1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
52
53 enum {
54 TLSV4,
55 TLSV6,
56 TLS_NUM_PROTS,
57 };
58
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_sw_proto_ops;
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 const struct proto *base);
67
update_sk_prot(struct sock * sk,struct tls_context * ctx)68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72 WRITE_ONCE(sk->sk_prot,
73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74 }
75
wait_on_pending_writer(struct sock * sk,long * timeo)76 int wait_on_pending_writer(struct sock *sk, long *timeo)
77 {
78 int rc = 0;
79 DEFINE_WAIT_FUNC(wait, woken_wake_function);
80
81 add_wait_queue(sk_sleep(sk), &wait);
82 while (1) {
83 if (!*timeo) {
84 rc = -EAGAIN;
85 break;
86 }
87
88 if (signal_pending(current)) {
89 rc = sock_intr_errno(*timeo);
90 break;
91 }
92
93 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
94 break;
95 }
96 remove_wait_queue(sk_sleep(sk), &wait);
97 return rc;
98 }
99
tls_push_sg(struct sock * sk,struct tls_context * ctx,struct scatterlist * sg,u16 first_offset,int flags)100 int tls_push_sg(struct sock *sk,
101 struct tls_context *ctx,
102 struct scatterlist *sg,
103 u16 first_offset,
104 int flags)
105 {
106 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
107 int ret = 0;
108 struct page *p;
109 size_t size;
110 int offset = first_offset;
111
112 size = sg->length - offset;
113 offset += sg->offset;
114
115 ctx->in_tcp_sendpages = true;
116 while (1) {
117 if (sg_is_last(sg))
118 sendpage_flags = flags;
119
120 /* is sending application-limited? */
121 tcp_rate_check_app_limited(sk);
122 p = sg_page(sg);
123 retry:
124 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
125
126 if (ret != size) {
127 if (ret > 0) {
128 offset += ret;
129 size -= ret;
130 goto retry;
131 }
132
133 offset -= sg->offset;
134 ctx->partially_sent_offset = offset;
135 ctx->partially_sent_record = (void *)sg;
136 ctx->in_tcp_sendpages = false;
137 return ret;
138 }
139
140 put_page(p);
141 sk_mem_uncharge(sk, sg->length);
142 sg = sg_next(sg);
143 if (!sg)
144 break;
145
146 offset = sg->offset;
147 size = sg->length;
148 }
149
150 ctx->in_tcp_sendpages = false;
151
152 return 0;
153 }
154
tls_handle_open_record(struct sock * sk,int flags)155 static int tls_handle_open_record(struct sock *sk, int flags)
156 {
157 struct tls_context *ctx = tls_get_ctx(sk);
158
159 if (tls_is_pending_open_record(ctx))
160 return ctx->push_pending_record(sk, flags);
161
162 return 0;
163 }
164
tls_proccess_cmsg(struct sock * sk,struct msghdr * msg,unsigned char * record_type)165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166 unsigned char *record_type)
167 {
168 struct cmsghdr *cmsg;
169 int rc = -EINVAL;
170
171 for_each_cmsghdr(cmsg, msg) {
172 if (!CMSG_OK(msg, cmsg))
173 return -EINVAL;
174 if (cmsg->cmsg_level != SOL_TLS)
175 continue;
176
177 switch (cmsg->cmsg_type) {
178 case TLS_SET_RECORD_TYPE:
179 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180 return -EINVAL;
181
182 if (msg->msg_flags & MSG_MORE)
183 return -EINVAL;
184
185 rc = tls_handle_open_record(sk, msg->msg_flags);
186 if (rc)
187 return rc;
188
189 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
190 rc = 0;
191 break;
192 default:
193 return -EINVAL;
194 }
195 }
196
197 return rc;
198 }
199
tls_push_partial_record(struct sock * sk,struct tls_context * ctx,int flags)200 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
201 int flags)
202 {
203 struct scatterlist *sg;
204 u16 offset;
205
206 sg = ctx->partially_sent_record;
207 offset = ctx->partially_sent_offset;
208
209 ctx->partially_sent_record = NULL;
210 return tls_push_sg(sk, ctx, sg, offset, flags);
211 }
212
tls_free_partial_record(struct sock * sk,struct tls_context * ctx)213 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
214 {
215 struct scatterlist *sg;
216
217 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
218 put_page(sg_page(sg));
219 sk_mem_uncharge(sk, sg->length);
220 }
221 ctx->partially_sent_record = NULL;
222 }
223
tls_write_space(struct sock * sk)224 static void tls_write_space(struct sock *sk)
225 {
226 struct tls_context *ctx = tls_get_ctx(sk);
227
228 /* If in_tcp_sendpages call lower protocol write space handler
229 * to ensure we wake up any waiting operations there. For example
230 * if do_tcp_sendpages where to call sk_wait_event.
231 */
232 if (ctx->in_tcp_sendpages) {
233 ctx->sk_write_space(sk);
234 return;
235 }
236
237 #ifdef CONFIG_TLS_DEVICE
238 if (ctx->tx_conf == TLS_HW)
239 tls_device_write_space(sk, ctx);
240 else
241 #endif
242 tls_sw_write_space(sk, ctx);
243
244 ctx->sk_write_space(sk);
245 }
246
247 /**
248 * tls_ctx_free() - free TLS ULP context
249 * @sk: socket to with @ctx is attached
250 * @ctx: TLS context structure
251 *
252 * Free TLS context. If @sk is %NULL caller guarantees that the socket
253 * to which @ctx was attached has no outstanding references.
254 */
tls_ctx_free(struct sock * sk,struct tls_context * ctx)255 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
256 {
257 if (!ctx)
258 return;
259
260 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
261 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
262 mutex_destroy(&ctx->tx_lock);
263
264 if (sk)
265 kfree_rcu(ctx, rcu);
266 else
267 kfree(ctx);
268 }
269
tls_sk_proto_cleanup(struct sock * sk,struct tls_context * ctx,long timeo)270 static void tls_sk_proto_cleanup(struct sock *sk,
271 struct tls_context *ctx, long timeo)
272 {
273 if (unlikely(sk->sk_write_pending) &&
274 !wait_on_pending_writer(sk, &timeo))
275 tls_handle_open_record(sk, 0);
276
277 /* We need these for tls_sw_fallback handling of other packets */
278 if (ctx->tx_conf == TLS_SW) {
279 kfree(ctx->tx.rec_seq);
280 kfree(ctx->tx.iv);
281 tls_sw_release_resources_tx(sk);
282 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
283 } else if (ctx->tx_conf == TLS_HW) {
284 tls_device_free_resources_tx(sk);
285 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
286 }
287
288 if (ctx->rx_conf == TLS_SW) {
289 tls_sw_release_resources_rx(sk);
290 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
291 } else if (ctx->rx_conf == TLS_HW) {
292 tls_device_offload_cleanup_rx(sk);
293 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
294 }
295 }
296
tls_sk_proto_close(struct sock * sk,long timeout)297 static void tls_sk_proto_close(struct sock *sk, long timeout)
298 {
299 struct inet_connection_sock *icsk = inet_csk(sk);
300 struct tls_context *ctx = tls_get_ctx(sk);
301 long timeo = sock_sndtimeo(sk, 0);
302 bool free_ctx;
303
304 if (ctx->tx_conf == TLS_SW)
305 tls_sw_cancel_work_tx(ctx);
306
307 lock_sock(sk);
308 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
309
310 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
311 tls_sk_proto_cleanup(sk, ctx, timeo);
312
313 write_lock_bh(&sk->sk_callback_lock);
314 if (free_ctx)
315 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
316 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
317 if (sk->sk_write_space == tls_write_space)
318 sk->sk_write_space = ctx->sk_write_space;
319 write_unlock_bh(&sk->sk_callback_lock);
320 release_sock(sk);
321 if (ctx->tx_conf == TLS_SW)
322 tls_sw_free_ctx_tx(ctx);
323 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
324 tls_sw_strparser_done(ctx);
325 if (ctx->rx_conf == TLS_SW)
326 tls_sw_free_ctx_rx(ctx);
327 ctx->sk_proto->close(sk, timeout);
328
329 if (free_ctx)
330 tls_ctx_free(sk, ctx);
331 }
332
do_tls_getsockopt_conf(struct sock * sk,char __user * optval,int __user * optlen,int tx)333 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
334 int __user *optlen, int tx)
335 {
336 int rc = 0;
337 struct tls_context *ctx = tls_get_ctx(sk);
338 struct tls_crypto_info *crypto_info;
339 struct cipher_context *cctx;
340 int len;
341
342 if (get_user(len, optlen))
343 return -EFAULT;
344
345 if (!optval || (len < sizeof(*crypto_info))) {
346 rc = -EINVAL;
347 goto out;
348 }
349
350 if (!ctx) {
351 rc = -EBUSY;
352 goto out;
353 }
354
355 /* get user crypto info */
356 if (tx) {
357 crypto_info = &ctx->crypto_send.info;
358 cctx = &ctx->tx;
359 } else {
360 crypto_info = &ctx->crypto_recv.info;
361 cctx = &ctx->rx;
362 }
363
364 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
365 rc = -EBUSY;
366 goto out;
367 }
368
369 if (len == sizeof(*crypto_info)) {
370 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
371 rc = -EFAULT;
372 goto out;
373 }
374
375 switch (crypto_info->cipher_type) {
376 case TLS_CIPHER_AES_GCM_128: {
377 struct tls12_crypto_info_aes_gcm_128 *
378 crypto_info_aes_gcm_128 =
379 container_of(crypto_info,
380 struct tls12_crypto_info_aes_gcm_128,
381 info);
382
383 if (len != sizeof(*crypto_info_aes_gcm_128)) {
384 rc = -EINVAL;
385 goto out;
386 }
387 lock_sock(sk);
388 memcpy(crypto_info_aes_gcm_128->iv,
389 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
390 TLS_CIPHER_AES_GCM_128_IV_SIZE);
391 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
392 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
393 release_sock(sk);
394 if (copy_to_user(optval,
395 crypto_info_aes_gcm_128,
396 sizeof(*crypto_info_aes_gcm_128)))
397 rc = -EFAULT;
398 break;
399 }
400 case TLS_CIPHER_AES_GCM_256: {
401 struct tls12_crypto_info_aes_gcm_256 *
402 crypto_info_aes_gcm_256 =
403 container_of(crypto_info,
404 struct tls12_crypto_info_aes_gcm_256,
405 info);
406
407 if (len != sizeof(*crypto_info_aes_gcm_256)) {
408 rc = -EINVAL;
409 goto out;
410 }
411 lock_sock(sk);
412 memcpy(crypto_info_aes_gcm_256->iv,
413 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
414 TLS_CIPHER_AES_GCM_256_IV_SIZE);
415 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
416 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
417 release_sock(sk);
418 if (copy_to_user(optval,
419 crypto_info_aes_gcm_256,
420 sizeof(*crypto_info_aes_gcm_256)))
421 rc = -EFAULT;
422 break;
423 }
424 default:
425 rc = -EINVAL;
426 }
427
428 out:
429 return rc;
430 }
431
do_tls_getsockopt(struct sock * sk,int optname,char __user * optval,int __user * optlen)432 static int do_tls_getsockopt(struct sock *sk, int optname,
433 char __user *optval, int __user *optlen)
434 {
435 int rc = 0;
436
437 switch (optname) {
438 case TLS_TX:
439 case TLS_RX:
440 rc = do_tls_getsockopt_conf(sk, optval, optlen,
441 optname == TLS_TX);
442 break;
443 default:
444 rc = -ENOPROTOOPT;
445 break;
446 }
447 return rc;
448 }
449
tls_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)450 static int tls_getsockopt(struct sock *sk, int level, int optname,
451 char __user *optval, int __user *optlen)
452 {
453 struct tls_context *ctx = tls_get_ctx(sk);
454
455 if (level != SOL_TLS)
456 return ctx->sk_proto->getsockopt(sk, level,
457 optname, optval, optlen);
458
459 return do_tls_getsockopt(sk, optname, optval, optlen);
460 }
461
do_tls_setsockopt_conf(struct sock * sk,sockptr_t optval,unsigned int optlen,int tx)462 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
463 unsigned int optlen, int tx)
464 {
465 struct tls_crypto_info *crypto_info;
466 struct tls_crypto_info *alt_crypto_info;
467 struct tls_context *ctx = tls_get_ctx(sk);
468 size_t optsize;
469 int rc = 0;
470 int conf;
471
472 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
473 rc = -EINVAL;
474 goto out;
475 }
476
477 if (tx) {
478 crypto_info = &ctx->crypto_send.info;
479 alt_crypto_info = &ctx->crypto_recv.info;
480 } else {
481 crypto_info = &ctx->crypto_recv.info;
482 alt_crypto_info = &ctx->crypto_send.info;
483 }
484
485 /* Currently we don't support set crypto info more than one time */
486 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
487 rc = -EBUSY;
488 goto out;
489 }
490
491 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
492 if (rc) {
493 rc = -EFAULT;
494 goto err_crypto_info;
495 }
496
497 /* check version */
498 if (crypto_info->version != TLS_1_2_VERSION &&
499 crypto_info->version != TLS_1_3_VERSION) {
500 rc = -EINVAL;
501 goto err_crypto_info;
502 }
503
504 /* Ensure that TLS version and ciphers are same in both directions */
505 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
506 if (alt_crypto_info->version != crypto_info->version ||
507 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
508 rc = -EINVAL;
509 goto err_crypto_info;
510 }
511 }
512
513 switch (crypto_info->cipher_type) {
514 case TLS_CIPHER_AES_GCM_128:
515 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
516 break;
517 case TLS_CIPHER_AES_GCM_256: {
518 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
519 break;
520 }
521 case TLS_CIPHER_AES_CCM_128:
522 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
523 break;
524 case TLS_CIPHER_CHACHA20_POLY1305:
525 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
526 break;
527 default:
528 rc = -EINVAL;
529 goto err_crypto_info;
530 }
531
532 if (optlen != optsize) {
533 rc = -EINVAL;
534 goto err_crypto_info;
535 }
536
537 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
538 sizeof(*crypto_info),
539 optlen - sizeof(*crypto_info));
540 if (rc) {
541 rc = -EFAULT;
542 goto err_crypto_info;
543 }
544
545 if (tx) {
546 rc = tls_set_device_offload(sk, ctx);
547 conf = TLS_HW;
548 if (!rc) {
549 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
550 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
551 } else {
552 rc = tls_set_sw_offload(sk, ctx, 1);
553 if (rc)
554 goto err_crypto_info;
555 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
556 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
557 conf = TLS_SW;
558 }
559 } else {
560 rc = tls_set_device_offload_rx(sk, ctx);
561 conf = TLS_HW;
562 if (!rc) {
563 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
564 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
565 } else {
566 rc = tls_set_sw_offload(sk, ctx, 0);
567 if (rc)
568 goto err_crypto_info;
569 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
570 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
571 conf = TLS_SW;
572 }
573 tls_sw_strparser_arm(sk, ctx);
574 }
575
576 if (tx)
577 ctx->tx_conf = conf;
578 else
579 ctx->rx_conf = conf;
580 update_sk_prot(sk, ctx);
581 if (tx) {
582 ctx->sk_write_space = sk->sk_write_space;
583 sk->sk_write_space = tls_write_space;
584 } else {
585 sk->sk_socket->ops = &tls_sw_proto_ops;
586 }
587 goto out;
588
589 err_crypto_info:
590 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
591 out:
592 return rc;
593 }
594
do_tls_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)595 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
596 unsigned int optlen)
597 {
598 int rc = 0;
599
600 switch (optname) {
601 case TLS_TX:
602 case TLS_RX:
603 lock_sock(sk);
604 rc = do_tls_setsockopt_conf(sk, optval, optlen,
605 optname == TLS_TX);
606 release_sock(sk);
607 break;
608 default:
609 rc = -ENOPROTOOPT;
610 break;
611 }
612 return rc;
613 }
614
tls_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)615 static int tls_setsockopt(struct sock *sk, int level, int optname,
616 sockptr_t optval, unsigned int optlen)
617 {
618 struct tls_context *ctx = tls_get_ctx(sk);
619
620 if (level != SOL_TLS)
621 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
622 optlen);
623
624 return do_tls_setsockopt(sk, optname, optval, optlen);
625 }
626
tls_ctx_create(struct sock * sk)627 struct tls_context *tls_ctx_create(struct sock *sk)
628 {
629 struct inet_connection_sock *icsk = inet_csk(sk);
630 struct tls_context *ctx;
631
632 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
633 if (!ctx)
634 return NULL;
635
636 mutex_init(&ctx->tx_lock);
637 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
638 ctx->sk_proto = READ_ONCE(sk->sk_prot);
639 ctx->sk = sk;
640 return ctx;
641 }
642
tls_build_proto(struct sock * sk)643 static void tls_build_proto(struct sock *sk)
644 {
645 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
646 struct proto *prot = READ_ONCE(sk->sk_prot);
647
648 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
649 if (ip_ver == TLSV6 &&
650 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
651 mutex_lock(&tcpv6_prot_mutex);
652 if (likely(prot != saved_tcpv6_prot)) {
653 build_protos(tls_prots[TLSV6], prot);
654 smp_store_release(&saved_tcpv6_prot, prot);
655 }
656 mutex_unlock(&tcpv6_prot_mutex);
657 }
658
659 if (ip_ver == TLSV4 &&
660 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
661 mutex_lock(&tcpv4_prot_mutex);
662 if (likely(prot != saved_tcpv4_prot)) {
663 build_protos(tls_prots[TLSV4], prot);
664 smp_store_release(&saved_tcpv4_prot, prot);
665 }
666 mutex_unlock(&tcpv4_prot_mutex);
667 }
668 }
669
build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],const struct proto * base)670 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
671 const struct proto *base)
672 {
673 prot[TLS_BASE][TLS_BASE] = *base;
674 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
675 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
676 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
677
678 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
679 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
680 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
681
682 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
683 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
684 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
685 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
686
687 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
688 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
689 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
690 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
691
692 #ifdef CONFIG_TLS_DEVICE
693 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
694 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
695 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
696
697 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
698 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
699 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
700
701 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
702
703 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
704
705 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
706 #endif
707 #ifdef CONFIG_TLS_TOE
708 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
709 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
710 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
711 #endif
712 }
713
tls_init(struct sock * sk)714 static int tls_init(struct sock *sk)
715 {
716 struct tls_context *ctx;
717 int rc = 0;
718
719 tls_build_proto(sk);
720
721 #ifdef CONFIG_TLS_TOE
722 if (tls_toe_bypass(sk))
723 return 0;
724 #endif
725
726 /* The TLS ulp is currently supported only for TCP sockets
727 * in ESTABLISHED state.
728 * Supporting sockets in LISTEN state will require us
729 * to modify the accept implementation to clone rather then
730 * share the ulp context.
731 */
732 if (sk->sk_state != TCP_ESTABLISHED)
733 return -ENOTCONN;
734
735 /* allocate tls context */
736 write_lock_bh(&sk->sk_callback_lock);
737 ctx = tls_ctx_create(sk);
738 if (!ctx) {
739 rc = -ENOMEM;
740 goto out;
741 }
742
743 ctx->tx_conf = TLS_BASE;
744 ctx->rx_conf = TLS_BASE;
745 update_sk_prot(sk, ctx);
746 out:
747 write_unlock_bh(&sk->sk_callback_lock);
748 return rc;
749 }
750
tls_update(struct sock * sk,struct proto * p,void (* write_space)(struct sock * sk))751 static void tls_update(struct sock *sk, struct proto *p,
752 void (*write_space)(struct sock *sk))
753 {
754 struct tls_context *ctx;
755
756 ctx = tls_get_ctx(sk);
757 if (likely(ctx)) {
758 ctx->sk_write_space = write_space;
759 ctx->sk_proto = p;
760 } else {
761 /* Pairs with lockless read in sk_clone_lock(). */
762 WRITE_ONCE(sk->sk_prot, p);
763 sk->sk_write_space = write_space;
764 }
765 }
766
tls_get_info(const struct sock * sk,struct sk_buff * skb)767 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
768 {
769 u16 version, cipher_type;
770 struct tls_context *ctx;
771 struct nlattr *start;
772 int err;
773
774 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
775 if (!start)
776 return -EMSGSIZE;
777
778 rcu_read_lock();
779 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
780 if (!ctx) {
781 err = 0;
782 goto nla_failure;
783 }
784 version = ctx->prot_info.version;
785 if (version) {
786 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
787 if (err)
788 goto nla_failure;
789 }
790 cipher_type = ctx->prot_info.cipher_type;
791 if (cipher_type) {
792 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
793 if (err)
794 goto nla_failure;
795 }
796 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
797 if (err)
798 goto nla_failure;
799
800 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
801 if (err)
802 goto nla_failure;
803
804 rcu_read_unlock();
805 nla_nest_end(skb, start);
806 return 0;
807
808 nla_failure:
809 rcu_read_unlock();
810 nla_nest_cancel(skb, start);
811 return err;
812 }
813
tls_get_info_size(const struct sock * sk)814 static size_t tls_get_info_size(const struct sock *sk)
815 {
816 size_t size = 0;
817
818 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
819 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
820 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
821 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
822 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
823 0;
824
825 return size;
826 }
827
tls_init_net(struct net * net)828 static int __net_init tls_init_net(struct net *net)
829 {
830 int err;
831
832 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
833 if (!net->mib.tls_statistics)
834 return -ENOMEM;
835
836 err = tls_proc_init(net);
837 if (err)
838 goto err_free_stats;
839
840 return 0;
841 err_free_stats:
842 free_percpu(net->mib.tls_statistics);
843 return err;
844 }
845
tls_exit_net(struct net * net)846 static void __net_exit tls_exit_net(struct net *net)
847 {
848 tls_proc_fini(net);
849 free_percpu(net->mib.tls_statistics);
850 }
851
852 static struct pernet_operations tls_proc_ops = {
853 .init = tls_init_net,
854 .exit = tls_exit_net,
855 };
856
857 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
858 .name = "tls",
859 .owner = THIS_MODULE,
860 .init = tls_init,
861 .update = tls_update,
862 .get_info = tls_get_info,
863 .get_info_size = tls_get_info_size,
864 };
865
tls_register(void)866 static int __init tls_register(void)
867 {
868 int err;
869
870 err = register_pernet_subsys(&tls_proc_ops);
871 if (err)
872 return err;
873
874 tls_sw_proto_ops = inet_stream_ops;
875 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
876 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked;
877
878 tls_device_init();
879 tcp_register_ulp(&tcp_tls_ulp_ops);
880
881 return 0;
882 }
883
tls_unregister(void)884 static void __exit tls_unregister(void)
885 {
886 tcp_unregister_ulp(&tcp_tls_ulp_ops);
887 tls_device_cleanup();
888 unregister_pernet_subsys(&tls_proc_ops);
889 }
890
891 module_init(tls_register);
892 module_exit(tls_unregister);
893