1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43 
44 #include <net/strparser.h>
45 #include <net/tls.h>
46 
tls_err_abort(struct sock * sk,int err)47 noinline void tls_err_abort(struct sock *sk, int err)
48 {
49 	WARN_ON_ONCE(err >= 0);
50 	/* sk->sk_err should contain a positive error code. */
51 	sk->sk_err = -err;
52 	sk_error_report(sk);
53 }
54 
__skb_nsg(struct sk_buff * skb,int offset,int len,unsigned int recursion_level)55 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
56                      unsigned int recursion_level)
57 {
58         int start = skb_headlen(skb);
59         int i, chunk = start - offset;
60         struct sk_buff *frag_iter;
61         int elt = 0;
62 
63         if (unlikely(recursion_level >= 24))
64                 return -EMSGSIZE;
65 
66         if (chunk > 0) {
67                 if (chunk > len)
68                         chunk = len;
69                 elt++;
70                 len -= chunk;
71                 if (len == 0)
72                         return elt;
73                 offset += chunk;
74         }
75 
76         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
77                 int end;
78 
79                 WARN_ON(start > offset + len);
80 
81                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
82                 chunk = end - offset;
83                 if (chunk > 0) {
84                         if (chunk > len)
85                                 chunk = len;
86                         elt++;
87                         len -= chunk;
88                         if (len == 0)
89                                 return elt;
90                         offset += chunk;
91                 }
92                 start = end;
93         }
94 
95         if (unlikely(skb_has_frag_list(skb))) {
96                 skb_walk_frags(skb, frag_iter) {
97                         int end, ret;
98 
99                         WARN_ON(start > offset + len);
100 
101                         end = start + frag_iter->len;
102                         chunk = end - offset;
103                         if (chunk > 0) {
104                                 if (chunk > len)
105                                         chunk = len;
106                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
107                                                 recursion_level + 1);
108                                 if (unlikely(ret < 0))
109                                         return ret;
110                                 elt += ret;
111                                 len -= chunk;
112                                 if (len == 0)
113                                         return elt;
114                                 offset += chunk;
115                         }
116                         start = end;
117                 }
118         }
119         BUG_ON(len);
120         return elt;
121 }
122 
123 /* Return the number of scatterlist elements required to completely map the
124  * skb, or -EMSGSIZE if the recursion depth is exceeded.
125  */
skb_nsg(struct sk_buff * skb,int offset,int len)126 static int skb_nsg(struct sk_buff *skb, int offset, int len)
127 {
128         return __skb_nsg(skb, offset, len, 0);
129 }
130 
padding_length(struct tls_sw_context_rx * ctx,struct tls_prot_info * prot,struct sk_buff * skb)131 static int padding_length(struct tls_sw_context_rx *ctx,
132 			  struct tls_prot_info *prot, struct sk_buff *skb)
133 {
134 	struct strp_msg *rxm = strp_msg(skb);
135 	int sub = 0;
136 
137 	/* Determine zero-padding length */
138 	if (prot->version == TLS_1_3_VERSION) {
139 		char content_type = 0;
140 		int err;
141 		int back = 17;
142 
143 		while (content_type == 0) {
144 			if (back > rxm->full_len - prot->prepend_size)
145 				return -EBADMSG;
146 			err = skb_copy_bits(skb,
147 					    rxm->offset + rxm->full_len - back,
148 					    &content_type, 1);
149 			if (err)
150 				return err;
151 			if (content_type)
152 				break;
153 			sub++;
154 			back++;
155 		}
156 		ctx->control = content_type;
157 	}
158 	return sub;
159 }
160 
tls_decrypt_done(struct crypto_async_request * req,int err)161 static void tls_decrypt_done(struct crypto_async_request *req, int err)
162 {
163 	struct aead_request *aead_req = (struct aead_request *)req;
164 	struct scatterlist *sgout = aead_req->dst;
165 	struct scatterlist *sgin = aead_req->src;
166 	struct tls_sw_context_rx *ctx;
167 	struct tls_context *tls_ctx;
168 	struct tls_prot_info *prot;
169 	struct scatterlist *sg;
170 	struct sk_buff *skb;
171 	unsigned int pages;
172 	int pending;
173 
174 	skb = (struct sk_buff *)req->data;
175 	tls_ctx = tls_get_ctx(skb->sk);
176 	ctx = tls_sw_ctx_rx(tls_ctx);
177 	prot = &tls_ctx->prot_info;
178 
179 	/* Propagate if there was an err */
180 	if (err) {
181 		if (err == -EBADMSG)
182 			TLS_INC_STATS(sock_net(skb->sk),
183 				      LINUX_MIB_TLSDECRYPTERROR);
184 		ctx->async_wait.err = err;
185 		tls_err_abort(skb->sk, err);
186 	} else {
187 		struct strp_msg *rxm = strp_msg(skb);
188 		int pad;
189 
190 		pad = padding_length(ctx, prot, skb);
191 		if (pad < 0) {
192 			ctx->async_wait.err = pad;
193 			tls_err_abort(skb->sk, pad);
194 		} else {
195 			rxm->full_len -= pad;
196 			rxm->offset += prot->prepend_size;
197 			rxm->full_len -= prot->overhead_size;
198 		}
199 	}
200 
201 	/* After using skb->sk to propagate sk through crypto async callback
202 	 * we need to NULL it again.
203 	 */
204 	skb->sk = NULL;
205 
206 
207 	/* Free the destination pages if skb was not decrypted inplace */
208 	if (sgout != sgin) {
209 		/* Skip the first S/G entry as it points to AAD */
210 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
211 			if (!sg)
212 				break;
213 			put_page(sg_page(sg));
214 		}
215 	}
216 
217 	kfree(aead_req);
218 
219 	spin_lock_bh(&ctx->decrypt_compl_lock);
220 	pending = atomic_dec_return(&ctx->decrypt_pending);
221 
222 	if (!pending && ctx->async_notify)
223 		complete(&ctx->async_wait.completion);
224 	spin_unlock_bh(&ctx->decrypt_compl_lock);
225 }
226 
tls_do_decryption(struct sock * sk,struct sk_buff * skb,struct scatterlist * sgin,struct scatterlist * sgout,char * iv_recv,size_t data_len,struct aead_request * aead_req,bool async)227 static int tls_do_decryption(struct sock *sk,
228 			     struct sk_buff *skb,
229 			     struct scatterlist *sgin,
230 			     struct scatterlist *sgout,
231 			     char *iv_recv,
232 			     size_t data_len,
233 			     struct aead_request *aead_req,
234 			     bool async)
235 {
236 	struct tls_context *tls_ctx = tls_get_ctx(sk);
237 	struct tls_prot_info *prot = &tls_ctx->prot_info;
238 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
239 	int ret;
240 
241 	aead_request_set_tfm(aead_req, ctx->aead_recv);
242 	aead_request_set_ad(aead_req, prot->aad_size);
243 	aead_request_set_crypt(aead_req, sgin, sgout,
244 			       data_len + prot->tag_size,
245 			       (u8 *)iv_recv);
246 
247 	if (async) {
248 		/* Using skb->sk to push sk through to crypto async callback
249 		 * handler. This allows propagating errors up to the socket
250 		 * if needed. It _must_ be cleared in the async handler
251 		 * before consume_skb is called. We _know_ skb->sk is NULL
252 		 * because it is a clone from strparser.
253 		 */
254 		skb->sk = sk;
255 		aead_request_set_callback(aead_req,
256 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
257 					  tls_decrypt_done, skb);
258 		atomic_inc(&ctx->decrypt_pending);
259 	} else {
260 		aead_request_set_callback(aead_req,
261 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
262 					  crypto_req_done, &ctx->async_wait);
263 	}
264 
265 	ret = crypto_aead_decrypt(aead_req);
266 	if (ret == -EINPROGRESS) {
267 		if (async)
268 			return ret;
269 
270 		ret = crypto_wait_req(ret, &ctx->async_wait);
271 	}
272 
273 	if (async)
274 		atomic_dec(&ctx->decrypt_pending);
275 
276 	return ret;
277 }
278 
tls_trim_both_msgs(struct sock * sk,int target_size)279 static void tls_trim_both_msgs(struct sock *sk, int target_size)
280 {
281 	struct tls_context *tls_ctx = tls_get_ctx(sk);
282 	struct tls_prot_info *prot = &tls_ctx->prot_info;
283 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284 	struct tls_rec *rec = ctx->open_rec;
285 
286 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
287 	if (target_size > 0)
288 		target_size += prot->overhead_size;
289 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
290 }
291 
tls_alloc_encrypted_msg(struct sock * sk,int len)292 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
293 {
294 	struct tls_context *tls_ctx = tls_get_ctx(sk);
295 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
296 	struct tls_rec *rec = ctx->open_rec;
297 	struct sk_msg *msg_en = &rec->msg_encrypted;
298 
299 	return sk_msg_alloc(sk, msg_en, len, 0);
300 }
301 
tls_clone_plaintext_msg(struct sock * sk,int required)302 static int tls_clone_plaintext_msg(struct sock *sk, int required)
303 {
304 	struct tls_context *tls_ctx = tls_get_ctx(sk);
305 	struct tls_prot_info *prot = &tls_ctx->prot_info;
306 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
307 	struct tls_rec *rec = ctx->open_rec;
308 	struct sk_msg *msg_pl = &rec->msg_plaintext;
309 	struct sk_msg *msg_en = &rec->msg_encrypted;
310 	int skip, len;
311 
312 	/* We add page references worth len bytes from encrypted sg
313 	 * at the end of plaintext sg. It is guaranteed that msg_en
314 	 * has enough required room (ensured by caller).
315 	 */
316 	len = required - msg_pl->sg.size;
317 
318 	/* Skip initial bytes in msg_en's data to be able to use
319 	 * same offset of both plain and encrypted data.
320 	 */
321 	skip = prot->prepend_size + msg_pl->sg.size;
322 
323 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
324 }
325 
tls_get_rec(struct sock * sk)326 static struct tls_rec *tls_get_rec(struct sock *sk)
327 {
328 	struct tls_context *tls_ctx = tls_get_ctx(sk);
329 	struct tls_prot_info *prot = &tls_ctx->prot_info;
330 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
331 	struct sk_msg *msg_pl, *msg_en;
332 	struct tls_rec *rec;
333 	int mem_size;
334 
335 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
336 
337 	rec = kzalloc(mem_size, sk->sk_allocation);
338 	if (!rec)
339 		return NULL;
340 
341 	msg_pl = &rec->msg_plaintext;
342 	msg_en = &rec->msg_encrypted;
343 
344 	sk_msg_init(msg_pl);
345 	sk_msg_init(msg_en);
346 
347 	sg_init_table(rec->sg_aead_in, 2);
348 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
349 	sg_unmark_end(&rec->sg_aead_in[1]);
350 
351 	sg_init_table(rec->sg_aead_out, 2);
352 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
353 	sg_unmark_end(&rec->sg_aead_out[1]);
354 
355 	return rec;
356 }
357 
tls_free_rec(struct sock * sk,struct tls_rec * rec)358 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
359 {
360 	sk_msg_free(sk, &rec->msg_encrypted);
361 	sk_msg_free(sk, &rec->msg_plaintext);
362 	kfree(rec);
363 }
364 
tls_free_open_rec(struct sock * sk)365 static void tls_free_open_rec(struct sock *sk)
366 {
367 	struct tls_context *tls_ctx = tls_get_ctx(sk);
368 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
369 	struct tls_rec *rec = ctx->open_rec;
370 
371 	if (rec) {
372 		tls_free_rec(sk, rec);
373 		ctx->open_rec = NULL;
374 	}
375 }
376 
tls_tx_records(struct sock * sk,int flags)377 int tls_tx_records(struct sock *sk, int flags)
378 {
379 	struct tls_context *tls_ctx = tls_get_ctx(sk);
380 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
381 	struct tls_rec *rec, *tmp;
382 	struct sk_msg *msg_en;
383 	int tx_flags, rc = 0;
384 
385 	if (tls_is_partially_sent_record(tls_ctx)) {
386 		rec = list_first_entry(&ctx->tx_list,
387 				       struct tls_rec, list);
388 
389 		if (flags == -1)
390 			tx_flags = rec->tx_flags;
391 		else
392 			tx_flags = flags;
393 
394 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
395 		if (rc)
396 			goto tx_err;
397 
398 		/* Full record has been transmitted.
399 		 * Remove the head of tx_list
400 		 */
401 		list_del(&rec->list);
402 		sk_msg_free(sk, &rec->msg_plaintext);
403 		kfree(rec);
404 	}
405 
406 	/* Tx all ready records */
407 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
408 		if (READ_ONCE(rec->tx_ready)) {
409 			if (flags == -1)
410 				tx_flags = rec->tx_flags;
411 			else
412 				tx_flags = flags;
413 
414 			msg_en = &rec->msg_encrypted;
415 			rc = tls_push_sg(sk, tls_ctx,
416 					 &msg_en->sg.data[msg_en->sg.curr],
417 					 0, tx_flags);
418 			if (rc)
419 				goto tx_err;
420 
421 			list_del(&rec->list);
422 			sk_msg_free(sk, &rec->msg_plaintext);
423 			kfree(rec);
424 		} else {
425 			break;
426 		}
427 	}
428 
429 tx_err:
430 	if (rc < 0 && rc != -EAGAIN)
431 		tls_err_abort(sk, -EBADMSG);
432 
433 	return rc;
434 }
435 
tls_encrypt_done(struct crypto_async_request * req,int err)436 static void tls_encrypt_done(struct crypto_async_request *req, int err)
437 {
438 	struct aead_request *aead_req = (struct aead_request *)req;
439 	struct sock *sk = req->data;
440 	struct tls_context *tls_ctx = tls_get_ctx(sk);
441 	struct tls_prot_info *prot = &tls_ctx->prot_info;
442 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
443 	struct scatterlist *sge;
444 	struct sk_msg *msg_en;
445 	struct tls_rec *rec;
446 	bool ready = false;
447 	int pending;
448 
449 	rec = container_of(aead_req, struct tls_rec, aead_req);
450 	msg_en = &rec->msg_encrypted;
451 
452 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
453 	sge->offset -= prot->prepend_size;
454 	sge->length += prot->prepend_size;
455 
456 	/* Check if error is previously set on socket */
457 	if (err || sk->sk_err) {
458 		rec = NULL;
459 
460 		/* If err is already set on socket, return the same code */
461 		if (sk->sk_err) {
462 			ctx->async_wait.err = -sk->sk_err;
463 		} else {
464 			ctx->async_wait.err = err;
465 			tls_err_abort(sk, err);
466 		}
467 	}
468 
469 	if (rec) {
470 		struct tls_rec *first_rec;
471 
472 		/* Mark the record as ready for transmission */
473 		smp_store_mb(rec->tx_ready, true);
474 
475 		/* If received record is at head of tx_list, schedule tx */
476 		first_rec = list_first_entry(&ctx->tx_list,
477 					     struct tls_rec, list);
478 		if (rec == first_rec)
479 			ready = true;
480 	}
481 
482 	spin_lock_bh(&ctx->encrypt_compl_lock);
483 	pending = atomic_dec_return(&ctx->encrypt_pending);
484 
485 	if (!pending && ctx->async_notify)
486 		complete(&ctx->async_wait.completion);
487 	spin_unlock_bh(&ctx->encrypt_compl_lock);
488 
489 	if (!ready)
490 		return;
491 
492 	/* Schedule the transmission */
493 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
494 		schedule_delayed_work(&ctx->tx_work.work, 1);
495 }
496 
tls_do_encryption(struct sock * sk,struct tls_context * tls_ctx,struct tls_sw_context_tx * ctx,struct aead_request * aead_req,size_t data_len,u32 start)497 static int tls_do_encryption(struct sock *sk,
498 			     struct tls_context *tls_ctx,
499 			     struct tls_sw_context_tx *ctx,
500 			     struct aead_request *aead_req,
501 			     size_t data_len, u32 start)
502 {
503 	struct tls_prot_info *prot = &tls_ctx->prot_info;
504 	struct tls_rec *rec = ctx->open_rec;
505 	struct sk_msg *msg_en = &rec->msg_encrypted;
506 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
507 	int rc, iv_offset = 0;
508 
509 	/* For CCM based ciphers, first byte of IV is a constant */
510 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
511 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
512 		iv_offset = 1;
513 	}
514 
515 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
516 	       prot->iv_size + prot->salt_size);
517 
518 	xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq);
519 
520 	sge->offset += prot->prepend_size;
521 	sge->length -= prot->prepend_size;
522 
523 	msg_en->sg.curr = start;
524 
525 	aead_request_set_tfm(aead_req, ctx->aead_send);
526 	aead_request_set_ad(aead_req, prot->aad_size);
527 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
528 			       rec->sg_aead_out,
529 			       data_len, rec->iv_data);
530 
531 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
532 				  tls_encrypt_done, sk);
533 
534 	/* Add the record in tx_list */
535 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
536 	atomic_inc(&ctx->encrypt_pending);
537 
538 	rc = crypto_aead_encrypt(aead_req);
539 	if (!rc || rc != -EINPROGRESS) {
540 		atomic_dec(&ctx->encrypt_pending);
541 		sge->offset -= prot->prepend_size;
542 		sge->length += prot->prepend_size;
543 	}
544 
545 	if (!rc) {
546 		WRITE_ONCE(rec->tx_ready, true);
547 	} else if (rc != -EINPROGRESS) {
548 		list_del(&rec->list);
549 		return rc;
550 	}
551 
552 	/* Unhook the record from context if encryption is not failure */
553 	ctx->open_rec = NULL;
554 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
555 	return rc;
556 }
557 
tls_split_open_record(struct sock * sk,struct tls_rec * from,struct tls_rec ** to,struct sk_msg * msg_opl,struct sk_msg * msg_oen,u32 split_point,u32 tx_overhead_size,u32 * orig_end)558 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
559 				 struct tls_rec **to, struct sk_msg *msg_opl,
560 				 struct sk_msg *msg_oen, u32 split_point,
561 				 u32 tx_overhead_size, u32 *orig_end)
562 {
563 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
564 	struct scatterlist *sge, *osge, *nsge;
565 	u32 orig_size = msg_opl->sg.size;
566 	struct scatterlist tmp = { };
567 	struct sk_msg *msg_npl;
568 	struct tls_rec *new;
569 	int ret;
570 
571 	new = tls_get_rec(sk);
572 	if (!new)
573 		return -ENOMEM;
574 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
575 			   tx_overhead_size, 0);
576 	if (ret < 0) {
577 		tls_free_rec(sk, new);
578 		return ret;
579 	}
580 
581 	*orig_end = msg_opl->sg.end;
582 	i = msg_opl->sg.start;
583 	sge = sk_msg_elem(msg_opl, i);
584 	while (apply && sge->length) {
585 		if (sge->length > apply) {
586 			u32 len = sge->length - apply;
587 
588 			get_page(sg_page(sge));
589 			sg_set_page(&tmp, sg_page(sge), len,
590 				    sge->offset + apply);
591 			sge->length = apply;
592 			bytes += apply;
593 			apply = 0;
594 		} else {
595 			apply -= sge->length;
596 			bytes += sge->length;
597 		}
598 
599 		sk_msg_iter_var_next(i);
600 		if (i == msg_opl->sg.end)
601 			break;
602 		sge = sk_msg_elem(msg_opl, i);
603 	}
604 
605 	msg_opl->sg.end = i;
606 	msg_opl->sg.curr = i;
607 	msg_opl->sg.copybreak = 0;
608 	msg_opl->apply_bytes = 0;
609 	msg_opl->sg.size = bytes;
610 
611 	msg_npl = &new->msg_plaintext;
612 	msg_npl->apply_bytes = apply;
613 	msg_npl->sg.size = orig_size - bytes;
614 
615 	j = msg_npl->sg.start;
616 	nsge = sk_msg_elem(msg_npl, j);
617 	if (tmp.length) {
618 		memcpy(nsge, &tmp, sizeof(*nsge));
619 		sk_msg_iter_var_next(j);
620 		nsge = sk_msg_elem(msg_npl, j);
621 	}
622 
623 	osge = sk_msg_elem(msg_opl, i);
624 	while (osge->length) {
625 		memcpy(nsge, osge, sizeof(*nsge));
626 		sg_unmark_end(nsge);
627 		sk_msg_iter_var_next(i);
628 		sk_msg_iter_var_next(j);
629 		if (i == *orig_end)
630 			break;
631 		osge = sk_msg_elem(msg_opl, i);
632 		nsge = sk_msg_elem(msg_npl, j);
633 	}
634 
635 	msg_npl->sg.end = j;
636 	msg_npl->sg.curr = j;
637 	msg_npl->sg.copybreak = 0;
638 
639 	*to = new;
640 	return 0;
641 }
642 
tls_merge_open_record(struct sock * sk,struct tls_rec * to,struct tls_rec * from,u32 orig_end)643 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
644 				  struct tls_rec *from, u32 orig_end)
645 {
646 	struct sk_msg *msg_npl = &from->msg_plaintext;
647 	struct sk_msg *msg_opl = &to->msg_plaintext;
648 	struct scatterlist *osge, *nsge;
649 	u32 i, j;
650 
651 	i = msg_opl->sg.end;
652 	sk_msg_iter_var_prev(i);
653 	j = msg_npl->sg.start;
654 
655 	osge = sk_msg_elem(msg_opl, i);
656 	nsge = sk_msg_elem(msg_npl, j);
657 
658 	if (sg_page(osge) == sg_page(nsge) &&
659 	    osge->offset + osge->length == nsge->offset) {
660 		osge->length += nsge->length;
661 		put_page(sg_page(nsge));
662 	}
663 
664 	msg_opl->sg.end = orig_end;
665 	msg_opl->sg.curr = orig_end;
666 	msg_opl->sg.copybreak = 0;
667 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
668 	msg_opl->sg.size += msg_npl->sg.size;
669 
670 	sk_msg_free(sk, &to->msg_encrypted);
671 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
672 
673 	kfree(from);
674 }
675 
tls_push_record(struct sock * sk,int flags,unsigned char record_type)676 static int tls_push_record(struct sock *sk, int flags,
677 			   unsigned char record_type)
678 {
679 	struct tls_context *tls_ctx = tls_get_ctx(sk);
680 	struct tls_prot_info *prot = &tls_ctx->prot_info;
681 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
682 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
683 	u32 i, split_point, orig_end;
684 	struct sk_msg *msg_pl, *msg_en;
685 	struct aead_request *req;
686 	bool split;
687 	int rc;
688 
689 	if (!rec)
690 		return 0;
691 
692 	msg_pl = &rec->msg_plaintext;
693 	msg_en = &rec->msg_encrypted;
694 
695 	split_point = msg_pl->apply_bytes;
696 	split = split_point && split_point < msg_pl->sg.size;
697 	if (unlikely((!split &&
698 		      msg_pl->sg.size +
699 		      prot->overhead_size > msg_en->sg.size) ||
700 		     (split &&
701 		      split_point +
702 		      prot->overhead_size > msg_en->sg.size))) {
703 		split = true;
704 		split_point = msg_en->sg.size;
705 	}
706 	if (split) {
707 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
708 					   split_point, prot->overhead_size,
709 					   &orig_end);
710 		if (rc < 0)
711 			return rc;
712 		/* This can happen if above tls_split_open_record allocates
713 		 * a single large encryption buffer instead of two smaller
714 		 * ones. In this case adjust pointers and continue without
715 		 * split.
716 		 */
717 		if (!msg_pl->sg.size) {
718 			tls_merge_open_record(sk, rec, tmp, orig_end);
719 			msg_pl = &rec->msg_plaintext;
720 			msg_en = &rec->msg_encrypted;
721 			split = false;
722 		}
723 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
724 			    prot->overhead_size);
725 	}
726 
727 	rec->tx_flags = flags;
728 	req = &rec->aead_req;
729 
730 	i = msg_pl->sg.end;
731 	sk_msg_iter_var_prev(i);
732 
733 	rec->content_type = record_type;
734 	if (prot->version == TLS_1_3_VERSION) {
735 		/* Add content type to end of message.  No padding added */
736 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
737 		sg_mark_end(&rec->sg_content_type);
738 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
739 			 &rec->sg_content_type);
740 	} else {
741 		sg_mark_end(sk_msg_elem(msg_pl, i));
742 	}
743 
744 	if (msg_pl->sg.end < msg_pl->sg.start) {
745 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
746 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
747 			 msg_pl->sg.data);
748 	}
749 
750 	i = msg_pl->sg.start;
751 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
752 
753 	i = msg_en->sg.end;
754 	sk_msg_iter_var_prev(i);
755 	sg_mark_end(sk_msg_elem(msg_en, i));
756 
757 	i = msg_en->sg.start;
758 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
759 
760 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
761 		     tls_ctx->tx.rec_seq, record_type, prot);
762 
763 	tls_fill_prepend(tls_ctx,
764 			 page_address(sg_page(&msg_en->sg.data[i])) +
765 			 msg_en->sg.data[i].offset,
766 			 msg_pl->sg.size + prot->tail_size,
767 			 record_type);
768 
769 	tls_ctx->pending_open_record_frags = false;
770 
771 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
772 			       msg_pl->sg.size + prot->tail_size, i);
773 	if (rc < 0) {
774 		if (rc != -EINPROGRESS) {
775 			tls_err_abort(sk, -EBADMSG);
776 			if (split) {
777 				tls_ctx->pending_open_record_frags = true;
778 				tls_merge_open_record(sk, rec, tmp, orig_end);
779 			}
780 		}
781 		ctx->async_capable = 1;
782 		return rc;
783 	} else if (split) {
784 		msg_pl = &tmp->msg_plaintext;
785 		msg_en = &tmp->msg_encrypted;
786 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
787 		tls_ctx->pending_open_record_frags = true;
788 		ctx->open_rec = tmp;
789 	}
790 
791 	return tls_tx_records(sk, flags);
792 }
793 
bpf_exec_tx_verdict(struct sk_msg * msg,struct sock * sk,bool full_record,u8 record_type,ssize_t * copied,int flags)794 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
795 			       bool full_record, u8 record_type,
796 			       ssize_t *copied, int flags)
797 {
798 	struct tls_context *tls_ctx = tls_get_ctx(sk);
799 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
800 	struct sk_msg msg_redir = { };
801 	struct sk_psock *psock;
802 	struct sock *sk_redir;
803 	struct tls_rec *rec;
804 	bool enospc, policy;
805 	int err = 0, send;
806 	u32 delta = 0;
807 
808 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
809 	psock = sk_psock_get(sk);
810 	if (!psock || !policy) {
811 		err = tls_push_record(sk, flags, record_type);
812 		if (err && sk->sk_err == EBADMSG) {
813 			*copied -= sk_msg_free(sk, msg);
814 			tls_free_open_rec(sk);
815 			err = -sk->sk_err;
816 		}
817 		if (psock)
818 			sk_psock_put(sk, psock);
819 		return err;
820 	}
821 more_data:
822 	enospc = sk_msg_full(msg);
823 	if (psock->eval == __SK_NONE) {
824 		delta = msg->sg.size;
825 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
826 		delta -= msg->sg.size;
827 	}
828 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
829 	    !enospc && !full_record) {
830 		err = -ENOSPC;
831 		goto out_err;
832 	}
833 	msg->cork_bytes = 0;
834 	send = msg->sg.size;
835 	if (msg->apply_bytes && msg->apply_bytes < send)
836 		send = msg->apply_bytes;
837 
838 	switch (psock->eval) {
839 	case __SK_PASS:
840 		err = tls_push_record(sk, flags, record_type);
841 		if (err && sk->sk_err == EBADMSG) {
842 			*copied -= sk_msg_free(sk, msg);
843 			tls_free_open_rec(sk);
844 			err = -sk->sk_err;
845 			goto out_err;
846 		}
847 		break;
848 	case __SK_REDIRECT:
849 		sk_redir = psock->sk_redir;
850 		memcpy(&msg_redir, msg, sizeof(*msg));
851 		if (msg->apply_bytes < send)
852 			msg->apply_bytes = 0;
853 		else
854 			msg->apply_bytes -= send;
855 		sk_msg_return_zero(sk, msg, send);
856 		msg->sg.size -= send;
857 		release_sock(sk);
858 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
859 		lock_sock(sk);
860 		if (err < 0) {
861 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
862 			msg->sg.size = 0;
863 		}
864 		if (msg->sg.size == 0)
865 			tls_free_open_rec(sk);
866 		break;
867 	case __SK_DROP:
868 	default:
869 		sk_msg_free_partial(sk, msg, send);
870 		if (msg->apply_bytes < send)
871 			msg->apply_bytes = 0;
872 		else
873 			msg->apply_bytes -= send;
874 		if (msg->sg.size == 0)
875 			tls_free_open_rec(sk);
876 		*copied -= (send + delta);
877 		err = -EACCES;
878 	}
879 
880 	if (likely(!err)) {
881 		bool reset_eval = !ctx->open_rec;
882 
883 		rec = ctx->open_rec;
884 		if (rec) {
885 			msg = &rec->msg_plaintext;
886 			if (!msg->apply_bytes)
887 				reset_eval = true;
888 		}
889 		if (reset_eval) {
890 			psock->eval = __SK_NONE;
891 			if (psock->sk_redir) {
892 				sock_put(psock->sk_redir);
893 				psock->sk_redir = NULL;
894 			}
895 		}
896 		if (rec)
897 			goto more_data;
898 	}
899  out_err:
900 	sk_psock_put(sk, psock);
901 	return err;
902 }
903 
tls_sw_push_pending_record(struct sock * sk,int flags)904 static int tls_sw_push_pending_record(struct sock *sk, int flags)
905 {
906 	struct tls_context *tls_ctx = tls_get_ctx(sk);
907 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
908 	struct tls_rec *rec = ctx->open_rec;
909 	struct sk_msg *msg_pl;
910 	size_t copied;
911 
912 	if (!rec)
913 		return 0;
914 
915 	msg_pl = &rec->msg_plaintext;
916 	copied = msg_pl->sg.size;
917 	if (!copied)
918 		return 0;
919 
920 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
921 				   &copied, flags);
922 }
923 
tls_sw_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)924 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
925 {
926 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
927 	struct tls_context *tls_ctx = tls_get_ctx(sk);
928 	struct tls_prot_info *prot = &tls_ctx->prot_info;
929 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
930 	bool async_capable = ctx->async_capable;
931 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
932 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
933 	bool eor = !(msg->msg_flags & MSG_MORE);
934 	size_t try_to_copy;
935 	ssize_t copied = 0;
936 	struct sk_msg *msg_pl, *msg_en;
937 	struct tls_rec *rec;
938 	int required_size;
939 	int num_async = 0;
940 	bool full_record;
941 	int record_room;
942 	int num_zc = 0;
943 	int orig_size;
944 	int ret = 0;
945 	int pending;
946 
947 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
948 			       MSG_CMSG_COMPAT))
949 		return -EOPNOTSUPP;
950 
951 	mutex_lock(&tls_ctx->tx_lock);
952 	lock_sock(sk);
953 
954 	if (unlikely(msg->msg_controllen)) {
955 		ret = tls_proccess_cmsg(sk, msg, &record_type);
956 		if (ret) {
957 			if (ret == -EINPROGRESS)
958 				num_async++;
959 			else if (ret != -EAGAIN)
960 				goto send_end;
961 		}
962 	}
963 
964 	while (msg_data_left(msg)) {
965 		if (sk->sk_err) {
966 			ret = -sk->sk_err;
967 			goto send_end;
968 		}
969 
970 		if (ctx->open_rec)
971 			rec = ctx->open_rec;
972 		else
973 			rec = ctx->open_rec = tls_get_rec(sk);
974 		if (!rec) {
975 			ret = -ENOMEM;
976 			goto send_end;
977 		}
978 
979 		msg_pl = &rec->msg_plaintext;
980 		msg_en = &rec->msg_encrypted;
981 
982 		orig_size = msg_pl->sg.size;
983 		full_record = false;
984 		try_to_copy = msg_data_left(msg);
985 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
986 		if (try_to_copy >= record_room) {
987 			try_to_copy = record_room;
988 			full_record = true;
989 		}
990 
991 		required_size = msg_pl->sg.size + try_to_copy +
992 				prot->overhead_size;
993 
994 		if (!sk_stream_memory_free(sk))
995 			goto wait_for_sndbuf;
996 
997 alloc_encrypted:
998 		ret = tls_alloc_encrypted_msg(sk, required_size);
999 		if (ret) {
1000 			if (ret != -ENOSPC)
1001 				goto wait_for_memory;
1002 
1003 			/* Adjust try_to_copy according to the amount that was
1004 			 * actually allocated. The difference is due
1005 			 * to max sg elements limit
1006 			 */
1007 			try_to_copy -= required_size - msg_en->sg.size;
1008 			full_record = true;
1009 		}
1010 
1011 		if (!is_kvec && (full_record || eor) && !async_capable) {
1012 			u32 first = msg_pl->sg.end;
1013 
1014 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1015 							msg_pl, try_to_copy);
1016 			if (ret)
1017 				goto fallback_to_reg_send;
1018 
1019 			num_zc++;
1020 			copied += try_to_copy;
1021 
1022 			sk_msg_sg_copy_set(msg_pl, first);
1023 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1024 						  record_type, &copied,
1025 						  msg->msg_flags);
1026 			if (ret) {
1027 				if (ret == -EINPROGRESS)
1028 					num_async++;
1029 				else if (ret == -ENOMEM)
1030 					goto wait_for_memory;
1031 				else if (ctx->open_rec && ret == -ENOSPC)
1032 					goto rollback_iter;
1033 				else if (ret != -EAGAIN)
1034 					goto send_end;
1035 			}
1036 			continue;
1037 rollback_iter:
1038 			copied -= try_to_copy;
1039 			sk_msg_sg_copy_clear(msg_pl, first);
1040 			iov_iter_revert(&msg->msg_iter,
1041 					msg_pl->sg.size - orig_size);
1042 fallback_to_reg_send:
1043 			sk_msg_trim(sk, msg_pl, orig_size);
1044 		}
1045 
1046 		required_size = msg_pl->sg.size + try_to_copy;
1047 
1048 		ret = tls_clone_plaintext_msg(sk, required_size);
1049 		if (ret) {
1050 			if (ret != -ENOSPC)
1051 				goto send_end;
1052 
1053 			/* Adjust try_to_copy according to the amount that was
1054 			 * actually allocated. The difference is due
1055 			 * to max sg elements limit
1056 			 */
1057 			try_to_copy -= required_size - msg_pl->sg.size;
1058 			full_record = true;
1059 			sk_msg_trim(sk, msg_en,
1060 				    msg_pl->sg.size + prot->overhead_size);
1061 		}
1062 
1063 		if (try_to_copy) {
1064 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1065 						       msg_pl, try_to_copy);
1066 			if (ret < 0)
1067 				goto trim_sgl;
1068 		}
1069 
1070 		/* Open records defined only if successfully copied, otherwise
1071 		 * we would trim the sg but not reset the open record frags.
1072 		 */
1073 		tls_ctx->pending_open_record_frags = true;
1074 		copied += try_to_copy;
1075 		if (full_record || eor) {
1076 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1077 						  record_type, &copied,
1078 						  msg->msg_flags);
1079 			if (ret) {
1080 				if (ret == -EINPROGRESS)
1081 					num_async++;
1082 				else if (ret == -ENOMEM)
1083 					goto wait_for_memory;
1084 				else if (ret != -EAGAIN) {
1085 					if (ret == -ENOSPC)
1086 						ret = 0;
1087 					goto send_end;
1088 				}
1089 			}
1090 		}
1091 
1092 		continue;
1093 
1094 wait_for_sndbuf:
1095 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1096 wait_for_memory:
1097 		ret = sk_stream_wait_memory(sk, &timeo);
1098 		if (ret) {
1099 trim_sgl:
1100 			if (ctx->open_rec)
1101 				tls_trim_both_msgs(sk, orig_size);
1102 			goto send_end;
1103 		}
1104 
1105 		if (ctx->open_rec && msg_en->sg.size < required_size)
1106 			goto alloc_encrypted;
1107 	}
1108 
1109 	if (!num_async) {
1110 		goto send_end;
1111 	} else if (num_zc) {
1112 		/* Wait for pending encryptions to get completed */
1113 		spin_lock_bh(&ctx->encrypt_compl_lock);
1114 		ctx->async_notify = true;
1115 
1116 		pending = atomic_read(&ctx->encrypt_pending);
1117 		spin_unlock_bh(&ctx->encrypt_compl_lock);
1118 		if (pending)
1119 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1120 		else
1121 			reinit_completion(&ctx->async_wait.completion);
1122 
1123 		/* There can be no concurrent accesses, since we have no
1124 		 * pending encrypt operations
1125 		 */
1126 		WRITE_ONCE(ctx->async_notify, false);
1127 
1128 		if (ctx->async_wait.err) {
1129 			ret = ctx->async_wait.err;
1130 			copied = 0;
1131 		}
1132 	}
1133 
1134 	/* Transmit if any encryptions have completed */
1135 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1136 		cancel_delayed_work(&ctx->tx_work.work);
1137 		tls_tx_records(sk, msg->msg_flags);
1138 	}
1139 
1140 send_end:
1141 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1142 
1143 	release_sock(sk);
1144 	mutex_unlock(&tls_ctx->tx_lock);
1145 	return copied > 0 ? copied : ret;
1146 }
1147 
tls_sw_do_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1148 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1149 			      int offset, size_t size, int flags)
1150 {
1151 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1152 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1153 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1154 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1155 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1156 	struct sk_msg *msg_pl;
1157 	struct tls_rec *rec;
1158 	int num_async = 0;
1159 	ssize_t copied = 0;
1160 	bool full_record;
1161 	int record_room;
1162 	int ret = 0;
1163 	bool eor;
1164 
1165 	eor = !(flags & MSG_SENDPAGE_NOTLAST);
1166 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1167 
1168 	/* Call the sk_stream functions to manage the sndbuf mem. */
1169 	while (size > 0) {
1170 		size_t copy, required_size;
1171 
1172 		if (sk->sk_err) {
1173 			ret = -sk->sk_err;
1174 			goto sendpage_end;
1175 		}
1176 
1177 		if (ctx->open_rec)
1178 			rec = ctx->open_rec;
1179 		else
1180 			rec = ctx->open_rec = tls_get_rec(sk);
1181 		if (!rec) {
1182 			ret = -ENOMEM;
1183 			goto sendpage_end;
1184 		}
1185 
1186 		msg_pl = &rec->msg_plaintext;
1187 
1188 		full_record = false;
1189 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1190 		copy = size;
1191 		if (copy >= record_room) {
1192 			copy = record_room;
1193 			full_record = true;
1194 		}
1195 
1196 		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1197 
1198 		if (!sk_stream_memory_free(sk))
1199 			goto wait_for_sndbuf;
1200 alloc_payload:
1201 		ret = tls_alloc_encrypted_msg(sk, required_size);
1202 		if (ret) {
1203 			if (ret != -ENOSPC)
1204 				goto wait_for_memory;
1205 
1206 			/* Adjust copy according to the amount that was
1207 			 * actually allocated. The difference is due
1208 			 * to max sg elements limit
1209 			 */
1210 			copy -= required_size - msg_pl->sg.size;
1211 			full_record = true;
1212 		}
1213 
1214 		sk_msg_page_add(msg_pl, page, copy, offset);
1215 		sk_mem_charge(sk, copy);
1216 
1217 		offset += copy;
1218 		size -= copy;
1219 		copied += copy;
1220 
1221 		tls_ctx->pending_open_record_frags = true;
1222 		if (full_record || eor || sk_msg_full(msg_pl)) {
1223 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1224 						  record_type, &copied, flags);
1225 			if (ret) {
1226 				if (ret == -EINPROGRESS)
1227 					num_async++;
1228 				else if (ret == -ENOMEM)
1229 					goto wait_for_memory;
1230 				else if (ret != -EAGAIN) {
1231 					if (ret == -ENOSPC)
1232 						ret = 0;
1233 					goto sendpage_end;
1234 				}
1235 			}
1236 		}
1237 		continue;
1238 wait_for_sndbuf:
1239 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1240 wait_for_memory:
1241 		ret = sk_stream_wait_memory(sk, &timeo);
1242 		if (ret) {
1243 			if (ctx->open_rec)
1244 				tls_trim_both_msgs(sk, msg_pl->sg.size);
1245 			goto sendpage_end;
1246 		}
1247 
1248 		if (ctx->open_rec)
1249 			goto alloc_payload;
1250 	}
1251 
1252 	if (num_async) {
1253 		/* Transmit if any encryptions have completed */
1254 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1255 			cancel_delayed_work(&ctx->tx_work.work);
1256 			tls_tx_records(sk, flags);
1257 		}
1258 	}
1259 sendpage_end:
1260 	ret = sk_stream_error(sk, flags, ret);
1261 	return copied > 0 ? copied : ret;
1262 }
1263 
tls_sw_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1264 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1265 			   int offset, size_t size, int flags)
1266 {
1267 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1268 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1269 		      MSG_NO_SHARED_FRAGS))
1270 		return -EOPNOTSUPP;
1271 
1272 	return tls_sw_do_sendpage(sk, page, offset, size, flags);
1273 }
1274 
tls_sw_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1275 int tls_sw_sendpage(struct sock *sk, struct page *page,
1276 		    int offset, size_t size, int flags)
1277 {
1278 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1279 	int ret;
1280 
1281 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1282 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1283 		return -EOPNOTSUPP;
1284 
1285 	mutex_lock(&tls_ctx->tx_lock);
1286 	lock_sock(sk);
1287 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1288 	release_sock(sk);
1289 	mutex_unlock(&tls_ctx->tx_lock);
1290 	return ret;
1291 }
1292 
tls_wait_data(struct sock * sk,struct sk_psock * psock,bool nonblock,long timeo,int * err)1293 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1294 				     bool nonblock, long timeo, int *err)
1295 {
1296 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1297 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1298 	struct sk_buff *skb;
1299 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1300 
1301 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1302 		if (sk->sk_err) {
1303 			*err = sock_error(sk);
1304 			return NULL;
1305 		}
1306 
1307 		if (!skb_queue_empty(&sk->sk_receive_queue)) {
1308 			__strp_unpause(&ctx->strp);
1309 			if (ctx->recv_pkt)
1310 				return ctx->recv_pkt;
1311 		}
1312 
1313 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1314 			return NULL;
1315 
1316 		if (sock_flag(sk, SOCK_DONE))
1317 			return NULL;
1318 
1319 		if (nonblock || !timeo) {
1320 			*err = -EAGAIN;
1321 			return NULL;
1322 		}
1323 
1324 		add_wait_queue(sk_sleep(sk), &wait);
1325 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1326 		sk_wait_event(sk, &timeo,
1327 			      ctx->recv_pkt != skb ||
1328 			      !sk_psock_queue_empty(psock),
1329 			      &wait);
1330 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1331 		remove_wait_queue(sk_sleep(sk), &wait);
1332 
1333 		/* Handle signals */
1334 		if (signal_pending(current)) {
1335 			*err = sock_intr_errno(timeo);
1336 			return NULL;
1337 		}
1338 	}
1339 
1340 	return skb;
1341 }
1342 
tls_setup_from_iter(struct sock * sk,struct iov_iter * from,int length,int * pages_used,unsigned int * size_used,struct scatterlist * to,int to_max_pages)1343 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1344 			       int length, int *pages_used,
1345 			       unsigned int *size_used,
1346 			       struct scatterlist *to,
1347 			       int to_max_pages)
1348 {
1349 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1350 	struct page *pages[MAX_SKB_FRAGS];
1351 	unsigned int size = *size_used;
1352 	ssize_t copied, use;
1353 	size_t offset;
1354 
1355 	while (length > 0) {
1356 		i = 0;
1357 		maxpages = to_max_pages - num_elem;
1358 		if (maxpages == 0) {
1359 			rc = -EFAULT;
1360 			goto out;
1361 		}
1362 		copied = iov_iter_get_pages(from, pages,
1363 					    length,
1364 					    maxpages, &offset);
1365 		if (copied <= 0) {
1366 			rc = -EFAULT;
1367 			goto out;
1368 		}
1369 
1370 		iov_iter_advance(from, copied);
1371 
1372 		length -= copied;
1373 		size += copied;
1374 		while (copied) {
1375 			use = min_t(int, copied, PAGE_SIZE - offset);
1376 
1377 			sg_set_page(&to[num_elem],
1378 				    pages[i], use, offset);
1379 			sg_unmark_end(&to[num_elem]);
1380 			/* We do not uncharge memory from this API */
1381 
1382 			offset = 0;
1383 			copied -= use;
1384 
1385 			i++;
1386 			num_elem++;
1387 		}
1388 	}
1389 	/* Mark the end in the last sg entry if newly added */
1390 	if (num_elem > *pages_used)
1391 		sg_mark_end(&to[num_elem - 1]);
1392 out:
1393 	if (rc)
1394 		iov_iter_revert(from, size - *size_used);
1395 	*size_used = size;
1396 	*pages_used = num_elem;
1397 
1398 	return rc;
1399 }
1400 
1401 /* This function decrypts the input skb into either out_iov or in out_sg
1402  * or in skb buffers itself. The input parameter 'zc' indicates if
1403  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1404  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1405  * NULL, then the decryption happens inside skb buffers itself, i.e.
1406  * zero-copy gets disabled and 'zc' is updated.
1407  */
1408 
decrypt_internal(struct sock * sk,struct sk_buff * skb,struct iov_iter * out_iov,struct scatterlist * out_sg,int * chunk,bool * zc,bool async)1409 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1410 			    struct iov_iter *out_iov,
1411 			    struct scatterlist *out_sg,
1412 			    int *chunk, bool *zc, bool async)
1413 {
1414 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1415 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1416 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1417 	struct strp_msg *rxm = strp_msg(skb);
1418 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1419 	struct aead_request *aead_req;
1420 	struct sk_buff *unused;
1421 	u8 *aad, *iv, *mem = NULL;
1422 	struct scatterlist *sgin = NULL;
1423 	struct scatterlist *sgout = NULL;
1424 	const int data_len = rxm->full_len - prot->overhead_size +
1425 			     prot->tail_size;
1426 	int iv_offset = 0;
1427 
1428 	if (*zc && (out_iov || out_sg)) {
1429 		if (out_iov)
1430 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1431 		else
1432 			n_sgout = sg_nents(out_sg);
1433 		n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1434 				 rxm->full_len - prot->prepend_size);
1435 	} else {
1436 		n_sgout = 0;
1437 		*zc = false;
1438 		n_sgin = skb_cow_data(skb, 0, &unused);
1439 	}
1440 
1441 	if (n_sgin < 1)
1442 		return -EBADMSG;
1443 
1444 	/* Increment to accommodate AAD */
1445 	n_sgin = n_sgin + 1;
1446 
1447 	nsg = n_sgin + n_sgout;
1448 
1449 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1450 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1451 	mem_size = mem_size + prot->aad_size;
1452 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1453 
1454 	/* Allocate a single block of memory which contains
1455 	 * aead_req || sgin[] || sgout[] || aad || iv.
1456 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1457 	 */
1458 	mem = kmalloc(mem_size, sk->sk_allocation);
1459 	if (!mem)
1460 		return -ENOMEM;
1461 
1462 	/* Segment the allocated memory */
1463 	aead_req = (struct aead_request *)mem;
1464 	sgin = (struct scatterlist *)(mem + aead_size);
1465 	sgout = sgin + n_sgin;
1466 	aad = (u8 *)(sgout + n_sgout);
1467 	iv = aad + prot->aad_size;
1468 
1469 	/* For CCM based ciphers, first byte of nonce+iv is always '2' */
1470 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1471 		iv[0] = 2;
1472 		iv_offset = 1;
1473 	}
1474 
1475 	/* Prepare IV */
1476 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1477 			    iv + iv_offset + prot->salt_size,
1478 			    prot->iv_size);
1479 	if (err < 0) {
1480 		kfree(mem);
1481 		return err;
1482 	}
1483 	if (prot->version == TLS_1_3_VERSION ||
1484 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
1485 		memcpy(iv + iv_offset, tls_ctx->rx.iv,
1486 		       crypto_aead_ivsize(ctx->aead_recv));
1487 	else
1488 		memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1489 
1490 	xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq);
1491 
1492 	/* Prepare AAD */
1493 	tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1494 		     prot->tail_size,
1495 		     tls_ctx->rx.rec_seq, ctx->control, prot);
1496 
1497 	/* Prepare sgin */
1498 	sg_init_table(sgin, n_sgin);
1499 	sg_set_buf(&sgin[0], aad, prot->aad_size);
1500 	err = skb_to_sgvec(skb, &sgin[1],
1501 			   rxm->offset + prot->prepend_size,
1502 			   rxm->full_len - prot->prepend_size);
1503 	if (err < 0) {
1504 		kfree(mem);
1505 		return err;
1506 	}
1507 
1508 	if (n_sgout) {
1509 		if (out_iov) {
1510 			sg_init_table(sgout, n_sgout);
1511 			sg_set_buf(&sgout[0], aad, prot->aad_size);
1512 
1513 			*chunk = 0;
1514 			err = tls_setup_from_iter(sk, out_iov, data_len,
1515 						  &pages, chunk, &sgout[1],
1516 						  (n_sgout - 1));
1517 			if (err < 0)
1518 				goto fallback_to_reg_recv;
1519 		} else if (out_sg) {
1520 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1521 		} else {
1522 			goto fallback_to_reg_recv;
1523 		}
1524 	} else {
1525 fallback_to_reg_recv:
1526 		sgout = sgin;
1527 		pages = 0;
1528 		*chunk = data_len;
1529 		*zc = false;
1530 	}
1531 
1532 	/* Prepare and submit AEAD request */
1533 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1534 				data_len, aead_req, async);
1535 	if (err == -EINPROGRESS)
1536 		return err;
1537 
1538 	/* Release the pages in case iov was mapped to pages */
1539 	for (; pages > 0; pages--)
1540 		put_page(sg_page(&sgout[pages]));
1541 
1542 	kfree(mem);
1543 	return err;
1544 }
1545 
decrypt_skb_update(struct sock * sk,struct sk_buff * skb,struct iov_iter * dest,int * chunk,bool * zc,bool async)1546 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1547 			      struct iov_iter *dest, int *chunk, bool *zc,
1548 			      bool async)
1549 {
1550 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1551 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1552 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1553 	struct strp_msg *rxm = strp_msg(skb);
1554 	int pad, err = 0;
1555 
1556 	if (!ctx->decrypted) {
1557 		if (tls_ctx->rx_conf == TLS_HW) {
1558 			err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1559 			if (err < 0)
1560 				return err;
1561 		}
1562 
1563 		/* Still not decrypted after tls_device */
1564 		if (!ctx->decrypted) {
1565 			err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1566 					       async);
1567 			if (err < 0) {
1568 				if (err == -EINPROGRESS)
1569 					tls_advance_record_sn(sk, prot,
1570 							      &tls_ctx->rx);
1571 				else if (err == -EBADMSG)
1572 					TLS_INC_STATS(sock_net(sk),
1573 						      LINUX_MIB_TLSDECRYPTERROR);
1574 				return err;
1575 			}
1576 		} else {
1577 			*zc = false;
1578 		}
1579 
1580 		pad = padding_length(ctx, prot, skb);
1581 		if (pad < 0)
1582 			return pad;
1583 
1584 		rxm->full_len -= pad;
1585 		rxm->offset += prot->prepend_size;
1586 		rxm->full_len -= prot->overhead_size;
1587 		tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1588 		ctx->decrypted = 1;
1589 		ctx->saved_data_ready(sk);
1590 	} else {
1591 		*zc = false;
1592 	}
1593 
1594 	return err;
1595 }
1596 
decrypt_skb(struct sock * sk,struct sk_buff * skb,struct scatterlist * sgout)1597 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1598 		struct scatterlist *sgout)
1599 {
1600 	bool zc = true;
1601 	int chunk;
1602 
1603 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1604 }
1605 
tls_sw_advance_skb(struct sock * sk,struct sk_buff * skb,unsigned int len)1606 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1607 			       unsigned int len)
1608 {
1609 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1610 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1611 
1612 	if (skb) {
1613 		struct strp_msg *rxm = strp_msg(skb);
1614 
1615 		if (len < rxm->full_len) {
1616 			rxm->offset += len;
1617 			rxm->full_len -= len;
1618 			return false;
1619 		}
1620 		consume_skb(skb);
1621 	}
1622 
1623 	/* Finished with message */
1624 	ctx->recv_pkt = NULL;
1625 	__strp_unpause(&ctx->strp);
1626 
1627 	return true;
1628 }
1629 
1630 /* This function traverses the rx_list in tls receive context to copies the
1631  * decrypted records into the buffer provided by caller zero copy is not
1632  * true. Further, the records are removed from the rx_list if it is not a peek
1633  * case and the record has been consumed completely.
1634  */
process_rx_list(struct tls_sw_context_rx * ctx,struct msghdr * msg,u8 * control,bool * cmsg,size_t skip,size_t len,bool zc,bool is_peek)1635 static int process_rx_list(struct tls_sw_context_rx *ctx,
1636 			   struct msghdr *msg,
1637 			   u8 *control,
1638 			   bool *cmsg,
1639 			   size_t skip,
1640 			   size_t len,
1641 			   bool zc,
1642 			   bool is_peek)
1643 {
1644 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1645 	u8 ctrl = *control;
1646 	u8 msgc = *cmsg;
1647 	struct tls_msg *tlm;
1648 	ssize_t copied = 0;
1649 
1650 	/* Set the record type in 'control' if caller didn't pass it */
1651 	if (!ctrl && skb) {
1652 		tlm = tls_msg(skb);
1653 		ctrl = tlm->control;
1654 	}
1655 
1656 	while (skip && skb) {
1657 		struct strp_msg *rxm = strp_msg(skb);
1658 		tlm = tls_msg(skb);
1659 
1660 		/* Cannot process a record of different type */
1661 		if (ctrl != tlm->control)
1662 			return 0;
1663 
1664 		if (skip < rxm->full_len)
1665 			break;
1666 
1667 		skip = skip - rxm->full_len;
1668 		skb = skb_peek_next(skb, &ctx->rx_list);
1669 	}
1670 
1671 	while (len && skb) {
1672 		struct sk_buff *next_skb;
1673 		struct strp_msg *rxm = strp_msg(skb);
1674 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1675 
1676 		tlm = tls_msg(skb);
1677 
1678 		/* Cannot process a record of different type */
1679 		if (ctrl != tlm->control)
1680 			return 0;
1681 
1682 		/* Set record type if not already done. For a non-data record,
1683 		 * do not proceed if record type could not be copied.
1684 		 */
1685 		if (!msgc) {
1686 			int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1687 					    sizeof(ctrl), &ctrl);
1688 			msgc = true;
1689 			if (ctrl != TLS_RECORD_TYPE_DATA) {
1690 				if (cerr || msg->msg_flags & MSG_CTRUNC)
1691 					return -EIO;
1692 
1693 				*cmsg = msgc;
1694 			}
1695 		}
1696 
1697 		if (!zc || (rxm->full_len - skip) > len) {
1698 			int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1699 						    msg, chunk);
1700 			if (err < 0)
1701 				return err;
1702 		}
1703 
1704 		len = len - chunk;
1705 		copied = copied + chunk;
1706 
1707 		/* Consume the data from record if it is non-peek case*/
1708 		if (!is_peek) {
1709 			rxm->offset = rxm->offset + chunk;
1710 			rxm->full_len = rxm->full_len - chunk;
1711 
1712 			/* Return if there is unconsumed data in the record */
1713 			if (rxm->full_len - skip)
1714 				break;
1715 		}
1716 
1717 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1718 		 * So from the 2nd record, 'skip' should be 0.
1719 		 */
1720 		skip = 0;
1721 
1722 		if (msg)
1723 			msg->msg_flags |= MSG_EOR;
1724 
1725 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1726 
1727 		if (!is_peek) {
1728 			skb_unlink(skb, &ctx->rx_list);
1729 			consume_skb(skb);
1730 		}
1731 
1732 		skb = next_skb;
1733 	}
1734 
1735 	*control = ctrl;
1736 	return copied;
1737 }
1738 
tls_sw_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1739 int tls_sw_recvmsg(struct sock *sk,
1740 		   struct msghdr *msg,
1741 		   size_t len,
1742 		   int nonblock,
1743 		   int flags,
1744 		   int *addr_len)
1745 {
1746 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1747 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1748 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1749 	struct sk_psock *psock;
1750 	unsigned char control = 0;
1751 	ssize_t decrypted = 0;
1752 	struct strp_msg *rxm;
1753 	struct tls_msg *tlm;
1754 	struct sk_buff *skb;
1755 	ssize_t copied = 0;
1756 	bool cmsg = false;
1757 	int target, err = 0;
1758 	long timeo;
1759 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1760 	bool is_peek = flags & MSG_PEEK;
1761 	bool bpf_strp_enabled;
1762 	int num_async = 0;
1763 	int pending;
1764 
1765 	flags |= nonblock;
1766 
1767 	if (unlikely(flags & MSG_ERRQUEUE))
1768 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1769 
1770 	psock = sk_psock_get(sk);
1771 	lock_sock(sk);
1772 	bpf_strp_enabled = sk_psock_strp_enabled(psock);
1773 
1774 	/* Process pending decrypted records. It must be non-zero-copy */
1775 	err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1776 			      is_peek);
1777 	if (err < 0) {
1778 		tls_err_abort(sk, err);
1779 		goto end;
1780 	} else {
1781 		copied = err;
1782 	}
1783 
1784 	if (len <= copied)
1785 		goto recv_end;
1786 
1787 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1788 	len = len - copied;
1789 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1790 
1791 	while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1792 		bool retain_skb = false;
1793 		bool zc = false;
1794 		int to_decrypt;
1795 		int chunk = 0;
1796 		bool async_capable;
1797 		bool async = false;
1798 
1799 		skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1800 		if (!skb) {
1801 			if (psock) {
1802 				int ret = sk_msg_recvmsg(sk, psock, msg, len,
1803 							 flags);
1804 
1805 				if (ret > 0) {
1806 					decrypted += ret;
1807 					len -= ret;
1808 					continue;
1809 				}
1810 			}
1811 			goto recv_end;
1812 		} else {
1813 			tlm = tls_msg(skb);
1814 			if (prot->version == TLS_1_3_VERSION)
1815 				tlm->control = 0;
1816 			else
1817 				tlm->control = ctx->control;
1818 		}
1819 
1820 		rxm = strp_msg(skb);
1821 
1822 		to_decrypt = rxm->full_len - prot->overhead_size;
1823 
1824 		if (to_decrypt <= len && !is_kvec && !is_peek &&
1825 		    ctx->control == TLS_RECORD_TYPE_DATA &&
1826 		    prot->version != TLS_1_3_VERSION &&
1827 		    !bpf_strp_enabled)
1828 			zc = true;
1829 
1830 		/* Do not use async mode if record is non-data */
1831 		if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1832 			async_capable = ctx->async_capable;
1833 		else
1834 			async_capable = false;
1835 
1836 		err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1837 					 &chunk, &zc, async_capable);
1838 		if (err < 0 && err != -EINPROGRESS) {
1839 			tls_err_abort(sk, -EBADMSG);
1840 			goto recv_end;
1841 		}
1842 
1843 		if (err == -EINPROGRESS) {
1844 			async = true;
1845 			num_async++;
1846 		} else if (prot->version == TLS_1_3_VERSION) {
1847 			tlm->control = ctx->control;
1848 		}
1849 
1850 		/* If the type of records being processed is not known yet,
1851 		 * set it to record type just dequeued. If it is already known,
1852 		 * but does not match the record type just dequeued, go to end.
1853 		 * We always get record type here since for tls1.2, record type
1854 		 * is known just after record is dequeued from stream parser.
1855 		 * For tls1.3, we disable async.
1856 		 */
1857 
1858 		if (!control)
1859 			control = tlm->control;
1860 		else if (control != tlm->control)
1861 			goto recv_end;
1862 
1863 		if (!cmsg) {
1864 			int cerr;
1865 
1866 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1867 					sizeof(control), &control);
1868 			cmsg = true;
1869 			if (control != TLS_RECORD_TYPE_DATA) {
1870 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1871 					err = -EIO;
1872 					goto recv_end;
1873 				}
1874 			}
1875 		}
1876 
1877 		if (async)
1878 			goto pick_next_record;
1879 
1880 		if (!zc) {
1881 			if (bpf_strp_enabled) {
1882 				err = sk_psock_tls_strp_read(psock, skb);
1883 				if (err != __SK_PASS) {
1884 					rxm->offset = rxm->offset + rxm->full_len;
1885 					rxm->full_len = 0;
1886 					if (err == __SK_DROP)
1887 						consume_skb(skb);
1888 					ctx->recv_pkt = NULL;
1889 					__strp_unpause(&ctx->strp);
1890 					continue;
1891 				}
1892 			}
1893 
1894 			if (rxm->full_len > len) {
1895 				retain_skb = true;
1896 				chunk = len;
1897 			} else {
1898 				chunk = rxm->full_len;
1899 			}
1900 
1901 			err = skb_copy_datagram_msg(skb, rxm->offset,
1902 						    msg, chunk);
1903 			if (err < 0)
1904 				goto recv_end;
1905 
1906 			if (!is_peek) {
1907 				rxm->offset = rxm->offset + chunk;
1908 				rxm->full_len = rxm->full_len - chunk;
1909 			}
1910 		}
1911 
1912 pick_next_record:
1913 		if (chunk > len)
1914 			chunk = len;
1915 
1916 		decrypted += chunk;
1917 		len -= chunk;
1918 
1919 		/* For async or peek case, queue the current skb */
1920 		if (async || is_peek || retain_skb) {
1921 			skb_queue_tail(&ctx->rx_list, skb);
1922 			skb = NULL;
1923 		}
1924 
1925 		if (tls_sw_advance_skb(sk, skb, chunk)) {
1926 			/* Return full control message to
1927 			 * userspace before trying to parse
1928 			 * another message type
1929 			 */
1930 			msg->msg_flags |= MSG_EOR;
1931 			if (control != TLS_RECORD_TYPE_DATA)
1932 				goto recv_end;
1933 		} else {
1934 			break;
1935 		}
1936 	}
1937 
1938 recv_end:
1939 	if (num_async) {
1940 		/* Wait for all previously submitted records to be decrypted */
1941 		spin_lock_bh(&ctx->decrypt_compl_lock);
1942 		ctx->async_notify = true;
1943 		pending = atomic_read(&ctx->decrypt_pending);
1944 		spin_unlock_bh(&ctx->decrypt_compl_lock);
1945 		if (pending) {
1946 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1947 			if (err) {
1948 				/* one of async decrypt failed */
1949 				tls_err_abort(sk, err);
1950 				copied = 0;
1951 				decrypted = 0;
1952 				goto end;
1953 			}
1954 		} else {
1955 			reinit_completion(&ctx->async_wait.completion);
1956 		}
1957 
1958 		/* There can be no concurrent accesses, since we have no
1959 		 * pending decrypt operations
1960 		 */
1961 		WRITE_ONCE(ctx->async_notify, false);
1962 
1963 		/* Drain records from the rx_list & copy if required */
1964 		if (is_peek || is_kvec)
1965 			err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1966 					      decrypted, false, is_peek);
1967 		else
1968 			err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1969 					      decrypted, true, is_peek);
1970 		if (err < 0) {
1971 			tls_err_abort(sk, err);
1972 			copied = 0;
1973 			goto end;
1974 		}
1975 	}
1976 
1977 	copied += decrypted;
1978 
1979 end:
1980 	release_sock(sk);
1981 	if (psock)
1982 		sk_psock_put(sk, psock);
1983 	return copied ? : err;
1984 }
1985 
tls_sw_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1986 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1987 			   struct pipe_inode_info *pipe,
1988 			   size_t len, unsigned int flags)
1989 {
1990 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1991 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1992 	struct strp_msg *rxm = NULL;
1993 	struct sock *sk = sock->sk;
1994 	struct sk_buff *skb;
1995 	ssize_t copied = 0;
1996 	int err = 0;
1997 	long timeo;
1998 	int chunk;
1999 	bool zc = false;
2000 
2001 	lock_sock(sk);
2002 
2003 	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
2004 
2005 	skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
2006 	if (!skb)
2007 		goto splice_read_end;
2008 
2009 	if (!ctx->decrypted) {
2010 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2011 
2012 		/* splice does not support reading control messages */
2013 		if (ctx->control != TLS_RECORD_TYPE_DATA) {
2014 			err = -EINVAL;
2015 			goto splice_read_end;
2016 		}
2017 
2018 		if (err < 0) {
2019 			tls_err_abort(sk, -EBADMSG);
2020 			goto splice_read_end;
2021 		}
2022 		ctx->decrypted = 1;
2023 	}
2024 	rxm = strp_msg(skb);
2025 
2026 	chunk = min_t(unsigned int, rxm->full_len, len);
2027 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2028 	if (copied < 0)
2029 		goto splice_read_end;
2030 
2031 	tls_sw_advance_skb(sk, skb, copied);
2032 
2033 splice_read_end:
2034 	release_sock(sk);
2035 	return copied ? : err;
2036 }
2037 
tls_sw_sock_is_readable(struct sock * sk)2038 bool tls_sw_sock_is_readable(struct sock *sk)
2039 {
2040 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2041 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2042 	bool ingress_empty = true;
2043 	struct sk_psock *psock;
2044 
2045 	rcu_read_lock();
2046 	psock = sk_psock(sk);
2047 	if (psock)
2048 		ingress_empty = list_empty(&psock->ingress_msg);
2049 	rcu_read_unlock();
2050 
2051 	return !ingress_empty || ctx->recv_pkt ||
2052 		!skb_queue_empty(&ctx->rx_list);
2053 }
2054 
tls_read_size(struct strparser * strp,struct sk_buff * skb)2055 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2056 {
2057 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2058 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2059 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2060 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2061 	struct strp_msg *rxm = strp_msg(skb);
2062 	size_t cipher_overhead;
2063 	size_t data_len = 0;
2064 	int ret;
2065 
2066 	/* Verify that we have a full TLS header, or wait for more data */
2067 	if (rxm->offset + prot->prepend_size > skb->len)
2068 		return 0;
2069 
2070 	/* Sanity-check size of on-stack buffer. */
2071 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2072 		ret = -EINVAL;
2073 		goto read_failure;
2074 	}
2075 
2076 	/* Linearize header to local buffer */
2077 	ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2078 
2079 	if (ret < 0)
2080 		goto read_failure;
2081 
2082 	ctx->control = header[0];
2083 
2084 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2085 
2086 	cipher_overhead = prot->tag_size;
2087 	if (prot->version != TLS_1_3_VERSION &&
2088 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2089 		cipher_overhead += prot->iv_size;
2090 
2091 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2092 	    prot->tail_size) {
2093 		ret = -EMSGSIZE;
2094 		goto read_failure;
2095 	}
2096 	if (data_len < cipher_overhead) {
2097 		ret = -EBADMSG;
2098 		goto read_failure;
2099 	}
2100 
2101 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2102 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2103 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2104 		ret = -EINVAL;
2105 		goto read_failure;
2106 	}
2107 
2108 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2109 				     TCP_SKB_CB(skb)->seq + rxm->offset);
2110 	return data_len + TLS_HEADER_SIZE;
2111 
2112 read_failure:
2113 	tls_err_abort(strp->sk, ret);
2114 
2115 	return ret;
2116 }
2117 
tls_queue(struct strparser * strp,struct sk_buff * skb)2118 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2119 {
2120 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2121 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2122 
2123 	ctx->decrypted = 0;
2124 
2125 	ctx->recv_pkt = skb;
2126 	strp_pause(strp);
2127 
2128 	ctx->saved_data_ready(strp->sk);
2129 }
2130 
tls_data_ready(struct sock * sk)2131 static void tls_data_ready(struct sock *sk)
2132 {
2133 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2134 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2135 	struct sk_psock *psock;
2136 
2137 	strp_data_ready(&ctx->strp);
2138 
2139 	psock = sk_psock_get(sk);
2140 	if (psock) {
2141 		if (!list_empty(&psock->ingress_msg))
2142 			ctx->saved_data_ready(sk);
2143 		sk_psock_put(sk, psock);
2144 	}
2145 }
2146 
tls_sw_cancel_work_tx(struct tls_context * tls_ctx)2147 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2148 {
2149 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2150 
2151 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2152 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2153 	cancel_delayed_work_sync(&ctx->tx_work.work);
2154 }
2155 
tls_sw_release_resources_tx(struct sock * sk)2156 void tls_sw_release_resources_tx(struct sock *sk)
2157 {
2158 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2159 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2160 	struct tls_rec *rec, *tmp;
2161 	int pending;
2162 
2163 	/* Wait for any pending async encryptions to complete */
2164 	spin_lock_bh(&ctx->encrypt_compl_lock);
2165 	ctx->async_notify = true;
2166 	pending = atomic_read(&ctx->encrypt_pending);
2167 	spin_unlock_bh(&ctx->encrypt_compl_lock);
2168 
2169 	if (pending)
2170 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2171 
2172 	tls_tx_records(sk, -1);
2173 
2174 	/* Free up un-sent records in tx_list. First, free
2175 	 * the partially sent record if any at head of tx_list.
2176 	 */
2177 	if (tls_ctx->partially_sent_record) {
2178 		tls_free_partial_record(sk, tls_ctx);
2179 		rec = list_first_entry(&ctx->tx_list,
2180 				       struct tls_rec, list);
2181 		list_del(&rec->list);
2182 		sk_msg_free(sk, &rec->msg_plaintext);
2183 		kfree(rec);
2184 	}
2185 
2186 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2187 		list_del(&rec->list);
2188 		sk_msg_free(sk, &rec->msg_encrypted);
2189 		sk_msg_free(sk, &rec->msg_plaintext);
2190 		kfree(rec);
2191 	}
2192 
2193 	crypto_free_aead(ctx->aead_send);
2194 	tls_free_open_rec(sk);
2195 }
2196 
tls_sw_free_ctx_tx(struct tls_context * tls_ctx)2197 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2198 {
2199 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2200 
2201 	kfree(ctx);
2202 }
2203 
tls_sw_release_resources_rx(struct sock * sk)2204 void tls_sw_release_resources_rx(struct sock *sk)
2205 {
2206 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2207 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2208 
2209 	kfree(tls_ctx->rx.rec_seq);
2210 	kfree(tls_ctx->rx.iv);
2211 
2212 	if (ctx->aead_recv) {
2213 		kfree_skb(ctx->recv_pkt);
2214 		ctx->recv_pkt = NULL;
2215 		skb_queue_purge(&ctx->rx_list);
2216 		crypto_free_aead(ctx->aead_recv);
2217 		strp_stop(&ctx->strp);
2218 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2219 		 * we still want to strp_stop(), but sk->sk_data_ready was
2220 		 * never swapped.
2221 		 */
2222 		if (ctx->saved_data_ready) {
2223 			write_lock_bh(&sk->sk_callback_lock);
2224 			sk->sk_data_ready = ctx->saved_data_ready;
2225 			write_unlock_bh(&sk->sk_callback_lock);
2226 		}
2227 	}
2228 }
2229 
tls_sw_strparser_done(struct tls_context * tls_ctx)2230 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2231 {
2232 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2233 
2234 	strp_done(&ctx->strp);
2235 }
2236 
tls_sw_free_ctx_rx(struct tls_context * tls_ctx)2237 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2238 {
2239 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2240 
2241 	kfree(ctx);
2242 }
2243 
tls_sw_free_resources_rx(struct sock * sk)2244 void tls_sw_free_resources_rx(struct sock *sk)
2245 {
2246 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2247 
2248 	tls_sw_release_resources_rx(sk);
2249 	tls_sw_free_ctx_rx(tls_ctx);
2250 }
2251 
2252 /* The work handler to transmitt the encrypted records in tx_list */
tx_work_handler(struct work_struct * work)2253 static void tx_work_handler(struct work_struct *work)
2254 {
2255 	struct delayed_work *delayed_work = to_delayed_work(work);
2256 	struct tx_work *tx_work = container_of(delayed_work,
2257 					       struct tx_work, work);
2258 	struct sock *sk = tx_work->sk;
2259 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2260 	struct tls_sw_context_tx *ctx;
2261 
2262 	if (unlikely(!tls_ctx))
2263 		return;
2264 
2265 	ctx = tls_sw_ctx_tx(tls_ctx);
2266 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2267 		return;
2268 
2269 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2270 		return;
2271 	mutex_lock(&tls_ctx->tx_lock);
2272 	lock_sock(sk);
2273 	tls_tx_records(sk, -1);
2274 	release_sock(sk);
2275 	mutex_unlock(&tls_ctx->tx_lock);
2276 }
2277 
tls_sw_write_space(struct sock * sk,struct tls_context * ctx)2278 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2279 {
2280 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2281 
2282 	/* Schedule the transmission if tx list is ready */
2283 	if (is_tx_ready(tx_ctx) &&
2284 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2285 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2286 }
2287 
tls_sw_strparser_arm(struct sock * sk,struct tls_context * tls_ctx)2288 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2289 {
2290 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2291 
2292 	write_lock_bh(&sk->sk_callback_lock);
2293 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2294 	sk->sk_data_ready = tls_data_ready;
2295 	write_unlock_bh(&sk->sk_callback_lock);
2296 
2297 	strp_check_rcv(&rx_ctx->strp);
2298 }
2299 
tls_set_sw_offload(struct sock * sk,struct tls_context * ctx,int tx)2300 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2301 {
2302 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2303 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2304 	struct tls_crypto_info *crypto_info;
2305 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2306 	struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2307 	struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2308 	struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2309 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2310 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2311 	struct cipher_context *cctx;
2312 	struct crypto_aead **aead;
2313 	struct strp_callbacks cb;
2314 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2315 	struct crypto_tfm *tfm;
2316 	char *iv, *rec_seq, *key, *salt, *cipher_name;
2317 	size_t keysize;
2318 	int rc = 0;
2319 
2320 	if (!ctx) {
2321 		rc = -EINVAL;
2322 		goto out;
2323 	}
2324 
2325 	if (tx) {
2326 		if (!ctx->priv_ctx_tx) {
2327 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2328 			if (!sw_ctx_tx) {
2329 				rc = -ENOMEM;
2330 				goto out;
2331 			}
2332 			ctx->priv_ctx_tx = sw_ctx_tx;
2333 		} else {
2334 			sw_ctx_tx =
2335 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2336 		}
2337 	} else {
2338 		if (!ctx->priv_ctx_rx) {
2339 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2340 			if (!sw_ctx_rx) {
2341 				rc = -ENOMEM;
2342 				goto out;
2343 			}
2344 			ctx->priv_ctx_rx = sw_ctx_rx;
2345 		} else {
2346 			sw_ctx_rx =
2347 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2348 		}
2349 	}
2350 
2351 	if (tx) {
2352 		crypto_init_wait(&sw_ctx_tx->async_wait);
2353 		spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2354 		crypto_info = &ctx->crypto_send.info;
2355 		cctx = &ctx->tx;
2356 		aead = &sw_ctx_tx->aead_send;
2357 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2358 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2359 		sw_ctx_tx->tx_work.sk = sk;
2360 	} else {
2361 		crypto_init_wait(&sw_ctx_rx->async_wait);
2362 		spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2363 		crypto_info = &ctx->crypto_recv.info;
2364 		cctx = &ctx->rx;
2365 		skb_queue_head_init(&sw_ctx_rx->rx_list);
2366 		aead = &sw_ctx_rx->aead_recv;
2367 	}
2368 
2369 	switch (crypto_info->cipher_type) {
2370 	case TLS_CIPHER_AES_GCM_128: {
2371 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2372 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2373 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2374 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2375 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2376 		rec_seq =
2377 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2378 		gcm_128_info =
2379 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2380 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2381 		key = gcm_128_info->key;
2382 		salt = gcm_128_info->salt;
2383 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2384 		cipher_name = "gcm(aes)";
2385 		break;
2386 	}
2387 	case TLS_CIPHER_AES_GCM_256: {
2388 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2389 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2390 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2391 		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2392 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2393 		rec_seq =
2394 		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2395 		gcm_256_info =
2396 			(struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2397 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2398 		key = gcm_256_info->key;
2399 		salt = gcm_256_info->salt;
2400 		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2401 		cipher_name = "gcm(aes)";
2402 		break;
2403 	}
2404 	case TLS_CIPHER_AES_CCM_128: {
2405 		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2406 		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2407 		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2408 		iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2409 		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2410 		rec_seq =
2411 		((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2412 		ccm_128_info =
2413 		(struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2414 		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2415 		key = ccm_128_info->key;
2416 		salt = ccm_128_info->salt;
2417 		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2418 		cipher_name = "ccm(aes)";
2419 		break;
2420 	}
2421 	case TLS_CIPHER_CHACHA20_POLY1305: {
2422 		chacha20_poly1305_info = (void *)crypto_info;
2423 		nonce_size = 0;
2424 		tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2425 		iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2426 		iv = chacha20_poly1305_info->iv;
2427 		rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2428 		rec_seq = chacha20_poly1305_info->rec_seq;
2429 		keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2430 		key = chacha20_poly1305_info->key;
2431 		salt = chacha20_poly1305_info->salt;
2432 		salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2433 		cipher_name = "rfc7539(chacha20,poly1305)";
2434 		break;
2435 	}
2436 	default:
2437 		rc = -EINVAL;
2438 		goto free_priv;
2439 	}
2440 
2441 	/* Sanity-check the sizes for stack allocations. */
2442 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2443 	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2444 		rc = -EINVAL;
2445 		goto free_priv;
2446 	}
2447 
2448 	if (crypto_info->version == TLS_1_3_VERSION) {
2449 		nonce_size = 0;
2450 		prot->aad_size = TLS_HEADER_SIZE;
2451 		prot->tail_size = 1;
2452 	} else {
2453 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2454 		prot->tail_size = 0;
2455 	}
2456 
2457 	prot->version = crypto_info->version;
2458 	prot->cipher_type = crypto_info->cipher_type;
2459 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2460 	prot->tag_size = tag_size;
2461 	prot->overhead_size = prot->prepend_size +
2462 			      prot->tag_size + prot->tail_size;
2463 	prot->iv_size = iv_size;
2464 	prot->salt_size = salt_size;
2465 	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2466 	if (!cctx->iv) {
2467 		rc = -ENOMEM;
2468 		goto free_priv;
2469 	}
2470 	/* Note: 128 & 256 bit salt are the same size */
2471 	prot->rec_seq_size = rec_seq_size;
2472 	memcpy(cctx->iv, salt, salt_size);
2473 	memcpy(cctx->iv + salt_size, iv, iv_size);
2474 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2475 	if (!cctx->rec_seq) {
2476 		rc = -ENOMEM;
2477 		goto free_iv;
2478 	}
2479 
2480 	if (!*aead) {
2481 		*aead = crypto_alloc_aead(cipher_name, 0, 0);
2482 		if (IS_ERR(*aead)) {
2483 			rc = PTR_ERR(*aead);
2484 			*aead = NULL;
2485 			goto free_rec_seq;
2486 		}
2487 	}
2488 
2489 	ctx->push_pending_record = tls_sw_push_pending_record;
2490 
2491 	rc = crypto_aead_setkey(*aead, key, keysize);
2492 
2493 	if (rc)
2494 		goto free_aead;
2495 
2496 	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2497 	if (rc)
2498 		goto free_aead;
2499 
2500 	if (sw_ctx_rx) {
2501 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2502 
2503 		if (crypto_info->version == TLS_1_3_VERSION)
2504 			sw_ctx_rx->async_capable = 0;
2505 		else
2506 			sw_ctx_rx->async_capable =
2507 				!!(tfm->__crt_alg->cra_flags &
2508 				   CRYPTO_ALG_ASYNC);
2509 
2510 		/* Set up strparser */
2511 		memset(&cb, 0, sizeof(cb));
2512 		cb.rcv_msg = tls_queue;
2513 		cb.parse_msg = tls_read_size;
2514 
2515 		strp_init(&sw_ctx_rx->strp, sk, &cb);
2516 	}
2517 
2518 	goto out;
2519 
2520 free_aead:
2521 	crypto_free_aead(*aead);
2522 	*aead = NULL;
2523 free_rec_seq:
2524 	kfree(cctx->rec_seq);
2525 	cctx->rec_seq = NULL;
2526 free_iv:
2527 	kfree(cctx->iv);
2528 	cctx->iv = NULL;
2529 free_priv:
2530 	if (tx) {
2531 		kfree(ctx->priv_ctx_tx);
2532 		ctx->priv_ctx_tx = NULL;
2533 	} else {
2534 		kfree(ctx->priv_ctx_rx);
2535 		ctx->priv_ctx_rx = NULL;
2536 	}
2537 out:
2538 	return rc;
2539 }
2540