1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmstat.c
4  *
5  *  Manages VM statistics
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  zoned VM statistics
9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
10  *		Christoph Lameter <christoph@lameter.com>
11  *  Copyright (C) 2008-2014 Christoph Lameter
12  */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31 
32 #include "internal.h"
33 
34 #ifdef CONFIG_NUMA
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36 
37 /* zero numa counters within a zone */
zero_zone_numa_counters(struct zone * zone)38 static void zero_zone_numa_counters(struct zone *zone)
39 {
40 	int item, cpu;
41 
42 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 		atomic_long_set(&zone->vm_numa_event[item], 0);
44 		for_each_online_cpu(cpu) {
45 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 						= 0;
47 		}
48 	}
49 }
50 
51 /* zero numa counters of all the populated zones */
zero_zones_numa_counters(void)52 static void zero_zones_numa_counters(void)
53 {
54 	struct zone *zone;
55 
56 	for_each_populated_zone(zone)
57 		zero_zone_numa_counters(zone);
58 }
59 
60 /* zero global numa counters */
zero_global_numa_counters(void)61 static void zero_global_numa_counters(void)
62 {
63 	int item;
64 
65 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 		atomic_long_set(&vm_numa_event[item], 0);
67 }
68 
invalid_numa_statistics(void)69 static void invalid_numa_statistics(void)
70 {
71 	zero_zones_numa_counters();
72 	zero_global_numa_counters();
73 }
74 
75 static DEFINE_MUTEX(vm_numa_stat_lock);
76 
sysctl_vm_numa_stat_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 		void *buffer, size_t *length, loff_t *ppos)
79 {
80 	int ret, oldval;
81 
82 	mutex_lock(&vm_numa_stat_lock);
83 	if (write)
84 		oldval = sysctl_vm_numa_stat;
85 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 	if (ret || !write)
87 		goto out;
88 
89 	if (oldval == sysctl_vm_numa_stat)
90 		goto out;
91 	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 		static_branch_enable(&vm_numa_stat_key);
93 		pr_info("enable numa statistics\n");
94 	} else {
95 		static_branch_disable(&vm_numa_stat_key);
96 		invalid_numa_statistics();
97 		pr_info("disable numa statistics, and clear numa counters\n");
98 	}
99 
100 out:
101 	mutex_unlock(&vm_numa_stat_lock);
102 	return ret;
103 }
104 #endif
105 
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109 
sum_vm_events(unsigned long * ret)110 static void sum_vm_events(unsigned long *ret)
111 {
112 	int cpu;
113 	int i;
114 
115 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116 
117 	for_each_online_cpu(cpu) {
118 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119 
120 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 			ret[i] += this->event[i];
122 	}
123 }
124 
125 /*
126  * Accumulate the vm event counters across all CPUs.
127  * The result is unavoidably approximate - it can change
128  * during and after execution of this function.
129 */
all_vm_events(unsigned long * ret)130 void all_vm_events(unsigned long *ret)
131 {
132 	cpus_read_lock();
133 	sum_vm_events(ret);
134 	cpus_read_unlock();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137 
138 /*
139  * Fold the foreign cpu events into our own.
140  *
141  * This is adding to the events on one processor
142  * but keeps the global counts constant.
143  */
vm_events_fold_cpu(int cpu)144 void vm_events_fold_cpu(int cpu)
145 {
146 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 	int i;
148 
149 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 		count_vm_events(i, fold_state->event[i]);
151 		fold_state->event[i] = 0;
152 	}
153 }
154 
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156 
157 /*
158  * Manage combined zone based / global counters
159  *
160  * vm_stat contains the global counters
161  */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
167 
168 #ifdef CONFIG_SMP
169 
calculate_pressure_threshold(struct zone * zone)170 int calculate_pressure_threshold(struct zone *zone)
171 {
172 	int threshold;
173 	int watermark_distance;
174 
175 	/*
176 	 * As vmstats are not up to date, there is drift between the estimated
177 	 * and real values. For high thresholds and a high number of CPUs, it
178 	 * is possible for the min watermark to be breached while the estimated
179 	 * value looks fine. The pressure threshold is a reduced value such
180 	 * that even the maximum amount of drift will not accidentally breach
181 	 * the min watermark
182 	 */
183 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
184 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
185 
186 	/*
187 	 * Maximum threshold is 125
188 	 */
189 	threshold = min(125, threshold);
190 
191 	return threshold;
192 }
193 
calculate_normal_threshold(struct zone * zone)194 int calculate_normal_threshold(struct zone *zone)
195 {
196 	int threshold;
197 	int mem;	/* memory in 128 MB units */
198 
199 	/*
200 	 * The threshold scales with the number of processors and the amount
201 	 * of memory per zone. More memory means that we can defer updates for
202 	 * longer, more processors could lead to more contention.
203  	 * fls() is used to have a cheap way of logarithmic scaling.
204 	 *
205 	 * Some sample thresholds:
206 	 *
207 	 * Threshold	Processors	(fls)	Zonesize	fls(mem)+1
208 	 * ------------------------------------------------------------------
209 	 * 8		1		1	0.9-1 GB	4
210 	 * 16		2		2	0.9-1 GB	4
211 	 * 20 		2		2	1-2 GB		5
212 	 * 24		2		2	2-4 GB		6
213 	 * 28		2		2	4-8 GB		7
214 	 * 32		2		2	8-16 GB		8
215 	 * 4		2		2	<128M		1
216 	 * 30		4		3	2-4 GB		5
217 	 * 48		4		3	8-16 GB		8
218 	 * 32		8		4	1-2 GB		4
219 	 * 32		8		4	0.9-1GB		4
220 	 * 10		16		5	<128M		1
221 	 * 40		16		5	900M		4
222 	 * 70		64		7	2-4 GB		5
223 	 * 84		64		7	4-8 GB		6
224 	 * 108		512		9	4-8 GB		6
225 	 * 125		1024		10	8-16 GB		8
226 	 * 125		1024		10	16-32 GB	9
227 	 */
228 
229 	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
230 
231 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
232 
233 	/*
234 	 * Maximum threshold is 125
235 	 */
236 	threshold = min(125, threshold);
237 
238 	return threshold;
239 }
240 
241 /*
242  * Refresh the thresholds for each zone.
243  */
refresh_zone_stat_thresholds(void)244 void refresh_zone_stat_thresholds(void)
245 {
246 	struct pglist_data *pgdat;
247 	struct zone *zone;
248 	int cpu;
249 	int threshold;
250 
251 	/* Zero current pgdat thresholds */
252 	for_each_online_pgdat(pgdat) {
253 		for_each_online_cpu(cpu) {
254 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
255 		}
256 	}
257 
258 	for_each_populated_zone(zone) {
259 		struct pglist_data *pgdat = zone->zone_pgdat;
260 		unsigned long max_drift, tolerate_drift;
261 
262 		threshold = calculate_normal_threshold(zone);
263 
264 		for_each_online_cpu(cpu) {
265 			int pgdat_threshold;
266 
267 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
268 							= threshold;
269 
270 			/* Base nodestat threshold on the largest populated zone. */
271 			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
272 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
273 				= max(threshold, pgdat_threshold);
274 		}
275 
276 		/*
277 		 * Only set percpu_drift_mark if there is a danger that
278 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
279 		 * the min watermark could be breached by an allocation
280 		 */
281 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
282 		max_drift = num_online_cpus() * threshold;
283 		if (max_drift > tolerate_drift)
284 			zone->percpu_drift_mark = high_wmark_pages(zone) +
285 					max_drift;
286 	}
287 }
288 
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))289 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
290 				int (*calculate_pressure)(struct zone *))
291 {
292 	struct zone *zone;
293 	int cpu;
294 	int threshold;
295 	int i;
296 
297 	for (i = 0; i < pgdat->nr_zones; i++) {
298 		zone = &pgdat->node_zones[i];
299 		if (!zone->percpu_drift_mark)
300 			continue;
301 
302 		threshold = (*calculate_pressure)(zone);
303 		for_each_online_cpu(cpu)
304 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
305 							= threshold;
306 	}
307 }
308 
309 /*
310  * For use when we know that interrupts are disabled,
311  * or when we know that preemption is disabled and that
312  * particular counter cannot be updated from interrupt context.
313  */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)314 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
315 			   long delta)
316 {
317 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
318 	s8 __percpu *p = pcp->vm_stat_diff + item;
319 	long x;
320 	long t;
321 
322 	/*
323 	 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
324 	 * atomicity is provided by IRQs being disabled -- either explicitly
325 	 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
326 	 * CPU migrations and preemption potentially corrupts a counter so
327 	 * disable preemption.
328 	 */
329 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
330 		preempt_disable();
331 
332 	x = delta + __this_cpu_read(*p);
333 
334 	t = __this_cpu_read(pcp->stat_threshold);
335 
336 	if (unlikely(abs(x) > t)) {
337 		zone_page_state_add(x, zone, item);
338 		x = 0;
339 	}
340 	__this_cpu_write(*p, x);
341 
342 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
343 		preempt_enable();
344 }
345 EXPORT_SYMBOL(__mod_zone_page_state);
346 
__mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)347 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
348 				long delta)
349 {
350 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
351 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
352 	long x;
353 	long t;
354 
355 	if (vmstat_item_in_bytes(item)) {
356 		/*
357 		 * Only cgroups use subpage accounting right now; at
358 		 * the global level, these items still change in
359 		 * multiples of whole pages. Store them as pages
360 		 * internally to keep the per-cpu counters compact.
361 		 */
362 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
363 		delta >>= PAGE_SHIFT;
364 	}
365 
366 	/* See __mod_node_page_state */
367 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
368 		preempt_disable();
369 
370 	x = delta + __this_cpu_read(*p);
371 
372 	t = __this_cpu_read(pcp->stat_threshold);
373 
374 	if (unlikely(abs(x) > t)) {
375 		node_page_state_add(x, pgdat, item);
376 		x = 0;
377 	}
378 	__this_cpu_write(*p, x);
379 
380 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
381 		preempt_enable();
382 }
383 EXPORT_SYMBOL(__mod_node_page_state);
384 
385 /*
386  * Optimized increment and decrement functions.
387  *
388  * These are only for a single page and therefore can take a struct page *
389  * argument instead of struct zone *. This allows the inclusion of the code
390  * generated for page_zone(page) into the optimized functions.
391  *
392  * No overflow check is necessary and therefore the differential can be
393  * incremented or decremented in place which may allow the compilers to
394  * generate better code.
395  * The increment or decrement is known and therefore one boundary check can
396  * be omitted.
397  *
398  * NOTE: These functions are very performance sensitive. Change only
399  * with care.
400  *
401  * Some processors have inc/dec instructions that are atomic vs an interrupt.
402  * However, the code must first determine the differential location in a zone
403  * based on the processor number and then inc/dec the counter. There is no
404  * guarantee without disabling preemption that the processor will not change
405  * in between and therefore the atomicity vs. interrupt cannot be exploited
406  * in a useful way here.
407  */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)408 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
409 {
410 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
411 	s8 __percpu *p = pcp->vm_stat_diff + item;
412 	s8 v, t;
413 
414 	/* See __mod_node_page_state */
415 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
416 		preempt_disable();
417 
418 	v = __this_cpu_inc_return(*p);
419 	t = __this_cpu_read(pcp->stat_threshold);
420 	if (unlikely(v > t)) {
421 		s8 overstep = t >> 1;
422 
423 		zone_page_state_add(v + overstep, zone, item);
424 		__this_cpu_write(*p, -overstep);
425 	}
426 
427 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
428 		preempt_enable();
429 }
430 
__inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)431 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
432 {
433 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
434 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
435 	s8 v, t;
436 
437 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
438 
439 	/* See __mod_node_page_state */
440 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
441 		preempt_disable();
442 
443 	v = __this_cpu_inc_return(*p);
444 	t = __this_cpu_read(pcp->stat_threshold);
445 	if (unlikely(v > t)) {
446 		s8 overstep = t >> 1;
447 
448 		node_page_state_add(v + overstep, pgdat, item);
449 		__this_cpu_write(*p, -overstep);
450 	}
451 
452 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
453 		preempt_enable();
454 }
455 
__inc_zone_page_state(struct page * page,enum zone_stat_item item)456 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
457 {
458 	__inc_zone_state(page_zone(page), item);
459 }
460 EXPORT_SYMBOL(__inc_zone_page_state);
461 
__inc_node_page_state(struct page * page,enum node_stat_item item)462 void __inc_node_page_state(struct page *page, enum node_stat_item item)
463 {
464 	__inc_node_state(page_pgdat(page), item);
465 }
466 EXPORT_SYMBOL(__inc_node_page_state);
467 
__dec_zone_state(struct zone * zone,enum zone_stat_item item)468 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
469 {
470 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
471 	s8 __percpu *p = pcp->vm_stat_diff + item;
472 	s8 v, t;
473 
474 	/* See __mod_node_page_state */
475 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
476 		preempt_disable();
477 
478 	v = __this_cpu_dec_return(*p);
479 	t = __this_cpu_read(pcp->stat_threshold);
480 	if (unlikely(v < - t)) {
481 		s8 overstep = t >> 1;
482 
483 		zone_page_state_add(v - overstep, zone, item);
484 		__this_cpu_write(*p, overstep);
485 	}
486 
487 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
488 		preempt_enable();
489 }
490 
__dec_node_state(struct pglist_data * pgdat,enum node_stat_item item)491 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
492 {
493 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
494 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
495 	s8 v, t;
496 
497 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
498 
499 	/* See __mod_node_page_state */
500 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
501 		preempt_disable();
502 
503 	v = __this_cpu_dec_return(*p);
504 	t = __this_cpu_read(pcp->stat_threshold);
505 	if (unlikely(v < - t)) {
506 		s8 overstep = t >> 1;
507 
508 		node_page_state_add(v - overstep, pgdat, item);
509 		__this_cpu_write(*p, overstep);
510 	}
511 
512 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
513 		preempt_enable();
514 }
515 
__dec_zone_page_state(struct page * page,enum zone_stat_item item)516 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
517 {
518 	__dec_zone_state(page_zone(page), item);
519 }
520 EXPORT_SYMBOL(__dec_zone_page_state);
521 
__dec_node_page_state(struct page * page,enum node_stat_item item)522 void __dec_node_page_state(struct page *page, enum node_stat_item item)
523 {
524 	__dec_node_state(page_pgdat(page), item);
525 }
526 EXPORT_SYMBOL(__dec_node_page_state);
527 
528 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
529 /*
530  * If we have cmpxchg_local support then we do not need to incur the overhead
531  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
532  *
533  * mod_state() modifies the zone counter state through atomic per cpu
534  * operations.
535  *
536  * Overstep mode specifies how overstep should handled:
537  *     0       No overstepping
538  *     1       Overstepping half of threshold
539  *     -1      Overstepping minus half of threshold
540 */
mod_zone_state(struct zone * zone,enum zone_stat_item item,long delta,int overstep_mode)541 static inline void mod_zone_state(struct zone *zone,
542        enum zone_stat_item item, long delta, int overstep_mode)
543 {
544 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
545 	s8 __percpu *p = pcp->vm_stat_diff + item;
546 	long o, n, t, z;
547 
548 	do {
549 		z = 0;  /* overflow to zone counters */
550 
551 		/*
552 		 * The fetching of the stat_threshold is racy. We may apply
553 		 * a counter threshold to the wrong the cpu if we get
554 		 * rescheduled while executing here. However, the next
555 		 * counter update will apply the threshold again and
556 		 * therefore bring the counter under the threshold again.
557 		 *
558 		 * Most of the time the thresholds are the same anyways
559 		 * for all cpus in a zone.
560 		 */
561 		t = this_cpu_read(pcp->stat_threshold);
562 
563 		o = this_cpu_read(*p);
564 		n = delta + o;
565 
566 		if (abs(n) > t) {
567 			int os = overstep_mode * (t >> 1) ;
568 
569 			/* Overflow must be added to zone counters */
570 			z = n + os;
571 			n = -os;
572 		}
573 	} while (this_cpu_cmpxchg(*p, o, n) != o);
574 
575 	if (z)
576 		zone_page_state_add(z, zone, item);
577 }
578 
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)579 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
580 			 long delta)
581 {
582 	mod_zone_state(zone, item, delta, 0);
583 }
584 EXPORT_SYMBOL(mod_zone_page_state);
585 
inc_zone_page_state(struct page * page,enum zone_stat_item item)586 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
587 {
588 	mod_zone_state(page_zone(page), item, 1, 1);
589 }
590 EXPORT_SYMBOL(inc_zone_page_state);
591 
dec_zone_page_state(struct page * page,enum zone_stat_item item)592 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
593 {
594 	mod_zone_state(page_zone(page), item, -1, -1);
595 }
596 EXPORT_SYMBOL(dec_zone_page_state);
597 
mod_node_state(struct pglist_data * pgdat,enum node_stat_item item,int delta,int overstep_mode)598 static inline void mod_node_state(struct pglist_data *pgdat,
599        enum node_stat_item item, int delta, int overstep_mode)
600 {
601 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
602 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
603 	long o, n, t, z;
604 
605 	if (vmstat_item_in_bytes(item)) {
606 		/*
607 		 * Only cgroups use subpage accounting right now; at
608 		 * the global level, these items still change in
609 		 * multiples of whole pages. Store them as pages
610 		 * internally to keep the per-cpu counters compact.
611 		 */
612 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
613 		delta >>= PAGE_SHIFT;
614 	}
615 
616 	do {
617 		z = 0;  /* overflow to node counters */
618 
619 		/*
620 		 * The fetching of the stat_threshold is racy. We may apply
621 		 * a counter threshold to the wrong the cpu if we get
622 		 * rescheduled while executing here. However, the next
623 		 * counter update will apply the threshold again and
624 		 * therefore bring the counter under the threshold again.
625 		 *
626 		 * Most of the time the thresholds are the same anyways
627 		 * for all cpus in a node.
628 		 */
629 		t = this_cpu_read(pcp->stat_threshold);
630 
631 		o = this_cpu_read(*p);
632 		n = delta + o;
633 
634 		if (abs(n) > t) {
635 			int os = overstep_mode * (t >> 1) ;
636 
637 			/* Overflow must be added to node counters */
638 			z = n + os;
639 			n = -os;
640 		}
641 	} while (this_cpu_cmpxchg(*p, o, n) != o);
642 
643 	if (z)
644 		node_page_state_add(z, pgdat, item);
645 }
646 
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)647 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
648 					long delta)
649 {
650 	mod_node_state(pgdat, item, delta, 0);
651 }
652 EXPORT_SYMBOL(mod_node_page_state);
653 
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)654 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
655 {
656 	mod_node_state(pgdat, item, 1, 1);
657 }
658 
inc_node_page_state(struct page * page,enum node_stat_item item)659 void inc_node_page_state(struct page *page, enum node_stat_item item)
660 {
661 	mod_node_state(page_pgdat(page), item, 1, 1);
662 }
663 EXPORT_SYMBOL(inc_node_page_state);
664 
dec_node_page_state(struct page * page,enum node_stat_item item)665 void dec_node_page_state(struct page *page, enum node_stat_item item)
666 {
667 	mod_node_state(page_pgdat(page), item, -1, -1);
668 }
669 EXPORT_SYMBOL(dec_node_page_state);
670 #else
671 /*
672  * Use interrupt disable to serialize counter updates
673  */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)674 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
675 			 long delta)
676 {
677 	unsigned long flags;
678 
679 	local_irq_save(flags);
680 	__mod_zone_page_state(zone, item, delta);
681 	local_irq_restore(flags);
682 }
683 EXPORT_SYMBOL(mod_zone_page_state);
684 
inc_zone_page_state(struct page * page,enum zone_stat_item item)685 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
686 {
687 	unsigned long flags;
688 	struct zone *zone;
689 
690 	zone = page_zone(page);
691 	local_irq_save(flags);
692 	__inc_zone_state(zone, item);
693 	local_irq_restore(flags);
694 }
695 EXPORT_SYMBOL(inc_zone_page_state);
696 
dec_zone_page_state(struct page * page,enum zone_stat_item item)697 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
698 {
699 	unsigned long flags;
700 
701 	local_irq_save(flags);
702 	__dec_zone_page_state(page, item);
703 	local_irq_restore(flags);
704 }
705 EXPORT_SYMBOL(dec_zone_page_state);
706 
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)707 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
708 {
709 	unsigned long flags;
710 
711 	local_irq_save(flags);
712 	__inc_node_state(pgdat, item);
713 	local_irq_restore(flags);
714 }
715 EXPORT_SYMBOL(inc_node_state);
716 
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)717 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
718 					long delta)
719 {
720 	unsigned long flags;
721 
722 	local_irq_save(flags);
723 	__mod_node_page_state(pgdat, item, delta);
724 	local_irq_restore(flags);
725 }
726 EXPORT_SYMBOL(mod_node_page_state);
727 
inc_node_page_state(struct page * page,enum node_stat_item item)728 void inc_node_page_state(struct page *page, enum node_stat_item item)
729 {
730 	unsigned long flags;
731 	struct pglist_data *pgdat;
732 
733 	pgdat = page_pgdat(page);
734 	local_irq_save(flags);
735 	__inc_node_state(pgdat, item);
736 	local_irq_restore(flags);
737 }
738 EXPORT_SYMBOL(inc_node_page_state);
739 
dec_node_page_state(struct page * page,enum node_stat_item item)740 void dec_node_page_state(struct page *page, enum node_stat_item item)
741 {
742 	unsigned long flags;
743 
744 	local_irq_save(flags);
745 	__dec_node_page_state(page, item);
746 	local_irq_restore(flags);
747 }
748 EXPORT_SYMBOL(dec_node_page_state);
749 #endif
750 
751 /*
752  * Fold a differential into the global counters.
753  * Returns the number of counters updated.
754  */
fold_diff(int * zone_diff,int * node_diff)755 static int fold_diff(int *zone_diff, int *node_diff)
756 {
757 	int i;
758 	int changes = 0;
759 
760 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
761 		if (zone_diff[i]) {
762 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
763 			changes++;
764 	}
765 
766 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
767 		if (node_diff[i]) {
768 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
769 			changes++;
770 	}
771 	return changes;
772 }
773 
774 #ifdef CONFIG_NUMA
fold_vm_zone_numa_events(struct zone * zone)775 static void fold_vm_zone_numa_events(struct zone *zone)
776 {
777 	unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
778 	int cpu;
779 	enum numa_stat_item item;
780 
781 	for_each_online_cpu(cpu) {
782 		struct per_cpu_zonestat *pzstats;
783 
784 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
785 		for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
786 			zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
787 	}
788 
789 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
790 		zone_numa_event_add(zone_numa_events[item], zone, item);
791 }
792 
fold_vm_numa_events(void)793 void fold_vm_numa_events(void)
794 {
795 	struct zone *zone;
796 
797 	for_each_populated_zone(zone)
798 		fold_vm_zone_numa_events(zone);
799 }
800 #endif
801 
802 /*
803  * Update the zone counters for the current cpu.
804  *
805  * Note that refresh_cpu_vm_stats strives to only access
806  * node local memory. The per cpu pagesets on remote zones are placed
807  * in the memory local to the processor using that pageset. So the
808  * loop over all zones will access a series of cachelines local to
809  * the processor.
810  *
811  * The call to zone_page_state_add updates the cachelines with the
812  * statistics in the remote zone struct as well as the global cachelines
813  * with the global counters. These could cause remote node cache line
814  * bouncing and will have to be only done when necessary.
815  *
816  * The function returns the number of global counters updated.
817  */
refresh_cpu_vm_stats(bool do_pagesets)818 static int refresh_cpu_vm_stats(bool do_pagesets)
819 {
820 	struct pglist_data *pgdat;
821 	struct zone *zone;
822 	int i;
823 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
824 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
825 	int changes = 0;
826 
827 	for_each_populated_zone(zone) {
828 		struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
829 #ifdef CONFIG_NUMA
830 		struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
831 #endif
832 
833 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
834 			int v;
835 
836 			v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
837 			if (v) {
838 
839 				atomic_long_add(v, &zone->vm_stat[i]);
840 				global_zone_diff[i] += v;
841 #ifdef CONFIG_NUMA
842 				/* 3 seconds idle till flush */
843 				__this_cpu_write(pcp->expire, 3);
844 #endif
845 			}
846 		}
847 #ifdef CONFIG_NUMA
848 
849 		if (do_pagesets) {
850 			cond_resched();
851 			/*
852 			 * Deal with draining the remote pageset of this
853 			 * processor
854 			 *
855 			 * Check if there are pages remaining in this pageset
856 			 * if not then there is nothing to expire.
857 			 */
858 			if (!__this_cpu_read(pcp->expire) ||
859 			       !__this_cpu_read(pcp->count))
860 				continue;
861 
862 			/*
863 			 * We never drain zones local to this processor.
864 			 */
865 			if (zone_to_nid(zone) == numa_node_id()) {
866 				__this_cpu_write(pcp->expire, 0);
867 				continue;
868 			}
869 
870 			if (__this_cpu_dec_return(pcp->expire))
871 				continue;
872 
873 			if (__this_cpu_read(pcp->count)) {
874 				drain_zone_pages(zone, this_cpu_ptr(pcp));
875 				changes++;
876 			}
877 		}
878 #endif
879 	}
880 
881 	for_each_online_pgdat(pgdat) {
882 		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
883 
884 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
885 			int v;
886 
887 			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
888 			if (v) {
889 				atomic_long_add(v, &pgdat->vm_stat[i]);
890 				global_node_diff[i] += v;
891 			}
892 		}
893 	}
894 
895 	changes += fold_diff(global_zone_diff, global_node_diff);
896 	return changes;
897 }
898 
899 /*
900  * Fold the data for an offline cpu into the global array.
901  * There cannot be any access by the offline cpu and therefore
902  * synchronization is simplified.
903  */
cpu_vm_stats_fold(int cpu)904 void cpu_vm_stats_fold(int cpu)
905 {
906 	struct pglist_data *pgdat;
907 	struct zone *zone;
908 	int i;
909 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
910 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
911 
912 	for_each_populated_zone(zone) {
913 		struct per_cpu_zonestat *pzstats;
914 
915 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
916 
917 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
918 			if (pzstats->vm_stat_diff[i]) {
919 				int v;
920 
921 				v = pzstats->vm_stat_diff[i];
922 				pzstats->vm_stat_diff[i] = 0;
923 				atomic_long_add(v, &zone->vm_stat[i]);
924 				global_zone_diff[i] += v;
925 			}
926 		}
927 #ifdef CONFIG_NUMA
928 		for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
929 			if (pzstats->vm_numa_event[i]) {
930 				unsigned long v;
931 
932 				v = pzstats->vm_numa_event[i];
933 				pzstats->vm_numa_event[i] = 0;
934 				zone_numa_event_add(v, zone, i);
935 			}
936 		}
937 #endif
938 	}
939 
940 	for_each_online_pgdat(pgdat) {
941 		struct per_cpu_nodestat *p;
942 
943 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
944 
945 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
946 			if (p->vm_node_stat_diff[i]) {
947 				int v;
948 
949 				v = p->vm_node_stat_diff[i];
950 				p->vm_node_stat_diff[i] = 0;
951 				atomic_long_add(v, &pgdat->vm_stat[i]);
952 				global_node_diff[i] += v;
953 			}
954 	}
955 
956 	fold_diff(global_zone_diff, global_node_diff);
957 }
958 
959 /*
960  * this is only called if !populated_zone(zone), which implies no other users of
961  * pset->vm_stat_diff[] exist.
962  */
drain_zonestat(struct zone * zone,struct per_cpu_zonestat * pzstats)963 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
964 {
965 	unsigned long v;
966 	int i;
967 
968 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
969 		if (pzstats->vm_stat_diff[i]) {
970 			v = pzstats->vm_stat_diff[i];
971 			pzstats->vm_stat_diff[i] = 0;
972 			zone_page_state_add(v, zone, i);
973 		}
974 	}
975 
976 #ifdef CONFIG_NUMA
977 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
978 		if (pzstats->vm_numa_event[i]) {
979 			v = pzstats->vm_numa_event[i];
980 			pzstats->vm_numa_event[i] = 0;
981 			zone_numa_event_add(v, zone, i);
982 		}
983 	}
984 #endif
985 }
986 #endif
987 
988 #ifdef CONFIG_NUMA
989 /*
990  * Determine the per node value of a stat item. This function
991  * is called frequently in a NUMA machine, so try to be as
992  * frugal as possible.
993  */
sum_zone_node_page_state(int node,enum zone_stat_item item)994 unsigned long sum_zone_node_page_state(int node,
995 				 enum zone_stat_item item)
996 {
997 	struct zone *zones = NODE_DATA(node)->node_zones;
998 	int i;
999 	unsigned long count = 0;
1000 
1001 	for (i = 0; i < MAX_NR_ZONES; i++)
1002 		count += zone_page_state(zones + i, item);
1003 
1004 	return count;
1005 }
1006 
1007 /* Determine the per node value of a numa stat item. */
sum_zone_numa_event_state(int node,enum numa_stat_item item)1008 unsigned long sum_zone_numa_event_state(int node,
1009 				 enum numa_stat_item item)
1010 {
1011 	struct zone *zones = NODE_DATA(node)->node_zones;
1012 	unsigned long count = 0;
1013 	int i;
1014 
1015 	for (i = 0; i < MAX_NR_ZONES; i++)
1016 		count += zone_numa_event_state(zones + i, item);
1017 
1018 	return count;
1019 }
1020 
1021 /*
1022  * Determine the per node value of a stat item.
1023  */
node_page_state_pages(struct pglist_data * pgdat,enum node_stat_item item)1024 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1025 				    enum node_stat_item item)
1026 {
1027 	long x = atomic_long_read(&pgdat->vm_stat[item]);
1028 #ifdef CONFIG_SMP
1029 	if (x < 0)
1030 		x = 0;
1031 #endif
1032 	return x;
1033 }
1034 
node_page_state(struct pglist_data * pgdat,enum node_stat_item item)1035 unsigned long node_page_state(struct pglist_data *pgdat,
1036 			      enum node_stat_item item)
1037 {
1038 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1039 
1040 	return node_page_state_pages(pgdat, item);
1041 }
1042 #endif
1043 
1044 #ifdef CONFIG_COMPACTION
1045 
1046 struct contig_page_info {
1047 	unsigned long free_pages;
1048 	unsigned long free_blocks_total;
1049 	unsigned long free_blocks_suitable;
1050 };
1051 
1052 /*
1053  * Calculate the number of free pages in a zone, how many contiguous
1054  * pages are free and how many are large enough to satisfy an allocation of
1055  * the target size. Note that this function makes no attempt to estimate
1056  * how many suitable free blocks there *might* be if MOVABLE pages were
1057  * migrated. Calculating that is possible, but expensive and can be
1058  * figured out from userspace
1059  */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)1060 static void fill_contig_page_info(struct zone *zone,
1061 				unsigned int suitable_order,
1062 				struct contig_page_info *info)
1063 {
1064 	unsigned int order;
1065 
1066 	info->free_pages = 0;
1067 	info->free_blocks_total = 0;
1068 	info->free_blocks_suitable = 0;
1069 
1070 	for (order = 0; order < MAX_ORDER; order++) {
1071 		unsigned long blocks;
1072 
1073 		/* Count number of free blocks */
1074 		blocks = zone->free_area[order].nr_free;
1075 		info->free_blocks_total += blocks;
1076 
1077 		/* Count free base pages */
1078 		info->free_pages += blocks << order;
1079 
1080 		/* Count the suitable free blocks */
1081 		if (order >= suitable_order)
1082 			info->free_blocks_suitable += blocks <<
1083 						(order - suitable_order);
1084 	}
1085 }
1086 
1087 /*
1088  * A fragmentation index only makes sense if an allocation of a requested
1089  * size would fail. If that is true, the fragmentation index indicates
1090  * whether external fragmentation or a lack of memory was the problem.
1091  * The value can be used to determine if page reclaim or compaction
1092  * should be used
1093  */
__fragmentation_index(unsigned int order,struct contig_page_info * info)1094 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1095 {
1096 	unsigned long requested = 1UL << order;
1097 
1098 	if (WARN_ON_ONCE(order >= MAX_ORDER))
1099 		return 0;
1100 
1101 	if (!info->free_blocks_total)
1102 		return 0;
1103 
1104 	/* Fragmentation index only makes sense when a request would fail */
1105 	if (info->free_blocks_suitable)
1106 		return -1000;
1107 
1108 	/*
1109 	 * Index is between 0 and 1 so return within 3 decimal places
1110 	 *
1111 	 * 0 => allocation would fail due to lack of memory
1112 	 * 1 => allocation would fail due to fragmentation
1113 	 */
1114 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1115 }
1116 
1117 /*
1118  * Calculates external fragmentation within a zone wrt the given order.
1119  * It is defined as the percentage of pages found in blocks of size
1120  * less than 1 << order. It returns values in range [0, 100].
1121  */
extfrag_for_order(struct zone * zone,unsigned int order)1122 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1123 {
1124 	struct contig_page_info info;
1125 
1126 	fill_contig_page_info(zone, order, &info);
1127 	if (info.free_pages == 0)
1128 		return 0;
1129 
1130 	return div_u64((info.free_pages -
1131 			(info.free_blocks_suitable << order)) * 100,
1132 			info.free_pages);
1133 }
1134 
1135 /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)1136 int fragmentation_index(struct zone *zone, unsigned int order)
1137 {
1138 	struct contig_page_info info;
1139 
1140 	fill_contig_page_info(zone, order, &info);
1141 	return __fragmentation_index(order, &info);
1142 }
1143 #endif
1144 
1145 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1146     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1147 #ifdef CONFIG_ZONE_DMA
1148 #define TEXT_FOR_DMA(xx) xx "_dma",
1149 #else
1150 #define TEXT_FOR_DMA(xx)
1151 #endif
1152 
1153 #ifdef CONFIG_ZONE_DMA32
1154 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1155 #else
1156 #define TEXT_FOR_DMA32(xx)
1157 #endif
1158 
1159 #ifdef CONFIG_HIGHMEM
1160 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1161 #else
1162 #define TEXT_FOR_HIGHMEM(xx)
1163 #endif
1164 
1165 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1166 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
1167 
1168 const char * const vmstat_text[] = {
1169 	/* enum zone_stat_item counters */
1170 	"nr_free_pages",
1171 	"nr_zone_inactive_anon",
1172 	"nr_zone_active_anon",
1173 	"nr_zone_inactive_file",
1174 	"nr_zone_active_file",
1175 	"nr_zone_unevictable",
1176 	"nr_zone_write_pending",
1177 	"nr_mlock",
1178 	"nr_bounce",
1179 #if IS_ENABLED(CONFIG_ZSMALLOC)
1180 	"nr_zspages",
1181 #endif
1182 	"nr_free_cma",
1183 
1184 	/* enum numa_stat_item counters */
1185 #ifdef CONFIG_NUMA
1186 	"numa_hit",
1187 	"numa_miss",
1188 	"numa_foreign",
1189 	"numa_interleave",
1190 	"numa_local",
1191 	"numa_other",
1192 #endif
1193 
1194 	/* enum node_stat_item counters */
1195 	"nr_inactive_anon",
1196 	"nr_active_anon",
1197 	"nr_inactive_file",
1198 	"nr_active_file",
1199 	"nr_unevictable",
1200 	"nr_slab_reclaimable",
1201 	"nr_slab_unreclaimable",
1202 	"nr_isolated_anon",
1203 	"nr_isolated_file",
1204 	"workingset_nodes",
1205 	"workingset_refault_anon",
1206 	"workingset_refault_file",
1207 	"workingset_activate_anon",
1208 	"workingset_activate_file",
1209 	"workingset_restore_anon",
1210 	"workingset_restore_file",
1211 	"workingset_nodereclaim",
1212 	"nr_anon_pages",
1213 	"nr_mapped",
1214 	"nr_file_pages",
1215 	"nr_dirty",
1216 	"nr_writeback",
1217 	"nr_writeback_temp",
1218 	"nr_shmem",
1219 	"nr_shmem_hugepages",
1220 	"nr_shmem_pmdmapped",
1221 	"nr_file_hugepages",
1222 	"nr_file_pmdmapped",
1223 	"nr_anon_transparent_hugepages",
1224 	"nr_vmscan_write",
1225 	"nr_vmscan_immediate_reclaim",
1226 	"nr_dirtied",
1227 	"nr_written",
1228 	"nr_kernel_misc_reclaimable",
1229 	"nr_foll_pin_acquired",
1230 	"nr_foll_pin_released",
1231 	"nr_kernel_stack",
1232 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1233 	"nr_shadow_call_stack",
1234 #endif
1235 	"nr_page_table_pages",
1236 #ifdef CONFIG_SWAP
1237 	"nr_swapcached",
1238 #endif
1239 
1240 	/* enum writeback_stat_item counters */
1241 	"nr_dirty_threshold",
1242 	"nr_dirty_background_threshold",
1243 
1244 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1245 	/* enum vm_event_item counters */
1246 	"pgpgin",
1247 	"pgpgout",
1248 	"pswpin",
1249 	"pswpout",
1250 
1251 	TEXTS_FOR_ZONES("pgalloc")
1252 	TEXTS_FOR_ZONES("allocstall")
1253 	TEXTS_FOR_ZONES("pgskip")
1254 
1255 	"pgfree",
1256 	"pgactivate",
1257 	"pgdeactivate",
1258 	"pglazyfree",
1259 
1260 	"pgfault",
1261 	"pgmajfault",
1262 	"pglazyfreed",
1263 
1264 	"pgrefill",
1265 	"pgreuse",
1266 	"pgsteal_kswapd",
1267 	"pgsteal_direct",
1268 	"pgdemote_kswapd",
1269 	"pgdemote_direct",
1270 	"pgscan_kswapd",
1271 	"pgscan_direct",
1272 	"pgscan_direct_throttle",
1273 	"pgscan_anon",
1274 	"pgscan_file",
1275 	"pgsteal_anon",
1276 	"pgsteal_file",
1277 
1278 #ifdef CONFIG_NUMA
1279 	"zone_reclaim_failed",
1280 #endif
1281 	"pginodesteal",
1282 	"slabs_scanned",
1283 	"kswapd_inodesteal",
1284 	"kswapd_low_wmark_hit_quickly",
1285 	"kswapd_high_wmark_hit_quickly",
1286 	"pageoutrun",
1287 
1288 	"pgrotated",
1289 
1290 	"drop_pagecache",
1291 	"drop_slab",
1292 	"oom_kill",
1293 
1294 #ifdef CONFIG_NUMA_BALANCING
1295 	"numa_pte_updates",
1296 	"numa_huge_pte_updates",
1297 	"numa_hint_faults",
1298 	"numa_hint_faults_local",
1299 	"numa_pages_migrated",
1300 #endif
1301 #ifdef CONFIG_MIGRATION
1302 	"pgmigrate_success",
1303 	"pgmigrate_fail",
1304 	"thp_migration_success",
1305 	"thp_migration_fail",
1306 	"thp_migration_split",
1307 #endif
1308 #ifdef CONFIG_COMPACTION
1309 	"compact_migrate_scanned",
1310 	"compact_free_scanned",
1311 	"compact_isolated",
1312 	"compact_stall",
1313 	"compact_fail",
1314 	"compact_success",
1315 	"compact_daemon_wake",
1316 	"compact_daemon_migrate_scanned",
1317 	"compact_daemon_free_scanned",
1318 #endif
1319 
1320 #ifdef CONFIG_HUGETLB_PAGE
1321 	"htlb_buddy_alloc_success",
1322 	"htlb_buddy_alloc_fail",
1323 #endif
1324 #ifdef CONFIG_CMA
1325 	"cma_alloc_success",
1326 	"cma_alloc_fail",
1327 #endif
1328 	"unevictable_pgs_culled",
1329 	"unevictable_pgs_scanned",
1330 	"unevictable_pgs_rescued",
1331 	"unevictable_pgs_mlocked",
1332 	"unevictable_pgs_munlocked",
1333 	"unevictable_pgs_cleared",
1334 	"unevictable_pgs_stranded",
1335 
1336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1337 	"thp_fault_alloc",
1338 	"thp_fault_fallback",
1339 	"thp_fault_fallback_charge",
1340 	"thp_collapse_alloc",
1341 	"thp_collapse_alloc_failed",
1342 	"thp_file_alloc",
1343 	"thp_file_fallback",
1344 	"thp_file_fallback_charge",
1345 	"thp_file_mapped",
1346 	"thp_split_page",
1347 	"thp_split_page_failed",
1348 	"thp_deferred_split_page",
1349 	"thp_split_pmd",
1350 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1351 	"thp_split_pud",
1352 #endif
1353 	"thp_zero_page_alloc",
1354 	"thp_zero_page_alloc_failed",
1355 	"thp_swpout",
1356 	"thp_swpout_fallback",
1357 #endif
1358 #ifdef CONFIG_MEMORY_BALLOON
1359 	"balloon_inflate",
1360 	"balloon_deflate",
1361 #ifdef CONFIG_BALLOON_COMPACTION
1362 	"balloon_migrate",
1363 #endif
1364 #endif /* CONFIG_MEMORY_BALLOON */
1365 #ifdef CONFIG_DEBUG_TLBFLUSH
1366 	"nr_tlb_remote_flush",
1367 	"nr_tlb_remote_flush_received",
1368 	"nr_tlb_local_flush_all",
1369 	"nr_tlb_local_flush_one",
1370 #endif /* CONFIG_DEBUG_TLBFLUSH */
1371 
1372 #ifdef CONFIG_DEBUG_VM_VMACACHE
1373 	"vmacache_find_calls",
1374 	"vmacache_find_hits",
1375 #endif
1376 #ifdef CONFIG_SWAP
1377 	"swap_ra",
1378 	"swap_ra_hit",
1379 #endif
1380 #ifdef CONFIG_X86
1381 	"direct_map_level2_splits",
1382 	"direct_map_level3_splits",
1383 #endif
1384 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1385 };
1386 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1387 
1388 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1389      defined(CONFIG_PROC_FS)
frag_start(struct seq_file * m,loff_t * pos)1390 static void *frag_start(struct seq_file *m, loff_t *pos)
1391 {
1392 	pg_data_t *pgdat;
1393 	loff_t node = *pos;
1394 
1395 	for (pgdat = first_online_pgdat();
1396 	     pgdat && node;
1397 	     pgdat = next_online_pgdat(pgdat))
1398 		--node;
1399 
1400 	return pgdat;
1401 }
1402 
frag_next(struct seq_file * m,void * arg,loff_t * pos)1403 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1404 {
1405 	pg_data_t *pgdat = (pg_data_t *)arg;
1406 
1407 	(*pos)++;
1408 	return next_online_pgdat(pgdat);
1409 }
1410 
frag_stop(struct seq_file * m,void * arg)1411 static void frag_stop(struct seq_file *m, void *arg)
1412 {
1413 }
1414 
1415 /*
1416  * Walk zones in a node and print using a callback.
1417  * If @assert_populated is true, only use callback for zones that are populated.
1418  */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,bool assert_populated,bool nolock,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))1419 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1420 		bool assert_populated, bool nolock,
1421 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1422 {
1423 	struct zone *zone;
1424 	struct zone *node_zones = pgdat->node_zones;
1425 	unsigned long flags;
1426 
1427 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1428 		if (assert_populated && !populated_zone(zone))
1429 			continue;
1430 
1431 		if (!nolock)
1432 			spin_lock_irqsave(&zone->lock, flags);
1433 		print(m, pgdat, zone);
1434 		if (!nolock)
1435 			spin_unlock_irqrestore(&zone->lock, flags);
1436 	}
1437 }
1438 #endif
1439 
1440 #ifdef CONFIG_PROC_FS
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1441 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1442 						struct zone *zone)
1443 {
1444 	int order;
1445 
1446 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1447 	for (order = 0; order < MAX_ORDER; ++order)
1448 		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1449 	seq_putc(m, '\n');
1450 }
1451 
1452 /*
1453  * This walks the free areas for each zone.
1454  */
frag_show(struct seq_file * m,void * arg)1455 static int frag_show(struct seq_file *m, void *arg)
1456 {
1457 	pg_data_t *pgdat = (pg_data_t *)arg;
1458 	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1459 	return 0;
1460 }
1461 
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1462 static void pagetypeinfo_showfree_print(struct seq_file *m,
1463 					pg_data_t *pgdat, struct zone *zone)
1464 {
1465 	int order, mtype;
1466 
1467 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1468 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1469 					pgdat->node_id,
1470 					zone->name,
1471 					migratetype_names[mtype]);
1472 		for (order = 0; order < MAX_ORDER; ++order) {
1473 			unsigned long freecount = 0;
1474 			struct free_area *area;
1475 			struct list_head *curr;
1476 			bool overflow = false;
1477 
1478 			area = &(zone->free_area[order]);
1479 
1480 			list_for_each(curr, &area->free_list[mtype]) {
1481 				/*
1482 				 * Cap the free_list iteration because it might
1483 				 * be really large and we are under a spinlock
1484 				 * so a long time spent here could trigger a
1485 				 * hard lockup detector. Anyway this is a
1486 				 * debugging tool so knowing there is a handful
1487 				 * of pages of this order should be more than
1488 				 * sufficient.
1489 				 */
1490 				if (++freecount >= 100000) {
1491 					overflow = true;
1492 					break;
1493 				}
1494 			}
1495 			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1496 			spin_unlock_irq(&zone->lock);
1497 			cond_resched();
1498 			spin_lock_irq(&zone->lock);
1499 		}
1500 		seq_putc(m, '\n');
1501 	}
1502 }
1503 
1504 /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)1505 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1506 {
1507 	int order;
1508 	pg_data_t *pgdat = (pg_data_t *)arg;
1509 
1510 	/* Print header */
1511 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1512 	for (order = 0; order < MAX_ORDER; ++order)
1513 		seq_printf(m, "%6d ", order);
1514 	seq_putc(m, '\n');
1515 
1516 	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1517 }
1518 
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1519 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1520 					pg_data_t *pgdat, struct zone *zone)
1521 {
1522 	int mtype;
1523 	unsigned long pfn;
1524 	unsigned long start_pfn = zone->zone_start_pfn;
1525 	unsigned long end_pfn = zone_end_pfn(zone);
1526 	unsigned long count[MIGRATE_TYPES] = { 0, };
1527 
1528 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1529 		struct page *page;
1530 
1531 		page = pfn_to_online_page(pfn);
1532 		if (!page)
1533 			continue;
1534 
1535 		if (page_zone(page) != zone)
1536 			continue;
1537 
1538 		mtype = get_pageblock_migratetype(page);
1539 
1540 		if (mtype < MIGRATE_TYPES)
1541 			count[mtype]++;
1542 	}
1543 
1544 	/* Print counts */
1545 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1546 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1547 		seq_printf(m, "%12lu ", count[mtype]);
1548 	seq_putc(m, '\n');
1549 }
1550 
1551 /* Print out the number of pageblocks for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1552 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1553 {
1554 	int mtype;
1555 	pg_data_t *pgdat = (pg_data_t *)arg;
1556 
1557 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1558 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1559 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1560 	seq_putc(m, '\n');
1561 	walk_zones_in_node(m, pgdat, true, false,
1562 		pagetypeinfo_showblockcount_print);
1563 }
1564 
1565 /*
1566  * Print out the number of pageblocks for each migratetype that contain pages
1567  * of other types. This gives an indication of how well fallbacks are being
1568  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1569  * to determine what is going on
1570  */
pagetypeinfo_showmixedcount(struct seq_file * m,pg_data_t * pgdat)1571 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1572 {
1573 #ifdef CONFIG_PAGE_OWNER
1574 	int mtype;
1575 
1576 	if (!static_branch_unlikely(&page_owner_inited))
1577 		return;
1578 
1579 	drain_all_pages(NULL);
1580 
1581 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1582 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1583 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1584 	seq_putc(m, '\n');
1585 
1586 	walk_zones_in_node(m, pgdat, true, true,
1587 		pagetypeinfo_showmixedcount_print);
1588 #endif /* CONFIG_PAGE_OWNER */
1589 }
1590 
1591 /*
1592  * This prints out statistics in relation to grouping pages by mobility.
1593  * It is expensive to collect so do not constantly read the file.
1594  */
pagetypeinfo_show(struct seq_file * m,void * arg)1595 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1596 {
1597 	pg_data_t *pgdat = (pg_data_t *)arg;
1598 
1599 	/* check memoryless node */
1600 	if (!node_state(pgdat->node_id, N_MEMORY))
1601 		return 0;
1602 
1603 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1604 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1605 	seq_putc(m, '\n');
1606 	pagetypeinfo_showfree(m, pgdat);
1607 	pagetypeinfo_showblockcount(m, pgdat);
1608 	pagetypeinfo_showmixedcount(m, pgdat);
1609 
1610 	return 0;
1611 }
1612 
1613 static const struct seq_operations fragmentation_op = {
1614 	.start	= frag_start,
1615 	.next	= frag_next,
1616 	.stop	= frag_stop,
1617 	.show	= frag_show,
1618 };
1619 
1620 static const struct seq_operations pagetypeinfo_op = {
1621 	.start	= frag_start,
1622 	.next	= frag_next,
1623 	.stop	= frag_stop,
1624 	.show	= pagetypeinfo_show,
1625 };
1626 
is_zone_first_populated(pg_data_t * pgdat,struct zone * zone)1627 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1628 {
1629 	int zid;
1630 
1631 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1632 		struct zone *compare = &pgdat->node_zones[zid];
1633 
1634 		if (populated_zone(compare))
1635 			return zone == compare;
1636 	}
1637 
1638 	return false;
1639 }
1640 
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1641 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1642 							struct zone *zone)
1643 {
1644 	int i;
1645 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1646 	if (is_zone_first_populated(pgdat, zone)) {
1647 		seq_printf(m, "\n  per-node stats");
1648 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1649 			unsigned long pages = node_page_state_pages(pgdat, i);
1650 
1651 			if (vmstat_item_print_in_thp(i))
1652 				pages /= HPAGE_PMD_NR;
1653 			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1654 				   pages);
1655 		}
1656 	}
1657 	seq_printf(m,
1658 		   "\n  pages free     %lu"
1659 		   "\n        min      %lu"
1660 		   "\n        low      %lu"
1661 		   "\n        high     %lu"
1662 		   "\n        spanned  %lu"
1663 		   "\n        present  %lu"
1664 		   "\n        managed  %lu"
1665 		   "\n        cma      %lu",
1666 		   zone_page_state(zone, NR_FREE_PAGES),
1667 		   min_wmark_pages(zone),
1668 		   low_wmark_pages(zone),
1669 		   high_wmark_pages(zone),
1670 		   zone->spanned_pages,
1671 		   zone->present_pages,
1672 		   zone_managed_pages(zone),
1673 		   zone_cma_pages(zone));
1674 
1675 	seq_printf(m,
1676 		   "\n        protection: (%ld",
1677 		   zone->lowmem_reserve[0]);
1678 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1679 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1680 	seq_putc(m, ')');
1681 
1682 	/* If unpopulated, no other information is useful */
1683 	if (!populated_zone(zone)) {
1684 		seq_putc(m, '\n');
1685 		return;
1686 	}
1687 
1688 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1689 		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1690 			   zone_page_state(zone, i));
1691 
1692 #ifdef CONFIG_NUMA
1693 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1694 		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1695 			   zone_numa_event_state(zone, i));
1696 #endif
1697 
1698 	seq_printf(m, "\n  pagesets");
1699 	for_each_online_cpu(i) {
1700 		struct per_cpu_pages *pcp;
1701 		struct per_cpu_zonestat __maybe_unused *pzstats;
1702 
1703 		pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1704 		seq_printf(m,
1705 			   "\n    cpu: %i"
1706 			   "\n              count: %i"
1707 			   "\n              high:  %i"
1708 			   "\n              batch: %i",
1709 			   i,
1710 			   pcp->count,
1711 			   pcp->high,
1712 			   pcp->batch);
1713 #ifdef CONFIG_SMP
1714 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1715 		seq_printf(m, "\n  vm stats threshold: %d",
1716 				pzstats->stat_threshold);
1717 #endif
1718 	}
1719 	seq_printf(m,
1720 		   "\n  node_unreclaimable:  %u"
1721 		   "\n  start_pfn:           %lu",
1722 		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1723 		   zone->zone_start_pfn);
1724 	seq_putc(m, '\n');
1725 }
1726 
1727 /*
1728  * Output information about zones in @pgdat.  All zones are printed regardless
1729  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1730  * set of all zones and userspace would not be aware of such zones if they are
1731  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1732  */
zoneinfo_show(struct seq_file * m,void * arg)1733 static int zoneinfo_show(struct seq_file *m, void *arg)
1734 {
1735 	pg_data_t *pgdat = (pg_data_t *)arg;
1736 	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1737 	return 0;
1738 }
1739 
1740 static const struct seq_operations zoneinfo_op = {
1741 	.start	= frag_start, /* iterate over all zones. The same as in
1742 			       * fragmentation. */
1743 	.next	= frag_next,
1744 	.stop	= frag_stop,
1745 	.show	= zoneinfo_show,
1746 };
1747 
1748 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1749 			 NR_VM_NUMA_EVENT_ITEMS + \
1750 			 NR_VM_NODE_STAT_ITEMS + \
1751 			 NR_VM_WRITEBACK_STAT_ITEMS + \
1752 			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1753 			  NR_VM_EVENT_ITEMS : 0))
1754 
vmstat_start(struct seq_file * m,loff_t * pos)1755 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1756 {
1757 	unsigned long *v;
1758 	int i;
1759 
1760 	if (*pos >= NR_VMSTAT_ITEMS)
1761 		return NULL;
1762 
1763 	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1764 	fold_vm_numa_events();
1765 	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1766 	m->private = v;
1767 	if (!v)
1768 		return ERR_PTR(-ENOMEM);
1769 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1770 		v[i] = global_zone_page_state(i);
1771 	v += NR_VM_ZONE_STAT_ITEMS;
1772 
1773 #ifdef CONFIG_NUMA
1774 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1775 		v[i] = global_numa_event_state(i);
1776 	v += NR_VM_NUMA_EVENT_ITEMS;
1777 #endif
1778 
1779 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1780 		v[i] = global_node_page_state_pages(i);
1781 		if (vmstat_item_print_in_thp(i))
1782 			v[i] /= HPAGE_PMD_NR;
1783 	}
1784 	v += NR_VM_NODE_STAT_ITEMS;
1785 
1786 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1787 			    v + NR_DIRTY_THRESHOLD);
1788 	v += NR_VM_WRITEBACK_STAT_ITEMS;
1789 
1790 #ifdef CONFIG_VM_EVENT_COUNTERS
1791 	all_vm_events(v);
1792 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1793 	v[PGPGOUT] /= 2;
1794 #endif
1795 	return (unsigned long *)m->private + *pos;
1796 }
1797 
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1798 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1799 {
1800 	(*pos)++;
1801 	if (*pos >= NR_VMSTAT_ITEMS)
1802 		return NULL;
1803 	return (unsigned long *)m->private + *pos;
1804 }
1805 
vmstat_show(struct seq_file * m,void * arg)1806 static int vmstat_show(struct seq_file *m, void *arg)
1807 {
1808 	unsigned long *l = arg;
1809 	unsigned long off = l - (unsigned long *)m->private;
1810 
1811 	seq_puts(m, vmstat_text[off]);
1812 	seq_put_decimal_ull(m, " ", *l);
1813 	seq_putc(m, '\n');
1814 
1815 	if (off == NR_VMSTAT_ITEMS - 1) {
1816 		/*
1817 		 * We've come to the end - add any deprecated counters to avoid
1818 		 * breaking userspace which might depend on them being present.
1819 		 */
1820 		seq_puts(m, "nr_unstable 0\n");
1821 	}
1822 	return 0;
1823 }
1824 
vmstat_stop(struct seq_file * m,void * arg)1825 static void vmstat_stop(struct seq_file *m, void *arg)
1826 {
1827 	kfree(m->private);
1828 	m->private = NULL;
1829 }
1830 
1831 static const struct seq_operations vmstat_op = {
1832 	.start	= vmstat_start,
1833 	.next	= vmstat_next,
1834 	.stop	= vmstat_stop,
1835 	.show	= vmstat_show,
1836 };
1837 #endif /* CONFIG_PROC_FS */
1838 
1839 #ifdef CONFIG_SMP
1840 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1841 int sysctl_stat_interval __read_mostly = HZ;
1842 
1843 #ifdef CONFIG_PROC_FS
refresh_vm_stats(struct work_struct * work)1844 static void refresh_vm_stats(struct work_struct *work)
1845 {
1846 	refresh_cpu_vm_stats(true);
1847 }
1848 
vmstat_refresh(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1849 int vmstat_refresh(struct ctl_table *table, int write,
1850 		   void *buffer, size_t *lenp, loff_t *ppos)
1851 {
1852 	long val;
1853 	int err;
1854 	int i;
1855 
1856 	/*
1857 	 * The regular update, every sysctl_stat_interval, may come later
1858 	 * than expected: leaving a significant amount in per_cpu buckets.
1859 	 * This is particularly misleading when checking a quantity of HUGE
1860 	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1861 	 * which can equally be echo'ed to or cat'ted from (by root),
1862 	 * can be used to update the stats just before reading them.
1863 	 *
1864 	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1865 	 * transiently negative values, report an error here if any of
1866 	 * the stats is negative, so we know to go looking for imbalance.
1867 	 */
1868 	err = schedule_on_each_cpu(refresh_vm_stats);
1869 	if (err)
1870 		return err;
1871 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1872 		/*
1873 		 * Skip checking stats known to go negative occasionally.
1874 		 */
1875 		switch (i) {
1876 		case NR_ZONE_WRITE_PENDING:
1877 		case NR_FREE_CMA_PAGES:
1878 			continue;
1879 		}
1880 		val = atomic_long_read(&vm_zone_stat[i]);
1881 		if (val < 0) {
1882 			pr_warn("%s: %s %ld\n",
1883 				__func__, zone_stat_name(i), val);
1884 		}
1885 	}
1886 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1887 		/*
1888 		 * Skip checking stats known to go negative occasionally.
1889 		 */
1890 		switch (i) {
1891 		case NR_WRITEBACK:
1892 			continue;
1893 		}
1894 		val = atomic_long_read(&vm_node_stat[i]);
1895 		if (val < 0) {
1896 			pr_warn("%s: %s %ld\n",
1897 				__func__, node_stat_name(i), val);
1898 		}
1899 	}
1900 	if (write)
1901 		*ppos += *lenp;
1902 	else
1903 		*lenp = 0;
1904 	return 0;
1905 }
1906 #endif /* CONFIG_PROC_FS */
1907 
vmstat_update(struct work_struct * w)1908 static void vmstat_update(struct work_struct *w)
1909 {
1910 	if (refresh_cpu_vm_stats(true)) {
1911 		/*
1912 		 * Counters were updated so we expect more updates
1913 		 * to occur in the future. Keep on running the
1914 		 * update worker thread.
1915 		 */
1916 		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1917 				this_cpu_ptr(&vmstat_work),
1918 				round_jiffies_relative(sysctl_stat_interval));
1919 	}
1920 }
1921 
1922 /*
1923  * Check if the diffs for a certain cpu indicate that
1924  * an update is needed.
1925  */
need_update(int cpu)1926 static bool need_update(int cpu)
1927 {
1928 	pg_data_t *last_pgdat = NULL;
1929 	struct zone *zone;
1930 
1931 	for_each_populated_zone(zone) {
1932 		struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1933 		struct per_cpu_nodestat *n;
1934 
1935 		/*
1936 		 * The fast way of checking if there are any vmstat diffs.
1937 		 */
1938 		if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1939 			return true;
1940 
1941 		if (last_pgdat == zone->zone_pgdat)
1942 			continue;
1943 		last_pgdat = zone->zone_pgdat;
1944 		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1945 		if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1946 			return true;
1947 	}
1948 	return false;
1949 }
1950 
1951 /*
1952  * Switch off vmstat processing and then fold all the remaining differentials
1953  * until the diffs stay at zero. The function is used by NOHZ and can only be
1954  * invoked when tick processing is not active.
1955  */
quiet_vmstat(void)1956 void quiet_vmstat(void)
1957 {
1958 	if (system_state != SYSTEM_RUNNING)
1959 		return;
1960 
1961 	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1962 		return;
1963 
1964 	if (!need_update(smp_processor_id()))
1965 		return;
1966 
1967 	/*
1968 	 * Just refresh counters and do not care about the pending delayed
1969 	 * vmstat_update. It doesn't fire that often to matter and canceling
1970 	 * it would be too expensive from this path.
1971 	 * vmstat_shepherd will take care about that for us.
1972 	 */
1973 	refresh_cpu_vm_stats(false);
1974 }
1975 
1976 /*
1977  * Shepherd worker thread that checks the
1978  * differentials of processors that have their worker
1979  * threads for vm statistics updates disabled because of
1980  * inactivity.
1981  */
1982 static void vmstat_shepherd(struct work_struct *w);
1983 
1984 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1985 
vmstat_shepherd(struct work_struct * w)1986 static void vmstat_shepherd(struct work_struct *w)
1987 {
1988 	int cpu;
1989 
1990 	cpus_read_lock();
1991 	/* Check processors whose vmstat worker threads have been disabled */
1992 	for_each_online_cpu(cpu) {
1993 		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1994 
1995 		if (!delayed_work_pending(dw) && need_update(cpu))
1996 			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1997 
1998 		cond_resched();
1999 	}
2000 	cpus_read_unlock();
2001 
2002 	schedule_delayed_work(&shepherd,
2003 		round_jiffies_relative(sysctl_stat_interval));
2004 }
2005 
start_shepherd_timer(void)2006 static void __init start_shepherd_timer(void)
2007 {
2008 	int cpu;
2009 
2010 	for_each_possible_cpu(cpu)
2011 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2012 			vmstat_update);
2013 
2014 	schedule_delayed_work(&shepherd,
2015 		round_jiffies_relative(sysctl_stat_interval));
2016 }
2017 
init_cpu_node_state(void)2018 static void __init init_cpu_node_state(void)
2019 {
2020 	int node;
2021 
2022 	for_each_online_node(node) {
2023 		if (cpumask_weight(cpumask_of_node(node)) > 0)
2024 			node_set_state(node, N_CPU);
2025 	}
2026 }
2027 
vmstat_cpu_online(unsigned int cpu)2028 static int vmstat_cpu_online(unsigned int cpu)
2029 {
2030 	refresh_zone_stat_thresholds();
2031 	node_set_state(cpu_to_node(cpu), N_CPU);
2032 	return 0;
2033 }
2034 
vmstat_cpu_down_prep(unsigned int cpu)2035 static int vmstat_cpu_down_prep(unsigned int cpu)
2036 {
2037 	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2038 	return 0;
2039 }
2040 
vmstat_cpu_dead(unsigned int cpu)2041 static int vmstat_cpu_dead(unsigned int cpu)
2042 {
2043 	const struct cpumask *node_cpus;
2044 	int node;
2045 
2046 	node = cpu_to_node(cpu);
2047 
2048 	refresh_zone_stat_thresholds();
2049 	node_cpus = cpumask_of_node(node);
2050 	if (cpumask_weight(node_cpus) > 0)
2051 		return 0;
2052 
2053 	node_clear_state(node, N_CPU);
2054 	return 0;
2055 }
2056 
2057 #endif
2058 
2059 struct workqueue_struct *mm_percpu_wq;
2060 
init_mm_internals(void)2061 void __init init_mm_internals(void)
2062 {
2063 	int ret __maybe_unused;
2064 
2065 	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2066 
2067 #ifdef CONFIG_SMP
2068 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2069 					NULL, vmstat_cpu_dead);
2070 	if (ret < 0)
2071 		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2072 
2073 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2074 					vmstat_cpu_online,
2075 					vmstat_cpu_down_prep);
2076 	if (ret < 0)
2077 		pr_err("vmstat: failed to register 'online' hotplug state\n");
2078 
2079 	cpus_read_lock();
2080 	init_cpu_node_state();
2081 	cpus_read_unlock();
2082 
2083 	start_shepherd_timer();
2084 #endif
2085 #ifdef CONFIG_PROC_FS
2086 	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2087 	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2088 	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2089 	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2090 #endif
2091 }
2092 
2093 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2094 
2095 /*
2096  * Return an index indicating how much of the available free memory is
2097  * unusable for an allocation of the requested size.
2098  */
unusable_free_index(unsigned int order,struct contig_page_info * info)2099 static int unusable_free_index(unsigned int order,
2100 				struct contig_page_info *info)
2101 {
2102 	/* No free memory is interpreted as all free memory is unusable */
2103 	if (info->free_pages == 0)
2104 		return 1000;
2105 
2106 	/*
2107 	 * Index should be a value between 0 and 1. Return a value to 3
2108 	 * decimal places.
2109 	 *
2110 	 * 0 => no fragmentation
2111 	 * 1 => high fragmentation
2112 	 */
2113 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2114 
2115 }
2116 
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2117 static void unusable_show_print(struct seq_file *m,
2118 					pg_data_t *pgdat, struct zone *zone)
2119 {
2120 	unsigned int order;
2121 	int index;
2122 	struct contig_page_info info;
2123 
2124 	seq_printf(m, "Node %d, zone %8s ",
2125 				pgdat->node_id,
2126 				zone->name);
2127 	for (order = 0; order < MAX_ORDER; ++order) {
2128 		fill_contig_page_info(zone, order, &info);
2129 		index = unusable_free_index(order, &info);
2130 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2131 	}
2132 
2133 	seq_putc(m, '\n');
2134 }
2135 
2136 /*
2137  * Display unusable free space index
2138  *
2139  * The unusable free space index measures how much of the available free
2140  * memory cannot be used to satisfy an allocation of a given size and is a
2141  * value between 0 and 1. The higher the value, the more of free memory is
2142  * unusable and by implication, the worse the external fragmentation is. This
2143  * can be expressed as a percentage by multiplying by 100.
2144  */
unusable_show(struct seq_file * m,void * arg)2145 static int unusable_show(struct seq_file *m, void *arg)
2146 {
2147 	pg_data_t *pgdat = (pg_data_t *)arg;
2148 
2149 	/* check memoryless node */
2150 	if (!node_state(pgdat->node_id, N_MEMORY))
2151 		return 0;
2152 
2153 	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2154 
2155 	return 0;
2156 }
2157 
2158 static const struct seq_operations unusable_sops = {
2159 	.start	= frag_start,
2160 	.next	= frag_next,
2161 	.stop	= frag_stop,
2162 	.show	= unusable_show,
2163 };
2164 
2165 DEFINE_SEQ_ATTRIBUTE(unusable);
2166 
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2167 static void extfrag_show_print(struct seq_file *m,
2168 					pg_data_t *pgdat, struct zone *zone)
2169 {
2170 	unsigned int order;
2171 	int index;
2172 
2173 	/* Alloc on stack as interrupts are disabled for zone walk */
2174 	struct contig_page_info info;
2175 
2176 	seq_printf(m, "Node %d, zone %8s ",
2177 				pgdat->node_id,
2178 				zone->name);
2179 	for (order = 0; order < MAX_ORDER; ++order) {
2180 		fill_contig_page_info(zone, order, &info);
2181 		index = __fragmentation_index(order, &info);
2182 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2183 	}
2184 
2185 	seq_putc(m, '\n');
2186 }
2187 
2188 /*
2189  * Display fragmentation index for orders that allocations would fail for
2190  */
extfrag_show(struct seq_file * m,void * arg)2191 static int extfrag_show(struct seq_file *m, void *arg)
2192 {
2193 	pg_data_t *pgdat = (pg_data_t *)arg;
2194 
2195 	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2196 
2197 	return 0;
2198 }
2199 
2200 static const struct seq_operations extfrag_sops = {
2201 	.start	= frag_start,
2202 	.next	= frag_next,
2203 	.stop	= frag_stop,
2204 	.show	= extfrag_show,
2205 };
2206 
2207 DEFINE_SEQ_ATTRIBUTE(extfrag);
2208 
extfrag_debug_init(void)2209 static int __init extfrag_debug_init(void)
2210 {
2211 	struct dentry *extfrag_debug_root;
2212 
2213 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2214 
2215 	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2216 			    &unusable_fops);
2217 
2218 	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2219 			    &extfrag_fops);
2220 
2221 	return 0;
2222 }
2223 
2224 module_init(extfrag_debug_init);
2225 #endif
2226