1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/ethtool.h>
56 #include <linux/mm.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 #include <linux/ptp_clock_kernel.h>
108
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113
114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
116 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
117
118 static int sock_close(struct inode *inode, struct file *file);
119 static __poll_t sock_poll(struct file *file,
120 struct poll_table_struct *wait);
121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
122 #ifdef CONFIG_COMPAT
123 static long compat_sock_ioctl(struct file *file,
124 unsigned int cmd, unsigned long arg);
125 #endif
126 static int sock_fasync(int fd, struct file *filp, int on);
127 static ssize_t sock_sendpage(struct file *file, struct page *page,
128 int offset, size_t size, loff_t *ppos, int more);
129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
130 struct pipe_inode_info *pipe, size_t len,
131 unsigned int flags);
132
133 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)134 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
135 {
136 struct socket *sock = f->private_data;
137
138 if (sock->ops->show_fdinfo)
139 sock->ops->show_fdinfo(m, sock);
140 }
141 #else
142 #define sock_show_fdinfo NULL
143 #endif
144
145 /*
146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
147 * in the operation structures but are done directly via the socketcall() multiplexor.
148 */
149
150 static const struct file_operations socket_file_ops = {
151 .owner = THIS_MODULE,
152 .llseek = no_llseek,
153 .read_iter = sock_read_iter,
154 .write_iter = sock_write_iter,
155 .poll = sock_poll,
156 .unlocked_ioctl = sock_ioctl,
157 #ifdef CONFIG_COMPAT
158 .compat_ioctl = compat_sock_ioctl,
159 #endif
160 .mmap = sock_mmap,
161 .release = sock_close,
162 .fasync = sock_fasync,
163 .sendpage = sock_sendpage,
164 .splice_write = generic_splice_sendpage,
165 .splice_read = sock_splice_read,
166 .show_fdinfo = sock_show_fdinfo,
167 };
168
169 static const char * const pf_family_names[] = {
170 [PF_UNSPEC] = "PF_UNSPEC",
171 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
172 [PF_INET] = "PF_INET",
173 [PF_AX25] = "PF_AX25",
174 [PF_IPX] = "PF_IPX",
175 [PF_APPLETALK] = "PF_APPLETALK",
176 [PF_NETROM] = "PF_NETROM",
177 [PF_BRIDGE] = "PF_BRIDGE",
178 [PF_ATMPVC] = "PF_ATMPVC",
179 [PF_X25] = "PF_X25",
180 [PF_INET6] = "PF_INET6",
181 [PF_ROSE] = "PF_ROSE",
182 [PF_DECnet] = "PF_DECnet",
183 [PF_NETBEUI] = "PF_NETBEUI",
184 [PF_SECURITY] = "PF_SECURITY",
185 [PF_KEY] = "PF_KEY",
186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
187 [PF_PACKET] = "PF_PACKET",
188 [PF_ASH] = "PF_ASH",
189 [PF_ECONET] = "PF_ECONET",
190 [PF_ATMSVC] = "PF_ATMSVC",
191 [PF_RDS] = "PF_RDS",
192 [PF_SNA] = "PF_SNA",
193 [PF_IRDA] = "PF_IRDA",
194 [PF_PPPOX] = "PF_PPPOX",
195 [PF_WANPIPE] = "PF_WANPIPE",
196 [PF_LLC] = "PF_LLC",
197 [PF_IB] = "PF_IB",
198 [PF_MPLS] = "PF_MPLS",
199 [PF_CAN] = "PF_CAN",
200 [PF_TIPC] = "PF_TIPC",
201 [PF_BLUETOOTH] = "PF_BLUETOOTH",
202 [PF_IUCV] = "PF_IUCV",
203 [PF_RXRPC] = "PF_RXRPC",
204 [PF_ISDN] = "PF_ISDN",
205 [PF_PHONET] = "PF_PHONET",
206 [PF_IEEE802154] = "PF_IEEE802154",
207 [PF_CAIF] = "PF_CAIF",
208 [PF_ALG] = "PF_ALG",
209 [PF_NFC] = "PF_NFC",
210 [PF_VSOCK] = "PF_VSOCK",
211 [PF_KCM] = "PF_KCM",
212 [PF_QIPCRTR] = "PF_QIPCRTR",
213 [PF_SMC] = "PF_SMC",
214 [PF_XDP] = "PF_XDP",
215 [PF_MCTP] = "PF_MCTP",
216 };
217
218 /*
219 * The protocol list. Each protocol is registered in here.
220 */
221
222 static DEFINE_SPINLOCK(net_family_lock);
223 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
224
225 /*
226 * Support routines.
227 * Move socket addresses back and forth across the kernel/user
228 * divide and look after the messy bits.
229 */
230
231 /**
232 * move_addr_to_kernel - copy a socket address into kernel space
233 * @uaddr: Address in user space
234 * @kaddr: Address in kernel space
235 * @ulen: Length in user space
236 *
237 * The address is copied into kernel space. If the provided address is
238 * too long an error code of -EINVAL is returned. If the copy gives
239 * invalid addresses -EFAULT is returned. On a success 0 is returned.
240 */
241
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)242 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
243 {
244 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
245 return -EINVAL;
246 if (ulen == 0)
247 return 0;
248 if (copy_from_user(kaddr, uaddr, ulen))
249 return -EFAULT;
250 return audit_sockaddr(ulen, kaddr);
251 }
252
253 /**
254 * move_addr_to_user - copy an address to user space
255 * @kaddr: kernel space address
256 * @klen: length of address in kernel
257 * @uaddr: user space address
258 * @ulen: pointer to user length field
259 *
260 * The value pointed to by ulen on entry is the buffer length available.
261 * This is overwritten with the buffer space used. -EINVAL is returned
262 * if an overlong buffer is specified or a negative buffer size. -EFAULT
263 * is returned if either the buffer or the length field are not
264 * accessible.
265 * After copying the data up to the limit the user specifies, the true
266 * length of the data is written over the length limit the user
267 * specified. Zero is returned for a success.
268 */
269
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)270 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
271 void __user *uaddr, int __user *ulen)
272 {
273 int err;
274 int len;
275
276 BUG_ON(klen > sizeof(struct sockaddr_storage));
277 err = get_user(len, ulen);
278 if (err)
279 return err;
280 if (len > klen)
281 len = klen;
282 if (len < 0)
283 return -EINVAL;
284 if (len) {
285 if (audit_sockaddr(klen, kaddr))
286 return -ENOMEM;
287 if (copy_to_user(uaddr, kaddr, len))
288 return -EFAULT;
289 }
290 /*
291 * "fromlen shall refer to the value before truncation.."
292 * 1003.1g
293 */
294 return __put_user(klen, ulen);
295 }
296
297 static struct kmem_cache *sock_inode_cachep __ro_after_init;
298
sock_alloc_inode(struct super_block * sb)299 static struct inode *sock_alloc_inode(struct super_block *sb)
300 {
301 struct socket_alloc *ei;
302
303 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
304 if (!ei)
305 return NULL;
306 init_waitqueue_head(&ei->socket.wq.wait);
307 ei->socket.wq.fasync_list = NULL;
308 ei->socket.wq.flags = 0;
309
310 ei->socket.state = SS_UNCONNECTED;
311 ei->socket.flags = 0;
312 ei->socket.ops = NULL;
313 ei->socket.sk = NULL;
314 ei->socket.file = NULL;
315
316 return &ei->vfs_inode;
317 }
318
sock_free_inode(struct inode * inode)319 static void sock_free_inode(struct inode *inode)
320 {
321 struct socket_alloc *ei;
322
323 ei = container_of(inode, struct socket_alloc, vfs_inode);
324 kmem_cache_free(sock_inode_cachep, ei);
325 }
326
init_once(void * foo)327 static void init_once(void *foo)
328 {
329 struct socket_alloc *ei = (struct socket_alloc *)foo;
330
331 inode_init_once(&ei->vfs_inode);
332 }
333
init_inodecache(void)334 static void init_inodecache(void)
335 {
336 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
337 sizeof(struct socket_alloc),
338 0,
339 (SLAB_HWCACHE_ALIGN |
340 SLAB_RECLAIM_ACCOUNT |
341 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
342 init_once);
343 BUG_ON(sock_inode_cachep == NULL);
344 }
345
346 static const struct super_operations sockfs_ops = {
347 .alloc_inode = sock_alloc_inode,
348 .free_inode = sock_free_inode,
349 .statfs = simple_statfs,
350 };
351
352 /*
353 * sockfs_dname() is called from d_path().
354 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)355 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
356 {
357 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
358 d_inode(dentry)->i_ino);
359 }
360
361 static const struct dentry_operations sockfs_dentry_operations = {
362 .d_dname = sockfs_dname,
363 };
364
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)365 static int sockfs_xattr_get(const struct xattr_handler *handler,
366 struct dentry *dentry, struct inode *inode,
367 const char *suffix, void *value, size_t size)
368 {
369 if (value) {
370 if (dentry->d_name.len + 1 > size)
371 return -ERANGE;
372 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
373 }
374 return dentry->d_name.len + 1;
375 }
376
377 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
378 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
379 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
380
381 static const struct xattr_handler sockfs_xattr_handler = {
382 .name = XATTR_NAME_SOCKPROTONAME,
383 .get = sockfs_xattr_get,
384 };
385
sockfs_security_xattr_set(const struct xattr_handler * handler,struct user_namespace * mnt_userns,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)386 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
387 struct user_namespace *mnt_userns,
388 struct dentry *dentry, struct inode *inode,
389 const char *suffix, const void *value,
390 size_t size, int flags)
391 {
392 /* Handled by LSM. */
393 return -EAGAIN;
394 }
395
396 static const struct xattr_handler sockfs_security_xattr_handler = {
397 .prefix = XATTR_SECURITY_PREFIX,
398 .set = sockfs_security_xattr_set,
399 };
400
401 static const struct xattr_handler *sockfs_xattr_handlers[] = {
402 &sockfs_xattr_handler,
403 &sockfs_security_xattr_handler,
404 NULL
405 };
406
sockfs_init_fs_context(struct fs_context * fc)407 static int sockfs_init_fs_context(struct fs_context *fc)
408 {
409 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
410 if (!ctx)
411 return -ENOMEM;
412 ctx->ops = &sockfs_ops;
413 ctx->dops = &sockfs_dentry_operations;
414 ctx->xattr = sockfs_xattr_handlers;
415 return 0;
416 }
417
418 static struct vfsmount *sock_mnt __read_mostly;
419
420 static struct file_system_type sock_fs_type = {
421 .name = "sockfs",
422 .init_fs_context = sockfs_init_fs_context,
423 .kill_sb = kill_anon_super,
424 };
425
426 /*
427 * Obtains the first available file descriptor and sets it up for use.
428 *
429 * These functions create file structures and maps them to fd space
430 * of the current process. On success it returns file descriptor
431 * and file struct implicitly stored in sock->file.
432 * Note that another thread may close file descriptor before we return
433 * from this function. We use the fact that now we do not refer
434 * to socket after mapping. If one day we will need it, this
435 * function will increment ref. count on file by 1.
436 *
437 * In any case returned fd MAY BE not valid!
438 * This race condition is unavoidable
439 * with shared fd spaces, we cannot solve it inside kernel,
440 * but we take care of internal coherence yet.
441 */
442
443 /**
444 * sock_alloc_file - Bind a &socket to a &file
445 * @sock: socket
446 * @flags: file status flags
447 * @dname: protocol name
448 *
449 * Returns the &file bound with @sock, implicitly storing it
450 * in sock->file. If dname is %NULL, sets to "".
451 * On failure the return is a ERR pointer (see linux/err.h).
452 * This function uses GFP_KERNEL internally.
453 */
454
sock_alloc_file(struct socket * sock,int flags,const char * dname)455 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
456 {
457 struct file *file;
458
459 if (!dname)
460 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
461
462 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
463 O_RDWR | (flags & O_NONBLOCK),
464 &socket_file_ops);
465 if (IS_ERR(file)) {
466 sock_release(sock);
467 return file;
468 }
469
470 sock->file = file;
471 file->private_data = sock;
472 stream_open(SOCK_INODE(sock), file);
473 return file;
474 }
475 EXPORT_SYMBOL(sock_alloc_file);
476
sock_map_fd(struct socket * sock,int flags)477 static int sock_map_fd(struct socket *sock, int flags)
478 {
479 struct file *newfile;
480 int fd = get_unused_fd_flags(flags);
481 if (unlikely(fd < 0)) {
482 sock_release(sock);
483 return fd;
484 }
485
486 newfile = sock_alloc_file(sock, flags, NULL);
487 if (!IS_ERR(newfile)) {
488 fd_install(fd, newfile);
489 return fd;
490 }
491
492 put_unused_fd(fd);
493 return PTR_ERR(newfile);
494 }
495
496 /**
497 * sock_from_file - Return the &socket bounded to @file.
498 * @file: file
499 *
500 * On failure returns %NULL.
501 */
502
sock_from_file(struct file * file)503 struct socket *sock_from_file(struct file *file)
504 {
505 if (file->f_op == &socket_file_ops)
506 return file->private_data; /* set in sock_map_fd */
507
508 return NULL;
509 }
510 EXPORT_SYMBOL(sock_from_file);
511
512 /**
513 * sockfd_lookup - Go from a file number to its socket slot
514 * @fd: file handle
515 * @err: pointer to an error code return
516 *
517 * The file handle passed in is locked and the socket it is bound
518 * to is returned. If an error occurs the err pointer is overwritten
519 * with a negative errno code and NULL is returned. The function checks
520 * for both invalid handles and passing a handle which is not a socket.
521 *
522 * On a success the socket object pointer is returned.
523 */
524
sockfd_lookup(int fd,int * err)525 struct socket *sockfd_lookup(int fd, int *err)
526 {
527 struct file *file;
528 struct socket *sock;
529
530 file = fget(fd);
531 if (!file) {
532 *err = -EBADF;
533 return NULL;
534 }
535
536 sock = sock_from_file(file);
537 if (!sock) {
538 *err = -ENOTSOCK;
539 fput(file);
540 }
541 return sock;
542 }
543 EXPORT_SYMBOL(sockfd_lookup);
544
sockfd_lookup_light(int fd,int * err,int * fput_needed)545 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
546 {
547 struct fd f = fdget(fd);
548 struct socket *sock;
549
550 *err = -EBADF;
551 if (f.file) {
552 sock = sock_from_file(f.file);
553 if (likely(sock)) {
554 *fput_needed = f.flags & FDPUT_FPUT;
555 return sock;
556 }
557 *err = -ENOTSOCK;
558 fdput(f);
559 }
560 return NULL;
561 }
562
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)563 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
564 size_t size)
565 {
566 ssize_t len;
567 ssize_t used = 0;
568
569 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
570 if (len < 0)
571 return len;
572 used += len;
573 if (buffer) {
574 if (size < used)
575 return -ERANGE;
576 buffer += len;
577 }
578
579 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
580 used += len;
581 if (buffer) {
582 if (size < used)
583 return -ERANGE;
584 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
585 buffer += len;
586 }
587
588 return used;
589 }
590
sockfs_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * iattr)591 static int sockfs_setattr(struct user_namespace *mnt_userns,
592 struct dentry *dentry, struct iattr *iattr)
593 {
594 int err = simple_setattr(&init_user_ns, dentry, iattr);
595
596 if (!err && (iattr->ia_valid & ATTR_UID)) {
597 struct socket *sock = SOCKET_I(d_inode(dentry));
598
599 if (sock->sk)
600 sock->sk->sk_uid = iattr->ia_uid;
601 else
602 err = -ENOENT;
603 }
604
605 return err;
606 }
607
608 static const struct inode_operations sockfs_inode_ops = {
609 .listxattr = sockfs_listxattr,
610 .setattr = sockfs_setattr,
611 };
612
613 /**
614 * sock_alloc - allocate a socket
615 *
616 * Allocate a new inode and socket object. The two are bound together
617 * and initialised. The socket is then returned. If we are out of inodes
618 * NULL is returned. This functions uses GFP_KERNEL internally.
619 */
620
sock_alloc(void)621 struct socket *sock_alloc(void)
622 {
623 struct inode *inode;
624 struct socket *sock;
625
626 inode = new_inode_pseudo(sock_mnt->mnt_sb);
627 if (!inode)
628 return NULL;
629
630 sock = SOCKET_I(inode);
631
632 inode->i_ino = get_next_ino();
633 inode->i_mode = S_IFSOCK | S_IRWXUGO;
634 inode->i_uid = current_fsuid();
635 inode->i_gid = current_fsgid();
636 inode->i_op = &sockfs_inode_ops;
637
638 return sock;
639 }
640 EXPORT_SYMBOL(sock_alloc);
641
__sock_release(struct socket * sock,struct inode * inode)642 static void __sock_release(struct socket *sock, struct inode *inode)
643 {
644 if (sock->ops) {
645 struct module *owner = sock->ops->owner;
646
647 if (inode)
648 inode_lock(inode);
649 sock->ops->release(sock);
650 sock->sk = NULL;
651 if (inode)
652 inode_unlock(inode);
653 sock->ops = NULL;
654 module_put(owner);
655 }
656
657 if (sock->wq.fasync_list)
658 pr_err("%s: fasync list not empty!\n", __func__);
659
660 if (!sock->file) {
661 iput(SOCK_INODE(sock));
662 return;
663 }
664 sock->file = NULL;
665 }
666
667 /**
668 * sock_release - close a socket
669 * @sock: socket to close
670 *
671 * The socket is released from the protocol stack if it has a release
672 * callback, and the inode is then released if the socket is bound to
673 * an inode not a file.
674 */
sock_release(struct socket * sock)675 void sock_release(struct socket *sock)
676 {
677 __sock_release(sock, NULL);
678 }
679 EXPORT_SYMBOL(sock_release);
680
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)681 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
682 {
683 u8 flags = *tx_flags;
684
685 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
686 flags |= SKBTX_HW_TSTAMP;
687
688 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
689 flags |= SKBTX_SW_TSTAMP;
690
691 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
692 flags |= SKBTX_SCHED_TSTAMP;
693
694 *tx_flags = flags;
695 }
696 EXPORT_SYMBOL(__sock_tx_timestamp);
697
698 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
699 size_t));
700 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
701 size_t));
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)702 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
703 {
704 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
705 inet_sendmsg, sock, msg,
706 msg_data_left(msg));
707 BUG_ON(ret == -EIOCBQUEUED);
708 return ret;
709 }
710
711 /**
712 * sock_sendmsg - send a message through @sock
713 * @sock: socket
714 * @msg: message to send
715 *
716 * Sends @msg through @sock, passing through LSM.
717 * Returns the number of bytes sent, or an error code.
718 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)719 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
720 {
721 int err = security_socket_sendmsg(sock, msg,
722 msg_data_left(msg));
723
724 return err ?: sock_sendmsg_nosec(sock, msg);
725 }
726 EXPORT_SYMBOL(sock_sendmsg);
727
728 /**
729 * kernel_sendmsg - send a message through @sock (kernel-space)
730 * @sock: socket
731 * @msg: message header
732 * @vec: kernel vec
733 * @num: vec array length
734 * @size: total message data size
735 *
736 * Builds the message data with @vec and sends it through @sock.
737 * Returns the number of bytes sent, or an error code.
738 */
739
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)740 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
741 struct kvec *vec, size_t num, size_t size)
742 {
743 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
744 return sock_sendmsg(sock, msg);
745 }
746 EXPORT_SYMBOL(kernel_sendmsg);
747
748 /**
749 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
750 * @sk: sock
751 * @msg: message header
752 * @vec: output s/g array
753 * @num: output s/g array length
754 * @size: total message data size
755 *
756 * Builds the message data with @vec and sends it through @sock.
757 * Returns the number of bytes sent, or an error code.
758 * Caller must hold @sk.
759 */
760
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)761 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
762 struct kvec *vec, size_t num, size_t size)
763 {
764 struct socket *sock = sk->sk_socket;
765
766 if (!sock->ops->sendmsg_locked)
767 return sock_no_sendmsg_locked(sk, msg, size);
768
769 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
770
771 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
772 }
773 EXPORT_SYMBOL(kernel_sendmsg_locked);
774
skb_is_err_queue(const struct sk_buff * skb)775 static bool skb_is_err_queue(const struct sk_buff *skb)
776 {
777 /* pkt_type of skbs enqueued on the error queue are set to
778 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
779 * in recvmsg, since skbs received on a local socket will never
780 * have a pkt_type of PACKET_OUTGOING.
781 */
782 return skb->pkt_type == PACKET_OUTGOING;
783 }
784
785 /* On transmit, software and hardware timestamps are returned independently.
786 * As the two skb clones share the hardware timestamp, which may be updated
787 * before the software timestamp is received, a hardware TX timestamp may be
788 * returned only if there is no software TX timestamp. Ignore false software
789 * timestamps, which may be made in the __sock_recv_timestamp() call when the
790 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
791 * hardware timestamp.
792 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)793 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
794 {
795 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
796 }
797
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb)798 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
799 {
800 struct scm_ts_pktinfo ts_pktinfo;
801 struct net_device *orig_dev;
802
803 if (!skb_mac_header_was_set(skb))
804 return;
805
806 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
807
808 rcu_read_lock();
809 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
810 if (orig_dev)
811 ts_pktinfo.if_index = orig_dev->ifindex;
812 rcu_read_unlock();
813
814 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
815 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
816 sizeof(ts_pktinfo), &ts_pktinfo);
817 }
818
819 /*
820 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
821 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)822 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
823 struct sk_buff *skb)
824 {
825 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
826 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
827 struct scm_timestamping_internal tss;
828
829 int empty = 1, false_tstamp = 0;
830 struct skb_shared_hwtstamps *shhwtstamps =
831 skb_hwtstamps(skb);
832
833 /* Race occurred between timestamp enabling and packet
834 receiving. Fill in the current time for now. */
835 if (need_software_tstamp && skb->tstamp == 0) {
836 __net_timestamp(skb);
837 false_tstamp = 1;
838 }
839
840 if (need_software_tstamp) {
841 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
842 if (new_tstamp) {
843 struct __kernel_sock_timeval tv;
844
845 skb_get_new_timestamp(skb, &tv);
846 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
847 sizeof(tv), &tv);
848 } else {
849 struct __kernel_old_timeval tv;
850
851 skb_get_timestamp(skb, &tv);
852 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
853 sizeof(tv), &tv);
854 }
855 } else {
856 if (new_tstamp) {
857 struct __kernel_timespec ts;
858
859 skb_get_new_timestampns(skb, &ts);
860 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
861 sizeof(ts), &ts);
862 } else {
863 struct __kernel_old_timespec ts;
864
865 skb_get_timestampns(skb, &ts);
866 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
867 sizeof(ts), &ts);
868 }
869 }
870 }
871
872 memset(&tss, 0, sizeof(tss));
873 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
874 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
875 empty = 0;
876 if (shhwtstamps &&
877 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
878 !skb_is_swtx_tstamp(skb, false_tstamp)) {
879 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
880 ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
881
882 if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
883 tss.ts + 2)) {
884 empty = 0;
885
886 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
887 !skb_is_err_queue(skb))
888 put_ts_pktinfo(msg, skb);
889 }
890 }
891 if (!empty) {
892 if (sock_flag(sk, SOCK_TSTAMP_NEW))
893 put_cmsg_scm_timestamping64(msg, &tss);
894 else
895 put_cmsg_scm_timestamping(msg, &tss);
896
897 if (skb_is_err_queue(skb) && skb->len &&
898 SKB_EXT_ERR(skb)->opt_stats)
899 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
900 skb->len, skb->data);
901 }
902 }
903 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
904
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)905 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
906 struct sk_buff *skb)
907 {
908 int ack;
909
910 if (!sock_flag(sk, SOCK_WIFI_STATUS))
911 return;
912 if (!skb->wifi_acked_valid)
913 return;
914
915 ack = skb->wifi_acked;
916
917 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
918 }
919 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
920
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)921 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
922 struct sk_buff *skb)
923 {
924 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
925 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
926 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
927 }
928
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)929 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
930 struct sk_buff *skb)
931 {
932 sock_recv_timestamp(msg, sk, skb);
933 sock_recv_drops(msg, sk, skb);
934 }
935 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
936
937 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
938 size_t, int));
939 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
940 size_t, int));
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)941 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
942 int flags)
943 {
944 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
945 inet_recvmsg, sock, msg, msg_data_left(msg),
946 flags);
947 }
948
949 /**
950 * sock_recvmsg - receive a message from @sock
951 * @sock: socket
952 * @msg: message to receive
953 * @flags: message flags
954 *
955 * Receives @msg from @sock, passing through LSM. Returns the total number
956 * of bytes received, or an error.
957 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)958 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
959 {
960 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
961
962 return err ?: sock_recvmsg_nosec(sock, msg, flags);
963 }
964 EXPORT_SYMBOL(sock_recvmsg);
965
966 /**
967 * kernel_recvmsg - Receive a message from a socket (kernel space)
968 * @sock: The socket to receive the message from
969 * @msg: Received message
970 * @vec: Input s/g array for message data
971 * @num: Size of input s/g array
972 * @size: Number of bytes to read
973 * @flags: Message flags (MSG_DONTWAIT, etc...)
974 *
975 * On return the msg structure contains the scatter/gather array passed in the
976 * vec argument. The array is modified so that it consists of the unfilled
977 * portion of the original array.
978 *
979 * The returned value is the total number of bytes received, or an error.
980 */
981
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)982 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
983 struct kvec *vec, size_t num, size_t size, int flags)
984 {
985 msg->msg_control_is_user = false;
986 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
987 return sock_recvmsg(sock, msg, flags);
988 }
989 EXPORT_SYMBOL(kernel_recvmsg);
990
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)991 static ssize_t sock_sendpage(struct file *file, struct page *page,
992 int offset, size_t size, loff_t *ppos, int more)
993 {
994 struct socket *sock;
995 int flags;
996
997 sock = file->private_data;
998
999 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1000 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1001 flags |= more;
1002
1003 return kernel_sendpage(sock, page, offset, size, flags);
1004 }
1005
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1006 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1007 struct pipe_inode_info *pipe, size_t len,
1008 unsigned int flags)
1009 {
1010 struct socket *sock = file->private_data;
1011
1012 if (unlikely(!sock->ops->splice_read))
1013 return generic_file_splice_read(file, ppos, pipe, len, flags);
1014
1015 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1016 }
1017
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1018 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1019 {
1020 struct file *file = iocb->ki_filp;
1021 struct socket *sock = file->private_data;
1022 struct msghdr msg = {.msg_iter = *to,
1023 .msg_iocb = iocb};
1024 ssize_t res;
1025
1026 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1027 msg.msg_flags = MSG_DONTWAIT;
1028
1029 if (iocb->ki_pos != 0)
1030 return -ESPIPE;
1031
1032 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1033 return 0;
1034
1035 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1036 *to = msg.msg_iter;
1037 return res;
1038 }
1039
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1040 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1041 {
1042 struct file *file = iocb->ki_filp;
1043 struct socket *sock = file->private_data;
1044 struct msghdr msg = {.msg_iter = *from,
1045 .msg_iocb = iocb};
1046 ssize_t res;
1047
1048 if (iocb->ki_pos != 0)
1049 return -ESPIPE;
1050
1051 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1052 msg.msg_flags = MSG_DONTWAIT;
1053
1054 if (sock->type == SOCK_SEQPACKET)
1055 msg.msg_flags |= MSG_EOR;
1056
1057 res = sock_sendmsg(sock, &msg);
1058 *from = msg.msg_iter;
1059 return res;
1060 }
1061
1062 /*
1063 * Atomic setting of ioctl hooks to avoid race
1064 * with module unload.
1065 */
1066
1067 static DEFINE_MUTEX(br_ioctl_mutex);
1068 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1069 unsigned int cmd, struct ifreq *ifr,
1070 void __user *uarg);
1071
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1072 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1073 unsigned int cmd, struct ifreq *ifr,
1074 void __user *uarg))
1075 {
1076 mutex_lock(&br_ioctl_mutex);
1077 br_ioctl_hook = hook;
1078 mutex_unlock(&br_ioctl_mutex);
1079 }
1080 EXPORT_SYMBOL(brioctl_set);
1081
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1082 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1083 struct ifreq *ifr, void __user *uarg)
1084 {
1085 int err = -ENOPKG;
1086
1087 if (!br_ioctl_hook)
1088 request_module("bridge");
1089
1090 mutex_lock(&br_ioctl_mutex);
1091 if (br_ioctl_hook)
1092 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1093 mutex_unlock(&br_ioctl_mutex);
1094
1095 return err;
1096 }
1097
1098 static DEFINE_MUTEX(vlan_ioctl_mutex);
1099 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1100
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1101 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1102 {
1103 mutex_lock(&vlan_ioctl_mutex);
1104 vlan_ioctl_hook = hook;
1105 mutex_unlock(&vlan_ioctl_mutex);
1106 }
1107 EXPORT_SYMBOL(vlan_ioctl_set);
1108
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1109 static long sock_do_ioctl(struct net *net, struct socket *sock,
1110 unsigned int cmd, unsigned long arg)
1111 {
1112 struct ifreq ifr;
1113 bool need_copyout;
1114 int err;
1115 void __user *argp = (void __user *)arg;
1116 void __user *data;
1117
1118 err = sock->ops->ioctl(sock, cmd, arg);
1119
1120 /*
1121 * If this ioctl is unknown try to hand it down
1122 * to the NIC driver.
1123 */
1124 if (err != -ENOIOCTLCMD)
1125 return err;
1126
1127 if (!is_socket_ioctl_cmd(cmd))
1128 return -ENOTTY;
1129
1130 if (get_user_ifreq(&ifr, &data, argp))
1131 return -EFAULT;
1132 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1133 if (!err && need_copyout)
1134 if (put_user_ifreq(&ifr, argp))
1135 return -EFAULT;
1136
1137 return err;
1138 }
1139
1140 /*
1141 * With an ioctl, arg may well be a user mode pointer, but we don't know
1142 * what to do with it - that's up to the protocol still.
1143 */
1144
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1145 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1146 {
1147 struct socket *sock;
1148 struct sock *sk;
1149 void __user *argp = (void __user *)arg;
1150 int pid, err;
1151 struct net *net;
1152
1153 sock = file->private_data;
1154 sk = sock->sk;
1155 net = sock_net(sk);
1156 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1157 struct ifreq ifr;
1158 void __user *data;
1159 bool need_copyout;
1160 if (get_user_ifreq(&ifr, &data, argp))
1161 return -EFAULT;
1162 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1163 if (!err && need_copyout)
1164 if (put_user_ifreq(&ifr, argp))
1165 return -EFAULT;
1166 } else
1167 #ifdef CONFIG_WEXT_CORE
1168 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1169 err = wext_handle_ioctl(net, cmd, argp);
1170 } else
1171 #endif
1172 switch (cmd) {
1173 case FIOSETOWN:
1174 case SIOCSPGRP:
1175 err = -EFAULT;
1176 if (get_user(pid, (int __user *)argp))
1177 break;
1178 err = f_setown(sock->file, pid, 1);
1179 break;
1180 case FIOGETOWN:
1181 case SIOCGPGRP:
1182 err = put_user(f_getown(sock->file),
1183 (int __user *)argp);
1184 break;
1185 case SIOCGIFBR:
1186 case SIOCSIFBR:
1187 case SIOCBRADDBR:
1188 case SIOCBRDELBR:
1189 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1190 break;
1191 case SIOCGIFVLAN:
1192 case SIOCSIFVLAN:
1193 err = -ENOPKG;
1194 if (!vlan_ioctl_hook)
1195 request_module("8021q");
1196
1197 mutex_lock(&vlan_ioctl_mutex);
1198 if (vlan_ioctl_hook)
1199 err = vlan_ioctl_hook(net, argp);
1200 mutex_unlock(&vlan_ioctl_mutex);
1201 break;
1202 case SIOCGSKNS:
1203 err = -EPERM;
1204 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1205 break;
1206
1207 err = open_related_ns(&net->ns, get_net_ns);
1208 break;
1209 case SIOCGSTAMP_OLD:
1210 case SIOCGSTAMPNS_OLD:
1211 if (!sock->ops->gettstamp) {
1212 err = -ENOIOCTLCMD;
1213 break;
1214 }
1215 err = sock->ops->gettstamp(sock, argp,
1216 cmd == SIOCGSTAMP_OLD,
1217 !IS_ENABLED(CONFIG_64BIT));
1218 break;
1219 case SIOCGSTAMP_NEW:
1220 case SIOCGSTAMPNS_NEW:
1221 if (!sock->ops->gettstamp) {
1222 err = -ENOIOCTLCMD;
1223 break;
1224 }
1225 err = sock->ops->gettstamp(sock, argp,
1226 cmd == SIOCGSTAMP_NEW,
1227 false);
1228 break;
1229
1230 case SIOCGIFCONF:
1231 err = dev_ifconf(net, argp);
1232 break;
1233
1234 default:
1235 err = sock_do_ioctl(net, sock, cmd, arg);
1236 break;
1237 }
1238 return err;
1239 }
1240
1241 /**
1242 * sock_create_lite - creates a socket
1243 * @family: protocol family (AF_INET, ...)
1244 * @type: communication type (SOCK_STREAM, ...)
1245 * @protocol: protocol (0, ...)
1246 * @res: new socket
1247 *
1248 * Creates a new socket and assigns it to @res, passing through LSM.
1249 * The new socket initialization is not complete, see kernel_accept().
1250 * Returns 0 or an error. On failure @res is set to %NULL.
1251 * This function internally uses GFP_KERNEL.
1252 */
1253
sock_create_lite(int family,int type,int protocol,struct socket ** res)1254 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1255 {
1256 int err;
1257 struct socket *sock = NULL;
1258
1259 err = security_socket_create(family, type, protocol, 1);
1260 if (err)
1261 goto out;
1262
1263 sock = sock_alloc();
1264 if (!sock) {
1265 err = -ENOMEM;
1266 goto out;
1267 }
1268
1269 sock->type = type;
1270 err = security_socket_post_create(sock, family, type, protocol, 1);
1271 if (err)
1272 goto out_release;
1273
1274 out:
1275 *res = sock;
1276 return err;
1277 out_release:
1278 sock_release(sock);
1279 sock = NULL;
1280 goto out;
1281 }
1282 EXPORT_SYMBOL(sock_create_lite);
1283
1284 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1285 static __poll_t sock_poll(struct file *file, poll_table *wait)
1286 {
1287 struct socket *sock = file->private_data;
1288 __poll_t events = poll_requested_events(wait), flag = 0;
1289
1290 if (!sock->ops->poll)
1291 return 0;
1292
1293 if (sk_can_busy_loop(sock->sk)) {
1294 /* poll once if requested by the syscall */
1295 if (events & POLL_BUSY_LOOP)
1296 sk_busy_loop(sock->sk, 1);
1297
1298 /* if this socket can poll_ll, tell the system call */
1299 flag = POLL_BUSY_LOOP;
1300 }
1301
1302 return sock->ops->poll(file, sock, wait) | flag;
1303 }
1304
sock_mmap(struct file * file,struct vm_area_struct * vma)1305 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1306 {
1307 struct socket *sock = file->private_data;
1308
1309 return sock->ops->mmap(file, sock, vma);
1310 }
1311
sock_close(struct inode * inode,struct file * filp)1312 static int sock_close(struct inode *inode, struct file *filp)
1313 {
1314 __sock_release(SOCKET_I(inode), inode);
1315 return 0;
1316 }
1317
1318 /*
1319 * Update the socket async list
1320 *
1321 * Fasync_list locking strategy.
1322 *
1323 * 1. fasync_list is modified only under process context socket lock
1324 * i.e. under semaphore.
1325 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1326 * or under socket lock
1327 */
1328
sock_fasync(int fd,struct file * filp,int on)1329 static int sock_fasync(int fd, struct file *filp, int on)
1330 {
1331 struct socket *sock = filp->private_data;
1332 struct sock *sk = sock->sk;
1333 struct socket_wq *wq = &sock->wq;
1334
1335 if (sk == NULL)
1336 return -EINVAL;
1337
1338 lock_sock(sk);
1339 fasync_helper(fd, filp, on, &wq->fasync_list);
1340
1341 if (!wq->fasync_list)
1342 sock_reset_flag(sk, SOCK_FASYNC);
1343 else
1344 sock_set_flag(sk, SOCK_FASYNC);
1345
1346 release_sock(sk);
1347 return 0;
1348 }
1349
1350 /* This function may be called only under rcu_lock */
1351
sock_wake_async(struct socket_wq * wq,int how,int band)1352 int sock_wake_async(struct socket_wq *wq, int how, int band)
1353 {
1354 if (!wq || !wq->fasync_list)
1355 return -1;
1356
1357 switch (how) {
1358 case SOCK_WAKE_WAITD:
1359 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1360 break;
1361 goto call_kill;
1362 case SOCK_WAKE_SPACE:
1363 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1364 break;
1365 fallthrough;
1366 case SOCK_WAKE_IO:
1367 call_kill:
1368 kill_fasync(&wq->fasync_list, SIGIO, band);
1369 break;
1370 case SOCK_WAKE_URG:
1371 kill_fasync(&wq->fasync_list, SIGURG, band);
1372 }
1373
1374 return 0;
1375 }
1376 EXPORT_SYMBOL(sock_wake_async);
1377
1378 /**
1379 * __sock_create - creates a socket
1380 * @net: net namespace
1381 * @family: protocol family (AF_INET, ...)
1382 * @type: communication type (SOCK_STREAM, ...)
1383 * @protocol: protocol (0, ...)
1384 * @res: new socket
1385 * @kern: boolean for kernel space sockets
1386 *
1387 * Creates a new socket and assigns it to @res, passing through LSM.
1388 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1389 * be set to true if the socket resides in kernel space.
1390 * This function internally uses GFP_KERNEL.
1391 */
1392
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1393 int __sock_create(struct net *net, int family, int type, int protocol,
1394 struct socket **res, int kern)
1395 {
1396 int err;
1397 struct socket *sock;
1398 const struct net_proto_family *pf;
1399
1400 /*
1401 * Check protocol is in range
1402 */
1403 if (family < 0 || family >= NPROTO)
1404 return -EAFNOSUPPORT;
1405 if (type < 0 || type >= SOCK_MAX)
1406 return -EINVAL;
1407
1408 /* Compatibility.
1409
1410 This uglymoron is moved from INET layer to here to avoid
1411 deadlock in module load.
1412 */
1413 if (family == PF_INET && type == SOCK_PACKET) {
1414 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1415 current->comm);
1416 family = PF_PACKET;
1417 }
1418
1419 err = security_socket_create(family, type, protocol, kern);
1420 if (err)
1421 return err;
1422
1423 /*
1424 * Allocate the socket and allow the family to set things up. if
1425 * the protocol is 0, the family is instructed to select an appropriate
1426 * default.
1427 */
1428 sock = sock_alloc();
1429 if (!sock) {
1430 net_warn_ratelimited("socket: no more sockets\n");
1431 return -ENFILE; /* Not exactly a match, but its the
1432 closest posix thing */
1433 }
1434
1435 sock->type = type;
1436
1437 #ifdef CONFIG_MODULES
1438 /* Attempt to load a protocol module if the find failed.
1439 *
1440 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1441 * requested real, full-featured networking support upon configuration.
1442 * Otherwise module support will break!
1443 */
1444 if (rcu_access_pointer(net_families[family]) == NULL)
1445 request_module("net-pf-%d", family);
1446 #endif
1447
1448 rcu_read_lock();
1449 pf = rcu_dereference(net_families[family]);
1450 err = -EAFNOSUPPORT;
1451 if (!pf)
1452 goto out_release;
1453
1454 /*
1455 * We will call the ->create function, that possibly is in a loadable
1456 * module, so we have to bump that loadable module refcnt first.
1457 */
1458 if (!try_module_get(pf->owner))
1459 goto out_release;
1460
1461 /* Now protected by module ref count */
1462 rcu_read_unlock();
1463
1464 err = pf->create(net, sock, protocol, kern);
1465 if (err < 0)
1466 goto out_module_put;
1467
1468 /*
1469 * Now to bump the refcnt of the [loadable] module that owns this
1470 * socket at sock_release time we decrement its refcnt.
1471 */
1472 if (!try_module_get(sock->ops->owner))
1473 goto out_module_busy;
1474
1475 /*
1476 * Now that we're done with the ->create function, the [loadable]
1477 * module can have its refcnt decremented
1478 */
1479 module_put(pf->owner);
1480 err = security_socket_post_create(sock, family, type, protocol, kern);
1481 if (err)
1482 goto out_sock_release;
1483 *res = sock;
1484
1485 return 0;
1486
1487 out_module_busy:
1488 err = -EAFNOSUPPORT;
1489 out_module_put:
1490 sock->ops = NULL;
1491 module_put(pf->owner);
1492 out_sock_release:
1493 sock_release(sock);
1494 return err;
1495
1496 out_release:
1497 rcu_read_unlock();
1498 goto out_sock_release;
1499 }
1500 EXPORT_SYMBOL(__sock_create);
1501
1502 /**
1503 * sock_create - creates a socket
1504 * @family: protocol family (AF_INET, ...)
1505 * @type: communication type (SOCK_STREAM, ...)
1506 * @protocol: protocol (0, ...)
1507 * @res: new socket
1508 *
1509 * A wrapper around __sock_create().
1510 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1511 */
1512
sock_create(int family,int type,int protocol,struct socket ** res)1513 int sock_create(int family, int type, int protocol, struct socket **res)
1514 {
1515 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1516 }
1517 EXPORT_SYMBOL(sock_create);
1518
1519 /**
1520 * sock_create_kern - creates a socket (kernel space)
1521 * @net: net namespace
1522 * @family: protocol family (AF_INET, ...)
1523 * @type: communication type (SOCK_STREAM, ...)
1524 * @protocol: protocol (0, ...)
1525 * @res: new socket
1526 *
1527 * A wrapper around __sock_create().
1528 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1529 */
1530
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1531 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1532 {
1533 return __sock_create(net, family, type, protocol, res, 1);
1534 }
1535 EXPORT_SYMBOL(sock_create_kern);
1536
__sys_socket(int family,int type,int protocol)1537 int __sys_socket(int family, int type, int protocol)
1538 {
1539 int retval;
1540 struct socket *sock;
1541 int flags;
1542
1543 /* Check the SOCK_* constants for consistency. */
1544 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1545 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1546 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1547 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1548
1549 flags = type & ~SOCK_TYPE_MASK;
1550 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1551 return -EINVAL;
1552 type &= SOCK_TYPE_MASK;
1553
1554 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1555 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1556
1557 retval = sock_create(family, type, protocol, &sock);
1558 if (retval < 0)
1559 return retval;
1560
1561 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1562 }
1563
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1564 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1565 {
1566 return __sys_socket(family, type, protocol);
1567 }
1568
1569 /*
1570 * Create a pair of connected sockets.
1571 */
1572
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1573 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1574 {
1575 struct socket *sock1, *sock2;
1576 int fd1, fd2, err;
1577 struct file *newfile1, *newfile2;
1578 int flags;
1579
1580 flags = type & ~SOCK_TYPE_MASK;
1581 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1582 return -EINVAL;
1583 type &= SOCK_TYPE_MASK;
1584
1585 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1586 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1587
1588 /*
1589 * reserve descriptors and make sure we won't fail
1590 * to return them to userland.
1591 */
1592 fd1 = get_unused_fd_flags(flags);
1593 if (unlikely(fd1 < 0))
1594 return fd1;
1595
1596 fd2 = get_unused_fd_flags(flags);
1597 if (unlikely(fd2 < 0)) {
1598 put_unused_fd(fd1);
1599 return fd2;
1600 }
1601
1602 err = put_user(fd1, &usockvec[0]);
1603 if (err)
1604 goto out;
1605
1606 err = put_user(fd2, &usockvec[1]);
1607 if (err)
1608 goto out;
1609
1610 /*
1611 * Obtain the first socket and check if the underlying protocol
1612 * supports the socketpair call.
1613 */
1614
1615 err = sock_create(family, type, protocol, &sock1);
1616 if (unlikely(err < 0))
1617 goto out;
1618
1619 err = sock_create(family, type, protocol, &sock2);
1620 if (unlikely(err < 0)) {
1621 sock_release(sock1);
1622 goto out;
1623 }
1624
1625 err = security_socket_socketpair(sock1, sock2);
1626 if (unlikely(err)) {
1627 sock_release(sock2);
1628 sock_release(sock1);
1629 goto out;
1630 }
1631
1632 err = sock1->ops->socketpair(sock1, sock2);
1633 if (unlikely(err < 0)) {
1634 sock_release(sock2);
1635 sock_release(sock1);
1636 goto out;
1637 }
1638
1639 newfile1 = sock_alloc_file(sock1, flags, NULL);
1640 if (IS_ERR(newfile1)) {
1641 err = PTR_ERR(newfile1);
1642 sock_release(sock2);
1643 goto out;
1644 }
1645
1646 newfile2 = sock_alloc_file(sock2, flags, NULL);
1647 if (IS_ERR(newfile2)) {
1648 err = PTR_ERR(newfile2);
1649 fput(newfile1);
1650 goto out;
1651 }
1652
1653 audit_fd_pair(fd1, fd2);
1654
1655 fd_install(fd1, newfile1);
1656 fd_install(fd2, newfile2);
1657 return 0;
1658
1659 out:
1660 put_unused_fd(fd2);
1661 put_unused_fd(fd1);
1662 return err;
1663 }
1664
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1665 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1666 int __user *, usockvec)
1667 {
1668 return __sys_socketpair(family, type, protocol, usockvec);
1669 }
1670
1671 /*
1672 * Bind a name to a socket. Nothing much to do here since it's
1673 * the protocol's responsibility to handle the local address.
1674 *
1675 * We move the socket address to kernel space before we call
1676 * the protocol layer (having also checked the address is ok).
1677 */
1678
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1679 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1680 {
1681 struct socket *sock;
1682 struct sockaddr_storage address;
1683 int err, fput_needed;
1684
1685 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1686 if (sock) {
1687 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1688 if (!err) {
1689 err = security_socket_bind(sock,
1690 (struct sockaddr *)&address,
1691 addrlen);
1692 if (!err)
1693 err = sock->ops->bind(sock,
1694 (struct sockaddr *)
1695 &address, addrlen);
1696 }
1697 fput_light(sock->file, fput_needed);
1698 }
1699 return err;
1700 }
1701
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1702 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1703 {
1704 return __sys_bind(fd, umyaddr, addrlen);
1705 }
1706
1707 /*
1708 * Perform a listen. Basically, we allow the protocol to do anything
1709 * necessary for a listen, and if that works, we mark the socket as
1710 * ready for listening.
1711 */
1712
__sys_listen(int fd,int backlog)1713 int __sys_listen(int fd, int backlog)
1714 {
1715 struct socket *sock;
1716 int err, fput_needed;
1717 int somaxconn;
1718
1719 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1720 if (sock) {
1721 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1722 if ((unsigned int)backlog > somaxconn)
1723 backlog = somaxconn;
1724
1725 err = security_socket_listen(sock, backlog);
1726 if (!err)
1727 err = sock->ops->listen(sock, backlog);
1728
1729 fput_light(sock->file, fput_needed);
1730 }
1731 return err;
1732 }
1733
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1734 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1735 {
1736 return __sys_listen(fd, backlog);
1737 }
1738
do_accept(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1739 struct file *do_accept(struct file *file, unsigned file_flags,
1740 struct sockaddr __user *upeer_sockaddr,
1741 int __user *upeer_addrlen, int flags)
1742 {
1743 struct socket *sock, *newsock;
1744 struct file *newfile;
1745 int err, len;
1746 struct sockaddr_storage address;
1747
1748 sock = sock_from_file(file);
1749 if (!sock)
1750 return ERR_PTR(-ENOTSOCK);
1751
1752 newsock = sock_alloc();
1753 if (!newsock)
1754 return ERR_PTR(-ENFILE);
1755
1756 newsock->type = sock->type;
1757 newsock->ops = sock->ops;
1758
1759 /*
1760 * We don't need try_module_get here, as the listening socket (sock)
1761 * has the protocol module (sock->ops->owner) held.
1762 */
1763 __module_get(newsock->ops->owner);
1764
1765 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1766 if (IS_ERR(newfile))
1767 return newfile;
1768
1769 err = security_socket_accept(sock, newsock);
1770 if (err)
1771 goto out_fd;
1772
1773 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1774 false);
1775 if (err < 0)
1776 goto out_fd;
1777
1778 if (upeer_sockaddr) {
1779 len = newsock->ops->getname(newsock,
1780 (struct sockaddr *)&address, 2);
1781 if (len < 0) {
1782 err = -ECONNABORTED;
1783 goto out_fd;
1784 }
1785 err = move_addr_to_user(&address,
1786 len, upeer_sockaddr, upeer_addrlen);
1787 if (err < 0)
1788 goto out_fd;
1789 }
1790
1791 /* File flags are not inherited via accept() unlike another OSes. */
1792 return newfile;
1793 out_fd:
1794 fput(newfile);
1795 return ERR_PTR(err);
1796 }
1797
__sys_accept4_file(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags,unsigned long nofile)1798 int __sys_accept4_file(struct file *file, unsigned file_flags,
1799 struct sockaddr __user *upeer_sockaddr,
1800 int __user *upeer_addrlen, int flags,
1801 unsigned long nofile)
1802 {
1803 struct file *newfile;
1804 int newfd;
1805
1806 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1807 return -EINVAL;
1808
1809 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1810 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1811
1812 newfd = __get_unused_fd_flags(flags, nofile);
1813 if (unlikely(newfd < 0))
1814 return newfd;
1815
1816 newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1817 flags);
1818 if (IS_ERR(newfile)) {
1819 put_unused_fd(newfd);
1820 return PTR_ERR(newfile);
1821 }
1822 fd_install(newfd, newfile);
1823 return newfd;
1824 }
1825
1826 /*
1827 * For accept, we attempt to create a new socket, set up the link
1828 * with the client, wake up the client, then return the new
1829 * connected fd. We collect the address of the connector in kernel
1830 * space and move it to user at the very end. This is unclean because
1831 * we open the socket then return an error.
1832 *
1833 * 1003.1g adds the ability to recvmsg() to query connection pending
1834 * status to recvmsg. We need to add that support in a way thats
1835 * clean when we restructure accept also.
1836 */
1837
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1838 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1839 int __user *upeer_addrlen, int flags)
1840 {
1841 int ret = -EBADF;
1842 struct fd f;
1843
1844 f = fdget(fd);
1845 if (f.file) {
1846 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1847 upeer_addrlen, flags,
1848 rlimit(RLIMIT_NOFILE));
1849 fdput(f);
1850 }
1851
1852 return ret;
1853 }
1854
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1855 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1856 int __user *, upeer_addrlen, int, flags)
1857 {
1858 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1859 }
1860
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1861 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1862 int __user *, upeer_addrlen)
1863 {
1864 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1865 }
1866
1867 /*
1868 * Attempt to connect to a socket with the server address. The address
1869 * is in user space so we verify it is OK and move it to kernel space.
1870 *
1871 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1872 * break bindings
1873 *
1874 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1875 * other SEQPACKET protocols that take time to connect() as it doesn't
1876 * include the -EINPROGRESS status for such sockets.
1877 */
1878
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)1879 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1880 int addrlen, int file_flags)
1881 {
1882 struct socket *sock;
1883 int err;
1884
1885 sock = sock_from_file(file);
1886 if (!sock) {
1887 err = -ENOTSOCK;
1888 goto out;
1889 }
1890
1891 err =
1892 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1893 if (err)
1894 goto out;
1895
1896 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1897 sock->file->f_flags | file_flags);
1898 out:
1899 return err;
1900 }
1901
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)1902 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1903 {
1904 int ret = -EBADF;
1905 struct fd f;
1906
1907 f = fdget(fd);
1908 if (f.file) {
1909 struct sockaddr_storage address;
1910
1911 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1912 if (!ret)
1913 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1914 fdput(f);
1915 }
1916
1917 return ret;
1918 }
1919
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1920 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1921 int, addrlen)
1922 {
1923 return __sys_connect(fd, uservaddr, addrlen);
1924 }
1925
1926 /*
1927 * Get the local address ('name') of a socket object. Move the obtained
1928 * name to user space.
1929 */
1930
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1931 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1932 int __user *usockaddr_len)
1933 {
1934 struct socket *sock;
1935 struct sockaddr_storage address;
1936 int err, fput_needed;
1937
1938 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1939 if (!sock)
1940 goto out;
1941
1942 err = security_socket_getsockname(sock);
1943 if (err)
1944 goto out_put;
1945
1946 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1947 if (err < 0)
1948 goto out_put;
1949 /* "err" is actually length in this case */
1950 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1951
1952 out_put:
1953 fput_light(sock->file, fput_needed);
1954 out:
1955 return err;
1956 }
1957
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1958 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1959 int __user *, usockaddr_len)
1960 {
1961 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1962 }
1963
1964 /*
1965 * Get the remote address ('name') of a socket object. Move the obtained
1966 * name to user space.
1967 */
1968
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1969 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1970 int __user *usockaddr_len)
1971 {
1972 struct socket *sock;
1973 struct sockaddr_storage address;
1974 int err, fput_needed;
1975
1976 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1977 if (sock != NULL) {
1978 err = security_socket_getpeername(sock);
1979 if (err) {
1980 fput_light(sock->file, fput_needed);
1981 return err;
1982 }
1983
1984 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1985 if (err >= 0)
1986 /* "err" is actually length in this case */
1987 err = move_addr_to_user(&address, err, usockaddr,
1988 usockaddr_len);
1989 fput_light(sock->file, fput_needed);
1990 }
1991 return err;
1992 }
1993
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1994 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1995 int __user *, usockaddr_len)
1996 {
1997 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1998 }
1999
2000 /*
2001 * Send a datagram to a given address. We move the address into kernel
2002 * space and check the user space data area is readable before invoking
2003 * the protocol.
2004 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2005 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2006 struct sockaddr __user *addr, int addr_len)
2007 {
2008 struct socket *sock;
2009 struct sockaddr_storage address;
2010 int err;
2011 struct msghdr msg;
2012 struct iovec iov;
2013 int fput_needed;
2014
2015 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2016 if (unlikely(err))
2017 return err;
2018 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2019 if (!sock)
2020 goto out;
2021
2022 msg.msg_name = NULL;
2023 msg.msg_control = NULL;
2024 msg.msg_controllen = 0;
2025 msg.msg_namelen = 0;
2026 if (addr) {
2027 err = move_addr_to_kernel(addr, addr_len, &address);
2028 if (err < 0)
2029 goto out_put;
2030 msg.msg_name = (struct sockaddr *)&address;
2031 msg.msg_namelen = addr_len;
2032 }
2033 if (sock->file->f_flags & O_NONBLOCK)
2034 flags |= MSG_DONTWAIT;
2035 msg.msg_flags = flags;
2036 err = sock_sendmsg(sock, &msg);
2037
2038 out_put:
2039 fput_light(sock->file, fput_needed);
2040 out:
2041 return err;
2042 }
2043
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2044 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2045 unsigned int, flags, struct sockaddr __user *, addr,
2046 int, addr_len)
2047 {
2048 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2049 }
2050
2051 /*
2052 * Send a datagram down a socket.
2053 */
2054
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2055 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2056 unsigned int, flags)
2057 {
2058 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2059 }
2060
2061 /*
2062 * Receive a frame from the socket and optionally record the address of the
2063 * sender. We verify the buffers are writable and if needed move the
2064 * sender address from kernel to user space.
2065 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2066 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2067 struct sockaddr __user *addr, int __user *addr_len)
2068 {
2069 struct socket *sock;
2070 struct iovec iov;
2071 struct msghdr msg;
2072 struct sockaddr_storage address;
2073 int err, err2;
2074 int fput_needed;
2075
2076 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2077 if (unlikely(err))
2078 return err;
2079 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2080 if (!sock)
2081 goto out;
2082
2083 msg.msg_control = NULL;
2084 msg.msg_controllen = 0;
2085 /* Save some cycles and don't copy the address if not needed */
2086 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2087 /* We assume all kernel code knows the size of sockaddr_storage */
2088 msg.msg_namelen = 0;
2089 msg.msg_iocb = NULL;
2090 msg.msg_flags = 0;
2091 if (sock->file->f_flags & O_NONBLOCK)
2092 flags |= MSG_DONTWAIT;
2093 err = sock_recvmsg(sock, &msg, flags);
2094
2095 if (err >= 0 && addr != NULL) {
2096 err2 = move_addr_to_user(&address,
2097 msg.msg_namelen, addr, addr_len);
2098 if (err2 < 0)
2099 err = err2;
2100 }
2101
2102 fput_light(sock->file, fput_needed);
2103 out:
2104 return err;
2105 }
2106
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2107 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2108 unsigned int, flags, struct sockaddr __user *, addr,
2109 int __user *, addr_len)
2110 {
2111 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2112 }
2113
2114 /*
2115 * Receive a datagram from a socket.
2116 */
2117
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2118 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2119 unsigned int, flags)
2120 {
2121 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2122 }
2123
sock_use_custom_sol_socket(const struct socket * sock)2124 static bool sock_use_custom_sol_socket(const struct socket *sock)
2125 {
2126 const struct sock *sk = sock->sk;
2127
2128 /* Use sock->ops->setsockopt() for MPTCP */
2129 return IS_ENABLED(CONFIG_MPTCP) &&
2130 sk->sk_protocol == IPPROTO_MPTCP &&
2131 sk->sk_type == SOCK_STREAM &&
2132 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2133 }
2134
2135 /*
2136 * Set a socket option. Because we don't know the option lengths we have
2137 * to pass the user mode parameter for the protocols to sort out.
2138 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2139 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2140 int optlen)
2141 {
2142 sockptr_t optval = USER_SOCKPTR(user_optval);
2143 char *kernel_optval = NULL;
2144 int err, fput_needed;
2145 struct socket *sock;
2146
2147 if (optlen < 0)
2148 return -EINVAL;
2149
2150 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2151 if (!sock)
2152 return err;
2153
2154 err = security_socket_setsockopt(sock, level, optname);
2155 if (err)
2156 goto out_put;
2157
2158 if (!in_compat_syscall())
2159 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2160 user_optval, &optlen,
2161 &kernel_optval);
2162 if (err < 0)
2163 goto out_put;
2164 if (err > 0) {
2165 err = 0;
2166 goto out_put;
2167 }
2168
2169 if (kernel_optval)
2170 optval = KERNEL_SOCKPTR(kernel_optval);
2171 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2172 err = sock_setsockopt(sock, level, optname, optval, optlen);
2173 else if (unlikely(!sock->ops->setsockopt))
2174 err = -EOPNOTSUPP;
2175 else
2176 err = sock->ops->setsockopt(sock, level, optname, optval,
2177 optlen);
2178 kfree(kernel_optval);
2179 out_put:
2180 fput_light(sock->file, fput_needed);
2181 return err;
2182 }
2183
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2184 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2185 char __user *, optval, int, optlen)
2186 {
2187 return __sys_setsockopt(fd, level, optname, optval, optlen);
2188 }
2189
2190 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2191 int optname));
2192
2193 /*
2194 * Get a socket option. Because we don't know the option lengths we have
2195 * to pass a user mode parameter for the protocols to sort out.
2196 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2197 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2198 int __user *optlen)
2199 {
2200 int err, fput_needed;
2201 struct socket *sock;
2202 int max_optlen;
2203
2204 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2205 if (!sock)
2206 return err;
2207
2208 err = security_socket_getsockopt(sock, level, optname);
2209 if (err)
2210 goto out_put;
2211
2212 if (!in_compat_syscall())
2213 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2214
2215 if (level == SOL_SOCKET)
2216 err = sock_getsockopt(sock, level, optname, optval, optlen);
2217 else if (unlikely(!sock->ops->getsockopt))
2218 err = -EOPNOTSUPP;
2219 else
2220 err = sock->ops->getsockopt(sock, level, optname, optval,
2221 optlen);
2222
2223 if (!in_compat_syscall())
2224 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2225 optval, optlen, max_optlen,
2226 err);
2227 out_put:
2228 fput_light(sock->file, fput_needed);
2229 return err;
2230 }
2231
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2232 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2233 char __user *, optval, int __user *, optlen)
2234 {
2235 return __sys_getsockopt(fd, level, optname, optval, optlen);
2236 }
2237
2238 /*
2239 * Shutdown a socket.
2240 */
2241
__sys_shutdown_sock(struct socket * sock,int how)2242 int __sys_shutdown_sock(struct socket *sock, int how)
2243 {
2244 int err;
2245
2246 err = security_socket_shutdown(sock, how);
2247 if (!err)
2248 err = sock->ops->shutdown(sock, how);
2249
2250 return err;
2251 }
2252
__sys_shutdown(int fd,int how)2253 int __sys_shutdown(int fd, int how)
2254 {
2255 int err, fput_needed;
2256 struct socket *sock;
2257
2258 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2259 if (sock != NULL) {
2260 err = __sys_shutdown_sock(sock, how);
2261 fput_light(sock->file, fput_needed);
2262 }
2263 return err;
2264 }
2265
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2266 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2267 {
2268 return __sys_shutdown(fd, how);
2269 }
2270
2271 /* A couple of helpful macros for getting the address of the 32/64 bit
2272 * fields which are the same type (int / unsigned) on our platforms.
2273 */
2274 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2275 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2276 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2277
2278 struct used_address {
2279 struct sockaddr_storage name;
2280 unsigned int name_len;
2281 };
2282
__copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec __user ** uiov,size_t * nsegs)2283 int __copy_msghdr_from_user(struct msghdr *kmsg,
2284 struct user_msghdr __user *umsg,
2285 struct sockaddr __user **save_addr,
2286 struct iovec __user **uiov, size_t *nsegs)
2287 {
2288 struct user_msghdr msg;
2289 ssize_t err;
2290
2291 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2292 return -EFAULT;
2293
2294 kmsg->msg_control_is_user = true;
2295 kmsg->msg_control_user = msg.msg_control;
2296 kmsg->msg_controllen = msg.msg_controllen;
2297 kmsg->msg_flags = msg.msg_flags;
2298
2299 kmsg->msg_namelen = msg.msg_namelen;
2300 if (!msg.msg_name)
2301 kmsg->msg_namelen = 0;
2302
2303 if (kmsg->msg_namelen < 0)
2304 return -EINVAL;
2305
2306 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2307 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2308
2309 if (save_addr)
2310 *save_addr = msg.msg_name;
2311
2312 if (msg.msg_name && kmsg->msg_namelen) {
2313 if (!save_addr) {
2314 err = move_addr_to_kernel(msg.msg_name,
2315 kmsg->msg_namelen,
2316 kmsg->msg_name);
2317 if (err < 0)
2318 return err;
2319 }
2320 } else {
2321 kmsg->msg_name = NULL;
2322 kmsg->msg_namelen = 0;
2323 }
2324
2325 if (msg.msg_iovlen > UIO_MAXIOV)
2326 return -EMSGSIZE;
2327
2328 kmsg->msg_iocb = NULL;
2329 *uiov = msg.msg_iov;
2330 *nsegs = msg.msg_iovlen;
2331 return 0;
2332 }
2333
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2334 static int copy_msghdr_from_user(struct msghdr *kmsg,
2335 struct user_msghdr __user *umsg,
2336 struct sockaddr __user **save_addr,
2337 struct iovec **iov)
2338 {
2339 struct user_msghdr msg;
2340 ssize_t err;
2341
2342 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2343 &msg.msg_iovlen);
2344 if (err)
2345 return err;
2346
2347 err = import_iovec(save_addr ? READ : WRITE,
2348 msg.msg_iov, msg.msg_iovlen,
2349 UIO_FASTIOV, iov, &kmsg->msg_iter);
2350 return err < 0 ? err : 0;
2351 }
2352
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2353 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2354 unsigned int flags, struct used_address *used_address,
2355 unsigned int allowed_msghdr_flags)
2356 {
2357 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2358 __aligned(sizeof(__kernel_size_t));
2359 /* 20 is size of ipv6_pktinfo */
2360 unsigned char *ctl_buf = ctl;
2361 int ctl_len;
2362 ssize_t err;
2363
2364 err = -ENOBUFS;
2365
2366 if (msg_sys->msg_controllen > INT_MAX)
2367 goto out;
2368 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2369 ctl_len = msg_sys->msg_controllen;
2370 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2371 err =
2372 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2373 sizeof(ctl));
2374 if (err)
2375 goto out;
2376 ctl_buf = msg_sys->msg_control;
2377 ctl_len = msg_sys->msg_controllen;
2378 } else if (ctl_len) {
2379 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2380 CMSG_ALIGN(sizeof(struct cmsghdr)));
2381 if (ctl_len > sizeof(ctl)) {
2382 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2383 if (ctl_buf == NULL)
2384 goto out;
2385 }
2386 err = -EFAULT;
2387 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2388 goto out_freectl;
2389 msg_sys->msg_control = ctl_buf;
2390 msg_sys->msg_control_is_user = false;
2391 }
2392 msg_sys->msg_flags = flags;
2393
2394 if (sock->file->f_flags & O_NONBLOCK)
2395 msg_sys->msg_flags |= MSG_DONTWAIT;
2396 /*
2397 * If this is sendmmsg() and current destination address is same as
2398 * previously succeeded address, omit asking LSM's decision.
2399 * used_address->name_len is initialized to UINT_MAX so that the first
2400 * destination address never matches.
2401 */
2402 if (used_address && msg_sys->msg_name &&
2403 used_address->name_len == msg_sys->msg_namelen &&
2404 !memcmp(&used_address->name, msg_sys->msg_name,
2405 used_address->name_len)) {
2406 err = sock_sendmsg_nosec(sock, msg_sys);
2407 goto out_freectl;
2408 }
2409 err = sock_sendmsg(sock, msg_sys);
2410 /*
2411 * If this is sendmmsg() and sending to current destination address was
2412 * successful, remember it.
2413 */
2414 if (used_address && err >= 0) {
2415 used_address->name_len = msg_sys->msg_namelen;
2416 if (msg_sys->msg_name)
2417 memcpy(&used_address->name, msg_sys->msg_name,
2418 used_address->name_len);
2419 }
2420
2421 out_freectl:
2422 if (ctl_buf != ctl)
2423 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2424 out:
2425 return err;
2426 }
2427
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2428 int sendmsg_copy_msghdr(struct msghdr *msg,
2429 struct user_msghdr __user *umsg, unsigned flags,
2430 struct iovec **iov)
2431 {
2432 int err;
2433
2434 if (flags & MSG_CMSG_COMPAT) {
2435 struct compat_msghdr __user *msg_compat;
2436
2437 msg_compat = (struct compat_msghdr __user *) umsg;
2438 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2439 } else {
2440 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2441 }
2442 if (err < 0)
2443 return err;
2444
2445 return 0;
2446 }
2447
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2448 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2449 struct msghdr *msg_sys, unsigned int flags,
2450 struct used_address *used_address,
2451 unsigned int allowed_msghdr_flags)
2452 {
2453 struct sockaddr_storage address;
2454 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2455 ssize_t err;
2456
2457 msg_sys->msg_name = &address;
2458
2459 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2460 if (err < 0)
2461 return err;
2462
2463 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2464 allowed_msghdr_flags);
2465 kfree(iov);
2466 return err;
2467 }
2468
2469 /*
2470 * BSD sendmsg interface
2471 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2472 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2473 unsigned int flags)
2474 {
2475 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2476 }
2477
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2478 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2479 bool forbid_cmsg_compat)
2480 {
2481 int fput_needed, err;
2482 struct msghdr msg_sys;
2483 struct socket *sock;
2484
2485 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2486 return -EINVAL;
2487
2488 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2489 if (!sock)
2490 goto out;
2491
2492 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2493
2494 fput_light(sock->file, fput_needed);
2495 out:
2496 return err;
2497 }
2498
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2499 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2500 {
2501 return __sys_sendmsg(fd, msg, flags, true);
2502 }
2503
2504 /*
2505 * Linux sendmmsg interface
2506 */
2507
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2508 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2509 unsigned int flags, bool forbid_cmsg_compat)
2510 {
2511 int fput_needed, err, datagrams;
2512 struct socket *sock;
2513 struct mmsghdr __user *entry;
2514 struct compat_mmsghdr __user *compat_entry;
2515 struct msghdr msg_sys;
2516 struct used_address used_address;
2517 unsigned int oflags = flags;
2518
2519 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2520 return -EINVAL;
2521
2522 if (vlen > UIO_MAXIOV)
2523 vlen = UIO_MAXIOV;
2524
2525 datagrams = 0;
2526
2527 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2528 if (!sock)
2529 return err;
2530
2531 used_address.name_len = UINT_MAX;
2532 entry = mmsg;
2533 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2534 err = 0;
2535 flags |= MSG_BATCH;
2536
2537 while (datagrams < vlen) {
2538 if (datagrams == vlen - 1)
2539 flags = oflags;
2540
2541 if (MSG_CMSG_COMPAT & flags) {
2542 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2543 &msg_sys, flags, &used_address, MSG_EOR);
2544 if (err < 0)
2545 break;
2546 err = __put_user(err, &compat_entry->msg_len);
2547 ++compat_entry;
2548 } else {
2549 err = ___sys_sendmsg(sock,
2550 (struct user_msghdr __user *)entry,
2551 &msg_sys, flags, &used_address, MSG_EOR);
2552 if (err < 0)
2553 break;
2554 err = put_user(err, &entry->msg_len);
2555 ++entry;
2556 }
2557
2558 if (err)
2559 break;
2560 ++datagrams;
2561 if (msg_data_left(&msg_sys))
2562 break;
2563 cond_resched();
2564 }
2565
2566 fput_light(sock->file, fput_needed);
2567
2568 /* We only return an error if no datagrams were able to be sent */
2569 if (datagrams != 0)
2570 return datagrams;
2571
2572 return err;
2573 }
2574
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2575 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2576 unsigned int, vlen, unsigned int, flags)
2577 {
2578 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2579 }
2580
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2581 int recvmsg_copy_msghdr(struct msghdr *msg,
2582 struct user_msghdr __user *umsg, unsigned flags,
2583 struct sockaddr __user **uaddr,
2584 struct iovec **iov)
2585 {
2586 ssize_t err;
2587
2588 if (MSG_CMSG_COMPAT & flags) {
2589 struct compat_msghdr __user *msg_compat;
2590
2591 msg_compat = (struct compat_msghdr __user *) umsg;
2592 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2593 } else {
2594 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2595 }
2596 if (err < 0)
2597 return err;
2598
2599 return 0;
2600 }
2601
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2602 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2603 struct user_msghdr __user *msg,
2604 struct sockaddr __user *uaddr,
2605 unsigned int flags, int nosec)
2606 {
2607 struct compat_msghdr __user *msg_compat =
2608 (struct compat_msghdr __user *) msg;
2609 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2610 struct sockaddr_storage addr;
2611 unsigned long cmsg_ptr;
2612 int len;
2613 ssize_t err;
2614
2615 msg_sys->msg_name = &addr;
2616 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2617 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2618
2619 /* We assume all kernel code knows the size of sockaddr_storage */
2620 msg_sys->msg_namelen = 0;
2621
2622 if (sock->file->f_flags & O_NONBLOCK)
2623 flags |= MSG_DONTWAIT;
2624
2625 if (unlikely(nosec))
2626 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2627 else
2628 err = sock_recvmsg(sock, msg_sys, flags);
2629
2630 if (err < 0)
2631 goto out;
2632 len = err;
2633
2634 if (uaddr != NULL) {
2635 err = move_addr_to_user(&addr,
2636 msg_sys->msg_namelen, uaddr,
2637 uaddr_len);
2638 if (err < 0)
2639 goto out;
2640 }
2641 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2642 COMPAT_FLAGS(msg));
2643 if (err)
2644 goto out;
2645 if (MSG_CMSG_COMPAT & flags)
2646 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2647 &msg_compat->msg_controllen);
2648 else
2649 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2650 &msg->msg_controllen);
2651 if (err)
2652 goto out;
2653 err = len;
2654 out:
2655 return err;
2656 }
2657
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2658 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2659 struct msghdr *msg_sys, unsigned int flags, int nosec)
2660 {
2661 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2662 /* user mode address pointers */
2663 struct sockaddr __user *uaddr;
2664 ssize_t err;
2665
2666 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2667 if (err < 0)
2668 return err;
2669
2670 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2671 kfree(iov);
2672 return err;
2673 }
2674
2675 /*
2676 * BSD recvmsg interface
2677 */
2678
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2679 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2680 struct user_msghdr __user *umsg,
2681 struct sockaddr __user *uaddr, unsigned int flags)
2682 {
2683 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2684 }
2685
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2686 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2687 bool forbid_cmsg_compat)
2688 {
2689 int fput_needed, err;
2690 struct msghdr msg_sys;
2691 struct socket *sock;
2692
2693 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2694 return -EINVAL;
2695
2696 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2697 if (!sock)
2698 goto out;
2699
2700 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2701
2702 fput_light(sock->file, fput_needed);
2703 out:
2704 return err;
2705 }
2706
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2707 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2708 unsigned int, flags)
2709 {
2710 return __sys_recvmsg(fd, msg, flags, true);
2711 }
2712
2713 /*
2714 * Linux recvmmsg interface
2715 */
2716
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2717 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2718 unsigned int vlen, unsigned int flags,
2719 struct timespec64 *timeout)
2720 {
2721 int fput_needed, err, datagrams;
2722 struct socket *sock;
2723 struct mmsghdr __user *entry;
2724 struct compat_mmsghdr __user *compat_entry;
2725 struct msghdr msg_sys;
2726 struct timespec64 end_time;
2727 struct timespec64 timeout64;
2728
2729 if (timeout &&
2730 poll_select_set_timeout(&end_time, timeout->tv_sec,
2731 timeout->tv_nsec))
2732 return -EINVAL;
2733
2734 datagrams = 0;
2735
2736 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2737 if (!sock)
2738 return err;
2739
2740 if (likely(!(flags & MSG_ERRQUEUE))) {
2741 err = sock_error(sock->sk);
2742 if (err) {
2743 datagrams = err;
2744 goto out_put;
2745 }
2746 }
2747
2748 entry = mmsg;
2749 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2750
2751 while (datagrams < vlen) {
2752 /*
2753 * No need to ask LSM for more than the first datagram.
2754 */
2755 if (MSG_CMSG_COMPAT & flags) {
2756 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2757 &msg_sys, flags & ~MSG_WAITFORONE,
2758 datagrams);
2759 if (err < 0)
2760 break;
2761 err = __put_user(err, &compat_entry->msg_len);
2762 ++compat_entry;
2763 } else {
2764 err = ___sys_recvmsg(sock,
2765 (struct user_msghdr __user *)entry,
2766 &msg_sys, flags & ~MSG_WAITFORONE,
2767 datagrams);
2768 if (err < 0)
2769 break;
2770 err = put_user(err, &entry->msg_len);
2771 ++entry;
2772 }
2773
2774 if (err)
2775 break;
2776 ++datagrams;
2777
2778 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2779 if (flags & MSG_WAITFORONE)
2780 flags |= MSG_DONTWAIT;
2781
2782 if (timeout) {
2783 ktime_get_ts64(&timeout64);
2784 *timeout = timespec64_sub(end_time, timeout64);
2785 if (timeout->tv_sec < 0) {
2786 timeout->tv_sec = timeout->tv_nsec = 0;
2787 break;
2788 }
2789
2790 /* Timeout, return less than vlen datagrams */
2791 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2792 break;
2793 }
2794
2795 /* Out of band data, return right away */
2796 if (msg_sys.msg_flags & MSG_OOB)
2797 break;
2798 cond_resched();
2799 }
2800
2801 if (err == 0)
2802 goto out_put;
2803
2804 if (datagrams == 0) {
2805 datagrams = err;
2806 goto out_put;
2807 }
2808
2809 /*
2810 * We may return less entries than requested (vlen) if the
2811 * sock is non block and there aren't enough datagrams...
2812 */
2813 if (err != -EAGAIN) {
2814 /*
2815 * ... or if recvmsg returns an error after we
2816 * received some datagrams, where we record the
2817 * error to return on the next call or if the
2818 * app asks about it using getsockopt(SO_ERROR).
2819 */
2820 sock->sk->sk_err = -err;
2821 }
2822 out_put:
2823 fput_light(sock->file, fput_needed);
2824
2825 return datagrams;
2826 }
2827
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2828 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2829 unsigned int vlen, unsigned int flags,
2830 struct __kernel_timespec __user *timeout,
2831 struct old_timespec32 __user *timeout32)
2832 {
2833 int datagrams;
2834 struct timespec64 timeout_sys;
2835
2836 if (timeout && get_timespec64(&timeout_sys, timeout))
2837 return -EFAULT;
2838
2839 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2840 return -EFAULT;
2841
2842 if (!timeout && !timeout32)
2843 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2844
2845 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2846
2847 if (datagrams <= 0)
2848 return datagrams;
2849
2850 if (timeout && put_timespec64(&timeout_sys, timeout))
2851 datagrams = -EFAULT;
2852
2853 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2854 datagrams = -EFAULT;
2855
2856 return datagrams;
2857 }
2858
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)2859 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2860 unsigned int, vlen, unsigned int, flags,
2861 struct __kernel_timespec __user *, timeout)
2862 {
2863 if (flags & MSG_CMSG_COMPAT)
2864 return -EINVAL;
2865
2866 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2867 }
2868
2869 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)2870 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2871 unsigned int, vlen, unsigned int, flags,
2872 struct old_timespec32 __user *, timeout)
2873 {
2874 if (flags & MSG_CMSG_COMPAT)
2875 return -EINVAL;
2876
2877 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2878 }
2879 #endif
2880
2881 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2882 /* Argument list sizes for sys_socketcall */
2883 #define AL(x) ((x) * sizeof(unsigned long))
2884 static const unsigned char nargs[21] = {
2885 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2886 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2887 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2888 AL(4), AL(5), AL(4)
2889 };
2890
2891 #undef AL
2892
2893 /*
2894 * System call vectors.
2895 *
2896 * Argument checking cleaned up. Saved 20% in size.
2897 * This function doesn't need to set the kernel lock because
2898 * it is set by the callees.
2899 */
2900
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2901 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2902 {
2903 unsigned long a[AUDITSC_ARGS];
2904 unsigned long a0, a1;
2905 int err;
2906 unsigned int len;
2907
2908 if (call < 1 || call > SYS_SENDMMSG)
2909 return -EINVAL;
2910 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2911
2912 len = nargs[call];
2913 if (len > sizeof(a))
2914 return -EINVAL;
2915
2916 /* copy_from_user should be SMP safe. */
2917 if (copy_from_user(a, args, len))
2918 return -EFAULT;
2919
2920 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2921 if (err)
2922 return err;
2923
2924 a0 = a[0];
2925 a1 = a[1];
2926
2927 switch (call) {
2928 case SYS_SOCKET:
2929 err = __sys_socket(a0, a1, a[2]);
2930 break;
2931 case SYS_BIND:
2932 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2933 break;
2934 case SYS_CONNECT:
2935 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2936 break;
2937 case SYS_LISTEN:
2938 err = __sys_listen(a0, a1);
2939 break;
2940 case SYS_ACCEPT:
2941 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2942 (int __user *)a[2], 0);
2943 break;
2944 case SYS_GETSOCKNAME:
2945 err =
2946 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2947 (int __user *)a[2]);
2948 break;
2949 case SYS_GETPEERNAME:
2950 err =
2951 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2952 (int __user *)a[2]);
2953 break;
2954 case SYS_SOCKETPAIR:
2955 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2956 break;
2957 case SYS_SEND:
2958 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2959 NULL, 0);
2960 break;
2961 case SYS_SENDTO:
2962 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2963 (struct sockaddr __user *)a[4], a[5]);
2964 break;
2965 case SYS_RECV:
2966 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2967 NULL, NULL);
2968 break;
2969 case SYS_RECVFROM:
2970 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2971 (struct sockaddr __user *)a[4],
2972 (int __user *)a[5]);
2973 break;
2974 case SYS_SHUTDOWN:
2975 err = __sys_shutdown(a0, a1);
2976 break;
2977 case SYS_SETSOCKOPT:
2978 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2979 a[4]);
2980 break;
2981 case SYS_GETSOCKOPT:
2982 err =
2983 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2984 (int __user *)a[4]);
2985 break;
2986 case SYS_SENDMSG:
2987 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2988 a[2], true);
2989 break;
2990 case SYS_SENDMMSG:
2991 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2992 a[3], true);
2993 break;
2994 case SYS_RECVMSG:
2995 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2996 a[2], true);
2997 break;
2998 case SYS_RECVMMSG:
2999 if (IS_ENABLED(CONFIG_64BIT))
3000 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3001 a[2], a[3],
3002 (struct __kernel_timespec __user *)a[4],
3003 NULL);
3004 else
3005 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3006 a[2], a[3], NULL,
3007 (struct old_timespec32 __user *)a[4]);
3008 break;
3009 case SYS_ACCEPT4:
3010 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3011 (int __user *)a[2], a[3]);
3012 break;
3013 default:
3014 err = -EINVAL;
3015 break;
3016 }
3017 return err;
3018 }
3019
3020 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3021
3022 /**
3023 * sock_register - add a socket protocol handler
3024 * @ops: description of protocol
3025 *
3026 * This function is called by a protocol handler that wants to
3027 * advertise its address family, and have it linked into the
3028 * socket interface. The value ops->family corresponds to the
3029 * socket system call protocol family.
3030 */
sock_register(const struct net_proto_family * ops)3031 int sock_register(const struct net_proto_family *ops)
3032 {
3033 int err;
3034
3035 if (ops->family >= NPROTO) {
3036 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3037 return -ENOBUFS;
3038 }
3039
3040 spin_lock(&net_family_lock);
3041 if (rcu_dereference_protected(net_families[ops->family],
3042 lockdep_is_held(&net_family_lock)))
3043 err = -EEXIST;
3044 else {
3045 rcu_assign_pointer(net_families[ops->family], ops);
3046 err = 0;
3047 }
3048 spin_unlock(&net_family_lock);
3049
3050 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3051 return err;
3052 }
3053 EXPORT_SYMBOL(sock_register);
3054
3055 /**
3056 * sock_unregister - remove a protocol handler
3057 * @family: protocol family to remove
3058 *
3059 * This function is called by a protocol handler that wants to
3060 * remove its address family, and have it unlinked from the
3061 * new socket creation.
3062 *
3063 * If protocol handler is a module, then it can use module reference
3064 * counts to protect against new references. If protocol handler is not
3065 * a module then it needs to provide its own protection in
3066 * the ops->create routine.
3067 */
sock_unregister(int family)3068 void sock_unregister(int family)
3069 {
3070 BUG_ON(family < 0 || family >= NPROTO);
3071
3072 spin_lock(&net_family_lock);
3073 RCU_INIT_POINTER(net_families[family], NULL);
3074 spin_unlock(&net_family_lock);
3075
3076 synchronize_rcu();
3077
3078 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3079 }
3080 EXPORT_SYMBOL(sock_unregister);
3081
sock_is_registered(int family)3082 bool sock_is_registered(int family)
3083 {
3084 return family < NPROTO && rcu_access_pointer(net_families[family]);
3085 }
3086
sock_init(void)3087 static int __init sock_init(void)
3088 {
3089 int err;
3090 /*
3091 * Initialize the network sysctl infrastructure.
3092 */
3093 err = net_sysctl_init();
3094 if (err)
3095 goto out;
3096
3097 /*
3098 * Initialize skbuff SLAB cache
3099 */
3100 skb_init();
3101
3102 /*
3103 * Initialize the protocols module.
3104 */
3105
3106 init_inodecache();
3107
3108 err = register_filesystem(&sock_fs_type);
3109 if (err)
3110 goto out;
3111 sock_mnt = kern_mount(&sock_fs_type);
3112 if (IS_ERR(sock_mnt)) {
3113 err = PTR_ERR(sock_mnt);
3114 goto out_mount;
3115 }
3116
3117 /* The real protocol initialization is performed in later initcalls.
3118 */
3119
3120 #ifdef CONFIG_NETFILTER
3121 err = netfilter_init();
3122 if (err)
3123 goto out;
3124 #endif
3125
3126 ptp_classifier_init();
3127
3128 out:
3129 return err;
3130
3131 out_mount:
3132 unregister_filesystem(&sock_fs_type);
3133 goto out;
3134 }
3135
3136 core_initcall(sock_init); /* early initcall */
3137
3138 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3139 void socket_seq_show(struct seq_file *seq)
3140 {
3141 seq_printf(seq, "sockets: used %d\n",
3142 sock_inuse_get(seq->private));
3143 }
3144 #endif /* CONFIG_PROC_FS */
3145
3146 /* Handle the fact that while struct ifreq has the same *layout* on
3147 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3148 * which are handled elsewhere, it still has different *size* due to
3149 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3150 * resulting in struct ifreq being 32 and 40 bytes respectively).
3151 * As a result, if the struct happens to be at the end of a page and
3152 * the next page isn't readable/writable, we get a fault. To prevent
3153 * that, copy back and forth to the full size.
3154 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3155 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3156 {
3157 if (in_compat_syscall()) {
3158 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3159
3160 memset(ifr, 0, sizeof(*ifr));
3161 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3162 return -EFAULT;
3163
3164 if (ifrdata)
3165 *ifrdata = compat_ptr(ifr32->ifr_data);
3166
3167 return 0;
3168 }
3169
3170 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3171 return -EFAULT;
3172
3173 if (ifrdata)
3174 *ifrdata = ifr->ifr_data;
3175
3176 return 0;
3177 }
3178 EXPORT_SYMBOL(get_user_ifreq);
3179
put_user_ifreq(struct ifreq * ifr,void __user * arg)3180 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3181 {
3182 size_t size = sizeof(*ifr);
3183
3184 if (in_compat_syscall())
3185 size = sizeof(struct compat_ifreq);
3186
3187 if (copy_to_user(arg, ifr, size))
3188 return -EFAULT;
3189
3190 return 0;
3191 }
3192 EXPORT_SYMBOL(put_user_ifreq);
3193
3194 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3195 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3196 {
3197 compat_uptr_t uptr32;
3198 struct ifreq ifr;
3199 void __user *saved;
3200 int err;
3201
3202 if (get_user_ifreq(&ifr, NULL, uifr32))
3203 return -EFAULT;
3204
3205 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3206 return -EFAULT;
3207
3208 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3209 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3210
3211 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3212 if (!err) {
3213 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3214 if (put_user_ifreq(&ifr, uifr32))
3215 err = -EFAULT;
3216 }
3217 return err;
3218 }
3219
3220 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3221 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3222 struct compat_ifreq __user *u_ifreq32)
3223 {
3224 struct ifreq ifreq;
3225 void __user *data;
3226
3227 if (!is_socket_ioctl_cmd(cmd))
3228 return -ENOTTY;
3229 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3230 return -EFAULT;
3231 ifreq.ifr_data = data;
3232
3233 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3234 }
3235
3236 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3237 * for some operations; this forces use of the newer bridge-utils that
3238 * use compatible ioctls
3239 */
old_bridge_ioctl(compat_ulong_t __user * argp)3240 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3241 {
3242 compat_ulong_t tmp;
3243
3244 if (get_user(tmp, argp))
3245 return -EFAULT;
3246 if (tmp == BRCTL_GET_VERSION)
3247 return BRCTL_VERSION + 1;
3248 return -EINVAL;
3249 }
3250
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3251 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3252 unsigned int cmd, unsigned long arg)
3253 {
3254 void __user *argp = compat_ptr(arg);
3255 struct sock *sk = sock->sk;
3256 struct net *net = sock_net(sk);
3257
3258 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3259 return sock_ioctl(file, cmd, (unsigned long)argp);
3260
3261 switch (cmd) {
3262 case SIOCSIFBR:
3263 case SIOCGIFBR:
3264 return old_bridge_ioctl(argp);
3265 case SIOCWANDEV:
3266 return compat_siocwandev(net, argp);
3267 case SIOCGSTAMP_OLD:
3268 case SIOCGSTAMPNS_OLD:
3269 if (!sock->ops->gettstamp)
3270 return -ENOIOCTLCMD;
3271 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3272 !COMPAT_USE_64BIT_TIME);
3273
3274 case SIOCETHTOOL:
3275 case SIOCBONDSLAVEINFOQUERY:
3276 case SIOCBONDINFOQUERY:
3277 case SIOCSHWTSTAMP:
3278 case SIOCGHWTSTAMP:
3279 return compat_ifr_data_ioctl(net, cmd, argp);
3280
3281 case FIOSETOWN:
3282 case SIOCSPGRP:
3283 case FIOGETOWN:
3284 case SIOCGPGRP:
3285 case SIOCBRADDBR:
3286 case SIOCBRDELBR:
3287 case SIOCGIFVLAN:
3288 case SIOCSIFVLAN:
3289 case SIOCGSKNS:
3290 case SIOCGSTAMP_NEW:
3291 case SIOCGSTAMPNS_NEW:
3292 case SIOCGIFCONF:
3293 return sock_ioctl(file, cmd, arg);
3294
3295 case SIOCGIFFLAGS:
3296 case SIOCSIFFLAGS:
3297 case SIOCGIFMAP:
3298 case SIOCSIFMAP:
3299 case SIOCGIFMETRIC:
3300 case SIOCSIFMETRIC:
3301 case SIOCGIFMTU:
3302 case SIOCSIFMTU:
3303 case SIOCGIFMEM:
3304 case SIOCSIFMEM:
3305 case SIOCGIFHWADDR:
3306 case SIOCSIFHWADDR:
3307 case SIOCADDMULTI:
3308 case SIOCDELMULTI:
3309 case SIOCGIFINDEX:
3310 case SIOCGIFADDR:
3311 case SIOCSIFADDR:
3312 case SIOCSIFHWBROADCAST:
3313 case SIOCDIFADDR:
3314 case SIOCGIFBRDADDR:
3315 case SIOCSIFBRDADDR:
3316 case SIOCGIFDSTADDR:
3317 case SIOCSIFDSTADDR:
3318 case SIOCGIFNETMASK:
3319 case SIOCSIFNETMASK:
3320 case SIOCSIFPFLAGS:
3321 case SIOCGIFPFLAGS:
3322 case SIOCGIFTXQLEN:
3323 case SIOCSIFTXQLEN:
3324 case SIOCBRADDIF:
3325 case SIOCBRDELIF:
3326 case SIOCGIFNAME:
3327 case SIOCSIFNAME:
3328 case SIOCGMIIPHY:
3329 case SIOCGMIIREG:
3330 case SIOCSMIIREG:
3331 case SIOCBONDENSLAVE:
3332 case SIOCBONDRELEASE:
3333 case SIOCBONDSETHWADDR:
3334 case SIOCBONDCHANGEACTIVE:
3335 case SIOCSARP:
3336 case SIOCGARP:
3337 case SIOCDARP:
3338 case SIOCOUTQ:
3339 case SIOCOUTQNSD:
3340 case SIOCATMARK:
3341 return sock_do_ioctl(net, sock, cmd, arg);
3342 }
3343
3344 return -ENOIOCTLCMD;
3345 }
3346
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3347 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3348 unsigned long arg)
3349 {
3350 struct socket *sock = file->private_data;
3351 int ret = -ENOIOCTLCMD;
3352 struct sock *sk;
3353 struct net *net;
3354
3355 sk = sock->sk;
3356 net = sock_net(sk);
3357
3358 if (sock->ops->compat_ioctl)
3359 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3360
3361 if (ret == -ENOIOCTLCMD &&
3362 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3363 ret = compat_wext_handle_ioctl(net, cmd, arg);
3364
3365 if (ret == -ENOIOCTLCMD)
3366 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3367
3368 return ret;
3369 }
3370 #endif
3371
3372 /**
3373 * kernel_bind - bind an address to a socket (kernel space)
3374 * @sock: socket
3375 * @addr: address
3376 * @addrlen: length of address
3377 *
3378 * Returns 0 or an error.
3379 */
3380
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3381 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3382 {
3383 return sock->ops->bind(sock, addr, addrlen);
3384 }
3385 EXPORT_SYMBOL(kernel_bind);
3386
3387 /**
3388 * kernel_listen - move socket to listening state (kernel space)
3389 * @sock: socket
3390 * @backlog: pending connections queue size
3391 *
3392 * Returns 0 or an error.
3393 */
3394
kernel_listen(struct socket * sock,int backlog)3395 int kernel_listen(struct socket *sock, int backlog)
3396 {
3397 return sock->ops->listen(sock, backlog);
3398 }
3399 EXPORT_SYMBOL(kernel_listen);
3400
3401 /**
3402 * kernel_accept - accept a connection (kernel space)
3403 * @sock: listening socket
3404 * @newsock: new connected socket
3405 * @flags: flags
3406 *
3407 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3408 * If it fails, @newsock is guaranteed to be %NULL.
3409 * Returns 0 or an error.
3410 */
3411
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3412 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3413 {
3414 struct sock *sk = sock->sk;
3415 int err;
3416
3417 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3418 newsock);
3419 if (err < 0)
3420 goto done;
3421
3422 err = sock->ops->accept(sock, *newsock, flags, true);
3423 if (err < 0) {
3424 sock_release(*newsock);
3425 *newsock = NULL;
3426 goto done;
3427 }
3428
3429 (*newsock)->ops = sock->ops;
3430 __module_get((*newsock)->ops->owner);
3431
3432 done:
3433 return err;
3434 }
3435 EXPORT_SYMBOL(kernel_accept);
3436
3437 /**
3438 * kernel_connect - connect a socket (kernel space)
3439 * @sock: socket
3440 * @addr: address
3441 * @addrlen: address length
3442 * @flags: flags (O_NONBLOCK, ...)
3443 *
3444 * For datagram sockets, @addr is the address to which datagrams are sent
3445 * by default, and the only address from which datagrams are received.
3446 * For stream sockets, attempts to connect to @addr.
3447 * Returns 0 or an error code.
3448 */
3449
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3450 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3451 int flags)
3452 {
3453 return sock->ops->connect(sock, addr, addrlen, flags);
3454 }
3455 EXPORT_SYMBOL(kernel_connect);
3456
3457 /**
3458 * kernel_getsockname - get the address which the socket is bound (kernel space)
3459 * @sock: socket
3460 * @addr: address holder
3461 *
3462 * Fills the @addr pointer with the address which the socket is bound.
3463 * Returns 0 or an error code.
3464 */
3465
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3466 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3467 {
3468 return sock->ops->getname(sock, addr, 0);
3469 }
3470 EXPORT_SYMBOL(kernel_getsockname);
3471
3472 /**
3473 * kernel_getpeername - get the address which the socket is connected (kernel space)
3474 * @sock: socket
3475 * @addr: address holder
3476 *
3477 * Fills the @addr pointer with the address which the socket is connected.
3478 * Returns 0 or an error code.
3479 */
3480
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3481 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3482 {
3483 return sock->ops->getname(sock, addr, 1);
3484 }
3485 EXPORT_SYMBOL(kernel_getpeername);
3486
3487 /**
3488 * kernel_sendpage - send a &page through a socket (kernel space)
3489 * @sock: socket
3490 * @page: page
3491 * @offset: page offset
3492 * @size: total size in bytes
3493 * @flags: flags (MSG_DONTWAIT, ...)
3494 *
3495 * Returns the total amount sent in bytes or an error.
3496 */
3497
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3498 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3499 size_t size, int flags)
3500 {
3501 if (sock->ops->sendpage) {
3502 /* Warn in case the improper page to zero-copy send */
3503 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3504 return sock->ops->sendpage(sock, page, offset, size, flags);
3505 }
3506 return sock_no_sendpage(sock, page, offset, size, flags);
3507 }
3508 EXPORT_SYMBOL(kernel_sendpage);
3509
3510 /**
3511 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3512 * @sk: sock
3513 * @page: page
3514 * @offset: page offset
3515 * @size: total size in bytes
3516 * @flags: flags (MSG_DONTWAIT, ...)
3517 *
3518 * Returns the total amount sent in bytes or an error.
3519 * Caller must hold @sk.
3520 */
3521
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3522 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3523 size_t size, int flags)
3524 {
3525 struct socket *sock = sk->sk_socket;
3526
3527 if (sock->ops->sendpage_locked)
3528 return sock->ops->sendpage_locked(sk, page, offset, size,
3529 flags);
3530
3531 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3532 }
3533 EXPORT_SYMBOL(kernel_sendpage_locked);
3534
3535 /**
3536 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3537 * @sock: socket
3538 * @how: connection part
3539 *
3540 * Returns 0 or an error.
3541 */
3542
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3543 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3544 {
3545 return sock->ops->shutdown(sock, how);
3546 }
3547 EXPORT_SYMBOL(kernel_sock_shutdown);
3548
3549 /**
3550 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3551 * @sk: socket
3552 *
3553 * This routine returns the IP overhead imposed by a socket i.e.
3554 * the length of the underlying IP header, depending on whether
3555 * this is an IPv4 or IPv6 socket and the length from IP options turned
3556 * on at the socket. Assumes that the caller has a lock on the socket.
3557 */
3558
kernel_sock_ip_overhead(struct sock * sk)3559 u32 kernel_sock_ip_overhead(struct sock *sk)
3560 {
3561 struct inet_sock *inet;
3562 struct ip_options_rcu *opt;
3563 u32 overhead = 0;
3564 #if IS_ENABLED(CONFIG_IPV6)
3565 struct ipv6_pinfo *np;
3566 struct ipv6_txoptions *optv6 = NULL;
3567 #endif /* IS_ENABLED(CONFIG_IPV6) */
3568
3569 if (!sk)
3570 return overhead;
3571
3572 switch (sk->sk_family) {
3573 case AF_INET:
3574 inet = inet_sk(sk);
3575 overhead += sizeof(struct iphdr);
3576 opt = rcu_dereference_protected(inet->inet_opt,
3577 sock_owned_by_user(sk));
3578 if (opt)
3579 overhead += opt->opt.optlen;
3580 return overhead;
3581 #if IS_ENABLED(CONFIG_IPV6)
3582 case AF_INET6:
3583 np = inet6_sk(sk);
3584 overhead += sizeof(struct ipv6hdr);
3585 if (np)
3586 optv6 = rcu_dereference_protected(np->opt,
3587 sock_owned_by_user(sk));
3588 if (optv6)
3589 overhead += (optv6->opt_flen + optv6->opt_nflen);
3590 return overhead;
3591 #endif /* IS_ENABLED(CONFIG_IPV6) */
3592 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3593 return overhead;
3594 }
3595 }
3596 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3597