1908 tmp.pub.channel = channel;
1909 tmp.pub.scan_width = data->scan_width;
1910 tmp.pub.signal = data->signal;
1911 tmp.pub.beacon_interval = beacon_interval;
1912 tmp.pub.capability = capability;
1913 tmp.ts_boottime = data->boottime_ns;
1914 tmp.parent_tsf = data->parent_tsf;
1915 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1916
1917 if (non_tx_data) {
1918 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1919 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1920 tmp.pub.bssid_index = non_tx_data->bssid_index;
1921 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1922 } else {
1923 ts = jiffies;
1924 }
1925
1926 /*
1927 * If we do not know here whether the IEs are from a Beacon or Probe
1928 * Response frame, we need to pick one of the options and only use it
1929 * with the driver that does not provide the full Beacon/Probe Response
1930 * frame. Use Beacon frame pointer to avoid indicating that this should
1931 * override the IEs pointer should we have received an earlier
1932 * indication of Probe Response data.
1933 */
1934 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1935 if (!ies)
1936 return NULL;
1937 ies->len = ielen;
1938 ies->tsf = tsf;
1939 ies->from_beacon = false;
1940 memcpy(ies->data, ie, ielen);
1941
1942 switch (ftype) {
1943 case CFG80211_BSS_FTYPE_BEACON:
1944 ies->from_beacon = true;
1945 fallthrough;
1946 case CFG80211_BSS_FTYPE_UNKNOWN:
1947 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1948 break;
1949 case CFG80211_BSS_FTYPE_PRESP:
1950 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1951 break;
1952 }
1953 rcu_assign_pointer(tmp.pub.ies, ies);
1954
1955 signal_valid = data->chan == channel;
1956 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1957 if (!res)
1958 return NULL;
1959
1960 if (channel->band == NL80211_BAND_60GHZ) {
1961 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1962 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1963 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1964 regulatory_hint_found_beacon(wiphy, channel, gfp);
1965 } else {
1966 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1967 regulatory_hint_found_beacon(wiphy, channel, gfp);
1968 }
1969
1970 if (non_tx_data) {
1971 /* this is a nontransmitting bss, we need to add it to
1972 * transmitting bss' list if it is not there
1973 */
1974 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1975 &res->pub)) {
1976 if (__cfg80211_unlink_bss(rdev, res))
1977 rdev->bss_generation++;
1978 }
1979 }
1980
1981 trace_cfg80211_return_bss(&res->pub);
1982 /* cfg80211_bss_update gives us a referenced result */
1983 return &res->pub;
1984 }
1985
1986 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)1987 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1988 const struct element *mbssid_elem,
1989 const struct element *sub_elem)
1990 {
1991 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1992 const struct element *next_mbssid;
1993 const struct element *next_sub;
1994
1995 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1996 mbssid_end,
1997 ielen - (mbssid_end - ie));
1998
1999 /*
2000 * If it is not the last subelement in current MBSSID IE or there isn't
2001 * a next MBSSID IE - profile is complete.
2002 */
2003 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2004 !next_mbssid)
2005 return NULL;
2006
2007 /* For any length error, just return NULL */
2008
2009 if (next_mbssid->datalen < 4)
2010 return NULL;
2011
2012 next_sub = (void *)&next_mbssid->data[1];
2013
2014 if (next_mbssid->data + next_mbssid->datalen <
2015 next_sub->data + next_sub->datalen)
2016 return NULL;
2017
2018 if (next_sub->id != 0 || next_sub->datalen < 2)
2019 return NULL;
2020
2021 /*
2022 * Check if the first element in the next sub element is a start
2023 * of a new profile
2024 */
2025 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2026 NULL : next_mbssid;
2027 }
2028
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2029 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2030 const struct element *mbssid_elem,
2031 const struct element *sub_elem,
2032 u8 *merged_ie, size_t max_copy_len)
2033 {
2034 size_t copied_len = sub_elem->datalen;
2035 const struct element *next_mbssid;
2036
2037 if (sub_elem->datalen > max_copy_len)
2038 return 0;
2039
2040 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2041
2042 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2043 mbssid_elem,
2044 sub_elem))) {
2045 const struct element *next_sub = (void *)&next_mbssid->data[1];
2046
2047 if (copied_len + next_sub->datalen > max_copy_len)
2048 break;
2049 memcpy(merged_ie + copied_len, next_sub->data,
2050 next_sub->datalen);
2051 copied_len += next_sub->datalen;
2052 }
2053
2054 return copied_len;
2055 }
2056 EXPORT_SYMBOL(cfg80211_merge_profile);
2057
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2058 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2059 struct cfg80211_inform_bss *data,
2060 enum cfg80211_bss_frame_type ftype,
2061 const u8 *bssid, u64 tsf,
2062 u16 beacon_interval, const u8 *ie,
2063 size_t ielen,
2064 struct cfg80211_non_tx_bss *non_tx_data,
2065 gfp_t gfp)
2066 {
2067 const u8 *mbssid_index_ie;
2068 const struct element *elem, *sub;
2069 size_t new_ie_len;
2070 u8 new_bssid[ETH_ALEN];
2071 u8 *new_ie, *profile;
2072 u64 seen_indices = 0;
2073 u16 capability;
2074 struct cfg80211_bss *bss;
2075
2076 if (!non_tx_data)
2077 return;
2078 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2079 return;
2080 if (!wiphy->support_mbssid)
2081 return;
2082 if (wiphy->support_only_he_mbssid &&
2083 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2084 return;
2085
2086 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2087 if (!new_ie)
2088 return;
2089
2090 profile = kmalloc(ielen, gfp);
2091 if (!profile)
2092 goto out;
2093
2094 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2095 if (elem->datalen < 4)
2096 continue;
2097 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2098 u8 profile_len;
2099
2100 if (sub->id != 0 || sub->datalen < 4) {
2101 /* not a valid BSS profile */
2102 continue;
2103 }
2104
2105 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2106 sub->data[1] != 2) {
2107 /* The first element within the Nontransmitted
2108 * BSSID Profile is not the Nontransmitted
2109 * BSSID Capability element.
2110 */
2111 continue;
2112 }
2113
2114 memset(profile, 0, ielen);
2115 profile_len = cfg80211_merge_profile(ie, ielen,
2116 elem,
2117 sub,
2118 profile,
2119 ielen);
2120
2121 /* found a Nontransmitted BSSID Profile */
2122 mbssid_index_ie = cfg80211_find_ie
2123 (WLAN_EID_MULTI_BSSID_IDX,
2124 profile, profile_len);
2125 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2126 mbssid_index_ie[2] == 0 ||
2127 mbssid_index_ie[2] > 46) {
2128 /* No valid Multiple BSSID-Index element */
2129 continue;
2130 }
2131
2132 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2133 /* We don't support legacy split of a profile */
2134 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2135 mbssid_index_ie[2]);
2136
2137 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2138
2139 non_tx_data->bssid_index = mbssid_index_ie[2];
2140 non_tx_data->max_bssid_indicator = elem->data[0];
2141
2142 cfg80211_gen_new_bssid(bssid,
2143 non_tx_data->max_bssid_indicator,
2144 non_tx_data->bssid_index,
2145 new_bssid);
2146 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2147 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2148 profile,
2149 profile_len, new_ie,
2150 gfp);
2151 if (!new_ie_len)
2152 continue;
2153
2154 capability = get_unaligned_le16(profile + 2);
2155 bss = cfg80211_inform_single_bss_data(wiphy, data,
2156 ftype,
2157 new_bssid, tsf,
2158 capability,
2159 beacon_interval,
2160 new_ie,
2161 new_ie_len,
2162 non_tx_data,
2163 gfp);
2164 if (!bss)
2165 break;
2166 cfg80211_put_bss(wiphy, bss);
2167 }
2168 }
2169
2170 out:
2171 kfree(new_ie);
2172 kfree(profile);
2173 }
2174
2175 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)2176 cfg80211_inform_bss_data(struct wiphy *wiphy,
2177 struct cfg80211_inform_bss *data,
2178 enum cfg80211_bss_frame_type ftype,
2179 const u8 *bssid, u64 tsf, u16 capability,
2180 u16 beacon_interval, const u8 *ie, size_t ielen,
2181 gfp_t gfp)
2182 {
2183 struct cfg80211_bss *res;
2184 struct cfg80211_non_tx_bss non_tx_data;
2185
2186 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2187 capability, beacon_interval, ie,
2188 ielen, NULL, gfp);
2189 if (!res)
2190 return NULL;
2191 non_tx_data.tx_bss = res;
2192 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2193 beacon_interval, ie, ielen, &non_tx_data,
2194 gfp);
2195 return res;
2196 }
2197 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2198
2199 static void
cfg80211_parse_mbssid_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2200 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2201 struct cfg80211_inform_bss *data,
2202 struct ieee80211_mgmt *mgmt, size_t len,
2203 struct cfg80211_non_tx_bss *non_tx_data,
2204 gfp_t gfp)
2205 {
2206 enum cfg80211_bss_frame_type ftype;
2207 const u8 *ie = mgmt->u.probe_resp.variable;
2208 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2209 u.probe_resp.variable);
2210
2211 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2212 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2213
2214 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2215 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2216 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2217 ie, ielen, non_tx_data, gfp);
2218 }
2219
2220 static void
cfg80211_update_notlisted_nontrans(struct wiphy * wiphy,struct cfg80211_bss * nontrans_bss,struct ieee80211_mgmt * mgmt,size_t len)2221 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2222 struct cfg80211_bss *nontrans_bss,
2223 struct ieee80211_mgmt *mgmt, size_t len)
2224 {
2225 u8 *ie, *new_ie, *pos;
2226 const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2227 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2228 u.probe_resp.variable);
2229 size_t new_ie_len;
2230 struct cfg80211_bss_ies *new_ies;
2231 const struct cfg80211_bss_ies *old;
2232 u8 cpy_len;
2233
2234 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2235
2236 ie = mgmt->u.probe_resp.variable;
2237
2238 new_ie_len = ielen;
2239 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2240 if (!trans_ssid)
2241 return;
2242 new_ie_len -= trans_ssid[1];
2243 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2244 /*
2245 * It's not valid to have the MBSSID element before SSID
2246 * ignore if that happens - the code below assumes it is
2247 * after (while copying things inbetween).
2248 */
2249 if (!mbssid || mbssid < trans_ssid)
2250 return;
2251 new_ie_len -= mbssid[1];
2252
2253 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2254 if (!nontrans_ssid)
2255 return;
2256
2257 new_ie_len += nontrans_ssid[1];
2258
2259 /* generate new ie for nontrans BSS
2260 * 1. replace SSID with nontrans BSS' SSID
2261 * 2. skip MBSSID IE
2262 */
2263 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2264 if (!new_ie)
2265 return;
2266
2267 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2268 if (!new_ies)
2269 goto out_free;
2270
2271 pos = new_ie;
2272
2273 /* copy the nontransmitted SSID */
2274 cpy_len = nontrans_ssid[1] + 2;
2275 memcpy(pos, nontrans_ssid, cpy_len);
2276 pos += cpy_len;
2277 /* copy the IEs between SSID and MBSSID */
2278 cpy_len = trans_ssid[1] + 2;
2279 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2280 pos += (mbssid - (trans_ssid + cpy_len));
2281 /* copy the IEs after MBSSID */
2282 cpy_len = mbssid[1] + 2;
2283 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2284
2285 /* update ie */
2286 new_ies->len = new_ie_len;
2287 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2288 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2289 memcpy(new_ies->data, new_ie, new_ie_len);
2290 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2291 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2292 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2293 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2294 if (old)
2295 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2296 } else {
2297 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2298 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2299 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2300 if (old)
2301 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2302 }
2303
2304 out_free:
2305 kfree(new_ie);
2306 }
2307
2308 /* cfg80211_inform_bss_width_frame helper */
2309 static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2310 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2311 struct cfg80211_inform_bss *data,
2312 struct ieee80211_mgmt *mgmt, size_t len,
2313 gfp_t gfp)
2314 {
2315 struct cfg80211_internal_bss tmp = {}, *res;
2316 struct cfg80211_bss_ies *ies;
2317 struct ieee80211_channel *channel;
2318 bool signal_valid;
2319 struct ieee80211_ext *ext = NULL;
2320 u8 *bssid, *variable;
2321 u16 capability, beacon_int;
2322 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2323 u.probe_resp.variable);
2324 int bss_type;
2325
2326 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2327 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2328
2329 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2330
2331 if (WARN_ON(!mgmt))
2332 return NULL;
2333
2334 if (WARN_ON(!wiphy))
2335 return NULL;
2336
2337 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2338 (data->signal < 0 || data->signal > 100)))
2339 return NULL;
2340
2341 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2342 ext = (void *) mgmt;
2343 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2344 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2345 min_hdr_len = offsetof(struct ieee80211_ext,
2346 u.s1g_short_beacon.variable);
2347 }
2348
2349 if (WARN_ON(len < min_hdr_len))
2350 return NULL;
2351
2352 ielen = len - min_hdr_len;
2353 variable = mgmt->u.probe_resp.variable;
2354 if (ext) {
2355 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2356 variable = ext->u.s1g_short_beacon.variable;
2357 else
2358 variable = ext->u.s1g_beacon.variable;
2359 }
2360
2361 channel = cfg80211_get_bss_channel(wiphy, variable,
2362 ielen, data->chan, data->scan_width);
2363 if (!channel)
2364 return NULL;
2365
2366 if (ext) {
2367 const struct ieee80211_s1g_bcn_compat_ie *compat;
2368 const struct element *elem;
2369
2370 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2371 variable, ielen);
2372 if (!elem)
2373 return NULL;
2374 if (elem->datalen < sizeof(*compat))
2375 return NULL;
2376 compat = (void *)elem->data;
2377 bssid = ext->u.s1g_beacon.sa;
2378 capability = le16_to_cpu(compat->compat_info);
2379 beacon_int = le16_to_cpu(compat->beacon_int);
2380 } else {
2381 bssid = mgmt->bssid;
2382 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2383 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2384 }
2385
2386 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2387 if (!ies)
2388 return NULL;
2389 ies->len = ielen;
2390 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2391 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2392 ieee80211_is_s1g_beacon(mgmt->frame_control);
2393 memcpy(ies->data, variable, ielen);
2394
2395 if (ieee80211_is_probe_resp(mgmt->frame_control))
2396 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2397 else
2398 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2399 rcu_assign_pointer(tmp.pub.ies, ies);
2400
2401 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2402 tmp.pub.beacon_interval = beacon_int;
2403 tmp.pub.capability = capability;
2404 tmp.pub.channel = channel;
2405 tmp.pub.scan_width = data->scan_width;
2406 tmp.pub.signal = data->signal;
2407 tmp.ts_boottime = data->boottime_ns;
2408 tmp.parent_tsf = data->parent_tsf;
2409 tmp.pub.chains = data->chains;
2410 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2411 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2412
2413 signal_valid = data->chan == channel;
2414 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2415 jiffies);
2416 if (!res)
2417 return NULL;
2418
2419 if (channel->band == NL80211_BAND_60GHZ) {
2420 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2421 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2422 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2423 regulatory_hint_found_beacon(wiphy, channel, gfp);
2424 } else {
2425 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2426 regulatory_hint_found_beacon(wiphy, channel, gfp);
2427 }
2428
2429 trace_cfg80211_return_bss(&res->pub);
2430 /* cfg80211_bss_update gives us a referenced result */
2431 return &res->pub;
2432 }
2433
2434 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2435 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2436 struct cfg80211_inform_bss *data,
2437 struct ieee80211_mgmt *mgmt, size_t len,
2438 gfp_t gfp)
2439 {
2440 struct cfg80211_bss *res, *tmp_bss;
2441 const u8 *ie = mgmt->u.probe_resp.variable;
2442 const struct cfg80211_bss_ies *ies1, *ies2;
2443 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2444 u.probe_resp.variable);
2445 struct cfg80211_non_tx_bss non_tx_data;
2446
2447 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2448 len, gfp);
2449 if (!res || !wiphy->support_mbssid ||
2450 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2451 return res;
2452 if (wiphy->support_only_he_mbssid &&
2453 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2454 return res;
2455
2456 non_tx_data.tx_bss = res;
2457 /* process each non-transmitting bss */
2458 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2459 &non_tx_data, gfp);
2460
2461 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2462
2463 /* check if the res has other nontransmitting bss which is not
2464 * in MBSSID IE
2465 */
2466 ies1 = rcu_access_pointer(res->ies);
2467
2468 /* go through nontrans_list, if the timestamp of the BSS is
2469 * earlier than the timestamp of the transmitting BSS then
2470 * update it
2471 */
2472 list_for_each_entry(tmp_bss, &res->nontrans_list,
2473 nontrans_list) {
2474 ies2 = rcu_access_pointer(tmp_bss->ies);
2475 if (ies2->tsf < ies1->tsf)
2476 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2477 mgmt, len);
2478 }
2479 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2480
2481 return res;
2482 }
2483 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2484
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2485 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2486 {
2487 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2488 struct cfg80211_internal_bss *bss;
2489
2490 if (!pub)
2491 return;
2492
2493 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2494
2495 spin_lock_bh(&rdev->bss_lock);
2496 bss_ref_get(rdev, bss);
2497 spin_unlock_bh(&rdev->bss_lock);
2498 }
2499 EXPORT_SYMBOL(cfg80211_ref_bss);
2500
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2501 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2502 {
2503 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2504 struct cfg80211_internal_bss *bss;
2505
2506 if (!pub)
2507 return;
2508
2509 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2510
2511 spin_lock_bh(&rdev->bss_lock);
2512 bss_ref_put(rdev, bss);
2513 spin_unlock_bh(&rdev->bss_lock);
2514 }
2515 EXPORT_SYMBOL(cfg80211_put_bss);
2516
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2517 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2518 {
2519 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2520 struct cfg80211_internal_bss *bss, *tmp1;
2521 struct cfg80211_bss *nontrans_bss, *tmp;
2522
2523 if (WARN_ON(!pub))
2524 return;
2525
2526 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2527
2528 spin_lock_bh(&rdev->bss_lock);
2529 if (list_empty(&bss->list))
2530 goto out;
2531
2532 list_for_each_entry_safe(nontrans_bss, tmp,
2533 &pub->nontrans_list,
2534 nontrans_list) {
2535 tmp1 = container_of(nontrans_bss,
2536 struct cfg80211_internal_bss, pub);
2537 if (__cfg80211_unlink_bss(rdev, tmp1))
2538 rdev->bss_generation++;
2539 }
2540
2541 if (__cfg80211_unlink_bss(rdev, bss))
2542 rdev->bss_generation++;
2543 out:
2544 spin_unlock_bh(&rdev->bss_lock);
2545 }
2546 EXPORT_SYMBOL(cfg80211_unlink_bss);
2547
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)2548 void cfg80211_bss_iter(struct wiphy *wiphy,
2549 struct cfg80211_chan_def *chandef,
2550 void (*iter)(struct wiphy *wiphy,
2551 struct cfg80211_bss *bss,
2552 void *data),
2553 void *iter_data)
2554 {
2555 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2556 struct cfg80211_internal_bss *bss;
2557
2558 spin_lock_bh(&rdev->bss_lock);
2559
2560 list_for_each_entry(bss, &rdev->bss_list, list) {
2561 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2562 iter(wiphy, &bss->pub, iter_data);
2563 }
2564
2565 spin_unlock_bh(&rdev->bss_lock);
2566 }
2567 EXPORT_SYMBOL(cfg80211_bss_iter);
2568
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,struct ieee80211_channel * chan)2569 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2570 struct ieee80211_channel *chan)
2571 {
2572 struct wiphy *wiphy = wdev->wiphy;
2573 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2574 struct cfg80211_internal_bss *cbss = wdev->current_bss;
2575 struct cfg80211_internal_bss *new = NULL;
2576 struct cfg80211_internal_bss *bss;
2577 struct cfg80211_bss *nontrans_bss;
2578 struct cfg80211_bss *tmp;
2579
2580 spin_lock_bh(&rdev->bss_lock);
2581
2582 /*
2583 * Some APs use CSA also for bandwidth changes, i.e., without actually
2584 * changing the control channel, so no need to update in such a case.
2585 */
2586 if (cbss->pub.channel == chan)
2587 goto done;
2588
2589 /* use transmitting bss */
2590 if (cbss->pub.transmitted_bss)
2591 cbss = container_of(cbss->pub.transmitted_bss,
2592 struct cfg80211_internal_bss,
2593 pub);
2594
2595 cbss->pub.channel = chan;
2596
2597 list_for_each_entry(bss, &rdev->bss_list, list) {
2598 if (!cfg80211_bss_type_match(bss->pub.capability,
2599 bss->pub.channel->band,
2600 wdev->conn_bss_type))
2601 continue;
2602
2603 if (bss == cbss)
2604 continue;
2605
2606 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2607 new = bss;
2608 break;
2609 }
2610 }
2611
2612 if (new) {
2613 /* to save time, update IEs for transmitting bss only */
2614 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2615 new->pub.proberesp_ies = NULL;
2616 new->pub.beacon_ies = NULL;
2617 }
2618
2619 list_for_each_entry_safe(nontrans_bss, tmp,
2620 &new->pub.nontrans_list,
2621 nontrans_list) {
2622 bss = container_of(nontrans_bss,
2623 struct cfg80211_internal_bss, pub);
2624 if (__cfg80211_unlink_bss(rdev, bss))
2625 rdev->bss_generation++;
2626 }
2627
2628 WARN_ON(atomic_read(&new->hold));
2629 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2630 rdev->bss_generation++;
2631 }
2632
2633 rb_erase(&cbss->rbn, &rdev->bss_tree);
2634 rb_insert_bss(rdev, cbss);
2635 rdev->bss_generation++;
2636
2637 list_for_each_entry_safe(nontrans_bss, tmp,
2638 &cbss->pub.nontrans_list,
2639 nontrans_list) {
2640 bss = container_of(nontrans_bss,
2641 struct cfg80211_internal_bss, pub);
2642 bss->pub.channel = chan;
2643 rb_erase(&bss->rbn, &rdev->bss_tree);
2644 rb_insert_bss(rdev, bss);
2645 rdev->bss_generation++;
2646 }
2647
2648 done:
2649 spin_unlock_bh(&rdev->bss_lock);
2650 }
2651
2652 #ifdef CONFIG_CFG80211_WEXT
2653 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)2654 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2655 {
2656 struct cfg80211_registered_device *rdev;
2657 struct net_device *dev;
2658
2659 ASSERT_RTNL();
2660
2661 dev = dev_get_by_index(net, ifindex);
2662 if (!dev)
2663 return ERR_PTR(-ENODEV);
2664 if (dev->ieee80211_ptr)
2665 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2666 else
2667 rdev = ERR_PTR(-ENODEV);
2668 dev_put(dev);
2669 return rdev;
2670 }
2671
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)2672 int cfg80211_wext_siwscan(struct net_device *dev,
2673 struct iw_request_info *info,
2674 union iwreq_data *wrqu, char *extra)
2675 {
2676 struct cfg80211_registered_device *rdev;
2677 struct wiphy *wiphy;
2678 struct iw_scan_req *wreq = NULL;
2679 struct cfg80211_scan_request *creq = NULL;
2680 int i, err, n_channels = 0;
2681 enum nl80211_band band;
2682
2683 if (!netif_running(dev))
2684 return -ENETDOWN;
2685
2686 if (wrqu->data.length == sizeof(struct iw_scan_req))
2687 wreq = (struct iw_scan_req *)extra;
2688
2689 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2690
2691 if (IS_ERR(rdev))
2692 return PTR_ERR(rdev);
2693
2694 if (rdev->scan_req || rdev->scan_msg) {
2695 err = -EBUSY;
2696 goto out;
2697 }
2698
2699 wiphy = &rdev->wiphy;
2700
2701 /* Determine number of channels, needed to allocate creq */
2702 if (wreq && wreq->num_channels)
2703 n_channels = wreq->num_channels;
2704 else
2705 n_channels = ieee80211_get_num_supported_channels(wiphy);
2706
2707 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2708 n_channels * sizeof(void *),
2709 GFP_ATOMIC);
2710 if (!creq) {
2711 err = -ENOMEM;
2712 goto out;
2713 }
2714
2715 creq->wiphy = wiphy;
2716 creq->wdev = dev->ieee80211_ptr;
2717 /* SSIDs come after channels */
2718 creq->ssids = (void *)&creq->channels[n_channels];
2719 creq->n_channels = n_channels;
2720 creq->n_ssids = 1;
2721 creq->scan_start = jiffies;
2722
2723 /* translate "Scan on frequencies" request */
2724 i = 0;
2725 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2726 int j;
2727
2728 if (!wiphy->bands[band])
2729 continue;
2730
2731 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2732 /* ignore disabled channels */
2733 if (wiphy->bands[band]->channels[j].flags &
2734 IEEE80211_CHAN_DISABLED)
2735 continue;
2736
2737 /* If we have a wireless request structure and the
2738 * wireless request specifies frequencies, then search
2739 * for the matching hardware channel.
2740 */
2741 if (wreq && wreq->num_channels) {
2742 int k;
2743 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2744 for (k = 0; k < wreq->num_channels; k++) {
2745 struct iw_freq *freq =
2746 &wreq->channel_list[k];
2747 int wext_freq =
2748 cfg80211_wext_freq(freq);
2749
2750 if (wext_freq == wiphy_freq)
2751 goto wext_freq_found;
2752 }
2753 goto wext_freq_not_found;
2754 }
2755
2756 wext_freq_found:
2757 creq->channels[i] = &wiphy->bands[band]->channels[j];
2758 i++;
2759 wext_freq_not_found: ;
2760 }
2761 }
2762 /* No channels found? */
2763 if (!i) {
2764 err = -EINVAL;
2765 goto out;
2766 }
2767
2768 /* Set real number of channels specified in creq->channels[] */
2769 creq->n_channels = i;
2770
2771 /* translate "Scan for SSID" request */
2772 if (wreq) {
2773 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2774 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2775 err = -EINVAL;
2776 goto out;
2777 }
2778 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2779 creq->ssids[0].ssid_len = wreq->essid_len;
2780 }
2781 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2782 creq->n_ssids = 0;
2783 }
2784
2785 for (i = 0; i < NUM_NL80211_BANDS; i++)
2786 if (wiphy->bands[i])
2787 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2788
2789 eth_broadcast_addr(creq->bssid);
2790
2791 wiphy_lock(&rdev->wiphy);
2792
2793 rdev->scan_req = creq;
2794 err = rdev_scan(rdev, creq);
2795 if (err) {
2796 rdev->scan_req = NULL;
2797 /* creq will be freed below */
2798 } else {
2799 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2800 /* creq now owned by driver */
2801 creq = NULL;
2802 dev_hold(dev);
2803 }
2804 wiphy_unlock(&rdev->wiphy);
2805 out:
2806 kfree(creq);
2807 return err;
2808 }
2809 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2810
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)2811 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2812 const struct cfg80211_bss_ies *ies,
2813 char *current_ev, char *end_buf)
2814 {
2815 const u8 *pos, *end, *next;
2816 struct iw_event iwe;
2817
2818 if (!ies)
2819 return current_ev;
2820
2821 /*
2822 * If needed, fragment the IEs buffer (at IE boundaries) into short
2823 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2824 */
2825 pos = ies->data;
2826 end = pos + ies->len;
2827
2828 while (end - pos > IW_GENERIC_IE_MAX) {
2829 next = pos + 2 + pos[1];
2830 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2831 next = next + 2 + next[1];
2832
2833 memset(&iwe, 0, sizeof(iwe));
2834 iwe.cmd = IWEVGENIE;
2835 iwe.u.data.length = next - pos;
2836 current_ev = iwe_stream_add_point_check(info, current_ev,
2837 end_buf, &iwe,
2838 (void *)pos);
2839 if (IS_ERR(current_ev))
2840 return current_ev;
2841 pos = next;
2842 }
2843
2844 if (end > pos) {
2845 memset(&iwe, 0, sizeof(iwe));
2846 iwe.cmd = IWEVGENIE;
2847 iwe.u.data.length = end - pos;
2848 current_ev = iwe_stream_add_point_check(info, current_ev,
2849 end_buf, &iwe,
2850 (void *)pos);
2851 if (IS_ERR(current_ev))
2852 return current_ev;
2853 }
2854
2855 return current_ev;
2856 }
2857
2858 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)2859 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2860 struct cfg80211_internal_bss *bss, char *current_ev,
2861 char *end_buf)
2862 {
2863 const struct cfg80211_bss_ies *ies;
2864 struct iw_event iwe;
2865 const u8 *ie;
2866 u8 buf[50];
2867 u8 *cfg, *p, *tmp;
2868 int rem, i, sig;
2869 bool ismesh = false;
2870
2871 memset(&iwe, 0, sizeof(iwe));
2872 iwe.cmd = SIOCGIWAP;
2873 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2874 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2875 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2876 IW_EV_ADDR_LEN);
2877 if (IS_ERR(current_ev))
2878 return current_ev;
2879
2880 memset(&iwe, 0, sizeof(iwe));
2881 iwe.cmd = SIOCGIWFREQ;
2882 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2883 iwe.u.freq.e = 0;
2884 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2885 IW_EV_FREQ_LEN);
2886 if (IS_ERR(current_ev))
2887 return current_ev;
2888
2889 memset(&iwe, 0, sizeof(iwe));
2890 iwe.cmd = SIOCGIWFREQ;
2891 iwe.u.freq.m = bss->pub.channel->center_freq;
2892 iwe.u.freq.e = 6;
2893 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2894 IW_EV_FREQ_LEN);
2895 if (IS_ERR(current_ev))
2896 return current_ev;
2897
2898 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2899 memset(&iwe, 0, sizeof(iwe));
2900 iwe.cmd = IWEVQUAL;
2901 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2902 IW_QUAL_NOISE_INVALID |
2903 IW_QUAL_QUAL_UPDATED;
2904 switch (wiphy->signal_type) {
2905 case CFG80211_SIGNAL_TYPE_MBM:
2906 sig = bss->pub.signal / 100;
2907 iwe.u.qual.level = sig;
2908 iwe.u.qual.updated |= IW_QUAL_DBM;
2909 if (sig < -110) /* rather bad */
2910 sig = -110;
2911 else if (sig > -40) /* perfect */
2912 sig = -40;
2913 /* will give a range of 0 .. 70 */
2914 iwe.u.qual.qual = sig + 110;
2915 break;
2916 case CFG80211_SIGNAL_TYPE_UNSPEC:
2917 iwe.u.qual.level = bss->pub.signal;
2918 /* will give range 0 .. 100 */
2919 iwe.u.qual.qual = bss->pub.signal;
2920 break;
2921 default:
2922 /* not reached */
2923 break;
2924 }
2925 current_ev = iwe_stream_add_event_check(info, current_ev,
2926 end_buf, &iwe,
2927 IW_EV_QUAL_LEN);
2928 if (IS_ERR(current_ev))
2929 return current_ev;
2930 }
2931
2932 memset(&iwe, 0, sizeof(iwe));
2933 iwe.cmd = SIOCGIWENCODE;
2934 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2935 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2936 else
2937 iwe.u.data.flags = IW_ENCODE_DISABLED;
2938 iwe.u.data.length = 0;
2939 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2940 &iwe, "");
2941 if (IS_ERR(current_ev))
2942 return current_ev;
2943
2944 rcu_read_lock();
2945 ies = rcu_dereference(bss->pub.ies);
2946 rem = ies->len;
2947 ie = ies->data;
2948
2949 while (rem >= 2) {
2950 /* invalid data */
2951 if (ie[1] > rem - 2)
2952 break;
2953
2954 switch (ie[0]) {
2955 case WLAN_EID_SSID:
2956 memset(&iwe, 0, sizeof(iwe));
2957 iwe.cmd = SIOCGIWESSID;
2958 iwe.u.data.length = ie[1];
2959 iwe.u.data.flags = 1;
2960 current_ev = iwe_stream_add_point_check(info,
2961 current_ev,
2962 end_buf, &iwe,
2963 (u8 *)ie + 2);
2964 if (IS_ERR(current_ev))
2965 goto unlock;
2966 break;
2967 case WLAN_EID_MESH_ID:
2968 memset(&iwe, 0, sizeof(iwe));
2969 iwe.cmd = SIOCGIWESSID;
2970 iwe.u.data.length = ie[1];
2971 iwe.u.data.flags = 1;
2972 current_ev = iwe_stream_add_point_check(info,
2973 current_ev,
2974 end_buf, &iwe,
2975 (u8 *)ie + 2);
2976 if (IS_ERR(current_ev))
2977 goto unlock;
2978 break;
2979 case WLAN_EID_MESH_CONFIG:
2980 ismesh = true;
2981 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2982 break;
2983 cfg = (u8 *)ie + 2;
2984 memset(&iwe, 0, sizeof(iwe));
2985 iwe.cmd = IWEVCUSTOM;
2986 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2987 "0x%02X", cfg[0]);
2988 iwe.u.data.length = strlen(buf);
2989 current_ev = iwe_stream_add_point_check(info,
2990 current_ev,
2991 end_buf,
2992 &iwe, buf);
2993 if (IS_ERR(current_ev))
2994 goto unlock;
2995 sprintf(buf, "Path Selection Metric ID: 0x%02X",
2996 cfg[1]);
2997 iwe.u.data.length = strlen(buf);
2998 current_ev = iwe_stream_add_point_check(info,
2999 current_ev,
3000 end_buf,
3001 &iwe, buf);
3002 if (IS_ERR(current_ev))
3003 goto unlock;
3004 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3005 cfg[2]);
3006 iwe.u.data.length = strlen(buf);
3007 current_ev = iwe_stream_add_point_check(info,
3008 current_ev,
3009 end_buf,
3010 &iwe, buf);
3011 if (IS_ERR(current_ev))
3012 goto unlock;
3013 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3014 iwe.u.data.length = strlen(buf);
3015 current_ev = iwe_stream_add_point_check(info,
3016 current_ev,
3017 end_buf,
3018 &iwe, buf);
3019 if (IS_ERR(current_ev))
3020 goto unlock;
3021 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3022 iwe.u.data.length = strlen(buf);
3023 current_ev = iwe_stream_add_point_check(info,
3024 current_ev,
3025 end_buf,
3026 &iwe, buf);
3027 if (IS_ERR(current_ev))
3028 goto unlock;
3029 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3030 iwe.u.data.length = strlen(buf);
3031 current_ev = iwe_stream_add_point_check(info,
3032 current_ev,
3033 end_buf,
3034 &iwe, buf);
3035 if (IS_ERR(current_ev))
3036 goto unlock;
3037 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3038 iwe.u.data.length = strlen(buf);
3039 current_ev = iwe_stream_add_point_check(info,
3040 current_ev,
3041 end_buf,
3042 &iwe, buf);
3043 if (IS_ERR(current_ev))
3044 goto unlock;
3045 break;
3046 case WLAN_EID_SUPP_RATES:
3047 case WLAN_EID_EXT_SUPP_RATES:
3048 /* display all supported rates in readable format */
3049 p = current_ev + iwe_stream_lcp_len(info);
3050
3051 memset(&iwe, 0, sizeof(iwe));
3052 iwe.cmd = SIOCGIWRATE;
3053 /* Those two flags are ignored... */
3054 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3055
3056 for (i = 0; i < ie[1]; i++) {
3057 iwe.u.bitrate.value =
3058 ((ie[i + 2] & 0x7f) * 500000);
3059 tmp = p;
3060 p = iwe_stream_add_value(info, current_ev, p,
3061 end_buf, &iwe,
3062 IW_EV_PARAM_LEN);
3063 if (p == tmp) {
3064 current_ev = ERR_PTR(-E2BIG);
3065 goto unlock;
3066 }
3067 }
3068 current_ev = p;
3069 break;
3070 }
3071 rem -= ie[1] + 2;
3072 ie += ie[1] + 2;
3073 }
3074
3075 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3076 ismesh) {
3077 memset(&iwe, 0, sizeof(iwe));
3078 iwe.cmd = SIOCGIWMODE;
3079 if (ismesh)
3080 iwe.u.mode = IW_MODE_MESH;
3081 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3082 iwe.u.mode = IW_MODE_MASTER;
3083 else
3084 iwe.u.mode = IW_MODE_ADHOC;
3085 current_ev = iwe_stream_add_event_check(info, current_ev,
3086 end_buf, &iwe,
3087 IW_EV_UINT_LEN);
3088 if (IS_ERR(current_ev))
3089 goto unlock;
3090 }
3091
3092 memset(&iwe, 0, sizeof(iwe));
3093 iwe.cmd = IWEVCUSTOM;
3094 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3095 iwe.u.data.length = strlen(buf);
3096 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3097 &iwe, buf);
3098 if (IS_ERR(current_ev))
3099 goto unlock;
3100 memset(&iwe, 0, sizeof(iwe));
3101 iwe.cmd = IWEVCUSTOM;
3102 sprintf(buf, " Last beacon: %ums ago",
3103 elapsed_jiffies_msecs(bss->ts));
3104 iwe.u.data.length = strlen(buf);
3105 current_ev = iwe_stream_add_point_check(info, current_ev,
3106 end_buf, &iwe, buf);
3107 if (IS_ERR(current_ev))
3108 goto unlock;
3109
3110 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3111
3112 unlock:
3113 rcu_read_unlock();
3114 return current_ev;
3115 }
3116
3117
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3118 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3119 struct iw_request_info *info,
3120 char *buf, size_t len)
3121 {
3122 char *current_ev = buf;
3123 char *end_buf = buf + len;
3124 struct cfg80211_internal_bss *bss;
3125 int err = 0;
3126
3127 spin_lock_bh(&rdev->bss_lock);
3128 cfg80211_bss_expire(rdev);
3129
3130 list_for_each_entry(bss, &rdev->bss_list, list) {
3131 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3132 err = -E2BIG;
3133 break;
3134 }
3135 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3136 current_ev, end_buf);
3137 if (IS_ERR(current_ev)) {
3138 err = PTR_ERR(current_ev);
3139 break;
3140 }
3141 }
3142 spin_unlock_bh(&rdev->bss_lock);
3143
3144 if (err)
3145 return err;
3146 return current_ev - buf;
3147 }
3148
3149
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,struct iw_point * data,char * extra)3150 int cfg80211_wext_giwscan(struct net_device *dev,
3151 struct iw_request_info *info,
3152 struct iw_point *data, char *extra)
3153 {
3154 struct cfg80211_registered_device *rdev;
3155 int res;
3156
3157 if (!netif_running(dev))
3158 return -ENETDOWN;
3159
3160 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3161
3162 if (IS_ERR(rdev))
3163 return PTR_ERR(rdev);
3164
3165 if (rdev->scan_req || rdev->scan_msg)
3166 return -EAGAIN;
3167
3168 res = ieee80211_scan_results(rdev, info, extra, data->length);
3169 data->length = 0;
3170 if (res >= 0) {
3171 data->length = res;
3172 res = 0;
3173 }
3174
3175 return res;
3176 }
3177 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3178 #endif
3179