1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * PACKET - implements raw packet sockets.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox, <gw4pts@gw4pts.ampr.org>
12 *
13 * Fixes:
14 * Alan Cox : verify_area() now used correctly
15 * Alan Cox : new skbuff lists, look ma no backlogs!
16 * Alan Cox : tidied skbuff lists.
17 * Alan Cox : Now uses generic datagram routines I
18 * added. Also fixed the peek/read crash
19 * from all old Linux datagram code.
20 * Alan Cox : Uses the improved datagram code.
21 * Alan Cox : Added NULL's for socket options.
22 * Alan Cox : Re-commented the code.
23 * Alan Cox : Use new kernel side addressing
24 * Rob Janssen : Correct MTU usage.
25 * Dave Platt : Counter leaks caused by incorrect
26 * interrupt locking and some slightly
27 * dubious gcc output. Can you read
28 * compiler: it said _VOLATILE_
29 * Richard Kooijman : Timestamp fixes.
30 * Alan Cox : New buffers. Use sk->mac.raw.
31 * Alan Cox : sendmsg/recvmsg support.
32 * Alan Cox : Protocol setting support
33 * Alexey Kuznetsov : Untied from IPv4 stack.
34 * Cyrus Durgin : Fixed kerneld for kmod.
35 * Michal Ostrowski : Module initialization cleanup.
36 * Ulises Alonso : Frame number limit removal and
37 * packet_set_ring memory leak.
38 * Eric Biederman : Allow for > 8 byte hardware addresses.
39 * The convention is that longer addresses
40 * will simply extend the hardware address
41 * byte arrays at the end of sockaddr_ll
42 * and packet_mreq.
43 * Johann Baudy : Added TX RING.
44 * Chetan Loke : Implemented TPACKET_V3 block abstraction
45 * layer.
46 * Copyright (C) 2011, <lokec@ccs.neu.edu>
47 */
48
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50
51 #include <linux/ethtool.h>
52 #include <linux/types.h>
53 #include <linux/mm.h>
54 #include <linux/capability.h>
55 #include <linux/fcntl.h>
56 #include <linux/socket.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/if_packet.h>
61 #include <linux/wireless.h>
62 #include <linux/kernel.h>
63 #include <linux/kmod.h>
64 #include <linux/slab.h>
65 #include <linux/vmalloc.h>
66 #include <net/net_namespace.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <linux/skbuff.h>
70 #include <net/sock.h>
71 #include <linux/errno.h>
72 #include <linux/timer.h>
73 #include <linux/uaccess.h>
74 #include <asm/ioctls.h>
75 #include <asm/page.h>
76 #include <asm/cacheflush.h>
77 #include <asm/io.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
80 #include <linux/poll.h>
81 #include <linux/module.h>
82 #include <linux/init.h>
83 #include <linux/mutex.h>
84 #include <linux/if_vlan.h>
85 #include <linux/virtio_net.h>
86 #include <linux/errqueue.h>
87 #include <linux/net_tstamp.h>
88 #include <linux/percpu.h>
89 #ifdef CONFIG_INET
90 #include <net/inet_common.h>
91 #endif
92 #include <linux/bpf.h>
93 #include <net/compat.h>
94
95 #include "internal.h"
96
97 /*
98 Assumptions:
99 - If the device has no dev->header_ops->create, there is no LL header
100 visible above the device. In this case, its hard_header_len should be 0.
101 The device may prepend its own header internally. In this case, its
102 needed_headroom should be set to the space needed for it to add its
103 internal header.
104 For example, a WiFi driver pretending to be an Ethernet driver should
105 set its hard_header_len to be the Ethernet header length, and set its
106 needed_headroom to be (the real WiFi header length - the fake Ethernet
107 header length).
108 - packet socket receives packets with pulled ll header,
109 so that SOCK_RAW should push it back.
110
111 On receive:
112 -----------
113
114 Incoming, dev_has_header(dev) == true
115 mac_header -> ll header
116 data -> data
117
118 Outgoing, dev_has_header(dev) == true
119 mac_header -> ll header
120 data -> ll header
121
122 Incoming, dev_has_header(dev) == false
123 mac_header -> data
124 However drivers often make it point to the ll header.
125 This is incorrect because the ll header should be invisible to us.
126 data -> data
127
128 Outgoing, dev_has_header(dev) == false
129 mac_header -> data. ll header is invisible to us.
130 data -> data
131
132 Resume
133 If dev_has_header(dev) == false we are unable to restore the ll header,
134 because it is invisible to us.
135
136
137 On transmit:
138 ------------
139
140 dev_has_header(dev) == true
141 mac_header -> ll header
142 data -> ll header
143
144 dev_has_header(dev) == false (ll header is invisible to us)
145 mac_header -> data
146 data -> data
147
148 We should set network_header on output to the correct position,
149 packet classifier depends on it.
150 */
151
152 /* Private packet socket structures. */
153
154 /* identical to struct packet_mreq except it has
155 * a longer address field.
156 */
157 struct packet_mreq_max {
158 int mr_ifindex;
159 unsigned short mr_type;
160 unsigned short mr_alen;
161 unsigned char mr_address[MAX_ADDR_LEN];
162 };
163
164 union tpacket_uhdr {
165 struct tpacket_hdr *h1;
166 struct tpacket2_hdr *h2;
167 struct tpacket3_hdr *h3;
168 void *raw;
169 };
170
171 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
172 int closing, int tx_ring);
173
174 #define V3_ALIGNMENT (8)
175
176 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
177
178 #define BLK_PLUS_PRIV(sz_of_priv) \
179 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
180
181 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
182 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
183 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
184 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
185 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
186 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
187
188 struct packet_sock;
189 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
190 struct packet_type *pt, struct net_device *orig_dev);
191
192 static void *packet_previous_frame(struct packet_sock *po,
193 struct packet_ring_buffer *rb,
194 int status);
195 static void packet_increment_head(struct packet_ring_buffer *buff);
196 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
197 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
198 struct packet_sock *);
199 static void prb_retire_current_block(struct tpacket_kbdq_core *,
200 struct packet_sock *, unsigned int status);
201 static int prb_queue_frozen(struct tpacket_kbdq_core *);
202 static void prb_open_block(struct tpacket_kbdq_core *,
203 struct tpacket_block_desc *);
204 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
205 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
206 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
207 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
208 struct tpacket3_hdr *);
209 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
210 struct tpacket3_hdr *);
211 static void packet_flush_mclist(struct sock *sk);
212 static u16 packet_pick_tx_queue(struct sk_buff *skb);
213
214 struct packet_skb_cb {
215 union {
216 struct sockaddr_pkt pkt;
217 union {
218 /* Trick: alias skb original length with
219 * ll.sll_family and ll.protocol in order
220 * to save room.
221 */
222 unsigned int origlen;
223 struct sockaddr_ll ll;
224 };
225 } sa;
226 };
227
228 #define vio_le() virtio_legacy_is_little_endian()
229
230 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
231
232 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
233 #define GET_PBLOCK_DESC(x, bid) \
234 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
235 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
236 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
237 #define GET_NEXT_PRB_BLK_NUM(x) \
238 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
239 ((x)->kactive_blk_num+1) : 0)
240
241 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
242 static void __fanout_link(struct sock *sk, struct packet_sock *po);
243
packet_direct_xmit(struct sk_buff * skb)244 static int packet_direct_xmit(struct sk_buff *skb)
245 {
246 return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
247 }
248
packet_cached_dev_get(struct packet_sock * po)249 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
250 {
251 struct net_device *dev;
252
253 rcu_read_lock();
254 dev = rcu_dereference(po->cached_dev);
255 dev_hold(dev);
256 rcu_read_unlock();
257
258 return dev;
259 }
260
packet_cached_dev_assign(struct packet_sock * po,struct net_device * dev)261 static void packet_cached_dev_assign(struct packet_sock *po,
262 struct net_device *dev)
263 {
264 rcu_assign_pointer(po->cached_dev, dev);
265 }
266
packet_cached_dev_reset(struct packet_sock * po)267 static void packet_cached_dev_reset(struct packet_sock *po)
268 {
269 RCU_INIT_POINTER(po->cached_dev, NULL);
270 }
271
packet_use_direct_xmit(const struct packet_sock * po)272 static bool packet_use_direct_xmit(const struct packet_sock *po)
273 {
274 return po->xmit == packet_direct_xmit;
275 }
276
packet_pick_tx_queue(struct sk_buff * skb)277 static u16 packet_pick_tx_queue(struct sk_buff *skb)
278 {
279 struct net_device *dev = skb->dev;
280 const struct net_device_ops *ops = dev->netdev_ops;
281 int cpu = raw_smp_processor_id();
282 u16 queue_index;
283
284 #ifdef CONFIG_XPS
285 skb->sender_cpu = cpu + 1;
286 #endif
287 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues);
288 if (ops->ndo_select_queue) {
289 queue_index = ops->ndo_select_queue(dev, skb, NULL);
290 queue_index = netdev_cap_txqueue(dev, queue_index);
291 } else {
292 queue_index = netdev_pick_tx(dev, skb, NULL);
293 }
294
295 return queue_index;
296 }
297
298 /* __register_prot_hook must be invoked through register_prot_hook
299 * or from a context in which asynchronous accesses to the packet
300 * socket is not possible (packet_create()).
301 */
__register_prot_hook(struct sock * sk)302 static void __register_prot_hook(struct sock *sk)
303 {
304 struct packet_sock *po = pkt_sk(sk);
305
306 if (!po->running) {
307 if (po->fanout)
308 __fanout_link(sk, po);
309 else
310 dev_add_pack(&po->prot_hook);
311
312 sock_hold(sk);
313 po->running = 1;
314 }
315 }
316
register_prot_hook(struct sock * sk)317 static void register_prot_hook(struct sock *sk)
318 {
319 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
320 __register_prot_hook(sk);
321 }
322
323 /* If the sync parameter is true, we will temporarily drop
324 * the po->bind_lock and do a synchronize_net to make sure no
325 * asynchronous packet processing paths still refer to the elements
326 * of po->prot_hook. If the sync parameter is false, it is the
327 * callers responsibility to take care of this.
328 */
__unregister_prot_hook(struct sock * sk,bool sync)329 static void __unregister_prot_hook(struct sock *sk, bool sync)
330 {
331 struct packet_sock *po = pkt_sk(sk);
332
333 lockdep_assert_held_once(&po->bind_lock);
334
335 po->running = 0;
336
337 if (po->fanout)
338 __fanout_unlink(sk, po);
339 else
340 __dev_remove_pack(&po->prot_hook);
341
342 __sock_put(sk);
343
344 if (sync) {
345 spin_unlock(&po->bind_lock);
346 synchronize_net();
347 spin_lock(&po->bind_lock);
348 }
349 }
350
unregister_prot_hook(struct sock * sk,bool sync)351 static void unregister_prot_hook(struct sock *sk, bool sync)
352 {
353 struct packet_sock *po = pkt_sk(sk);
354
355 if (po->running)
356 __unregister_prot_hook(sk, sync);
357 }
358
pgv_to_page(void * addr)359 static inline struct page * __pure pgv_to_page(void *addr)
360 {
361 if (is_vmalloc_addr(addr))
362 return vmalloc_to_page(addr);
363 return virt_to_page(addr);
364 }
365
__packet_set_status(struct packet_sock * po,void * frame,int status)366 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
367 {
368 union tpacket_uhdr h;
369
370 h.raw = frame;
371 switch (po->tp_version) {
372 case TPACKET_V1:
373 h.h1->tp_status = status;
374 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
375 break;
376 case TPACKET_V2:
377 h.h2->tp_status = status;
378 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
379 break;
380 case TPACKET_V3:
381 h.h3->tp_status = status;
382 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
383 break;
384 default:
385 WARN(1, "TPACKET version not supported.\n");
386 BUG();
387 }
388
389 smp_wmb();
390 }
391
__packet_get_status(const struct packet_sock * po,void * frame)392 static int __packet_get_status(const struct packet_sock *po, void *frame)
393 {
394 union tpacket_uhdr h;
395
396 smp_rmb();
397
398 h.raw = frame;
399 switch (po->tp_version) {
400 case TPACKET_V1:
401 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
402 return h.h1->tp_status;
403 case TPACKET_V2:
404 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
405 return h.h2->tp_status;
406 case TPACKET_V3:
407 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
408 return h.h3->tp_status;
409 default:
410 WARN(1, "TPACKET version not supported.\n");
411 BUG();
412 return 0;
413 }
414 }
415
tpacket_get_timestamp(struct sk_buff * skb,struct timespec64 * ts,unsigned int flags)416 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts,
417 unsigned int flags)
418 {
419 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
420
421 if (shhwtstamps &&
422 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
423 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts))
424 return TP_STATUS_TS_RAW_HARDWARE;
425
426 if ((flags & SOF_TIMESTAMPING_SOFTWARE) &&
427 ktime_to_timespec64_cond(skb->tstamp, ts))
428 return TP_STATUS_TS_SOFTWARE;
429
430 return 0;
431 }
432
__packet_set_timestamp(struct packet_sock * po,void * frame,struct sk_buff * skb)433 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
434 struct sk_buff *skb)
435 {
436 union tpacket_uhdr h;
437 struct timespec64 ts;
438 __u32 ts_status;
439
440 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
441 return 0;
442
443 h.raw = frame;
444 /*
445 * versions 1 through 3 overflow the timestamps in y2106, since they
446 * all store the seconds in a 32-bit unsigned integer.
447 * If we create a version 4, that should have a 64-bit timestamp,
448 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit
449 * nanoseconds.
450 */
451 switch (po->tp_version) {
452 case TPACKET_V1:
453 h.h1->tp_sec = ts.tv_sec;
454 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
455 break;
456 case TPACKET_V2:
457 h.h2->tp_sec = ts.tv_sec;
458 h.h2->tp_nsec = ts.tv_nsec;
459 break;
460 case TPACKET_V3:
461 h.h3->tp_sec = ts.tv_sec;
462 h.h3->tp_nsec = ts.tv_nsec;
463 break;
464 default:
465 WARN(1, "TPACKET version not supported.\n");
466 BUG();
467 }
468
469 /* one flush is safe, as both fields always lie on the same cacheline */
470 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
471 smp_wmb();
472
473 return ts_status;
474 }
475
packet_lookup_frame(const struct packet_sock * po,const struct packet_ring_buffer * rb,unsigned int position,int status)476 static void *packet_lookup_frame(const struct packet_sock *po,
477 const struct packet_ring_buffer *rb,
478 unsigned int position,
479 int status)
480 {
481 unsigned int pg_vec_pos, frame_offset;
482 union tpacket_uhdr h;
483
484 pg_vec_pos = position / rb->frames_per_block;
485 frame_offset = position % rb->frames_per_block;
486
487 h.raw = rb->pg_vec[pg_vec_pos].buffer +
488 (frame_offset * rb->frame_size);
489
490 if (status != __packet_get_status(po, h.raw))
491 return NULL;
492
493 return h.raw;
494 }
495
packet_current_frame(struct packet_sock * po,struct packet_ring_buffer * rb,int status)496 static void *packet_current_frame(struct packet_sock *po,
497 struct packet_ring_buffer *rb,
498 int status)
499 {
500 return packet_lookup_frame(po, rb, rb->head, status);
501 }
502
prb_del_retire_blk_timer(struct tpacket_kbdq_core * pkc)503 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
504 {
505 del_timer_sync(&pkc->retire_blk_timer);
506 }
507
prb_shutdown_retire_blk_timer(struct packet_sock * po,struct sk_buff_head * rb_queue)508 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
509 struct sk_buff_head *rb_queue)
510 {
511 struct tpacket_kbdq_core *pkc;
512
513 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
514
515 spin_lock_bh(&rb_queue->lock);
516 pkc->delete_blk_timer = 1;
517 spin_unlock_bh(&rb_queue->lock);
518
519 prb_del_retire_blk_timer(pkc);
520 }
521
prb_setup_retire_blk_timer(struct packet_sock * po)522 static void prb_setup_retire_blk_timer(struct packet_sock *po)
523 {
524 struct tpacket_kbdq_core *pkc;
525
526 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
527 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
528 0);
529 pkc->retire_blk_timer.expires = jiffies;
530 }
531
prb_calc_retire_blk_tmo(struct packet_sock * po,int blk_size_in_bytes)532 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
533 int blk_size_in_bytes)
534 {
535 struct net_device *dev;
536 unsigned int mbits, div;
537 struct ethtool_link_ksettings ecmd;
538 int err;
539
540 rtnl_lock();
541 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
542 if (unlikely(!dev)) {
543 rtnl_unlock();
544 return DEFAULT_PRB_RETIRE_TOV;
545 }
546 err = __ethtool_get_link_ksettings(dev, &ecmd);
547 rtnl_unlock();
548 if (err)
549 return DEFAULT_PRB_RETIRE_TOV;
550
551 /* If the link speed is so slow you don't really
552 * need to worry about perf anyways
553 */
554 if (ecmd.base.speed < SPEED_1000 ||
555 ecmd.base.speed == SPEED_UNKNOWN)
556 return DEFAULT_PRB_RETIRE_TOV;
557
558 div = ecmd.base.speed / 1000;
559 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
560
561 if (div)
562 mbits /= div;
563
564 if (div)
565 return mbits + 1;
566 return mbits;
567 }
568
prb_init_ft_ops(struct tpacket_kbdq_core * p1,union tpacket_req_u * req_u)569 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
570 union tpacket_req_u *req_u)
571 {
572 p1->feature_req_word = req_u->req3.tp_feature_req_word;
573 }
574
init_prb_bdqc(struct packet_sock * po,struct packet_ring_buffer * rb,struct pgv * pg_vec,union tpacket_req_u * req_u)575 static void init_prb_bdqc(struct packet_sock *po,
576 struct packet_ring_buffer *rb,
577 struct pgv *pg_vec,
578 union tpacket_req_u *req_u)
579 {
580 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
581 struct tpacket_block_desc *pbd;
582
583 memset(p1, 0x0, sizeof(*p1));
584
585 p1->knxt_seq_num = 1;
586 p1->pkbdq = pg_vec;
587 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
588 p1->pkblk_start = pg_vec[0].buffer;
589 p1->kblk_size = req_u->req3.tp_block_size;
590 p1->knum_blocks = req_u->req3.tp_block_nr;
591 p1->hdrlen = po->tp_hdrlen;
592 p1->version = po->tp_version;
593 p1->last_kactive_blk_num = 0;
594 po->stats.stats3.tp_freeze_q_cnt = 0;
595 if (req_u->req3.tp_retire_blk_tov)
596 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
597 else
598 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
599 req_u->req3.tp_block_size);
600 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
601 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
602 rwlock_init(&p1->blk_fill_in_prog_lock);
603
604 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
605 prb_init_ft_ops(p1, req_u);
606 prb_setup_retire_blk_timer(po);
607 prb_open_block(p1, pbd);
608 }
609
610 /* Do NOT update the last_blk_num first.
611 * Assumes sk_buff_head lock is held.
612 */
_prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core * pkc)613 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
614 {
615 mod_timer(&pkc->retire_blk_timer,
616 jiffies + pkc->tov_in_jiffies);
617 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
618 }
619
620 /*
621 * Timer logic:
622 * 1) We refresh the timer only when we open a block.
623 * By doing this we don't waste cycles refreshing the timer
624 * on packet-by-packet basis.
625 *
626 * With a 1MB block-size, on a 1Gbps line, it will take
627 * i) ~8 ms to fill a block + ii) memcpy etc.
628 * In this cut we are not accounting for the memcpy time.
629 *
630 * So, if the user sets the 'tmo' to 10ms then the timer
631 * will never fire while the block is still getting filled
632 * (which is what we want). However, the user could choose
633 * to close a block early and that's fine.
634 *
635 * But when the timer does fire, we check whether or not to refresh it.
636 * Since the tmo granularity is in msecs, it is not too expensive
637 * to refresh the timer, lets say every '8' msecs.
638 * Either the user can set the 'tmo' or we can derive it based on
639 * a) line-speed and b) block-size.
640 * prb_calc_retire_blk_tmo() calculates the tmo.
641 *
642 */
prb_retire_rx_blk_timer_expired(struct timer_list * t)643 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
644 {
645 struct packet_sock *po =
646 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
647 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
648 unsigned int frozen;
649 struct tpacket_block_desc *pbd;
650
651 spin_lock(&po->sk.sk_receive_queue.lock);
652
653 frozen = prb_queue_frozen(pkc);
654 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
655
656 if (unlikely(pkc->delete_blk_timer))
657 goto out;
658
659 /* We only need to plug the race when the block is partially filled.
660 * tpacket_rcv:
661 * lock(); increment BLOCK_NUM_PKTS; unlock()
662 * copy_bits() is in progress ...
663 * timer fires on other cpu:
664 * we can't retire the current block because copy_bits
665 * is in progress.
666 *
667 */
668 if (BLOCK_NUM_PKTS(pbd)) {
669 /* Waiting for skb_copy_bits to finish... */
670 write_lock(&pkc->blk_fill_in_prog_lock);
671 write_unlock(&pkc->blk_fill_in_prog_lock);
672 }
673
674 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
675 if (!frozen) {
676 if (!BLOCK_NUM_PKTS(pbd)) {
677 /* An empty block. Just refresh the timer. */
678 goto refresh_timer;
679 }
680 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
681 if (!prb_dispatch_next_block(pkc, po))
682 goto refresh_timer;
683 else
684 goto out;
685 } else {
686 /* Case 1. Queue was frozen because user-space was
687 * lagging behind.
688 */
689 if (prb_curr_blk_in_use(pbd)) {
690 /*
691 * Ok, user-space is still behind.
692 * So just refresh the timer.
693 */
694 goto refresh_timer;
695 } else {
696 /* Case 2. queue was frozen,user-space caught up,
697 * now the link went idle && the timer fired.
698 * We don't have a block to close.So we open this
699 * block and restart the timer.
700 * opening a block thaws the queue,restarts timer
701 * Thawing/timer-refresh is a side effect.
702 */
703 prb_open_block(pkc, pbd);
704 goto out;
705 }
706 }
707 }
708
709 refresh_timer:
710 _prb_refresh_rx_retire_blk_timer(pkc);
711
712 out:
713 spin_unlock(&po->sk.sk_receive_queue.lock);
714 }
715
prb_flush_block(struct tpacket_kbdq_core * pkc1,struct tpacket_block_desc * pbd1,__u32 status)716 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
717 struct tpacket_block_desc *pbd1, __u32 status)
718 {
719 /* Flush everything minus the block header */
720
721 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
722 u8 *start, *end;
723
724 start = (u8 *)pbd1;
725
726 /* Skip the block header(we know header WILL fit in 4K) */
727 start += PAGE_SIZE;
728
729 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
730 for (; start < end; start += PAGE_SIZE)
731 flush_dcache_page(pgv_to_page(start));
732
733 smp_wmb();
734 #endif
735
736 /* Now update the block status. */
737
738 BLOCK_STATUS(pbd1) = status;
739
740 /* Flush the block header */
741
742 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
743 start = (u8 *)pbd1;
744 flush_dcache_page(pgv_to_page(start));
745
746 smp_wmb();
747 #endif
748 }
749
750 /*
751 * Side effect:
752 *
753 * 1) flush the block
754 * 2) Increment active_blk_num
755 *
756 * Note:We DONT refresh the timer on purpose.
757 * Because almost always the next block will be opened.
758 */
prb_close_block(struct tpacket_kbdq_core * pkc1,struct tpacket_block_desc * pbd1,struct packet_sock * po,unsigned int stat)759 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
760 struct tpacket_block_desc *pbd1,
761 struct packet_sock *po, unsigned int stat)
762 {
763 __u32 status = TP_STATUS_USER | stat;
764
765 struct tpacket3_hdr *last_pkt;
766 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
767 struct sock *sk = &po->sk;
768
769 if (atomic_read(&po->tp_drops))
770 status |= TP_STATUS_LOSING;
771
772 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
773 last_pkt->tp_next_offset = 0;
774
775 /* Get the ts of the last pkt */
776 if (BLOCK_NUM_PKTS(pbd1)) {
777 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
778 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
779 } else {
780 /* Ok, we tmo'd - so get the current time.
781 *
782 * It shouldn't really happen as we don't close empty
783 * blocks. See prb_retire_rx_blk_timer_expired().
784 */
785 struct timespec64 ts;
786 ktime_get_real_ts64(&ts);
787 h1->ts_last_pkt.ts_sec = ts.tv_sec;
788 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
789 }
790
791 smp_wmb();
792
793 /* Flush the block */
794 prb_flush_block(pkc1, pbd1, status);
795
796 sk->sk_data_ready(sk);
797
798 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
799 }
800
prb_thaw_queue(struct tpacket_kbdq_core * pkc)801 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
802 {
803 pkc->reset_pending_on_curr_blk = 0;
804 }
805
806 /*
807 * Side effect of opening a block:
808 *
809 * 1) prb_queue is thawed.
810 * 2) retire_blk_timer is refreshed.
811 *
812 */
prb_open_block(struct tpacket_kbdq_core * pkc1,struct tpacket_block_desc * pbd1)813 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
814 struct tpacket_block_desc *pbd1)
815 {
816 struct timespec64 ts;
817 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
818
819 smp_rmb();
820
821 /* We could have just memset this but we will lose the
822 * flexibility of making the priv area sticky
823 */
824
825 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
826 BLOCK_NUM_PKTS(pbd1) = 0;
827 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
828
829 ktime_get_real_ts64(&ts);
830
831 h1->ts_first_pkt.ts_sec = ts.tv_sec;
832 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
833
834 pkc1->pkblk_start = (char *)pbd1;
835 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
836
837 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
838 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
839
840 pbd1->version = pkc1->version;
841 pkc1->prev = pkc1->nxt_offset;
842 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
843
844 prb_thaw_queue(pkc1);
845 _prb_refresh_rx_retire_blk_timer(pkc1);
846
847 smp_wmb();
848 }
849
850 /*
851 * Queue freeze logic:
852 * 1) Assume tp_block_nr = 8 blocks.
853 * 2) At time 't0', user opens Rx ring.
854 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
855 * 4) user-space is either sleeping or processing block '0'.
856 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
857 * it will close block-7,loop around and try to fill block '0'.
858 * call-flow:
859 * __packet_lookup_frame_in_block
860 * prb_retire_current_block()
861 * prb_dispatch_next_block()
862 * |->(BLOCK_STATUS == USER) evaluates to true
863 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
864 * 6) Now there are two cases:
865 * 6.1) Link goes idle right after the queue is frozen.
866 * But remember, the last open_block() refreshed the timer.
867 * When this timer expires,it will refresh itself so that we can
868 * re-open block-0 in near future.
869 * 6.2) Link is busy and keeps on receiving packets. This is a simple
870 * case and __packet_lookup_frame_in_block will check if block-0
871 * is free and can now be re-used.
872 */
prb_freeze_queue(struct tpacket_kbdq_core * pkc,struct packet_sock * po)873 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
874 struct packet_sock *po)
875 {
876 pkc->reset_pending_on_curr_blk = 1;
877 po->stats.stats3.tp_freeze_q_cnt++;
878 }
879
880 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
881
882 /*
883 * If the next block is free then we will dispatch it
884 * and return a good offset.
885 * Else, we will freeze the queue.
886 * So, caller must check the return value.
887 */
prb_dispatch_next_block(struct tpacket_kbdq_core * pkc,struct packet_sock * po)888 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
889 struct packet_sock *po)
890 {
891 struct tpacket_block_desc *pbd;
892
893 smp_rmb();
894
895 /* 1. Get current block num */
896 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
897
898 /* 2. If this block is currently in_use then freeze the queue */
899 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
900 prb_freeze_queue(pkc, po);
901 return NULL;
902 }
903
904 /*
905 * 3.
906 * open this block and return the offset where the first packet
907 * needs to get stored.
908 */
909 prb_open_block(pkc, pbd);
910 return (void *)pkc->nxt_offset;
911 }
912
prb_retire_current_block(struct tpacket_kbdq_core * pkc,struct packet_sock * po,unsigned int status)913 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
914 struct packet_sock *po, unsigned int status)
915 {
916 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
917
918 /* retire/close the current block */
919 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
920 /*
921 * Plug the case where copy_bits() is in progress on
922 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
923 * have space to copy the pkt in the current block and
924 * called prb_retire_current_block()
925 *
926 * We don't need to worry about the TMO case because
927 * the timer-handler already handled this case.
928 */
929 if (!(status & TP_STATUS_BLK_TMO)) {
930 /* Waiting for skb_copy_bits to finish... */
931 write_lock(&pkc->blk_fill_in_prog_lock);
932 write_unlock(&pkc->blk_fill_in_prog_lock);
933 }
934 prb_close_block(pkc, pbd, po, status);
935 return;
936 }
937 }
938
prb_curr_blk_in_use(struct tpacket_block_desc * pbd)939 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
940 {
941 return TP_STATUS_USER & BLOCK_STATUS(pbd);
942 }
943
prb_queue_frozen(struct tpacket_kbdq_core * pkc)944 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
945 {
946 return pkc->reset_pending_on_curr_blk;
947 }
948
prb_clear_blk_fill_status(struct packet_ring_buffer * rb)949 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
950 __releases(&pkc->blk_fill_in_prog_lock)
951 {
952 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
953
954 read_unlock(&pkc->blk_fill_in_prog_lock);
955 }
956
prb_fill_rxhash(struct tpacket_kbdq_core * pkc,struct tpacket3_hdr * ppd)957 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
958 struct tpacket3_hdr *ppd)
959 {
960 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
961 }
962
prb_clear_rxhash(struct tpacket_kbdq_core * pkc,struct tpacket3_hdr * ppd)963 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
964 struct tpacket3_hdr *ppd)
965 {
966 ppd->hv1.tp_rxhash = 0;
967 }
968
prb_fill_vlan_info(struct tpacket_kbdq_core * pkc,struct tpacket3_hdr * ppd)969 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
970 struct tpacket3_hdr *ppd)
971 {
972 if (skb_vlan_tag_present(pkc->skb)) {
973 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
974 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
975 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
976 } else {
977 ppd->hv1.tp_vlan_tci = 0;
978 ppd->hv1.tp_vlan_tpid = 0;
979 ppd->tp_status = TP_STATUS_AVAILABLE;
980 }
981 }
982
prb_run_all_ft_ops(struct tpacket_kbdq_core * pkc,struct tpacket3_hdr * ppd)983 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
984 struct tpacket3_hdr *ppd)
985 {
986 ppd->hv1.tp_padding = 0;
987 prb_fill_vlan_info(pkc, ppd);
988
989 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
990 prb_fill_rxhash(pkc, ppd);
991 else
992 prb_clear_rxhash(pkc, ppd);
993 }
994
prb_fill_curr_block(char * curr,struct tpacket_kbdq_core * pkc,struct tpacket_block_desc * pbd,unsigned int len)995 static void prb_fill_curr_block(char *curr,
996 struct tpacket_kbdq_core *pkc,
997 struct tpacket_block_desc *pbd,
998 unsigned int len)
999 __acquires(&pkc->blk_fill_in_prog_lock)
1000 {
1001 struct tpacket3_hdr *ppd;
1002
1003 ppd = (struct tpacket3_hdr *)curr;
1004 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1005 pkc->prev = curr;
1006 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1007 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1008 BLOCK_NUM_PKTS(pbd) += 1;
1009 read_lock(&pkc->blk_fill_in_prog_lock);
1010 prb_run_all_ft_ops(pkc, ppd);
1011 }
1012
1013 /* Assumes caller has the sk->rx_queue.lock */
__packet_lookup_frame_in_block(struct packet_sock * po,struct sk_buff * skb,unsigned int len)1014 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1015 struct sk_buff *skb,
1016 unsigned int len
1017 )
1018 {
1019 struct tpacket_kbdq_core *pkc;
1020 struct tpacket_block_desc *pbd;
1021 char *curr, *end;
1022
1023 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1024 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1025
1026 /* Queue is frozen when user space is lagging behind */
1027 if (prb_queue_frozen(pkc)) {
1028 /*
1029 * Check if that last block which caused the queue to freeze,
1030 * is still in_use by user-space.
1031 */
1032 if (prb_curr_blk_in_use(pbd)) {
1033 /* Can't record this packet */
1034 return NULL;
1035 } else {
1036 /*
1037 * Ok, the block was released by user-space.
1038 * Now let's open that block.
1039 * opening a block also thaws the queue.
1040 * Thawing is a side effect.
1041 */
1042 prb_open_block(pkc, pbd);
1043 }
1044 }
1045
1046 smp_mb();
1047 curr = pkc->nxt_offset;
1048 pkc->skb = skb;
1049 end = (char *)pbd + pkc->kblk_size;
1050
1051 /* first try the current block */
1052 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1053 prb_fill_curr_block(curr, pkc, pbd, len);
1054 return (void *)curr;
1055 }
1056
1057 /* Ok, close the current block */
1058 prb_retire_current_block(pkc, po, 0);
1059
1060 /* Now, try to dispatch the next block */
1061 curr = (char *)prb_dispatch_next_block(pkc, po);
1062 if (curr) {
1063 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1064 prb_fill_curr_block(curr, pkc, pbd, len);
1065 return (void *)curr;
1066 }
1067
1068 /*
1069 * No free blocks are available.user_space hasn't caught up yet.
1070 * Queue was just frozen and now this packet will get dropped.
1071 */
1072 return NULL;
1073 }
1074
packet_current_rx_frame(struct packet_sock * po,struct sk_buff * skb,int status,unsigned int len)1075 static void *packet_current_rx_frame(struct packet_sock *po,
1076 struct sk_buff *skb,
1077 int status, unsigned int len)
1078 {
1079 char *curr = NULL;
1080 switch (po->tp_version) {
1081 case TPACKET_V1:
1082 case TPACKET_V2:
1083 curr = packet_lookup_frame(po, &po->rx_ring,
1084 po->rx_ring.head, status);
1085 return curr;
1086 case TPACKET_V3:
1087 return __packet_lookup_frame_in_block(po, skb, len);
1088 default:
1089 WARN(1, "TPACKET version not supported\n");
1090 BUG();
1091 return NULL;
1092 }
1093 }
1094
prb_lookup_block(const struct packet_sock * po,const struct packet_ring_buffer * rb,unsigned int idx,int status)1095 static void *prb_lookup_block(const struct packet_sock *po,
1096 const struct packet_ring_buffer *rb,
1097 unsigned int idx,
1098 int status)
1099 {
1100 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1101 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1102
1103 if (status != BLOCK_STATUS(pbd))
1104 return NULL;
1105 return pbd;
1106 }
1107
prb_previous_blk_num(struct packet_ring_buffer * rb)1108 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1109 {
1110 unsigned int prev;
1111 if (rb->prb_bdqc.kactive_blk_num)
1112 prev = rb->prb_bdqc.kactive_blk_num-1;
1113 else
1114 prev = rb->prb_bdqc.knum_blocks-1;
1115 return prev;
1116 }
1117
1118 /* Assumes caller has held the rx_queue.lock */
__prb_previous_block(struct packet_sock * po,struct packet_ring_buffer * rb,int status)1119 static void *__prb_previous_block(struct packet_sock *po,
1120 struct packet_ring_buffer *rb,
1121 int status)
1122 {
1123 unsigned int previous = prb_previous_blk_num(rb);
1124 return prb_lookup_block(po, rb, previous, status);
1125 }
1126
packet_previous_rx_frame(struct packet_sock * po,struct packet_ring_buffer * rb,int status)1127 static void *packet_previous_rx_frame(struct packet_sock *po,
1128 struct packet_ring_buffer *rb,
1129 int status)
1130 {
1131 if (po->tp_version <= TPACKET_V2)
1132 return packet_previous_frame(po, rb, status);
1133
1134 return __prb_previous_block(po, rb, status);
1135 }
1136
packet_increment_rx_head(struct packet_sock * po,struct packet_ring_buffer * rb)1137 static void packet_increment_rx_head(struct packet_sock *po,
1138 struct packet_ring_buffer *rb)
1139 {
1140 switch (po->tp_version) {
1141 case TPACKET_V1:
1142 case TPACKET_V2:
1143 return packet_increment_head(rb);
1144 case TPACKET_V3:
1145 default:
1146 WARN(1, "TPACKET version not supported.\n");
1147 BUG();
1148 return;
1149 }
1150 }
1151
packet_previous_frame(struct packet_sock * po,struct packet_ring_buffer * rb,int status)1152 static void *packet_previous_frame(struct packet_sock *po,
1153 struct packet_ring_buffer *rb,
1154 int status)
1155 {
1156 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1157 return packet_lookup_frame(po, rb, previous, status);
1158 }
1159
packet_increment_head(struct packet_ring_buffer * buff)1160 static void packet_increment_head(struct packet_ring_buffer *buff)
1161 {
1162 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1163 }
1164
packet_inc_pending(struct packet_ring_buffer * rb)1165 static void packet_inc_pending(struct packet_ring_buffer *rb)
1166 {
1167 this_cpu_inc(*rb->pending_refcnt);
1168 }
1169
packet_dec_pending(struct packet_ring_buffer * rb)1170 static void packet_dec_pending(struct packet_ring_buffer *rb)
1171 {
1172 this_cpu_dec(*rb->pending_refcnt);
1173 }
1174
packet_read_pending(const struct packet_ring_buffer * rb)1175 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1176 {
1177 unsigned int refcnt = 0;
1178 int cpu;
1179
1180 /* We don't use pending refcount in rx_ring. */
1181 if (rb->pending_refcnt == NULL)
1182 return 0;
1183
1184 for_each_possible_cpu(cpu)
1185 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1186
1187 return refcnt;
1188 }
1189
packet_alloc_pending(struct packet_sock * po)1190 static int packet_alloc_pending(struct packet_sock *po)
1191 {
1192 po->rx_ring.pending_refcnt = NULL;
1193
1194 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1195 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1196 return -ENOBUFS;
1197
1198 return 0;
1199 }
1200
packet_free_pending(struct packet_sock * po)1201 static void packet_free_pending(struct packet_sock *po)
1202 {
1203 free_percpu(po->tx_ring.pending_refcnt);
1204 }
1205
1206 #define ROOM_POW_OFF 2
1207 #define ROOM_NONE 0x0
1208 #define ROOM_LOW 0x1
1209 #define ROOM_NORMAL 0x2
1210
__tpacket_has_room(const struct packet_sock * po,int pow_off)1211 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1212 {
1213 int idx, len;
1214
1215 len = READ_ONCE(po->rx_ring.frame_max) + 1;
1216 idx = READ_ONCE(po->rx_ring.head);
1217 if (pow_off)
1218 idx += len >> pow_off;
1219 if (idx >= len)
1220 idx -= len;
1221 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1222 }
1223
__tpacket_v3_has_room(const struct packet_sock * po,int pow_off)1224 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1225 {
1226 int idx, len;
1227
1228 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1229 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1230 if (pow_off)
1231 idx += len >> pow_off;
1232 if (idx >= len)
1233 idx -= len;
1234 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1235 }
1236
__packet_rcv_has_room(const struct packet_sock * po,const struct sk_buff * skb)1237 static int __packet_rcv_has_room(const struct packet_sock *po,
1238 const struct sk_buff *skb)
1239 {
1240 const struct sock *sk = &po->sk;
1241 int ret = ROOM_NONE;
1242
1243 if (po->prot_hook.func != tpacket_rcv) {
1244 int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1245 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1246 - (skb ? skb->truesize : 0);
1247
1248 if (avail > (rcvbuf >> ROOM_POW_OFF))
1249 return ROOM_NORMAL;
1250 else if (avail > 0)
1251 return ROOM_LOW;
1252 else
1253 return ROOM_NONE;
1254 }
1255
1256 if (po->tp_version == TPACKET_V3) {
1257 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1258 ret = ROOM_NORMAL;
1259 else if (__tpacket_v3_has_room(po, 0))
1260 ret = ROOM_LOW;
1261 } else {
1262 if (__tpacket_has_room(po, ROOM_POW_OFF))
1263 ret = ROOM_NORMAL;
1264 else if (__tpacket_has_room(po, 0))
1265 ret = ROOM_LOW;
1266 }
1267
1268 return ret;
1269 }
1270
packet_rcv_has_room(struct packet_sock * po,struct sk_buff * skb)1271 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1272 {
1273 int pressure, ret;
1274
1275 ret = __packet_rcv_has_room(po, skb);
1276 pressure = ret != ROOM_NORMAL;
1277
1278 if (READ_ONCE(po->pressure) != pressure)
1279 WRITE_ONCE(po->pressure, pressure);
1280
1281 return ret;
1282 }
1283
packet_rcv_try_clear_pressure(struct packet_sock * po)1284 static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1285 {
1286 if (READ_ONCE(po->pressure) &&
1287 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1288 WRITE_ONCE(po->pressure, 0);
1289 }
1290
packet_sock_destruct(struct sock * sk)1291 static void packet_sock_destruct(struct sock *sk)
1292 {
1293 skb_queue_purge(&sk->sk_error_queue);
1294
1295 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1296 WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1297
1298 if (!sock_flag(sk, SOCK_DEAD)) {
1299 pr_err("Attempt to release alive packet socket: %p\n", sk);
1300 return;
1301 }
1302
1303 sk_refcnt_debug_dec(sk);
1304 }
1305
fanout_flow_is_huge(struct packet_sock * po,struct sk_buff * skb)1306 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1307 {
1308 u32 *history = po->rollover->history;
1309 u32 victim, rxhash;
1310 int i, count = 0;
1311
1312 rxhash = skb_get_hash(skb);
1313 for (i = 0; i < ROLLOVER_HLEN; i++)
1314 if (READ_ONCE(history[i]) == rxhash)
1315 count++;
1316
1317 victim = prandom_u32() % ROLLOVER_HLEN;
1318
1319 /* Avoid dirtying the cache line if possible */
1320 if (READ_ONCE(history[victim]) != rxhash)
1321 WRITE_ONCE(history[victim], rxhash);
1322
1323 return count > (ROLLOVER_HLEN >> 1);
1324 }
1325
fanout_demux_hash(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1326 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1327 struct sk_buff *skb,
1328 unsigned int num)
1329 {
1330 return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1331 }
1332
fanout_demux_lb(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1333 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1334 struct sk_buff *skb,
1335 unsigned int num)
1336 {
1337 unsigned int val = atomic_inc_return(&f->rr_cur);
1338
1339 return val % num;
1340 }
1341
fanout_demux_cpu(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1342 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1343 struct sk_buff *skb,
1344 unsigned int num)
1345 {
1346 return smp_processor_id() % num;
1347 }
1348
fanout_demux_rnd(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1349 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1350 struct sk_buff *skb,
1351 unsigned int num)
1352 {
1353 return prandom_u32_max(num);
1354 }
1355
fanout_demux_rollover(struct packet_fanout * f,struct sk_buff * skb,unsigned int idx,bool try_self,unsigned int num)1356 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1357 struct sk_buff *skb,
1358 unsigned int idx, bool try_self,
1359 unsigned int num)
1360 {
1361 struct packet_sock *po, *po_next, *po_skip = NULL;
1362 unsigned int i, j, room = ROOM_NONE;
1363
1364 po = pkt_sk(rcu_dereference(f->arr[idx]));
1365
1366 if (try_self) {
1367 room = packet_rcv_has_room(po, skb);
1368 if (room == ROOM_NORMAL ||
1369 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1370 return idx;
1371 po_skip = po;
1372 }
1373
1374 i = j = min_t(int, po->rollover->sock, num - 1);
1375 do {
1376 po_next = pkt_sk(rcu_dereference(f->arr[i]));
1377 if (po_next != po_skip && !READ_ONCE(po_next->pressure) &&
1378 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1379 if (i != j)
1380 po->rollover->sock = i;
1381 atomic_long_inc(&po->rollover->num);
1382 if (room == ROOM_LOW)
1383 atomic_long_inc(&po->rollover->num_huge);
1384 return i;
1385 }
1386
1387 if (++i == num)
1388 i = 0;
1389 } while (i != j);
1390
1391 atomic_long_inc(&po->rollover->num_failed);
1392 return idx;
1393 }
1394
fanout_demux_qm(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1395 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1396 struct sk_buff *skb,
1397 unsigned int num)
1398 {
1399 return skb_get_queue_mapping(skb) % num;
1400 }
1401
fanout_demux_bpf(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1402 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1403 struct sk_buff *skb,
1404 unsigned int num)
1405 {
1406 struct bpf_prog *prog;
1407 unsigned int ret = 0;
1408
1409 rcu_read_lock();
1410 prog = rcu_dereference(f->bpf_prog);
1411 if (prog)
1412 ret = bpf_prog_run_clear_cb(prog, skb) % num;
1413 rcu_read_unlock();
1414
1415 return ret;
1416 }
1417
fanout_has_flag(struct packet_fanout * f,u16 flag)1418 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1419 {
1420 return f->flags & (flag >> 8);
1421 }
1422
packet_rcv_fanout(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)1423 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1424 struct packet_type *pt, struct net_device *orig_dev)
1425 {
1426 struct packet_fanout *f = pt->af_packet_priv;
1427 unsigned int num = READ_ONCE(f->num_members);
1428 struct net *net = read_pnet(&f->net);
1429 struct packet_sock *po;
1430 unsigned int idx;
1431
1432 if (!net_eq(dev_net(dev), net) || !num) {
1433 kfree_skb(skb);
1434 return 0;
1435 }
1436
1437 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1438 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1439 if (!skb)
1440 return 0;
1441 }
1442 switch (f->type) {
1443 case PACKET_FANOUT_HASH:
1444 default:
1445 idx = fanout_demux_hash(f, skb, num);
1446 break;
1447 case PACKET_FANOUT_LB:
1448 idx = fanout_demux_lb(f, skb, num);
1449 break;
1450 case PACKET_FANOUT_CPU:
1451 idx = fanout_demux_cpu(f, skb, num);
1452 break;
1453 case PACKET_FANOUT_RND:
1454 idx = fanout_demux_rnd(f, skb, num);
1455 break;
1456 case PACKET_FANOUT_QM:
1457 idx = fanout_demux_qm(f, skb, num);
1458 break;
1459 case PACKET_FANOUT_ROLLOVER:
1460 idx = fanout_demux_rollover(f, skb, 0, false, num);
1461 break;
1462 case PACKET_FANOUT_CBPF:
1463 case PACKET_FANOUT_EBPF:
1464 idx = fanout_demux_bpf(f, skb, num);
1465 break;
1466 }
1467
1468 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1469 idx = fanout_demux_rollover(f, skb, idx, true, num);
1470
1471 po = pkt_sk(rcu_dereference(f->arr[idx]));
1472 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1473 }
1474
1475 DEFINE_MUTEX(fanout_mutex);
1476 EXPORT_SYMBOL_GPL(fanout_mutex);
1477 static LIST_HEAD(fanout_list);
1478 static u16 fanout_next_id;
1479
__fanout_link(struct sock * sk,struct packet_sock * po)1480 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1481 {
1482 struct packet_fanout *f = po->fanout;
1483
1484 spin_lock(&f->lock);
1485 rcu_assign_pointer(f->arr[f->num_members], sk);
1486 smp_wmb();
1487 f->num_members++;
1488 if (f->num_members == 1)
1489 dev_add_pack(&f->prot_hook);
1490 spin_unlock(&f->lock);
1491 }
1492
__fanout_unlink(struct sock * sk,struct packet_sock * po)1493 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1494 {
1495 struct packet_fanout *f = po->fanout;
1496 int i;
1497
1498 spin_lock(&f->lock);
1499 for (i = 0; i < f->num_members; i++) {
1500 if (rcu_dereference_protected(f->arr[i],
1501 lockdep_is_held(&f->lock)) == sk)
1502 break;
1503 }
1504 BUG_ON(i >= f->num_members);
1505 rcu_assign_pointer(f->arr[i],
1506 rcu_dereference_protected(f->arr[f->num_members - 1],
1507 lockdep_is_held(&f->lock)));
1508 f->num_members--;
1509 if (f->num_members == 0)
1510 __dev_remove_pack(&f->prot_hook);
1511 spin_unlock(&f->lock);
1512 }
1513
match_fanout_group(struct packet_type * ptype,struct sock * sk)1514 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1515 {
1516 if (sk->sk_family != PF_PACKET)
1517 return false;
1518
1519 return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1520 }
1521
fanout_init_data(struct packet_fanout * f)1522 static void fanout_init_data(struct packet_fanout *f)
1523 {
1524 switch (f->type) {
1525 case PACKET_FANOUT_LB:
1526 atomic_set(&f->rr_cur, 0);
1527 break;
1528 case PACKET_FANOUT_CBPF:
1529 case PACKET_FANOUT_EBPF:
1530 RCU_INIT_POINTER(f->bpf_prog, NULL);
1531 break;
1532 }
1533 }
1534
__fanout_set_data_bpf(struct packet_fanout * f,struct bpf_prog * new)1535 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1536 {
1537 struct bpf_prog *old;
1538
1539 spin_lock(&f->lock);
1540 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1541 rcu_assign_pointer(f->bpf_prog, new);
1542 spin_unlock(&f->lock);
1543
1544 if (old) {
1545 synchronize_net();
1546 bpf_prog_destroy(old);
1547 }
1548 }
1549
fanout_set_data_cbpf(struct packet_sock * po,sockptr_t data,unsigned int len)1550 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data,
1551 unsigned int len)
1552 {
1553 struct bpf_prog *new;
1554 struct sock_fprog fprog;
1555 int ret;
1556
1557 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1558 return -EPERM;
1559
1560 ret = copy_bpf_fprog_from_user(&fprog, data, len);
1561 if (ret)
1562 return ret;
1563
1564 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1565 if (ret)
1566 return ret;
1567
1568 __fanout_set_data_bpf(po->fanout, new);
1569 return 0;
1570 }
1571
fanout_set_data_ebpf(struct packet_sock * po,sockptr_t data,unsigned int len)1572 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data,
1573 unsigned int len)
1574 {
1575 struct bpf_prog *new;
1576 u32 fd;
1577
1578 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1579 return -EPERM;
1580 if (len != sizeof(fd))
1581 return -EINVAL;
1582 if (copy_from_sockptr(&fd, data, len))
1583 return -EFAULT;
1584
1585 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1586 if (IS_ERR(new))
1587 return PTR_ERR(new);
1588
1589 __fanout_set_data_bpf(po->fanout, new);
1590 return 0;
1591 }
1592
fanout_set_data(struct packet_sock * po,sockptr_t data,unsigned int len)1593 static int fanout_set_data(struct packet_sock *po, sockptr_t data,
1594 unsigned int len)
1595 {
1596 switch (po->fanout->type) {
1597 case PACKET_FANOUT_CBPF:
1598 return fanout_set_data_cbpf(po, data, len);
1599 case PACKET_FANOUT_EBPF:
1600 return fanout_set_data_ebpf(po, data, len);
1601 default:
1602 return -EINVAL;
1603 }
1604 }
1605
fanout_release_data(struct packet_fanout * f)1606 static void fanout_release_data(struct packet_fanout *f)
1607 {
1608 switch (f->type) {
1609 case PACKET_FANOUT_CBPF:
1610 case PACKET_FANOUT_EBPF:
1611 __fanout_set_data_bpf(f, NULL);
1612 }
1613 }
1614
__fanout_id_is_free(struct sock * sk,u16 candidate_id)1615 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1616 {
1617 struct packet_fanout *f;
1618
1619 list_for_each_entry(f, &fanout_list, list) {
1620 if (f->id == candidate_id &&
1621 read_pnet(&f->net) == sock_net(sk)) {
1622 return false;
1623 }
1624 }
1625 return true;
1626 }
1627
fanout_find_new_id(struct sock * sk,u16 * new_id)1628 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1629 {
1630 u16 id = fanout_next_id;
1631
1632 do {
1633 if (__fanout_id_is_free(sk, id)) {
1634 *new_id = id;
1635 fanout_next_id = id + 1;
1636 return true;
1637 }
1638
1639 id++;
1640 } while (id != fanout_next_id);
1641
1642 return false;
1643 }
1644
fanout_add(struct sock * sk,struct fanout_args * args)1645 static int fanout_add(struct sock *sk, struct fanout_args *args)
1646 {
1647 struct packet_rollover *rollover = NULL;
1648 struct packet_sock *po = pkt_sk(sk);
1649 u16 type_flags = args->type_flags;
1650 struct packet_fanout *f, *match;
1651 u8 type = type_flags & 0xff;
1652 u8 flags = type_flags >> 8;
1653 u16 id = args->id;
1654 int err;
1655
1656 switch (type) {
1657 case PACKET_FANOUT_ROLLOVER:
1658 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1659 return -EINVAL;
1660 break;
1661 case PACKET_FANOUT_HASH:
1662 case PACKET_FANOUT_LB:
1663 case PACKET_FANOUT_CPU:
1664 case PACKET_FANOUT_RND:
1665 case PACKET_FANOUT_QM:
1666 case PACKET_FANOUT_CBPF:
1667 case PACKET_FANOUT_EBPF:
1668 break;
1669 default:
1670 return -EINVAL;
1671 }
1672
1673 mutex_lock(&fanout_mutex);
1674
1675 err = -EALREADY;
1676 if (po->fanout)
1677 goto out;
1678
1679 if (type == PACKET_FANOUT_ROLLOVER ||
1680 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1681 err = -ENOMEM;
1682 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1683 if (!rollover)
1684 goto out;
1685 atomic_long_set(&rollover->num, 0);
1686 atomic_long_set(&rollover->num_huge, 0);
1687 atomic_long_set(&rollover->num_failed, 0);
1688 }
1689
1690 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1691 if (id != 0) {
1692 err = -EINVAL;
1693 goto out;
1694 }
1695 if (!fanout_find_new_id(sk, &id)) {
1696 err = -ENOMEM;
1697 goto out;
1698 }
1699 /* ephemeral flag for the first socket in the group: drop it */
1700 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1701 }
1702
1703 match = NULL;
1704 list_for_each_entry(f, &fanout_list, list) {
1705 if (f->id == id &&
1706 read_pnet(&f->net) == sock_net(sk)) {
1707 match = f;
1708 break;
1709 }
1710 }
1711 err = -EINVAL;
1712 if (match) {
1713 if (match->flags != flags)
1714 goto out;
1715 if (args->max_num_members &&
1716 args->max_num_members != match->max_num_members)
1717 goto out;
1718 } else {
1719 if (args->max_num_members > PACKET_FANOUT_MAX)
1720 goto out;
1721 if (!args->max_num_members)
1722 /* legacy PACKET_FANOUT_MAX */
1723 args->max_num_members = 256;
1724 err = -ENOMEM;
1725 match = kvzalloc(struct_size(match, arr, args->max_num_members),
1726 GFP_KERNEL);
1727 if (!match)
1728 goto out;
1729 write_pnet(&match->net, sock_net(sk));
1730 match->id = id;
1731 match->type = type;
1732 match->flags = flags;
1733 INIT_LIST_HEAD(&match->list);
1734 spin_lock_init(&match->lock);
1735 refcount_set(&match->sk_ref, 0);
1736 fanout_init_data(match);
1737 match->prot_hook.type = po->prot_hook.type;
1738 match->prot_hook.dev = po->prot_hook.dev;
1739 match->prot_hook.func = packet_rcv_fanout;
1740 match->prot_hook.af_packet_priv = match;
1741 match->prot_hook.id_match = match_fanout_group;
1742 match->max_num_members = args->max_num_members;
1743 list_add(&match->list, &fanout_list);
1744 }
1745 err = -EINVAL;
1746
1747 spin_lock(&po->bind_lock);
1748 if (po->running &&
1749 match->type == type &&
1750 match->prot_hook.type == po->prot_hook.type &&
1751 match->prot_hook.dev == po->prot_hook.dev) {
1752 err = -ENOSPC;
1753 if (refcount_read(&match->sk_ref) < match->max_num_members) {
1754 __dev_remove_pack(&po->prot_hook);
1755 po->fanout = match;
1756 po->rollover = rollover;
1757 rollover = NULL;
1758 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1759 __fanout_link(sk, po);
1760 err = 0;
1761 }
1762 }
1763 spin_unlock(&po->bind_lock);
1764
1765 if (err && !refcount_read(&match->sk_ref)) {
1766 list_del(&match->list);
1767 kvfree(match);
1768 }
1769
1770 out:
1771 kfree(rollover);
1772 mutex_unlock(&fanout_mutex);
1773 return err;
1774 }
1775
1776 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1777 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1778 * It is the responsibility of the caller to call fanout_release_data() and
1779 * free the returned packet_fanout (after synchronize_net())
1780 */
fanout_release(struct sock * sk)1781 static struct packet_fanout *fanout_release(struct sock *sk)
1782 {
1783 struct packet_sock *po = pkt_sk(sk);
1784 struct packet_fanout *f;
1785
1786 mutex_lock(&fanout_mutex);
1787 f = po->fanout;
1788 if (f) {
1789 po->fanout = NULL;
1790
1791 if (refcount_dec_and_test(&f->sk_ref))
1792 list_del(&f->list);
1793 else
1794 f = NULL;
1795 }
1796 mutex_unlock(&fanout_mutex);
1797
1798 return f;
1799 }
1800
packet_extra_vlan_len_allowed(const struct net_device * dev,struct sk_buff * skb)1801 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1802 struct sk_buff *skb)
1803 {
1804 /* Earlier code assumed this would be a VLAN pkt, double-check
1805 * this now that we have the actual packet in hand. We can only
1806 * do this check on Ethernet devices.
1807 */
1808 if (unlikely(dev->type != ARPHRD_ETHER))
1809 return false;
1810
1811 skb_reset_mac_header(skb);
1812 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1813 }
1814
1815 static const struct proto_ops packet_ops;
1816
1817 static const struct proto_ops packet_ops_spkt;
1818
packet_rcv_spkt(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)1819 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1820 struct packet_type *pt, struct net_device *orig_dev)
1821 {
1822 struct sock *sk;
1823 struct sockaddr_pkt *spkt;
1824
1825 /*
1826 * When we registered the protocol we saved the socket in the data
1827 * field for just this event.
1828 */
1829
1830 sk = pt->af_packet_priv;
1831
1832 /*
1833 * Yank back the headers [hope the device set this
1834 * right or kerboom...]
1835 *
1836 * Incoming packets have ll header pulled,
1837 * push it back.
1838 *
1839 * For outgoing ones skb->data == skb_mac_header(skb)
1840 * so that this procedure is noop.
1841 */
1842
1843 if (skb->pkt_type == PACKET_LOOPBACK)
1844 goto out;
1845
1846 if (!net_eq(dev_net(dev), sock_net(sk)))
1847 goto out;
1848
1849 skb = skb_share_check(skb, GFP_ATOMIC);
1850 if (skb == NULL)
1851 goto oom;
1852
1853 /* drop any routing info */
1854 skb_dst_drop(skb);
1855
1856 /* drop conntrack reference */
1857 nf_reset_ct(skb);
1858
1859 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1860
1861 skb_push(skb, skb->data - skb_mac_header(skb));
1862
1863 /*
1864 * The SOCK_PACKET socket receives _all_ frames.
1865 */
1866
1867 spkt->spkt_family = dev->type;
1868 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1869 spkt->spkt_protocol = skb->protocol;
1870
1871 /*
1872 * Charge the memory to the socket. This is done specifically
1873 * to prevent sockets using all the memory up.
1874 */
1875
1876 if (sock_queue_rcv_skb(sk, skb) == 0)
1877 return 0;
1878
1879 out:
1880 kfree_skb(skb);
1881 oom:
1882 return 0;
1883 }
1884
packet_parse_headers(struct sk_buff * skb,struct socket * sock)1885 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1886 {
1887 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1888 sock->type == SOCK_RAW) {
1889 skb_reset_mac_header(skb);
1890 skb->protocol = dev_parse_header_protocol(skb);
1891 }
1892
1893 skb_probe_transport_header(skb);
1894 }
1895
1896 /*
1897 * Output a raw packet to a device layer. This bypasses all the other
1898 * protocol layers and you must therefore supply it with a complete frame
1899 */
1900
packet_sendmsg_spkt(struct socket * sock,struct msghdr * msg,size_t len)1901 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1902 size_t len)
1903 {
1904 struct sock *sk = sock->sk;
1905 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1906 struct sk_buff *skb = NULL;
1907 struct net_device *dev;
1908 struct sockcm_cookie sockc;
1909 __be16 proto = 0;
1910 int err;
1911 int extra_len = 0;
1912
1913 /*
1914 * Get and verify the address.
1915 */
1916
1917 if (saddr) {
1918 if (msg->msg_namelen < sizeof(struct sockaddr))
1919 return -EINVAL;
1920 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1921 proto = saddr->spkt_protocol;
1922 } else
1923 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1924
1925 /*
1926 * Find the device first to size check it
1927 */
1928
1929 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1930 retry:
1931 rcu_read_lock();
1932 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1933 err = -ENODEV;
1934 if (dev == NULL)
1935 goto out_unlock;
1936
1937 err = -ENETDOWN;
1938 if (!(dev->flags & IFF_UP))
1939 goto out_unlock;
1940
1941 /*
1942 * You may not queue a frame bigger than the mtu. This is the lowest level
1943 * raw protocol and you must do your own fragmentation at this level.
1944 */
1945
1946 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1947 if (!netif_supports_nofcs(dev)) {
1948 err = -EPROTONOSUPPORT;
1949 goto out_unlock;
1950 }
1951 extra_len = 4; /* We're doing our own CRC */
1952 }
1953
1954 err = -EMSGSIZE;
1955 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1956 goto out_unlock;
1957
1958 if (!skb) {
1959 size_t reserved = LL_RESERVED_SPACE(dev);
1960 int tlen = dev->needed_tailroom;
1961 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1962
1963 rcu_read_unlock();
1964 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1965 if (skb == NULL)
1966 return -ENOBUFS;
1967 /* FIXME: Save some space for broken drivers that write a hard
1968 * header at transmission time by themselves. PPP is the notable
1969 * one here. This should really be fixed at the driver level.
1970 */
1971 skb_reserve(skb, reserved);
1972 skb_reset_network_header(skb);
1973
1974 /* Try to align data part correctly */
1975 if (hhlen) {
1976 skb->data -= hhlen;
1977 skb->tail -= hhlen;
1978 if (len < hhlen)
1979 skb_reset_network_header(skb);
1980 }
1981 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1982 if (err)
1983 goto out_free;
1984 goto retry;
1985 }
1986
1987 if (!dev_validate_header(dev, skb->data, len)) {
1988 err = -EINVAL;
1989 goto out_unlock;
1990 }
1991 if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1992 !packet_extra_vlan_len_allowed(dev, skb)) {
1993 err = -EMSGSIZE;
1994 goto out_unlock;
1995 }
1996
1997 sockcm_init(&sockc, sk);
1998 if (msg->msg_controllen) {
1999 err = sock_cmsg_send(sk, msg, &sockc);
2000 if (unlikely(err))
2001 goto out_unlock;
2002 }
2003
2004 skb->protocol = proto;
2005 skb->dev = dev;
2006 skb->priority = sk->sk_priority;
2007 skb->mark = sk->sk_mark;
2008 skb->tstamp = sockc.transmit_time;
2009
2010 skb_setup_tx_timestamp(skb, sockc.tsflags);
2011
2012 if (unlikely(extra_len == 4))
2013 skb->no_fcs = 1;
2014
2015 packet_parse_headers(skb, sock);
2016
2017 dev_queue_xmit(skb);
2018 rcu_read_unlock();
2019 return len;
2020
2021 out_unlock:
2022 rcu_read_unlock();
2023 out_free:
2024 kfree_skb(skb);
2025 return err;
2026 }
2027
run_filter(struct sk_buff * skb,const struct sock * sk,unsigned int res)2028 static unsigned int run_filter(struct sk_buff *skb,
2029 const struct sock *sk,
2030 unsigned int res)
2031 {
2032 struct sk_filter *filter;
2033
2034 rcu_read_lock();
2035 filter = rcu_dereference(sk->sk_filter);
2036 if (filter != NULL)
2037 res = bpf_prog_run_clear_cb(filter->prog, skb);
2038 rcu_read_unlock();
2039
2040 return res;
2041 }
2042
packet_rcv_vnet(struct msghdr * msg,const struct sk_buff * skb,size_t * len)2043 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2044 size_t *len)
2045 {
2046 struct virtio_net_hdr vnet_hdr;
2047
2048 if (*len < sizeof(vnet_hdr))
2049 return -EINVAL;
2050 *len -= sizeof(vnet_hdr);
2051
2052 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0))
2053 return -EINVAL;
2054
2055 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2056 }
2057
2058 /*
2059 * This function makes lazy skb cloning in hope that most of packets
2060 * are discarded by BPF.
2061 *
2062 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2063 * and skb->cb are mangled. It works because (and until) packets
2064 * falling here are owned by current CPU. Output packets are cloned
2065 * by dev_queue_xmit_nit(), input packets are processed by net_bh
2066 * sequentially, so that if we return skb to original state on exit,
2067 * we will not harm anyone.
2068 */
2069
packet_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)2070 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2071 struct packet_type *pt, struct net_device *orig_dev)
2072 {
2073 struct sock *sk;
2074 struct sockaddr_ll *sll;
2075 struct packet_sock *po;
2076 u8 *skb_head = skb->data;
2077 int skb_len = skb->len;
2078 unsigned int snaplen, res;
2079 bool is_drop_n_account = false;
2080
2081 if (skb->pkt_type == PACKET_LOOPBACK)
2082 goto drop;
2083
2084 sk = pt->af_packet_priv;
2085 po = pkt_sk(sk);
2086
2087 if (!net_eq(dev_net(dev), sock_net(sk)))
2088 goto drop;
2089
2090 skb->dev = dev;
2091
2092 if (dev_has_header(dev)) {
2093 /* The device has an explicit notion of ll header,
2094 * exported to higher levels.
2095 *
2096 * Otherwise, the device hides details of its frame
2097 * structure, so that corresponding packet head is
2098 * never delivered to user.
2099 */
2100 if (sk->sk_type != SOCK_DGRAM)
2101 skb_push(skb, skb->data - skb_mac_header(skb));
2102 else if (skb->pkt_type == PACKET_OUTGOING) {
2103 /* Special case: outgoing packets have ll header at head */
2104 skb_pull(skb, skb_network_offset(skb));
2105 }
2106 }
2107
2108 snaplen = skb->len;
2109
2110 res = run_filter(skb, sk, snaplen);
2111 if (!res)
2112 goto drop_n_restore;
2113 if (snaplen > res)
2114 snaplen = res;
2115
2116 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2117 goto drop_n_acct;
2118
2119 if (skb_shared(skb)) {
2120 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2121 if (nskb == NULL)
2122 goto drop_n_acct;
2123
2124 if (skb_head != skb->data) {
2125 skb->data = skb_head;
2126 skb->len = skb_len;
2127 }
2128 consume_skb(skb);
2129 skb = nskb;
2130 }
2131
2132 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2133
2134 sll = &PACKET_SKB_CB(skb)->sa.ll;
2135 sll->sll_hatype = dev->type;
2136 sll->sll_pkttype = skb->pkt_type;
2137 if (unlikely(po->origdev))
2138 sll->sll_ifindex = orig_dev->ifindex;
2139 else
2140 sll->sll_ifindex = dev->ifindex;
2141
2142 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2143
2144 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2145 * Use their space for storing the original skb length.
2146 */
2147 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2148
2149 if (pskb_trim(skb, snaplen))
2150 goto drop_n_acct;
2151
2152 skb_set_owner_r(skb, sk);
2153 skb->dev = NULL;
2154 skb_dst_drop(skb);
2155
2156 /* drop conntrack reference */
2157 nf_reset_ct(skb);
2158
2159 spin_lock(&sk->sk_receive_queue.lock);
2160 po->stats.stats1.tp_packets++;
2161 sock_skb_set_dropcount(sk, skb);
2162 __skb_queue_tail(&sk->sk_receive_queue, skb);
2163 spin_unlock(&sk->sk_receive_queue.lock);
2164 sk->sk_data_ready(sk);
2165 return 0;
2166
2167 drop_n_acct:
2168 is_drop_n_account = true;
2169 atomic_inc(&po->tp_drops);
2170 atomic_inc(&sk->sk_drops);
2171
2172 drop_n_restore:
2173 if (skb_head != skb->data && skb_shared(skb)) {
2174 skb->data = skb_head;
2175 skb->len = skb_len;
2176 }
2177 drop:
2178 if (!is_drop_n_account)
2179 consume_skb(skb);
2180 else
2181 kfree_skb(skb);
2182 return 0;
2183 }
2184
tpacket_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)2185 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2186 struct packet_type *pt, struct net_device *orig_dev)
2187 {
2188 struct sock *sk;
2189 struct packet_sock *po;
2190 struct sockaddr_ll *sll;
2191 union tpacket_uhdr h;
2192 u8 *skb_head = skb->data;
2193 int skb_len = skb->len;
2194 unsigned int snaplen, res;
2195 unsigned long status = TP_STATUS_USER;
2196 unsigned short macoff, hdrlen;
2197 unsigned int netoff;
2198 struct sk_buff *copy_skb = NULL;
2199 struct timespec64 ts;
2200 __u32 ts_status;
2201 bool is_drop_n_account = false;
2202 unsigned int slot_id = 0;
2203 bool do_vnet = false;
2204
2205 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2206 * We may add members to them until current aligned size without forcing
2207 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2208 */
2209 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2210 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2211
2212 if (skb->pkt_type == PACKET_LOOPBACK)
2213 goto drop;
2214
2215 sk = pt->af_packet_priv;
2216 po = pkt_sk(sk);
2217
2218 if (!net_eq(dev_net(dev), sock_net(sk)))
2219 goto drop;
2220
2221 if (dev_has_header(dev)) {
2222 if (sk->sk_type != SOCK_DGRAM)
2223 skb_push(skb, skb->data - skb_mac_header(skb));
2224 else if (skb->pkt_type == PACKET_OUTGOING) {
2225 /* Special case: outgoing packets have ll header at head */
2226 skb_pull(skb, skb_network_offset(skb));
2227 }
2228 }
2229
2230 snaplen = skb->len;
2231
2232 res = run_filter(skb, sk, snaplen);
2233 if (!res)
2234 goto drop_n_restore;
2235
2236 /* If we are flooded, just give up */
2237 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2238 atomic_inc(&po->tp_drops);
2239 goto drop_n_restore;
2240 }
2241
2242 if (skb->ip_summed == CHECKSUM_PARTIAL)
2243 status |= TP_STATUS_CSUMNOTREADY;
2244 else if (skb->pkt_type != PACKET_OUTGOING &&
2245 (skb->ip_summed == CHECKSUM_COMPLETE ||
2246 skb_csum_unnecessary(skb)))
2247 status |= TP_STATUS_CSUM_VALID;
2248
2249 if (snaplen > res)
2250 snaplen = res;
2251
2252 if (sk->sk_type == SOCK_DGRAM) {
2253 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2254 po->tp_reserve;
2255 } else {
2256 unsigned int maclen = skb_network_offset(skb);
2257 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2258 (maclen < 16 ? 16 : maclen)) +
2259 po->tp_reserve;
2260 if (po->has_vnet_hdr) {
2261 netoff += sizeof(struct virtio_net_hdr);
2262 do_vnet = true;
2263 }
2264 macoff = netoff - maclen;
2265 }
2266 if (netoff > USHRT_MAX) {
2267 atomic_inc(&po->tp_drops);
2268 goto drop_n_restore;
2269 }
2270 if (po->tp_version <= TPACKET_V2) {
2271 if (macoff + snaplen > po->rx_ring.frame_size) {
2272 if (po->copy_thresh &&
2273 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2274 if (skb_shared(skb)) {
2275 copy_skb = skb_clone(skb, GFP_ATOMIC);
2276 } else {
2277 copy_skb = skb_get(skb);
2278 skb_head = skb->data;
2279 }
2280 if (copy_skb)
2281 skb_set_owner_r(copy_skb, sk);
2282 }
2283 snaplen = po->rx_ring.frame_size - macoff;
2284 if ((int)snaplen < 0) {
2285 snaplen = 0;
2286 do_vnet = false;
2287 }
2288 }
2289 } else if (unlikely(macoff + snaplen >
2290 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2291 u32 nval;
2292
2293 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2294 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2295 snaplen, nval, macoff);
2296 snaplen = nval;
2297 if (unlikely((int)snaplen < 0)) {
2298 snaplen = 0;
2299 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2300 do_vnet = false;
2301 }
2302 }
2303 spin_lock(&sk->sk_receive_queue.lock);
2304 h.raw = packet_current_rx_frame(po, skb,
2305 TP_STATUS_KERNEL, (macoff+snaplen));
2306 if (!h.raw)
2307 goto drop_n_account;
2308
2309 if (po->tp_version <= TPACKET_V2) {
2310 slot_id = po->rx_ring.head;
2311 if (test_bit(slot_id, po->rx_ring.rx_owner_map))
2312 goto drop_n_account;
2313 __set_bit(slot_id, po->rx_ring.rx_owner_map);
2314 }
2315
2316 if (do_vnet &&
2317 virtio_net_hdr_from_skb(skb, h.raw + macoff -
2318 sizeof(struct virtio_net_hdr),
2319 vio_le(), true, 0)) {
2320 if (po->tp_version == TPACKET_V3)
2321 prb_clear_blk_fill_status(&po->rx_ring);
2322 goto drop_n_account;
2323 }
2324
2325 if (po->tp_version <= TPACKET_V2) {
2326 packet_increment_rx_head(po, &po->rx_ring);
2327 /*
2328 * LOSING will be reported till you read the stats,
2329 * because it's COR - Clear On Read.
2330 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2331 * at packet level.
2332 */
2333 if (atomic_read(&po->tp_drops))
2334 status |= TP_STATUS_LOSING;
2335 }
2336
2337 po->stats.stats1.tp_packets++;
2338 if (copy_skb) {
2339 status |= TP_STATUS_COPY;
2340 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2341 }
2342 spin_unlock(&sk->sk_receive_queue.lock);
2343
2344 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2345
2346 /* Always timestamp; prefer an existing software timestamp taken
2347 * closer to the time of capture.
2348 */
2349 ts_status = tpacket_get_timestamp(skb, &ts,
2350 po->tp_tstamp | SOF_TIMESTAMPING_SOFTWARE);
2351 if (!ts_status)
2352 ktime_get_real_ts64(&ts);
2353
2354 status |= ts_status;
2355
2356 switch (po->tp_version) {
2357 case TPACKET_V1:
2358 h.h1->tp_len = skb->len;
2359 h.h1->tp_snaplen = snaplen;
2360 h.h1->tp_mac = macoff;
2361 h.h1->tp_net = netoff;
2362 h.h1->tp_sec = ts.tv_sec;
2363 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2364 hdrlen = sizeof(*h.h1);
2365 break;
2366 case TPACKET_V2:
2367 h.h2->tp_len = skb->len;
2368 h.h2->tp_snaplen = snaplen;
2369 h.h2->tp_mac = macoff;
2370 h.h2->tp_net = netoff;
2371 h.h2->tp_sec = ts.tv_sec;
2372 h.h2->tp_nsec = ts.tv_nsec;
2373 if (skb_vlan_tag_present(skb)) {
2374 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2375 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2376 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2377 } else {
2378 h.h2->tp_vlan_tci = 0;
2379 h.h2->tp_vlan_tpid = 0;
2380 }
2381 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2382 hdrlen = sizeof(*h.h2);
2383 break;
2384 case TPACKET_V3:
2385 /* tp_nxt_offset,vlan are already populated above.
2386 * So DONT clear those fields here
2387 */
2388 h.h3->tp_status |= status;
2389 h.h3->tp_len = skb->len;
2390 h.h3->tp_snaplen = snaplen;
2391 h.h3->tp_mac = macoff;
2392 h.h3->tp_net = netoff;
2393 h.h3->tp_sec = ts.tv_sec;
2394 h.h3->tp_nsec = ts.tv_nsec;
2395 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2396 hdrlen = sizeof(*h.h3);
2397 break;
2398 default:
2399 BUG();
2400 }
2401
2402 sll = h.raw + TPACKET_ALIGN(hdrlen);
2403 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2404 sll->sll_family = AF_PACKET;
2405 sll->sll_hatype = dev->type;
2406 sll->sll_protocol = skb->protocol;
2407 sll->sll_pkttype = skb->pkt_type;
2408 if (unlikely(po->origdev))
2409 sll->sll_ifindex = orig_dev->ifindex;
2410 else
2411 sll->sll_ifindex = dev->ifindex;
2412
2413 smp_mb();
2414
2415 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2416 if (po->tp_version <= TPACKET_V2) {
2417 u8 *start, *end;
2418
2419 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2420 macoff + snaplen);
2421
2422 for (start = h.raw; start < end; start += PAGE_SIZE)
2423 flush_dcache_page(pgv_to_page(start));
2424 }
2425 smp_wmb();
2426 #endif
2427
2428 if (po->tp_version <= TPACKET_V2) {
2429 spin_lock(&sk->sk_receive_queue.lock);
2430 __packet_set_status(po, h.raw, status);
2431 __clear_bit(slot_id, po->rx_ring.rx_owner_map);
2432 spin_unlock(&sk->sk_receive_queue.lock);
2433 sk->sk_data_ready(sk);
2434 } else if (po->tp_version == TPACKET_V3) {
2435 prb_clear_blk_fill_status(&po->rx_ring);
2436 }
2437
2438 drop_n_restore:
2439 if (skb_head != skb->data && skb_shared(skb)) {
2440 skb->data = skb_head;
2441 skb->len = skb_len;
2442 }
2443 drop:
2444 if (!is_drop_n_account)
2445 consume_skb(skb);
2446 else
2447 kfree_skb(skb);
2448 return 0;
2449
2450 drop_n_account:
2451 spin_unlock(&sk->sk_receive_queue.lock);
2452 atomic_inc(&po->tp_drops);
2453 is_drop_n_account = true;
2454
2455 sk->sk_data_ready(sk);
2456 kfree_skb(copy_skb);
2457 goto drop_n_restore;
2458 }
2459
tpacket_destruct_skb(struct sk_buff * skb)2460 static void tpacket_destruct_skb(struct sk_buff *skb)
2461 {
2462 struct packet_sock *po = pkt_sk(skb->sk);
2463
2464 if (likely(po->tx_ring.pg_vec)) {
2465 void *ph;
2466 __u32 ts;
2467
2468 ph = skb_zcopy_get_nouarg(skb);
2469 packet_dec_pending(&po->tx_ring);
2470
2471 ts = __packet_set_timestamp(po, ph, skb);
2472 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2473
2474 if (!packet_read_pending(&po->tx_ring))
2475 complete(&po->skb_completion);
2476 }
2477
2478 sock_wfree(skb);
2479 }
2480
__packet_snd_vnet_parse(struct virtio_net_hdr * vnet_hdr,size_t len)2481 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2482 {
2483 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2484 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2485 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2486 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2487 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2488 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2489 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2490
2491 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2492 return -EINVAL;
2493
2494 return 0;
2495 }
2496
packet_snd_vnet_parse(struct msghdr * msg,size_t * len,struct virtio_net_hdr * vnet_hdr)2497 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2498 struct virtio_net_hdr *vnet_hdr)
2499 {
2500 if (*len < sizeof(*vnet_hdr))
2501 return -EINVAL;
2502 *len -= sizeof(*vnet_hdr);
2503
2504 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2505 return -EFAULT;
2506
2507 return __packet_snd_vnet_parse(vnet_hdr, *len);
2508 }
2509
tpacket_fill_skb(struct packet_sock * po,struct sk_buff * skb,void * frame,struct net_device * dev,void * data,int tp_len,__be16 proto,unsigned char * addr,int hlen,int copylen,const struct sockcm_cookie * sockc)2510 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2511 void *frame, struct net_device *dev, void *data, int tp_len,
2512 __be16 proto, unsigned char *addr, int hlen, int copylen,
2513 const struct sockcm_cookie *sockc)
2514 {
2515 union tpacket_uhdr ph;
2516 int to_write, offset, len, nr_frags, len_max;
2517 struct socket *sock = po->sk.sk_socket;
2518 struct page *page;
2519 int err;
2520
2521 ph.raw = frame;
2522
2523 skb->protocol = proto;
2524 skb->dev = dev;
2525 skb->priority = po->sk.sk_priority;
2526 skb->mark = po->sk.sk_mark;
2527 skb->tstamp = sockc->transmit_time;
2528 skb_setup_tx_timestamp(skb, sockc->tsflags);
2529 skb_zcopy_set_nouarg(skb, ph.raw);
2530
2531 skb_reserve(skb, hlen);
2532 skb_reset_network_header(skb);
2533
2534 to_write = tp_len;
2535
2536 if (sock->type == SOCK_DGRAM) {
2537 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2538 NULL, tp_len);
2539 if (unlikely(err < 0))
2540 return -EINVAL;
2541 } else if (copylen) {
2542 int hdrlen = min_t(int, copylen, tp_len);
2543
2544 skb_push(skb, dev->hard_header_len);
2545 skb_put(skb, copylen - dev->hard_header_len);
2546 err = skb_store_bits(skb, 0, data, hdrlen);
2547 if (unlikely(err))
2548 return err;
2549 if (!dev_validate_header(dev, skb->data, hdrlen))
2550 return -EINVAL;
2551
2552 data += hdrlen;
2553 to_write -= hdrlen;
2554 }
2555
2556 offset = offset_in_page(data);
2557 len_max = PAGE_SIZE - offset;
2558 len = ((to_write > len_max) ? len_max : to_write);
2559
2560 skb->data_len = to_write;
2561 skb->len += to_write;
2562 skb->truesize += to_write;
2563 refcount_add(to_write, &po->sk.sk_wmem_alloc);
2564
2565 while (likely(to_write)) {
2566 nr_frags = skb_shinfo(skb)->nr_frags;
2567
2568 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2569 pr_err("Packet exceed the number of skb frags(%lu)\n",
2570 MAX_SKB_FRAGS);
2571 return -EFAULT;
2572 }
2573
2574 page = pgv_to_page(data);
2575 data += len;
2576 flush_dcache_page(page);
2577 get_page(page);
2578 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2579 to_write -= len;
2580 offset = 0;
2581 len_max = PAGE_SIZE;
2582 len = ((to_write > len_max) ? len_max : to_write);
2583 }
2584
2585 packet_parse_headers(skb, sock);
2586
2587 return tp_len;
2588 }
2589
tpacket_parse_header(struct packet_sock * po,void * frame,int size_max,void ** data)2590 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2591 int size_max, void **data)
2592 {
2593 union tpacket_uhdr ph;
2594 int tp_len, off;
2595
2596 ph.raw = frame;
2597
2598 switch (po->tp_version) {
2599 case TPACKET_V3:
2600 if (ph.h3->tp_next_offset != 0) {
2601 pr_warn_once("variable sized slot not supported");
2602 return -EINVAL;
2603 }
2604 tp_len = ph.h3->tp_len;
2605 break;
2606 case TPACKET_V2:
2607 tp_len = ph.h2->tp_len;
2608 break;
2609 default:
2610 tp_len = ph.h1->tp_len;
2611 break;
2612 }
2613 if (unlikely(tp_len > size_max)) {
2614 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2615 return -EMSGSIZE;
2616 }
2617
2618 if (unlikely(po->tp_tx_has_off)) {
2619 int off_min, off_max;
2620
2621 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2622 off_max = po->tx_ring.frame_size - tp_len;
2623 if (po->sk.sk_type == SOCK_DGRAM) {
2624 switch (po->tp_version) {
2625 case TPACKET_V3:
2626 off = ph.h3->tp_net;
2627 break;
2628 case TPACKET_V2:
2629 off = ph.h2->tp_net;
2630 break;
2631 default:
2632 off = ph.h1->tp_net;
2633 break;
2634 }
2635 } else {
2636 switch (po->tp_version) {
2637 case TPACKET_V3:
2638 off = ph.h3->tp_mac;
2639 break;
2640 case TPACKET_V2:
2641 off = ph.h2->tp_mac;
2642 break;
2643 default:
2644 off = ph.h1->tp_mac;
2645 break;
2646 }
2647 }
2648 if (unlikely((off < off_min) || (off_max < off)))
2649 return -EINVAL;
2650 } else {
2651 off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2652 }
2653
2654 *data = frame + off;
2655 return tp_len;
2656 }
2657
tpacket_snd(struct packet_sock * po,struct msghdr * msg)2658 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2659 {
2660 struct sk_buff *skb = NULL;
2661 struct net_device *dev;
2662 struct virtio_net_hdr *vnet_hdr = NULL;
2663 struct sockcm_cookie sockc;
2664 __be16 proto;
2665 int err, reserve = 0;
2666 void *ph;
2667 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2668 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2669 unsigned char *addr = NULL;
2670 int tp_len, size_max;
2671 void *data;
2672 int len_sum = 0;
2673 int status = TP_STATUS_AVAILABLE;
2674 int hlen, tlen, copylen = 0;
2675 long timeo = 0;
2676
2677 mutex_lock(&po->pg_vec_lock);
2678
2679 /* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2680 * we need to confirm it under protection of pg_vec_lock.
2681 */
2682 if (unlikely(!po->tx_ring.pg_vec)) {
2683 err = -EBUSY;
2684 goto out;
2685 }
2686 if (likely(saddr == NULL)) {
2687 dev = packet_cached_dev_get(po);
2688 proto = READ_ONCE(po->num);
2689 } else {
2690 err = -EINVAL;
2691 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2692 goto out;
2693 if (msg->msg_namelen < (saddr->sll_halen
2694 + offsetof(struct sockaddr_ll,
2695 sll_addr)))
2696 goto out;
2697 proto = saddr->sll_protocol;
2698 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2699 if (po->sk.sk_socket->type == SOCK_DGRAM) {
2700 if (dev && msg->msg_namelen < dev->addr_len +
2701 offsetof(struct sockaddr_ll, sll_addr))
2702 goto out_put;
2703 addr = saddr->sll_addr;
2704 }
2705 }
2706
2707 err = -ENXIO;
2708 if (unlikely(dev == NULL))
2709 goto out;
2710 err = -ENETDOWN;
2711 if (unlikely(!(dev->flags & IFF_UP)))
2712 goto out_put;
2713
2714 sockcm_init(&sockc, &po->sk);
2715 if (msg->msg_controllen) {
2716 err = sock_cmsg_send(&po->sk, msg, &sockc);
2717 if (unlikely(err))
2718 goto out_put;
2719 }
2720
2721 if (po->sk.sk_socket->type == SOCK_RAW)
2722 reserve = dev->hard_header_len;
2723 size_max = po->tx_ring.frame_size
2724 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2725
2726 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2727 size_max = dev->mtu + reserve + VLAN_HLEN;
2728
2729 reinit_completion(&po->skb_completion);
2730
2731 do {
2732 ph = packet_current_frame(po, &po->tx_ring,
2733 TP_STATUS_SEND_REQUEST);
2734 if (unlikely(ph == NULL)) {
2735 if (need_wait && skb) {
2736 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT);
2737 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo);
2738 if (timeo <= 0) {
2739 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2740 goto out_put;
2741 }
2742 }
2743 /* check for additional frames */
2744 continue;
2745 }
2746
2747 skb = NULL;
2748 tp_len = tpacket_parse_header(po, ph, size_max, &data);
2749 if (tp_len < 0)
2750 goto tpacket_error;
2751
2752 status = TP_STATUS_SEND_REQUEST;
2753 hlen = LL_RESERVED_SPACE(dev);
2754 tlen = dev->needed_tailroom;
2755 if (po->has_vnet_hdr) {
2756 vnet_hdr = data;
2757 data += sizeof(*vnet_hdr);
2758 tp_len -= sizeof(*vnet_hdr);
2759 if (tp_len < 0 ||
2760 __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2761 tp_len = -EINVAL;
2762 goto tpacket_error;
2763 }
2764 copylen = __virtio16_to_cpu(vio_le(),
2765 vnet_hdr->hdr_len);
2766 }
2767 copylen = max_t(int, copylen, dev->hard_header_len);
2768 skb = sock_alloc_send_skb(&po->sk,
2769 hlen + tlen + sizeof(struct sockaddr_ll) +
2770 (copylen - dev->hard_header_len),
2771 !need_wait, &err);
2772
2773 if (unlikely(skb == NULL)) {
2774 /* we assume the socket was initially writeable ... */
2775 if (likely(len_sum > 0))
2776 err = len_sum;
2777 goto out_status;
2778 }
2779 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2780 addr, hlen, copylen, &sockc);
2781 if (likely(tp_len >= 0) &&
2782 tp_len > dev->mtu + reserve &&
2783 !po->has_vnet_hdr &&
2784 !packet_extra_vlan_len_allowed(dev, skb))
2785 tp_len = -EMSGSIZE;
2786
2787 if (unlikely(tp_len < 0)) {
2788 tpacket_error:
2789 if (po->tp_loss) {
2790 __packet_set_status(po, ph,
2791 TP_STATUS_AVAILABLE);
2792 packet_increment_head(&po->tx_ring);
2793 kfree_skb(skb);
2794 continue;
2795 } else {
2796 status = TP_STATUS_WRONG_FORMAT;
2797 err = tp_len;
2798 goto out_status;
2799 }
2800 }
2801
2802 if (po->has_vnet_hdr) {
2803 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) {
2804 tp_len = -EINVAL;
2805 goto tpacket_error;
2806 }
2807 virtio_net_hdr_set_proto(skb, vnet_hdr);
2808 }
2809
2810 skb->destructor = tpacket_destruct_skb;
2811 __packet_set_status(po, ph, TP_STATUS_SENDING);
2812 packet_inc_pending(&po->tx_ring);
2813
2814 status = TP_STATUS_SEND_REQUEST;
2815 err = po->xmit(skb);
2816 if (unlikely(err > 0)) {
2817 err = net_xmit_errno(err);
2818 if (err && __packet_get_status(po, ph) ==
2819 TP_STATUS_AVAILABLE) {
2820 /* skb was destructed already */
2821 skb = NULL;
2822 goto out_status;
2823 }
2824 /*
2825 * skb was dropped but not destructed yet;
2826 * let's treat it like congestion or err < 0
2827 */
2828 err = 0;
2829 }
2830 packet_increment_head(&po->tx_ring);
2831 len_sum += tp_len;
2832 } while (likely((ph != NULL) ||
2833 /* Note: packet_read_pending() might be slow if we have
2834 * to call it as it's per_cpu variable, but in fast-path
2835 * we already short-circuit the loop with the first
2836 * condition, and luckily don't have to go that path
2837 * anyway.
2838 */
2839 (need_wait && packet_read_pending(&po->tx_ring))));
2840
2841 err = len_sum;
2842 goto out_put;
2843
2844 out_status:
2845 __packet_set_status(po, ph, status);
2846 kfree_skb(skb);
2847 out_put:
2848 dev_put(dev);
2849 out:
2850 mutex_unlock(&po->pg_vec_lock);
2851 return err;
2852 }
2853
packet_alloc_skb(struct sock * sk,size_t prepad,size_t reserve,size_t len,size_t linear,int noblock,int * err)2854 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2855 size_t reserve, size_t len,
2856 size_t linear, int noblock,
2857 int *err)
2858 {
2859 struct sk_buff *skb;
2860
2861 /* Under a page? Don't bother with paged skb. */
2862 if (prepad + len < PAGE_SIZE || !linear)
2863 linear = len;
2864
2865 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2866 err, 0);
2867 if (!skb)
2868 return NULL;
2869
2870 skb_reserve(skb, reserve);
2871 skb_put(skb, linear);
2872 skb->data_len = len - linear;
2873 skb->len += len - linear;
2874
2875 return skb;
2876 }
2877
packet_snd(struct socket * sock,struct msghdr * msg,size_t len)2878 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2879 {
2880 struct sock *sk = sock->sk;
2881 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2882 struct sk_buff *skb;
2883 struct net_device *dev;
2884 __be16 proto;
2885 unsigned char *addr = NULL;
2886 int err, reserve = 0;
2887 struct sockcm_cookie sockc;
2888 struct virtio_net_hdr vnet_hdr = { 0 };
2889 int offset = 0;
2890 struct packet_sock *po = pkt_sk(sk);
2891 bool has_vnet_hdr = false;
2892 int hlen, tlen, linear;
2893 int extra_len = 0;
2894
2895 /*
2896 * Get and verify the address.
2897 */
2898
2899 if (likely(saddr == NULL)) {
2900 dev = packet_cached_dev_get(po);
2901 proto = READ_ONCE(po->num);
2902 } else {
2903 err = -EINVAL;
2904 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2905 goto out;
2906 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2907 goto out;
2908 proto = saddr->sll_protocol;
2909 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2910 if (sock->type == SOCK_DGRAM) {
2911 if (dev && msg->msg_namelen < dev->addr_len +
2912 offsetof(struct sockaddr_ll, sll_addr))
2913 goto out_unlock;
2914 addr = saddr->sll_addr;
2915 }
2916 }
2917
2918 err = -ENXIO;
2919 if (unlikely(dev == NULL))
2920 goto out_unlock;
2921 err = -ENETDOWN;
2922 if (unlikely(!(dev->flags & IFF_UP)))
2923 goto out_unlock;
2924
2925 sockcm_init(&sockc, sk);
2926 sockc.mark = sk->sk_mark;
2927 if (msg->msg_controllen) {
2928 err = sock_cmsg_send(sk, msg, &sockc);
2929 if (unlikely(err))
2930 goto out_unlock;
2931 }
2932
2933 if (sock->type == SOCK_RAW)
2934 reserve = dev->hard_header_len;
2935 if (po->has_vnet_hdr) {
2936 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2937 if (err)
2938 goto out_unlock;
2939 has_vnet_hdr = true;
2940 }
2941
2942 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2943 if (!netif_supports_nofcs(dev)) {
2944 err = -EPROTONOSUPPORT;
2945 goto out_unlock;
2946 }
2947 extra_len = 4; /* We're doing our own CRC */
2948 }
2949
2950 err = -EMSGSIZE;
2951 if (!vnet_hdr.gso_type &&
2952 (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2953 goto out_unlock;
2954
2955 err = -ENOBUFS;
2956 hlen = LL_RESERVED_SPACE(dev);
2957 tlen = dev->needed_tailroom;
2958 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2959 linear = max(linear, min_t(int, len, dev->hard_header_len));
2960 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2961 msg->msg_flags & MSG_DONTWAIT, &err);
2962 if (skb == NULL)
2963 goto out_unlock;
2964
2965 skb_reset_network_header(skb);
2966
2967 err = -EINVAL;
2968 if (sock->type == SOCK_DGRAM) {
2969 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2970 if (unlikely(offset < 0))
2971 goto out_free;
2972 } else if (reserve) {
2973 skb_reserve(skb, -reserve);
2974 if (len < reserve + sizeof(struct ipv6hdr) &&
2975 dev->min_header_len != dev->hard_header_len)
2976 skb_reset_network_header(skb);
2977 }
2978
2979 /* Returns -EFAULT on error */
2980 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2981 if (err)
2982 goto out_free;
2983
2984 if (sock->type == SOCK_RAW &&
2985 !dev_validate_header(dev, skb->data, len)) {
2986 err = -EINVAL;
2987 goto out_free;
2988 }
2989
2990 skb_setup_tx_timestamp(skb, sockc.tsflags);
2991
2992 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2993 !packet_extra_vlan_len_allowed(dev, skb)) {
2994 err = -EMSGSIZE;
2995 goto out_free;
2996 }
2997
2998 skb->protocol = proto;
2999 skb->dev = dev;
3000 skb->priority = sk->sk_priority;
3001 skb->mark = sockc.mark;
3002 skb->tstamp = sockc.transmit_time;
3003
3004 if (has_vnet_hdr) {
3005 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
3006 if (err)
3007 goto out_free;
3008 len += sizeof(vnet_hdr);
3009 virtio_net_hdr_set_proto(skb, &vnet_hdr);
3010 }
3011
3012 packet_parse_headers(skb, sock);
3013
3014 if (unlikely(extra_len == 4))
3015 skb->no_fcs = 1;
3016
3017 err = po->xmit(skb);
3018 if (err > 0 && (err = net_xmit_errno(err)) != 0)
3019 goto out_unlock;
3020
3021 dev_put(dev);
3022
3023 return len;
3024
3025 out_free:
3026 kfree_skb(skb);
3027 out_unlock:
3028 dev_put(dev);
3029 out:
3030 return err;
3031 }
3032
packet_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)3033 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
3034 {
3035 struct sock *sk = sock->sk;
3036 struct packet_sock *po = pkt_sk(sk);
3037
3038 /* Reading tx_ring.pg_vec without holding pg_vec_lock is racy.
3039 * tpacket_snd() will redo the check safely.
3040 */
3041 if (data_race(po->tx_ring.pg_vec))
3042 return tpacket_snd(po, msg);
3043
3044 return packet_snd(sock, msg, len);
3045 }
3046
3047 /*
3048 * Close a PACKET socket. This is fairly simple. We immediately go
3049 * to 'closed' state and remove our protocol entry in the device list.
3050 */
3051
packet_release(struct socket * sock)3052 static int packet_release(struct socket *sock)
3053 {
3054 struct sock *sk = sock->sk;
3055 struct packet_sock *po;
3056 struct packet_fanout *f;
3057 struct net *net;
3058 union tpacket_req_u req_u;
3059
3060 if (!sk)
3061 return 0;
3062
3063 net = sock_net(sk);
3064 po = pkt_sk(sk);
3065
3066 mutex_lock(&net->packet.sklist_lock);
3067 sk_del_node_init_rcu(sk);
3068 mutex_unlock(&net->packet.sklist_lock);
3069
3070 preempt_disable();
3071 sock_prot_inuse_add(net, sk->sk_prot, -1);
3072 preempt_enable();
3073
3074 spin_lock(&po->bind_lock);
3075 unregister_prot_hook(sk, false);
3076 packet_cached_dev_reset(po);
3077
3078 if (po->prot_hook.dev) {
3079 dev_put(po->prot_hook.dev);
3080 po->prot_hook.dev = NULL;
3081 }
3082 spin_unlock(&po->bind_lock);
3083
3084 packet_flush_mclist(sk);
3085
3086 lock_sock(sk);
3087 if (po->rx_ring.pg_vec) {
3088 memset(&req_u, 0, sizeof(req_u));
3089 packet_set_ring(sk, &req_u, 1, 0);
3090 }
3091
3092 if (po->tx_ring.pg_vec) {
3093 memset(&req_u, 0, sizeof(req_u));
3094 packet_set_ring(sk, &req_u, 1, 1);
3095 }
3096 release_sock(sk);
3097
3098 f = fanout_release(sk);
3099
3100 synchronize_net();
3101
3102 kfree(po->rollover);
3103 if (f) {
3104 fanout_release_data(f);
3105 kvfree(f);
3106 }
3107 /*
3108 * Now the socket is dead. No more input will appear.
3109 */
3110 sock_orphan(sk);
3111 sock->sk = NULL;
3112
3113 /* Purge queues */
3114
3115 skb_queue_purge(&sk->sk_receive_queue);
3116 packet_free_pending(po);
3117 sk_refcnt_debug_release(sk);
3118
3119 sock_put(sk);
3120 return 0;
3121 }
3122
3123 /*
3124 * Attach a packet hook.
3125 */
3126
packet_do_bind(struct sock * sk,const char * name,int ifindex,__be16 proto)3127 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3128 __be16 proto)
3129 {
3130 struct packet_sock *po = pkt_sk(sk);
3131 struct net_device *dev_curr;
3132 __be16 proto_curr;
3133 bool need_rehook;
3134 struct net_device *dev = NULL;
3135 int ret = 0;
3136 bool unlisted = false;
3137
3138 lock_sock(sk);
3139 spin_lock(&po->bind_lock);
3140 rcu_read_lock();
3141
3142 if (po->fanout) {
3143 ret = -EINVAL;
3144 goto out_unlock;
3145 }
3146
3147 if (name) {
3148 dev = dev_get_by_name_rcu(sock_net(sk), name);
3149 if (!dev) {
3150 ret = -ENODEV;
3151 goto out_unlock;
3152 }
3153 } else if (ifindex) {
3154 dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3155 if (!dev) {
3156 ret = -ENODEV;
3157 goto out_unlock;
3158 }
3159 }
3160
3161 dev_hold(dev);
3162
3163 proto_curr = po->prot_hook.type;
3164 dev_curr = po->prot_hook.dev;
3165
3166 need_rehook = proto_curr != proto || dev_curr != dev;
3167
3168 if (need_rehook) {
3169 if (po->running) {
3170 rcu_read_unlock();
3171 /* prevents packet_notifier() from calling
3172 * register_prot_hook()
3173 */
3174 WRITE_ONCE(po->num, 0);
3175 __unregister_prot_hook(sk, true);
3176 rcu_read_lock();
3177 dev_curr = po->prot_hook.dev;
3178 if (dev)
3179 unlisted = !dev_get_by_index_rcu(sock_net(sk),
3180 dev->ifindex);
3181 }
3182
3183 BUG_ON(po->running);
3184 WRITE_ONCE(po->num, proto);
3185 po->prot_hook.type = proto;
3186
3187 if (unlikely(unlisted)) {
3188 dev_put(dev);
3189 po->prot_hook.dev = NULL;
3190 WRITE_ONCE(po->ifindex, -1);
3191 packet_cached_dev_reset(po);
3192 } else {
3193 po->prot_hook.dev = dev;
3194 WRITE_ONCE(po->ifindex, dev ? dev->ifindex : 0);
3195 packet_cached_dev_assign(po, dev);
3196 }
3197 }
3198 dev_put(dev_curr);
3199
3200 if (proto == 0 || !need_rehook)
3201 goto out_unlock;
3202
3203 if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3204 register_prot_hook(sk);
3205 } else {
3206 sk->sk_err = ENETDOWN;
3207 if (!sock_flag(sk, SOCK_DEAD))
3208 sk_error_report(sk);
3209 }
3210
3211 out_unlock:
3212 rcu_read_unlock();
3213 spin_unlock(&po->bind_lock);
3214 release_sock(sk);
3215 return ret;
3216 }
3217
3218 /*
3219 * Bind a packet socket to a device
3220 */
3221
packet_bind_spkt(struct socket * sock,struct sockaddr * uaddr,int addr_len)3222 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3223 int addr_len)
3224 {
3225 struct sock *sk = sock->sk;
3226 char name[sizeof(uaddr->sa_data) + 1];
3227
3228 /*
3229 * Check legality
3230 */
3231
3232 if (addr_len != sizeof(struct sockaddr))
3233 return -EINVAL;
3234 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3235 * zero-terminated.
3236 */
3237 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3238 name[sizeof(uaddr->sa_data)] = 0;
3239
3240 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3241 }
3242
packet_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3243 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3244 {
3245 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3246 struct sock *sk = sock->sk;
3247
3248 /*
3249 * Check legality
3250 */
3251
3252 if (addr_len < sizeof(struct sockaddr_ll))
3253 return -EINVAL;
3254 if (sll->sll_family != AF_PACKET)
3255 return -EINVAL;
3256
3257 return packet_do_bind(sk, NULL, sll->sll_ifindex,
3258 sll->sll_protocol ? : pkt_sk(sk)->num);
3259 }
3260
3261 static struct proto packet_proto = {
3262 .name = "PACKET",
3263 .owner = THIS_MODULE,
3264 .obj_size = sizeof(struct packet_sock),
3265 };
3266
3267 /*
3268 * Create a packet of type SOCK_PACKET.
3269 */
3270
packet_create(struct net * net,struct socket * sock,int protocol,int kern)3271 static int packet_create(struct net *net, struct socket *sock, int protocol,
3272 int kern)
3273 {
3274 struct sock *sk;
3275 struct packet_sock *po;
3276 __be16 proto = (__force __be16)protocol; /* weird, but documented */
3277 int err;
3278
3279 if (!ns_capable(net->user_ns, CAP_NET_RAW))
3280 return -EPERM;
3281 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3282 sock->type != SOCK_PACKET)
3283 return -ESOCKTNOSUPPORT;
3284
3285 sock->state = SS_UNCONNECTED;
3286
3287 err = -ENOBUFS;
3288 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3289 if (sk == NULL)
3290 goto out;
3291
3292 sock->ops = &packet_ops;
3293 if (sock->type == SOCK_PACKET)
3294 sock->ops = &packet_ops_spkt;
3295
3296 sock_init_data(sock, sk);
3297
3298 po = pkt_sk(sk);
3299 init_completion(&po->skb_completion);
3300 sk->sk_family = PF_PACKET;
3301 po->num = proto;
3302 po->xmit = dev_queue_xmit;
3303
3304 err = packet_alloc_pending(po);
3305 if (err)
3306 goto out2;
3307
3308 packet_cached_dev_reset(po);
3309
3310 sk->sk_destruct = packet_sock_destruct;
3311 sk_refcnt_debug_inc(sk);
3312
3313 /*
3314 * Attach a protocol block
3315 */
3316
3317 spin_lock_init(&po->bind_lock);
3318 mutex_init(&po->pg_vec_lock);
3319 po->rollover = NULL;
3320 po->prot_hook.func = packet_rcv;
3321
3322 if (sock->type == SOCK_PACKET)
3323 po->prot_hook.func = packet_rcv_spkt;
3324
3325 po->prot_hook.af_packet_priv = sk;
3326
3327 if (proto) {
3328 po->prot_hook.type = proto;
3329 __register_prot_hook(sk);
3330 }
3331
3332 mutex_lock(&net->packet.sklist_lock);
3333 sk_add_node_tail_rcu(sk, &net->packet.sklist);
3334 mutex_unlock(&net->packet.sklist_lock);
3335
3336 preempt_disable();
3337 sock_prot_inuse_add(net, &packet_proto, 1);
3338 preempt_enable();
3339
3340 return 0;
3341 out2:
3342 sk_free(sk);
3343 out:
3344 return err;
3345 }
3346
3347 /*
3348 * Pull a packet from our receive queue and hand it to the user.
3349 * If necessary we block.
3350 */
3351
packet_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)3352 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3353 int flags)
3354 {
3355 struct sock *sk = sock->sk;
3356 struct sk_buff *skb;
3357 int copied, err;
3358 int vnet_hdr_len = 0;
3359 unsigned int origlen = 0;
3360
3361 err = -EINVAL;
3362 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3363 goto out;
3364
3365 #if 0
3366 /* What error should we return now? EUNATTACH? */
3367 if (pkt_sk(sk)->ifindex < 0)
3368 return -ENODEV;
3369 #endif
3370
3371 if (flags & MSG_ERRQUEUE) {
3372 err = sock_recv_errqueue(sk, msg, len,
3373 SOL_PACKET, PACKET_TX_TIMESTAMP);
3374 goto out;
3375 }
3376
3377 /*
3378 * Call the generic datagram receiver. This handles all sorts
3379 * of horrible races and re-entrancy so we can forget about it
3380 * in the protocol layers.
3381 *
3382 * Now it will return ENETDOWN, if device have just gone down,
3383 * but then it will block.
3384 */
3385
3386 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3387
3388 /*
3389 * An error occurred so return it. Because skb_recv_datagram()
3390 * handles the blocking we don't see and worry about blocking
3391 * retries.
3392 */
3393
3394 if (skb == NULL)
3395 goto out;
3396
3397 packet_rcv_try_clear_pressure(pkt_sk(sk));
3398
3399 if (pkt_sk(sk)->has_vnet_hdr) {
3400 err = packet_rcv_vnet(msg, skb, &len);
3401 if (err)
3402 goto out_free;
3403 vnet_hdr_len = sizeof(struct virtio_net_hdr);
3404 }
3405
3406 /* You lose any data beyond the buffer you gave. If it worries
3407 * a user program they can ask the device for its MTU
3408 * anyway.
3409 */
3410 copied = skb->len;
3411 if (copied > len) {
3412 copied = len;
3413 msg->msg_flags |= MSG_TRUNC;
3414 }
3415
3416 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3417 if (err)
3418 goto out_free;
3419
3420 if (sock->type != SOCK_PACKET) {
3421 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3422
3423 /* Original length was stored in sockaddr_ll fields */
3424 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3425 sll->sll_family = AF_PACKET;
3426 sll->sll_protocol = skb->protocol;
3427 }
3428
3429 sock_recv_ts_and_drops(msg, sk, skb);
3430
3431 if (msg->msg_name) {
3432 int copy_len;
3433
3434 /* If the address length field is there to be filled
3435 * in, we fill it in now.
3436 */
3437 if (sock->type == SOCK_PACKET) {
3438 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3439 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3440 copy_len = msg->msg_namelen;
3441 } else {
3442 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3443
3444 msg->msg_namelen = sll->sll_halen +
3445 offsetof(struct sockaddr_ll, sll_addr);
3446 copy_len = msg->msg_namelen;
3447 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3448 memset(msg->msg_name +
3449 offsetof(struct sockaddr_ll, sll_addr),
3450 0, sizeof(sll->sll_addr));
3451 msg->msg_namelen = sizeof(struct sockaddr_ll);
3452 }
3453 }
3454 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len);
3455 }
3456
3457 if (pkt_sk(sk)->auxdata) {
3458 struct tpacket_auxdata aux;
3459
3460 aux.tp_status = TP_STATUS_USER;
3461 if (skb->ip_summed == CHECKSUM_PARTIAL)
3462 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3463 else if (skb->pkt_type != PACKET_OUTGOING &&
3464 (skb->ip_summed == CHECKSUM_COMPLETE ||
3465 skb_csum_unnecessary(skb)))
3466 aux.tp_status |= TP_STATUS_CSUM_VALID;
3467
3468 aux.tp_len = origlen;
3469 aux.tp_snaplen = skb->len;
3470 aux.tp_mac = 0;
3471 aux.tp_net = skb_network_offset(skb);
3472 if (skb_vlan_tag_present(skb)) {
3473 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3474 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3475 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3476 } else {
3477 aux.tp_vlan_tci = 0;
3478 aux.tp_vlan_tpid = 0;
3479 }
3480 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3481 }
3482
3483 /*
3484 * Free or return the buffer as appropriate. Again this
3485 * hides all the races and re-entrancy issues from us.
3486 */
3487 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3488
3489 out_free:
3490 skb_free_datagram(sk, skb);
3491 out:
3492 return err;
3493 }
3494
packet_getname_spkt(struct socket * sock,struct sockaddr * uaddr,int peer)3495 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3496 int peer)
3497 {
3498 struct net_device *dev;
3499 struct sock *sk = sock->sk;
3500
3501 if (peer)
3502 return -EOPNOTSUPP;
3503
3504 uaddr->sa_family = AF_PACKET;
3505 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3506 rcu_read_lock();
3507 dev = dev_get_by_index_rcu(sock_net(sk), READ_ONCE(pkt_sk(sk)->ifindex));
3508 if (dev)
3509 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3510 rcu_read_unlock();
3511
3512 return sizeof(*uaddr);
3513 }
3514
packet_getname(struct socket * sock,struct sockaddr * uaddr,int peer)3515 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3516 int peer)
3517 {
3518 struct net_device *dev;
3519 struct sock *sk = sock->sk;
3520 struct packet_sock *po = pkt_sk(sk);
3521 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3522 int ifindex;
3523
3524 if (peer)
3525 return -EOPNOTSUPP;
3526
3527 ifindex = READ_ONCE(po->ifindex);
3528 sll->sll_family = AF_PACKET;
3529 sll->sll_ifindex = ifindex;
3530 sll->sll_protocol = READ_ONCE(po->num);
3531 sll->sll_pkttype = 0;
3532 rcu_read_lock();
3533 dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3534 if (dev) {
3535 sll->sll_hatype = dev->type;
3536 sll->sll_halen = dev->addr_len;
3537 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3538 } else {
3539 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3540 sll->sll_halen = 0;
3541 }
3542 rcu_read_unlock();
3543
3544 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3545 }
3546
packet_dev_mc(struct net_device * dev,struct packet_mclist * i,int what)3547 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3548 int what)
3549 {
3550 switch (i->type) {
3551 case PACKET_MR_MULTICAST:
3552 if (i->alen != dev->addr_len)
3553 return -EINVAL;
3554 if (what > 0)
3555 return dev_mc_add(dev, i->addr);
3556 else
3557 return dev_mc_del(dev, i->addr);
3558 break;
3559 case PACKET_MR_PROMISC:
3560 return dev_set_promiscuity(dev, what);
3561 case PACKET_MR_ALLMULTI:
3562 return dev_set_allmulti(dev, what);
3563 case PACKET_MR_UNICAST:
3564 if (i->alen != dev->addr_len)
3565 return -EINVAL;
3566 if (what > 0)
3567 return dev_uc_add(dev, i->addr);
3568 else
3569 return dev_uc_del(dev, i->addr);
3570 break;
3571 default:
3572 break;
3573 }
3574 return 0;
3575 }
3576
packet_dev_mclist_delete(struct net_device * dev,struct packet_mclist ** mlp)3577 static void packet_dev_mclist_delete(struct net_device *dev,
3578 struct packet_mclist **mlp)
3579 {
3580 struct packet_mclist *ml;
3581
3582 while ((ml = *mlp) != NULL) {
3583 if (ml->ifindex == dev->ifindex) {
3584 packet_dev_mc(dev, ml, -1);
3585 *mlp = ml->next;
3586 kfree(ml);
3587 } else
3588 mlp = &ml->next;
3589 }
3590 }
3591
packet_mc_add(struct sock * sk,struct packet_mreq_max * mreq)3592 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3593 {
3594 struct packet_sock *po = pkt_sk(sk);
3595 struct packet_mclist *ml, *i;
3596 struct net_device *dev;
3597 int err;
3598
3599 rtnl_lock();
3600
3601 err = -ENODEV;
3602 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3603 if (!dev)
3604 goto done;
3605
3606 err = -EINVAL;
3607 if (mreq->mr_alen > dev->addr_len)
3608 goto done;
3609
3610 err = -ENOBUFS;
3611 i = kmalloc(sizeof(*i), GFP_KERNEL);
3612 if (i == NULL)
3613 goto done;
3614
3615 err = 0;
3616 for (ml = po->mclist; ml; ml = ml->next) {
3617 if (ml->ifindex == mreq->mr_ifindex &&
3618 ml->type == mreq->mr_type &&
3619 ml->alen == mreq->mr_alen &&
3620 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3621 ml->count++;
3622 /* Free the new element ... */
3623 kfree(i);
3624 goto done;
3625 }
3626 }
3627
3628 i->type = mreq->mr_type;
3629 i->ifindex = mreq->mr_ifindex;
3630 i->alen = mreq->mr_alen;
3631 memcpy(i->addr, mreq->mr_address, i->alen);
3632 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3633 i->count = 1;
3634 i->next = po->mclist;
3635 po->mclist = i;
3636 err = packet_dev_mc(dev, i, 1);
3637 if (err) {
3638 po->mclist = i->next;
3639 kfree(i);
3640 }
3641
3642 done:
3643 rtnl_unlock();
3644 return err;
3645 }
3646
packet_mc_drop(struct sock * sk,struct packet_mreq_max * mreq)3647 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3648 {
3649 struct packet_mclist *ml, **mlp;
3650
3651 rtnl_lock();
3652
3653 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3654 if (ml->ifindex == mreq->mr_ifindex &&
3655 ml->type == mreq->mr_type &&
3656 ml->alen == mreq->mr_alen &&
3657 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3658 if (--ml->count == 0) {
3659 struct net_device *dev;
3660 *mlp = ml->next;
3661 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3662 if (dev)
3663 packet_dev_mc(dev, ml, -1);
3664 kfree(ml);
3665 }
3666 break;
3667 }
3668 }
3669 rtnl_unlock();
3670 return 0;
3671 }
3672
packet_flush_mclist(struct sock * sk)3673 static void packet_flush_mclist(struct sock *sk)
3674 {
3675 struct packet_sock *po = pkt_sk(sk);
3676 struct packet_mclist *ml;
3677
3678 if (!po->mclist)
3679 return;
3680
3681 rtnl_lock();
3682 while ((ml = po->mclist) != NULL) {
3683 struct net_device *dev;
3684
3685 po->mclist = ml->next;
3686 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3687 if (dev != NULL)
3688 packet_dev_mc(dev, ml, -1);
3689 kfree(ml);
3690 }
3691 rtnl_unlock();
3692 }
3693
3694 static int
packet_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)3695 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval,
3696 unsigned int optlen)
3697 {
3698 struct sock *sk = sock->sk;
3699 struct packet_sock *po = pkt_sk(sk);
3700 int ret;
3701
3702 if (level != SOL_PACKET)
3703 return -ENOPROTOOPT;
3704
3705 switch (optname) {
3706 case PACKET_ADD_MEMBERSHIP:
3707 case PACKET_DROP_MEMBERSHIP:
3708 {
3709 struct packet_mreq_max mreq;
3710 int len = optlen;
3711 memset(&mreq, 0, sizeof(mreq));
3712 if (len < sizeof(struct packet_mreq))
3713 return -EINVAL;
3714 if (len > sizeof(mreq))
3715 len = sizeof(mreq);
3716 if (copy_from_sockptr(&mreq, optval, len))
3717 return -EFAULT;
3718 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3719 return -EINVAL;
3720 if (optname == PACKET_ADD_MEMBERSHIP)
3721 ret = packet_mc_add(sk, &mreq);
3722 else
3723 ret = packet_mc_drop(sk, &mreq);
3724 return ret;
3725 }
3726
3727 case PACKET_RX_RING:
3728 case PACKET_TX_RING:
3729 {
3730 union tpacket_req_u req_u;
3731 int len;
3732
3733 lock_sock(sk);
3734 switch (po->tp_version) {
3735 case TPACKET_V1:
3736 case TPACKET_V2:
3737 len = sizeof(req_u.req);
3738 break;
3739 case TPACKET_V3:
3740 default:
3741 len = sizeof(req_u.req3);
3742 break;
3743 }
3744 if (optlen < len) {
3745 ret = -EINVAL;
3746 } else {
3747 if (copy_from_sockptr(&req_u.req, optval, len))
3748 ret = -EFAULT;
3749 else
3750 ret = packet_set_ring(sk, &req_u, 0,
3751 optname == PACKET_TX_RING);
3752 }
3753 release_sock(sk);
3754 return ret;
3755 }
3756 case PACKET_COPY_THRESH:
3757 {
3758 int val;
3759
3760 if (optlen != sizeof(val))
3761 return -EINVAL;
3762 if (copy_from_sockptr(&val, optval, sizeof(val)))
3763 return -EFAULT;
3764
3765 pkt_sk(sk)->copy_thresh = val;
3766 return 0;
3767 }
3768 case PACKET_VERSION:
3769 {
3770 int val;
3771
3772 if (optlen != sizeof(val))
3773 return -EINVAL;
3774 if (copy_from_sockptr(&val, optval, sizeof(val)))
3775 return -EFAULT;
3776 switch (val) {
3777 case TPACKET_V1:
3778 case TPACKET_V2:
3779 case TPACKET_V3:
3780 break;
3781 default:
3782 return -EINVAL;
3783 }
3784 lock_sock(sk);
3785 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3786 ret = -EBUSY;
3787 } else {
3788 po->tp_version = val;
3789 ret = 0;
3790 }
3791 release_sock(sk);
3792 return ret;
3793 }
3794 case PACKET_RESERVE:
3795 {
3796 unsigned int val;
3797
3798 if (optlen != sizeof(val))
3799 return -EINVAL;
3800 if (copy_from_sockptr(&val, optval, sizeof(val)))
3801 return -EFAULT;
3802 if (val > INT_MAX)
3803 return -EINVAL;
3804 lock_sock(sk);
3805 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3806 ret = -EBUSY;
3807 } else {
3808 po->tp_reserve = val;
3809 ret = 0;
3810 }
3811 release_sock(sk);
3812 return ret;
3813 }
3814 case PACKET_LOSS:
3815 {
3816 unsigned int val;
3817
3818 if (optlen != sizeof(val))
3819 return -EINVAL;
3820 if (copy_from_sockptr(&val, optval, sizeof(val)))
3821 return -EFAULT;
3822
3823 lock_sock(sk);
3824 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3825 ret = -EBUSY;
3826 } else {
3827 po->tp_loss = !!val;
3828 ret = 0;
3829 }
3830 release_sock(sk);
3831 return ret;
3832 }
3833 case PACKET_AUXDATA:
3834 {
3835 int val;
3836
3837 if (optlen < sizeof(val))
3838 return -EINVAL;
3839 if (copy_from_sockptr(&val, optval, sizeof(val)))
3840 return -EFAULT;
3841
3842 lock_sock(sk);
3843 po->auxdata = !!val;
3844 release_sock(sk);
3845 return 0;
3846 }
3847 case PACKET_ORIGDEV:
3848 {
3849 int val;
3850
3851 if (optlen < sizeof(val))
3852 return -EINVAL;
3853 if (copy_from_sockptr(&val, optval, sizeof(val)))
3854 return -EFAULT;
3855
3856 lock_sock(sk);
3857 po->origdev = !!val;
3858 release_sock(sk);
3859 return 0;
3860 }
3861 case PACKET_VNET_HDR:
3862 {
3863 int val;
3864
3865 if (sock->type != SOCK_RAW)
3866 return -EINVAL;
3867 if (optlen < sizeof(val))
3868 return -EINVAL;
3869 if (copy_from_sockptr(&val, optval, sizeof(val)))
3870 return -EFAULT;
3871
3872 lock_sock(sk);
3873 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3874 ret = -EBUSY;
3875 } else {
3876 po->has_vnet_hdr = !!val;
3877 ret = 0;
3878 }
3879 release_sock(sk);
3880 return ret;
3881 }
3882 case PACKET_TIMESTAMP:
3883 {
3884 int val;
3885
3886 if (optlen != sizeof(val))
3887 return -EINVAL;
3888 if (copy_from_sockptr(&val, optval, sizeof(val)))
3889 return -EFAULT;
3890
3891 po->tp_tstamp = val;
3892 return 0;
3893 }
3894 case PACKET_FANOUT:
3895 {
3896 struct fanout_args args = { 0 };
3897
3898 if (optlen != sizeof(int) && optlen != sizeof(args))
3899 return -EINVAL;
3900 if (copy_from_sockptr(&args, optval, optlen))
3901 return -EFAULT;
3902
3903 return fanout_add(sk, &args);
3904 }
3905 case PACKET_FANOUT_DATA:
3906 {
3907 if (!po->fanout)
3908 return -EINVAL;
3909
3910 return fanout_set_data(po, optval, optlen);
3911 }
3912 case PACKET_IGNORE_OUTGOING:
3913 {
3914 int val;
3915
3916 if (optlen != sizeof(val))
3917 return -EINVAL;
3918 if (copy_from_sockptr(&val, optval, sizeof(val)))
3919 return -EFAULT;
3920 if (val < 0 || val > 1)
3921 return -EINVAL;
3922
3923 po->prot_hook.ignore_outgoing = !!val;
3924 return 0;
3925 }
3926 case PACKET_TX_HAS_OFF:
3927 {
3928 unsigned int val;
3929
3930 if (optlen != sizeof(val))
3931 return -EINVAL;
3932 if (copy_from_sockptr(&val, optval, sizeof(val)))
3933 return -EFAULT;
3934
3935 lock_sock(sk);
3936 if (!po->rx_ring.pg_vec && !po->tx_ring.pg_vec)
3937 po->tp_tx_has_off = !!val;
3938
3939 release_sock(sk);
3940 return 0;
3941 }
3942 case PACKET_QDISC_BYPASS:
3943 {
3944 int val;
3945
3946 if (optlen != sizeof(val))
3947 return -EINVAL;
3948 if (copy_from_sockptr(&val, optval, sizeof(val)))
3949 return -EFAULT;
3950
3951 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3952 return 0;
3953 }
3954 default:
3955 return -ENOPROTOOPT;
3956 }
3957 }
3958
packet_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3959 static int packet_getsockopt(struct socket *sock, int level, int optname,
3960 char __user *optval, int __user *optlen)
3961 {
3962 int len;
3963 int val, lv = sizeof(val);
3964 struct sock *sk = sock->sk;
3965 struct packet_sock *po = pkt_sk(sk);
3966 void *data = &val;
3967 union tpacket_stats_u st;
3968 struct tpacket_rollover_stats rstats;
3969 int drops;
3970
3971 if (level != SOL_PACKET)
3972 return -ENOPROTOOPT;
3973
3974 if (get_user(len, optlen))
3975 return -EFAULT;
3976
3977 if (len < 0)
3978 return -EINVAL;
3979
3980 switch (optname) {
3981 case PACKET_STATISTICS:
3982 spin_lock_bh(&sk->sk_receive_queue.lock);
3983 memcpy(&st, &po->stats, sizeof(st));
3984 memset(&po->stats, 0, sizeof(po->stats));
3985 spin_unlock_bh(&sk->sk_receive_queue.lock);
3986 drops = atomic_xchg(&po->tp_drops, 0);
3987
3988 if (po->tp_version == TPACKET_V3) {
3989 lv = sizeof(struct tpacket_stats_v3);
3990 st.stats3.tp_drops = drops;
3991 st.stats3.tp_packets += drops;
3992 data = &st.stats3;
3993 } else {
3994 lv = sizeof(struct tpacket_stats);
3995 st.stats1.tp_drops = drops;
3996 st.stats1.tp_packets += drops;
3997 data = &st.stats1;
3998 }
3999
4000 break;
4001 case PACKET_AUXDATA:
4002 val = po->auxdata;
4003 break;
4004 case PACKET_ORIGDEV:
4005 val = po->origdev;
4006 break;
4007 case PACKET_VNET_HDR:
4008 val = po->has_vnet_hdr;
4009 break;
4010 case PACKET_VERSION:
4011 val = po->tp_version;
4012 break;
4013 case PACKET_HDRLEN:
4014 if (len > sizeof(int))
4015 len = sizeof(int);
4016 if (len < sizeof(int))
4017 return -EINVAL;
4018 if (copy_from_user(&val, optval, len))
4019 return -EFAULT;
4020 switch (val) {
4021 case TPACKET_V1:
4022 val = sizeof(struct tpacket_hdr);
4023 break;
4024 case TPACKET_V2:
4025 val = sizeof(struct tpacket2_hdr);
4026 break;
4027 case TPACKET_V3:
4028 val = sizeof(struct tpacket3_hdr);
4029 break;
4030 default:
4031 return -EINVAL;
4032 }
4033 break;
4034 case PACKET_RESERVE:
4035 val = po->tp_reserve;
4036 break;
4037 case PACKET_LOSS:
4038 val = po->tp_loss;
4039 break;
4040 case PACKET_TIMESTAMP:
4041 val = po->tp_tstamp;
4042 break;
4043 case PACKET_FANOUT:
4044 val = (po->fanout ?
4045 ((u32)po->fanout->id |
4046 ((u32)po->fanout->type << 16) |
4047 ((u32)po->fanout->flags << 24)) :
4048 0);
4049 break;
4050 case PACKET_IGNORE_OUTGOING:
4051 val = po->prot_hook.ignore_outgoing;
4052 break;
4053 case PACKET_ROLLOVER_STATS:
4054 if (!po->rollover)
4055 return -EINVAL;
4056 rstats.tp_all = atomic_long_read(&po->rollover->num);
4057 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
4058 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
4059 data = &rstats;
4060 lv = sizeof(rstats);
4061 break;
4062 case PACKET_TX_HAS_OFF:
4063 val = po->tp_tx_has_off;
4064 break;
4065 case PACKET_QDISC_BYPASS:
4066 val = packet_use_direct_xmit(po);
4067 break;
4068 default:
4069 return -ENOPROTOOPT;
4070 }
4071
4072 if (len > lv)
4073 len = lv;
4074 if (put_user(len, optlen))
4075 return -EFAULT;
4076 if (copy_to_user(optval, data, len))
4077 return -EFAULT;
4078 return 0;
4079 }
4080
packet_notifier(struct notifier_block * this,unsigned long msg,void * ptr)4081 static int packet_notifier(struct notifier_block *this,
4082 unsigned long msg, void *ptr)
4083 {
4084 struct sock *sk;
4085 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4086 struct net *net = dev_net(dev);
4087
4088 rcu_read_lock();
4089 sk_for_each_rcu(sk, &net->packet.sklist) {
4090 struct packet_sock *po = pkt_sk(sk);
4091
4092 switch (msg) {
4093 case NETDEV_UNREGISTER:
4094 if (po->mclist)
4095 packet_dev_mclist_delete(dev, &po->mclist);
4096 fallthrough;
4097
4098 case NETDEV_DOWN:
4099 if (dev->ifindex == po->ifindex) {
4100 spin_lock(&po->bind_lock);
4101 if (po->running) {
4102 __unregister_prot_hook(sk, false);
4103 sk->sk_err = ENETDOWN;
4104 if (!sock_flag(sk, SOCK_DEAD))
4105 sk_error_report(sk);
4106 }
4107 if (msg == NETDEV_UNREGISTER) {
4108 packet_cached_dev_reset(po);
4109 WRITE_ONCE(po->ifindex, -1);
4110 dev_put(po->prot_hook.dev);
4111 po->prot_hook.dev = NULL;
4112 }
4113 spin_unlock(&po->bind_lock);
4114 }
4115 break;
4116 case NETDEV_UP:
4117 if (dev->ifindex == po->ifindex) {
4118 spin_lock(&po->bind_lock);
4119 if (po->num)
4120 register_prot_hook(sk);
4121 spin_unlock(&po->bind_lock);
4122 }
4123 break;
4124 }
4125 }
4126 rcu_read_unlock();
4127 return NOTIFY_DONE;
4128 }
4129
4130
packet_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)4131 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4132 unsigned long arg)
4133 {
4134 struct sock *sk = sock->sk;
4135
4136 switch (cmd) {
4137 case SIOCOUTQ:
4138 {
4139 int amount = sk_wmem_alloc_get(sk);
4140
4141 return put_user(amount, (int __user *)arg);
4142 }
4143 case SIOCINQ:
4144 {
4145 struct sk_buff *skb;
4146 int amount = 0;
4147
4148 spin_lock_bh(&sk->sk_receive_queue.lock);
4149 skb = skb_peek(&sk->sk_receive_queue);
4150 if (skb)
4151 amount = skb->len;
4152 spin_unlock_bh(&sk->sk_receive_queue.lock);
4153 return put_user(amount, (int __user *)arg);
4154 }
4155 #ifdef CONFIG_INET
4156 case SIOCADDRT:
4157 case SIOCDELRT:
4158 case SIOCDARP:
4159 case SIOCGARP:
4160 case SIOCSARP:
4161 case SIOCGIFADDR:
4162 case SIOCSIFADDR:
4163 case SIOCGIFBRDADDR:
4164 case SIOCSIFBRDADDR:
4165 case SIOCGIFNETMASK:
4166 case SIOCSIFNETMASK:
4167 case SIOCGIFDSTADDR:
4168 case SIOCSIFDSTADDR:
4169 case SIOCSIFFLAGS:
4170 return inet_dgram_ops.ioctl(sock, cmd, arg);
4171 #endif
4172
4173 default:
4174 return -ENOIOCTLCMD;
4175 }
4176 return 0;
4177 }
4178
packet_poll(struct file * file,struct socket * sock,poll_table * wait)4179 static __poll_t packet_poll(struct file *file, struct socket *sock,
4180 poll_table *wait)
4181 {
4182 struct sock *sk = sock->sk;
4183 struct packet_sock *po = pkt_sk(sk);
4184 __poll_t mask = datagram_poll(file, sock, wait);
4185
4186 spin_lock_bh(&sk->sk_receive_queue.lock);
4187 if (po->rx_ring.pg_vec) {
4188 if (!packet_previous_rx_frame(po, &po->rx_ring,
4189 TP_STATUS_KERNEL))
4190 mask |= EPOLLIN | EPOLLRDNORM;
4191 }
4192 packet_rcv_try_clear_pressure(po);
4193 spin_unlock_bh(&sk->sk_receive_queue.lock);
4194 spin_lock_bh(&sk->sk_write_queue.lock);
4195 if (po->tx_ring.pg_vec) {
4196 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4197 mask |= EPOLLOUT | EPOLLWRNORM;
4198 }
4199 spin_unlock_bh(&sk->sk_write_queue.lock);
4200 return mask;
4201 }
4202
4203
4204 /* Dirty? Well, I still did not learn better way to account
4205 * for user mmaps.
4206 */
4207
packet_mm_open(struct vm_area_struct * vma)4208 static void packet_mm_open(struct vm_area_struct *vma)
4209 {
4210 struct file *file = vma->vm_file;
4211 struct socket *sock = file->private_data;
4212 struct sock *sk = sock->sk;
4213
4214 if (sk)
4215 atomic_inc(&pkt_sk(sk)->mapped);
4216 }
4217
packet_mm_close(struct vm_area_struct * vma)4218 static void packet_mm_close(struct vm_area_struct *vma)
4219 {
4220 struct file *file = vma->vm_file;
4221 struct socket *sock = file->private_data;
4222 struct sock *sk = sock->sk;
4223
4224 if (sk)
4225 atomic_dec(&pkt_sk(sk)->mapped);
4226 }
4227
4228 static const struct vm_operations_struct packet_mmap_ops = {
4229 .open = packet_mm_open,
4230 .close = packet_mm_close,
4231 };
4232
free_pg_vec(struct pgv * pg_vec,unsigned int order,unsigned int len)4233 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4234 unsigned int len)
4235 {
4236 int i;
4237
4238 for (i = 0; i < len; i++) {
4239 if (likely(pg_vec[i].buffer)) {
4240 if (is_vmalloc_addr(pg_vec[i].buffer))
4241 vfree(pg_vec[i].buffer);
4242 else
4243 free_pages((unsigned long)pg_vec[i].buffer,
4244 order);
4245 pg_vec[i].buffer = NULL;
4246 }
4247 }
4248 kfree(pg_vec);
4249 }
4250
alloc_one_pg_vec_page(unsigned long order)4251 static char *alloc_one_pg_vec_page(unsigned long order)
4252 {
4253 char *buffer;
4254 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4255 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4256
4257 buffer = (char *) __get_free_pages(gfp_flags, order);
4258 if (buffer)
4259 return buffer;
4260
4261 /* __get_free_pages failed, fall back to vmalloc */
4262 buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4263 if (buffer)
4264 return buffer;
4265
4266 /* vmalloc failed, lets dig into swap here */
4267 gfp_flags &= ~__GFP_NORETRY;
4268 buffer = (char *) __get_free_pages(gfp_flags, order);
4269 if (buffer)
4270 return buffer;
4271
4272 /* complete and utter failure */
4273 return NULL;
4274 }
4275
alloc_pg_vec(struct tpacket_req * req,int order)4276 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4277 {
4278 unsigned int block_nr = req->tp_block_nr;
4279 struct pgv *pg_vec;
4280 int i;
4281
4282 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4283 if (unlikely(!pg_vec))
4284 goto out;
4285
4286 for (i = 0; i < block_nr; i++) {
4287 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4288 if (unlikely(!pg_vec[i].buffer))
4289 goto out_free_pgvec;
4290 }
4291
4292 out:
4293 return pg_vec;
4294
4295 out_free_pgvec:
4296 free_pg_vec(pg_vec, order, block_nr);
4297 pg_vec = NULL;
4298 goto out;
4299 }
4300
packet_set_ring(struct sock * sk,union tpacket_req_u * req_u,int closing,int tx_ring)4301 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4302 int closing, int tx_ring)
4303 {
4304 struct pgv *pg_vec = NULL;
4305 struct packet_sock *po = pkt_sk(sk);
4306 unsigned long *rx_owner_map = NULL;
4307 int was_running, order = 0;
4308 struct packet_ring_buffer *rb;
4309 struct sk_buff_head *rb_queue;
4310 __be16 num;
4311 int err;
4312 /* Added to avoid minimal code churn */
4313 struct tpacket_req *req = &req_u->req;
4314
4315 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4316 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4317
4318 err = -EBUSY;
4319 if (!closing) {
4320 if (atomic_read(&po->mapped))
4321 goto out;
4322 if (packet_read_pending(rb))
4323 goto out;
4324 }
4325
4326 if (req->tp_block_nr) {
4327 unsigned int min_frame_size;
4328
4329 /* Sanity tests and some calculations */
4330 err = -EBUSY;
4331 if (unlikely(rb->pg_vec))
4332 goto out;
4333
4334 switch (po->tp_version) {
4335 case TPACKET_V1:
4336 po->tp_hdrlen = TPACKET_HDRLEN;
4337 break;
4338 case TPACKET_V2:
4339 po->tp_hdrlen = TPACKET2_HDRLEN;
4340 break;
4341 case TPACKET_V3:
4342 po->tp_hdrlen = TPACKET3_HDRLEN;
4343 break;
4344 }
4345
4346 err = -EINVAL;
4347 if (unlikely((int)req->tp_block_size <= 0))
4348 goto out;
4349 if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4350 goto out;
4351 min_frame_size = po->tp_hdrlen + po->tp_reserve;
4352 if (po->tp_version >= TPACKET_V3 &&
4353 req->tp_block_size <
4354 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4355 goto out;
4356 if (unlikely(req->tp_frame_size < min_frame_size))
4357 goto out;
4358 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4359 goto out;
4360
4361 rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4362 if (unlikely(rb->frames_per_block == 0))
4363 goto out;
4364 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4365 goto out;
4366 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4367 req->tp_frame_nr))
4368 goto out;
4369
4370 err = -ENOMEM;
4371 order = get_order(req->tp_block_size);
4372 pg_vec = alloc_pg_vec(req, order);
4373 if (unlikely(!pg_vec))
4374 goto out;
4375 switch (po->tp_version) {
4376 case TPACKET_V3:
4377 /* Block transmit is not supported yet */
4378 if (!tx_ring) {
4379 init_prb_bdqc(po, rb, pg_vec, req_u);
4380 } else {
4381 struct tpacket_req3 *req3 = &req_u->req3;
4382
4383 if (req3->tp_retire_blk_tov ||
4384 req3->tp_sizeof_priv ||
4385 req3->tp_feature_req_word) {
4386 err = -EINVAL;
4387 goto out_free_pg_vec;
4388 }
4389 }
4390 break;
4391 default:
4392 if (!tx_ring) {
4393 rx_owner_map = bitmap_alloc(req->tp_frame_nr,
4394 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
4395 if (!rx_owner_map)
4396 goto out_free_pg_vec;
4397 }
4398 break;
4399 }
4400 }
4401 /* Done */
4402 else {
4403 err = -EINVAL;
4404 if (unlikely(req->tp_frame_nr))
4405 goto out;
4406 }
4407
4408
4409 /* Detach socket from network */
4410 spin_lock(&po->bind_lock);
4411 was_running = po->running;
4412 num = po->num;
4413 if (was_running) {
4414 WRITE_ONCE(po->num, 0);
4415 __unregister_prot_hook(sk, false);
4416 }
4417 spin_unlock(&po->bind_lock);
4418
4419 synchronize_net();
4420
4421 err = -EBUSY;
4422 mutex_lock(&po->pg_vec_lock);
4423 if (closing || atomic_read(&po->mapped) == 0) {
4424 err = 0;
4425 spin_lock_bh(&rb_queue->lock);
4426 swap(rb->pg_vec, pg_vec);
4427 if (po->tp_version <= TPACKET_V2)
4428 swap(rb->rx_owner_map, rx_owner_map);
4429 rb->frame_max = (req->tp_frame_nr - 1);
4430 rb->head = 0;
4431 rb->frame_size = req->tp_frame_size;
4432 spin_unlock_bh(&rb_queue->lock);
4433
4434 swap(rb->pg_vec_order, order);
4435 swap(rb->pg_vec_len, req->tp_block_nr);
4436
4437 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4438 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4439 tpacket_rcv : packet_rcv;
4440 skb_queue_purge(rb_queue);
4441 if (atomic_read(&po->mapped))
4442 pr_err("packet_mmap: vma is busy: %d\n",
4443 atomic_read(&po->mapped));
4444 }
4445 mutex_unlock(&po->pg_vec_lock);
4446
4447 spin_lock(&po->bind_lock);
4448 if (was_running) {
4449 WRITE_ONCE(po->num, num);
4450 register_prot_hook(sk);
4451 }
4452 spin_unlock(&po->bind_lock);
4453 if (pg_vec && (po->tp_version > TPACKET_V2)) {
4454 /* Because we don't support block-based V3 on tx-ring */
4455 if (!tx_ring)
4456 prb_shutdown_retire_blk_timer(po, rb_queue);
4457 }
4458
4459 out_free_pg_vec:
4460 bitmap_free(rx_owner_map);
4461 if (pg_vec)
4462 free_pg_vec(pg_vec, order, req->tp_block_nr);
4463 out:
4464 return err;
4465 }
4466
packet_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)4467 static int packet_mmap(struct file *file, struct socket *sock,
4468 struct vm_area_struct *vma)
4469 {
4470 struct sock *sk = sock->sk;
4471 struct packet_sock *po = pkt_sk(sk);
4472 unsigned long size, expected_size;
4473 struct packet_ring_buffer *rb;
4474 unsigned long start;
4475 int err = -EINVAL;
4476 int i;
4477
4478 if (vma->vm_pgoff)
4479 return -EINVAL;
4480
4481 mutex_lock(&po->pg_vec_lock);
4482
4483 expected_size = 0;
4484 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4485 if (rb->pg_vec) {
4486 expected_size += rb->pg_vec_len
4487 * rb->pg_vec_pages
4488 * PAGE_SIZE;
4489 }
4490 }
4491
4492 if (expected_size == 0)
4493 goto out;
4494
4495 size = vma->vm_end - vma->vm_start;
4496 if (size != expected_size)
4497 goto out;
4498
4499 start = vma->vm_start;
4500 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4501 if (rb->pg_vec == NULL)
4502 continue;
4503
4504 for (i = 0; i < rb->pg_vec_len; i++) {
4505 struct page *page;
4506 void *kaddr = rb->pg_vec[i].buffer;
4507 int pg_num;
4508
4509 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4510 page = pgv_to_page(kaddr);
4511 err = vm_insert_page(vma, start, page);
4512 if (unlikely(err))
4513 goto out;
4514 start += PAGE_SIZE;
4515 kaddr += PAGE_SIZE;
4516 }
4517 }
4518 }
4519
4520 atomic_inc(&po->mapped);
4521 vma->vm_ops = &packet_mmap_ops;
4522 err = 0;
4523
4524 out:
4525 mutex_unlock(&po->pg_vec_lock);
4526 return err;
4527 }
4528
4529 static const struct proto_ops packet_ops_spkt = {
4530 .family = PF_PACKET,
4531 .owner = THIS_MODULE,
4532 .release = packet_release,
4533 .bind = packet_bind_spkt,
4534 .connect = sock_no_connect,
4535 .socketpair = sock_no_socketpair,
4536 .accept = sock_no_accept,
4537 .getname = packet_getname_spkt,
4538 .poll = datagram_poll,
4539 .ioctl = packet_ioctl,
4540 .gettstamp = sock_gettstamp,
4541 .listen = sock_no_listen,
4542 .shutdown = sock_no_shutdown,
4543 .sendmsg = packet_sendmsg_spkt,
4544 .recvmsg = packet_recvmsg,
4545 .mmap = sock_no_mmap,
4546 .sendpage = sock_no_sendpage,
4547 };
4548
4549 static const struct proto_ops packet_ops = {
4550 .family = PF_PACKET,
4551 .owner = THIS_MODULE,
4552 .release = packet_release,
4553 .bind = packet_bind,
4554 .connect = sock_no_connect,
4555 .socketpair = sock_no_socketpair,
4556 .accept = sock_no_accept,
4557 .getname = packet_getname,
4558 .poll = packet_poll,
4559 .ioctl = packet_ioctl,
4560 .gettstamp = sock_gettstamp,
4561 .listen = sock_no_listen,
4562 .shutdown = sock_no_shutdown,
4563 .setsockopt = packet_setsockopt,
4564 .getsockopt = packet_getsockopt,
4565 .sendmsg = packet_sendmsg,
4566 .recvmsg = packet_recvmsg,
4567 .mmap = packet_mmap,
4568 .sendpage = sock_no_sendpage,
4569 };
4570
4571 static const struct net_proto_family packet_family_ops = {
4572 .family = PF_PACKET,
4573 .create = packet_create,
4574 .owner = THIS_MODULE,
4575 };
4576
4577 static struct notifier_block packet_netdev_notifier = {
4578 .notifier_call = packet_notifier,
4579 };
4580
4581 #ifdef CONFIG_PROC_FS
4582
packet_seq_start(struct seq_file * seq,loff_t * pos)4583 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4584 __acquires(RCU)
4585 {
4586 struct net *net = seq_file_net(seq);
4587
4588 rcu_read_lock();
4589 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4590 }
4591
packet_seq_next(struct seq_file * seq,void * v,loff_t * pos)4592 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4593 {
4594 struct net *net = seq_file_net(seq);
4595 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4596 }
4597
packet_seq_stop(struct seq_file * seq,void * v)4598 static void packet_seq_stop(struct seq_file *seq, void *v)
4599 __releases(RCU)
4600 {
4601 rcu_read_unlock();
4602 }
4603
packet_seq_show(struct seq_file * seq,void * v)4604 static int packet_seq_show(struct seq_file *seq, void *v)
4605 {
4606 if (v == SEQ_START_TOKEN)
4607 seq_printf(seq,
4608 "%*sRefCnt Type Proto Iface R Rmem User Inode\n",
4609 IS_ENABLED(CONFIG_64BIT) ? -17 : -9, "sk");
4610 else {
4611 struct sock *s = sk_entry(v);
4612 const struct packet_sock *po = pkt_sk(s);
4613
4614 seq_printf(seq,
4615 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4616 s,
4617 refcount_read(&s->sk_refcnt),
4618 s->sk_type,
4619 ntohs(READ_ONCE(po->num)),
4620 READ_ONCE(po->ifindex),
4621 po->running,
4622 atomic_read(&s->sk_rmem_alloc),
4623 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4624 sock_i_ino(s));
4625 }
4626
4627 return 0;
4628 }
4629
4630 static const struct seq_operations packet_seq_ops = {
4631 .start = packet_seq_start,
4632 .next = packet_seq_next,
4633 .stop = packet_seq_stop,
4634 .show = packet_seq_show,
4635 };
4636 #endif
4637
packet_net_init(struct net * net)4638 static int __net_init packet_net_init(struct net *net)
4639 {
4640 mutex_init(&net->packet.sklist_lock);
4641 INIT_HLIST_HEAD(&net->packet.sklist);
4642
4643 #ifdef CONFIG_PROC_FS
4644 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4645 sizeof(struct seq_net_private)))
4646 return -ENOMEM;
4647 #endif /* CONFIG_PROC_FS */
4648
4649 return 0;
4650 }
4651
packet_net_exit(struct net * net)4652 static void __net_exit packet_net_exit(struct net *net)
4653 {
4654 remove_proc_entry("packet", net->proc_net);
4655 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4656 }
4657
4658 static struct pernet_operations packet_net_ops = {
4659 .init = packet_net_init,
4660 .exit = packet_net_exit,
4661 };
4662
4663
packet_exit(void)4664 static void __exit packet_exit(void)
4665 {
4666 unregister_netdevice_notifier(&packet_netdev_notifier);
4667 unregister_pernet_subsys(&packet_net_ops);
4668 sock_unregister(PF_PACKET);
4669 proto_unregister(&packet_proto);
4670 }
4671
packet_init(void)4672 static int __init packet_init(void)
4673 {
4674 int rc;
4675
4676 rc = proto_register(&packet_proto, 0);
4677 if (rc)
4678 goto out;
4679 rc = sock_register(&packet_family_ops);
4680 if (rc)
4681 goto out_proto;
4682 rc = register_pernet_subsys(&packet_net_ops);
4683 if (rc)
4684 goto out_sock;
4685 rc = register_netdevice_notifier(&packet_netdev_notifier);
4686 if (rc)
4687 goto out_pernet;
4688
4689 return 0;
4690
4691 out_pernet:
4692 unregister_pernet_subsys(&packet_net_ops);
4693 out_sock:
4694 sock_unregister(PF_PACKET);
4695 out_proto:
4696 proto_unregister(&packet_proto);
4697 out:
4698 return rc;
4699 }
4700
4701 module_init(packet_init);
4702 module_exit(packet_exit);
4703 MODULE_LICENSE("GPL");
4704 MODULE_ALIAS_NETPROTO(PF_PACKET);
4705