1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59
60 #include "internal.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64
65 struct scan_control {
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
69 /*
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 * are scanned.
72 */
73 nodemask_t *nodemask;
74
75 /*
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
78 */
79 struct mem_cgroup *target_mem_cgroup;
80
81 /*
82 * Scan pressure balancing between anon and file LRUs
83 */
84 unsigned long anon_cost;
85 unsigned long file_cost;
86
87 /* Can active pages be deactivated as part of reclaim? */
88 #define DEACTIVATE_ANON 1
89 #define DEACTIVATE_FILE 2
90 unsigned int may_deactivate:2;
91 unsigned int force_deactivate:1;
92 unsigned int skipped_deactivate:1;
93
94 /* Writepage batching in laptop mode; RECLAIM_WRITE */
95 unsigned int may_writepage:1;
96
97 /* Can mapped pages be reclaimed? */
98 unsigned int may_unmap:1;
99
100 /* Can pages be swapped as part of reclaim? */
101 unsigned int may_swap:1;
102
103 /*
104 * Cgroup memory below memory.low is protected as long as we
105 * don't threaten to OOM. If any cgroup is reclaimed at
106 * reduced force or passed over entirely due to its memory.low
107 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 * result, then go back for one more cycle that reclaims the protected
109 * memory (memcg_low_reclaim) to avert OOM.
110 */
111 unsigned int memcg_low_reclaim:1;
112 unsigned int memcg_low_skipped:1;
113
114 unsigned int hibernation_mode:1;
115
116 /* One of the zones is ready for compaction */
117 unsigned int compaction_ready:1;
118
119 /* There is easily reclaimable cold cache in the current node */
120 unsigned int cache_trim_mode:1;
121
122 /* The file pages on the current node are dangerously low */
123 unsigned int file_is_tiny:1;
124
125 /* Always discard instead of demoting to lower tier memory */
126 unsigned int no_demotion:1;
127
128 /* Allocation order */
129 s8 order;
130
131 /* Scan (total_size >> priority) pages at once */
132 s8 priority;
133
134 /* The highest zone to isolate pages for reclaim from */
135 s8 reclaim_idx;
136
137 /* This context's GFP mask */
138 gfp_t gfp_mask;
139
140 /* Incremented by the number of inactive pages that were scanned */
141 unsigned long nr_scanned;
142
143 /* Number of pages freed so far during a call to shrink_zones() */
144 unsigned long nr_reclaimed;
145
146 struct {
147 unsigned int dirty;
148 unsigned int unqueued_dirty;
149 unsigned int congested;
150 unsigned int writeback;
151 unsigned int immediate;
152 unsigned int file_taken;
153 unsigned int taken;
154 } nr;
155
156 /* for recording the reclaimed slab by now */
157 struct reclaim_state reclaim_state;
158 };
159
160 #ifdef ARCH_HAS_PREFETCHW
161 #define prefetchw_prev_lru_page(_page, _base, _field) \
162 do { \
163 if ((_page)->lru.prev != _base) { \
164 struct page *prev; \
165 \
166 prev = lru_to_page(&(_page->lru)); \
167 prefetchw(&prev->_field); \
168 } \
169 } while (0)
170 #else
171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172 #endif
173
174 /*
175 * From 0 .. 200. Higher means more swappy.
176 */
177 int vm_swappiness = 60;
178
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)179 static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
181 {
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
184
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
187
188 task->reclaim_state = rs;
189 }
190
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
193
194 #ifdef CONFIG_MEMCG
195 static int shrinker_nr_max;
196
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
shrinker_map_size(int nr_items)198 static inline int shrinker_map_size(int nr_items)
199 {
200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201 }
202
shrinker_defer_size(int nr_items)203 static inline int shrinker_defer_size(int nr_items)
204 {
205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206 }
207
shrinker_info_protected(struct mem_cgroup * memcg,int nid)208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 int nid)
210 {
211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 lockdep_is_held(&shrinker_rwsem));
213 }
214
expand_one_shrinker_info(struct mem_cgroup * memcg,int map_size,int defer_size,int old_map_size,int old_defer_size)215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 int map_size, int defer_size,
217 int old_map_size, int old_defer_size)
218 {
219 struct shrinker_info *new, *old;
220 struct mem_cgroup_per_node *pn;
221 int nid;
222 int size = map_size + defer_size;
223
224 for_each_node(nid) {
225 pn = memcg->nodeinfo[nid];
226 old = shrinker_info_protected(memcg, nid);
227 /* Not yet online memcg */
228 if (!old)
229 return 0;
230
231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 if (!new)
233 return -ENOMEM;
234
235 new->nr_deferred = (atomic_long_t *)(new + 1);
236 new->map = (void *)new->nr_deferred + defer_size;
237
238 /* map: set all old bits, clear all new bits */
239 memset(new->map, (int)0xff, old_map_size);
240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 /* nr_deferred: copy old values, clear all new values */
242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 memset((void *)new->nr_deferred + old_defer_size, 0,
244 defer_size - old_defer_size);
245
246 rcu_assign_pointer(pn->shrinker_info, new);
247 kvfree_rcu(old, rcu);
248 }
249
250 return 0;
251 }
252
free_shrinker_info(struct mem_cgroup * memcg)253 void free_shrinker_info(struct mem_cgroup *memcg)
254 {
255 struct mem_cgroup_per_node *pn;
256 struct shrinker_info *info;
257 int nid;
258
259 for_each_node(nid) {
260 pn = memcg->nodeinfo[nid];
261 info = rcu_dereference_protected(pn->shrinker_info, true);
262 kvfree(info);
263 rcu_assign_pointer(pn->shrinker_info, NULL);
264 }
265 }
266
alloc_shrinker_info(struct mem_cgroup * memcg)267 int alloc_shrinker_info(struct mem_cgroup *memcg)
268 {
269 struct shrinker_info *info;
270 int nid, size, ret = 0;
271 int map_size, defer_size = 0;
272
273 down_write(&shrinker_rwsem);
274 map_size = shrinker_map_size(shrinker_nr_max);
275 defer_size = shrinker_defer_size(shrinker_nr_max);
276 size = map_size + defer_size;
277 for_each_node(nid) {
278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 if (!info) {
280 free_shrinker_info(memcg);
281 ret = -ENOMEM;
282 break;
283 }
284 info->nr_deferred = (atomic_long_t *)(info + 1);
285 info->map = (void *)info->nr_deferred + defer_size;
286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
287 }
288 up_write(&shrinker_rwsem);
289
290 return ret;
291 }
292
need_expand(int nr_max)293 static inline bool need_expand(int nr_max)
294 {
295 return round_up(nr_max, BITS_PER_LONG) >
296 round_up(shrinker_nr_max, BITS_PER_LONG);
297 }
298
expand_shrinker_info(int new_id)299 static int expand_shrinker_info(int new_id)
300 {
301 int ret = 0;
302 int new_nr_max = new_id + 1;
303 int map_size, defer_size = 0;
304 int old_map_size, old_defer_size = 0;
305 struct mem_cgroup *memcg;
306
307 if (!need_expand(new_nr_max))
308 goto out;
309
310 if (!root_mem_cgroup)
311 goto out;
312
313 lockdep_assert_held(&shrinker_rwsem);
314
315 map_size = shrinker_map_size(new_nr_max);
316 defer_size = shrinker_defer_size(new_nr_max);
317 old_map_size = shrinker_map_size(shrinker_nr_max);
318 old_defer_size = shrinker_defer_size(shrinker_nr_max);
319
320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 do {
322 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 old_map_size, old_defer_size);
324 if (ret) {
325 mem_cgroup_iter_break(NULL, memcg);
326 goto out;
327 }
328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
329 out:
330 if (!ret)
331 shrinker_nr_max = new_nr_max;
332
333 return ret;
334 }
335
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337 {
338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
339 struct shrinker_info *info;
340
341 rcu_read_lock();
342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
343 /* Pairs with smp mb in shrink_slab() */
344 smp_mb__before_atomic();
345 set_bit(shrinker_id, info->map);
346 rcu_read_unlock();
347 }
348 }
349
350 static DEFINE_IDR(shrinker_idr);
351
prealloc_memcg_shrinker(struct shrinker * shrinker)352 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353 {
354 int id, ret = -ENOMEM;
355
356 if (mem_cgroup_disabled())
357 return -ENOSYS;
358
359 down_write(&shrinker_rwsem);
360 /* This may call shrinker, so it must use down_read_trylock() */
361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
362 if (id < 0)
363 goto unlock;
364
365 if (id >= shrinker_nr_max) {
366 if (expand_shrinker_info(id)) {
367 idr_remove(&shrinker_idr, id);
368 goto unlock;
369 }
370 }
371 shrinker->id = id;
372 ret = 0;
373 unlock:
374 up_write(&shrinker_rwsem);
375 return ret;
376 }
377
unregister_memcg_shrinker(struct shrinker * shrinker)378 static void unregister_memcg_shrinker(struct shrinker *shrinker)
379 {
380 int id = shrinker->id;
381
382 BUG_ON(id < 0);
383
384 lockdep_assert_held(&shrinker_rwsem);
385
386 idr_remove(&shrinker_idr, id);
387 }
388
xchg_nr_deferred_memcg(int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 struct mem_cgroup *memcg)
391 {
392 struct shrinker_info *info;
393
394 info = shrinker_info_protected(memcg, nid);
395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396 }
397
add_nr_deferred_memcg(long nr,int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 struct mem_cgroup *memcg)
400 {
401 struct shrinker_info *info;
402
403 info = shrinker_info_protected(memcg, nid);
404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405 }
406
reparent_shrinker_deferred(struct mem_cgroup * memcg)407 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408 {
409 int i, nid;
410 long nr;
411 struct mem_cgroup *parent;
412 struct shrinker_info *child_info, *parent_info;
413
414 parent = parent_mem_cgroup(memcg);
415 if (!parent)
416 parent = root_mem_cgroup;
417
418 /* Prevent from concurrent shrinker_info expand */
419 down_read(&shrinker_rwsem);
420 for_each_node(nid) {
421 child_info = shrinker_info_protected(memcg, nid);
422 parent_info = shrinker_info_protected(parent, nid);
423 for (i = 0; i < shrinker_nr_max; i++) {
424 nr = atomic_long_read(&child_info->nr_deferred[i]);
425 atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 }
427 }
428 up_read(&shrinker_rwsem);
429 }
430
cgroup_reclaim(struct scan_control * sc)431 static bool cgroup_reclaim(struct scan_control *sc)
432 {
433 return sc->target_mem_cgroup;
434 }
435
436 /**
437 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
438 * @sc: scan_control in question
439 *
440 * The normal page dirty throttling mechanism in balance_dirty_pages() is
441 * completely broken with the legacy memcg and direct stalling in
442 * shrink_page_list() is used for throttling instead, which lacks all the
443 * niceties such as fairness, adaptive pausing, bandwidth proportional
444 * allocation and configurability.
445 *
446 * This function tests whether the vmscan currently in progress can assume
447 * that the normal dirty throttling mechanism is operational.
448 */
writeback_throttling_sane(struct scan_control * sc)449 static bool writeback_throttling_sane(struct scan_control *sc)
450 {
451 if (!cgroup_reclaim(sc))
452 return true;
453 #ifdef CONFIG_CGROUP_WRITEBACK
454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
455 return true;
456 #endif
457 return false;
458 }
459 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)460 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461 {
462 return -ENOSYS;
463 }
464
unregister_memcg_shrinker(struct shrinker * shrinker)465 static void unregister_memcg_shrinker(struct shrinker *shrinker)
466 {
467 }
468
xchg_nr_deferred_memcg(int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 struct mem_cgroup *memcg)
471 {
472 return 0;
473 }
474
add_nr_deferred_memcg(long nr,int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 struct mem_cgroup *memcg)
477 {
478 return 0;
479 }
480
cgroup_reclaim(struct scan_control * sc)481 static bool cgroup_reclaim(struct scan_control *sc)
482 {
483 return false;
484 }
485
writeback_throttling_sane(struct scan_control * sc)486 static bool writeback_throttling_sane(struct scan_control *sc)
487 {
488 return true;
489 }
490 #endif
491
xchg_nr_deferred(struct shrinker * shrinker,struct shrink_control * sc)492 static long xchg_nr_deferred(struct shrinker *shrinker,
493 struct shrink_control *sc)
494 {
495 int nid = sc->nid;
496
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 nid = 0;
499
500 if (sc->memcg &&
501 (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 return xchg_nr_deferred_memcg(nid, shrinker,
503 sc->memcg);
504
505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506 }
507
508
add_nr_deferred(long nr,struct shrinker * shrinker,struct shrink_control * sc)509 static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 struct shrink_control *sc)
511 {
512 int nid = sc->nid;
513
514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 nid = 0;
516
517 if (sc->memcg &&
518 (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 return add_nr_deferred_memcg(nr, nid, shrinker,
520 sc->memcg);
521
522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523 }
524
can_demote(int nid,struct scan_control * sc)525 static bool can_demote(int nid, struct scan_control *sc)
526 {
527 if (!numa_demotion_enabled)
528 return false;
529 if (sc) {
530 if (sc->no_demotion)
531 return false;
532 /* It is pointless to do demotion in memcg reclaim */
533 if (cgroup_reclaim(sc))
534 return false;
535 }
536 if (next_demotion_node(nid) == NUMA_NO_NODE)
537 return false;
538
539 return true;
540 }
541
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 int nid,
544 struct scan_control *sc)
545 {
546 if (memcg == NULL) {
547 /*
548 * For non-memcg reclaim, is there
549 * space in any swap device?
550 */
551 if (get_nr_swap_pages() > 0)
552 return true;
553 } else {
554 /* Is the memcg below its swap limit? */
555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 return true;
557 }
558
559 /*
560 * The page can not be swapped.
561 *
562 * Can it be reclaimed from this node via demotion?
563 */
564 return can_demote(nid, sc);
565 }
566
567 /*
568 * This misses isolated pages which are not accounted for to save counters.
569 * As the data only determines if reclaim or compaction continues, it is
570 * not expected that isolated pages will be a dominating factor.
571 */
zone_reclaimable_pages(struct zone * zone)572 unsigned long zone_reclaimable_pages(struct zone *zone)
573 {
574 unsigned long nr;
575
576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581
582 return nr;
583 }
584
585 /**
586 * lruvec_lru_size - Returns the number of pages on the given LRU list.
587 * @lruvec: lru vector
588 * @lru: lru to use
589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 int zone_idx)
593 {
594 unsigned long size = 0;
595 int zid;
596
597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
599
600 if (!managed_zone(zone))
601 continue;
602
603 if (!mem_cgroup_disabled())
604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
605 else
606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
607 }
608 return size;
609 }
610
611 /*
612 * Add a shrinker callback to be called from the vm.
613 */
prealloc_shrinker(struct shrinker * shrinker)614 int prealloc_shrinker(struct shrinker *shrinker)
615 {
616 unsigned int size;
617 int err;
618
619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 err = prealloc_memcg_shrinker(shrinker);
621 if (err != -ENOSYS)
622 return err;
623
624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 }
626
627 size = sizeof(*shrinker->nr_deferred);
628 if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 size *= nr_node_ids;
630
631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 if (!shrinker->nr_deferred)
633 return -ENOMEM;
634
635 return 0;
636 }
637
free_prealloced_shrinker(struct shrinker * shrinker)638 void free_prealloced_shrinker(struct shrinker *shrinker)
639 {
640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 down_write(&shrinker_rwsem);
642 unregister_memcg_shrinker(shrinker);
643 up_write(&shrinker_rwsem);
644 return;
645 }
646
647 kfree(shrinker->nr_deferred);
648 shrinker->nr_deferred = NULL;
649 }
650
register_shrinker_prepared(struct shrinker * shrinker)651 void register_shrinker_prepared(struct shrinker *shrinker)
652 {
653 down_write(&shrinker_rwsem);
654 list_add_tail(&shrinker->list, &shrinker_list);
655 shrinker->flags |= SHRINKER_REGISTERED;
656 up_write(&shrinker_rwsem);
657 }
658
register_shrinker(struct shrinker * shrinker)659 int register_shrinker(struct shrinker *shrinker)
660 {
661 int err = prealloc_shrinker(shrinker);
662
663 if (err)
664 return err;
665 register_shrinker_prepared(shrinker);
666 return 0;
667 }
668 EXPORT_SYMBOL(register_shrinker);
669
670 /*
671 * Remove one
672 */
unregister_shrinker(struct shrinker * shrinker)673 void unregister_shrinker(struct shrinker *shrinker)
674 {
675 if (!(shrinker->flags & SHRINKER_REGISTERED))
676 return;
677
678 down_write(&shrinker_rwsem);
679 list_del(&shrinker->list);
680 shrinker->flags &= ~SHRINKER_REGISTERED;
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 unregister_memcg_shrinker(shrinker);
683 up_write(&shrinker_rwsem);
684
685 kfree(shrinker->nr_deferred);
686 shrinker->nr_deferred = NULL;
687 }
688 EXPORT_SYMBOL(unregister_shrinker);
689
690 #define SHRINK_BATCH 128
691
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)692 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
693 struct shrinker *shrinker, int priority)
694 {
695 unsigned long freed = 0;
696 unsigned long long delta;
697 long total_scan;
698 long freeable;
699 long nr;
700 long new_nr;
701 long batch_size = shrinker->batch ? shrinker->batch
702 : SHRINK_BATCH;
703 long scanned = 0, next_deferred;
704
705 freeable = shrinker->count_objects(shrinker, shrinkctl);
706 if (freeable == 0 || freeable == SHRINK_EMPTY)
707 return freeable;
708
709 /*
710 * copy the current shrinker scan count into a local variable
711 * and zero it so that other concurrent shrinker invocations
712 * don't also do this scanning work.
713 */
714 nr = xchg_nr_deferred(shrinker, shrinkctl);
715
716 if (shrinker->seeks) {
717 delta = freeable >> priority;
718 delta *= 4;
719 do_div(delta, shrinker->seeks);
720 } else {
721 /*
722 * These objects don't require any IO to create. Trim
723 * them aggressively under memory pressure to keep
724 * them from causing refetches in the IO caches.
725 */
726 delta = freeable / 2;
727 }
728
729 total_scan = nr >> priority;
730 total_scan += delta;
731 total_scan = min(total_scan, (2 * freeable));
732
733 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
734 freeable, delta, total_scan, priority);
735
736 /*
737 * Normally, we should not scan less than batch_size objects in one
738 * pass to avoid too frequent shrinker calls, but if the slab has less
739 * than batch_size objects in total and we are really tight on memory,
740 * we will try to reclaim all available objects, otherwise we can end
741 * up failing allocations although there are plenty of reclaimable
742 * objects spread over several slabs with usage less than the
743 * batch_size.
744 *
745 * We detect the "tight on memory" situations by looking at the total
746 * number of objects we want to scan (total_scan). If it is greater
747 * than the total number of objects on slab (freeable), we must be
748 * scanning at high prio and therefore should try to reclaim as much as
749 * possible.
750 */
751 while (total_scan >= batch_size ||
752 total_scan >= freeable) {
753 unsigned long ret;
754 unsigned long nr_to_scan = min(batch_size, total_scan);
755
756 shrinkctl->nr_to_scan = nr_to_scan;
757 shrinkctl->nr_scanned = nr_to_scan;
758 ret = shrinker->scan_objects(shrinker, shrinkctl);
759 if (ret == SHRINK_STOP)
760 break;
761 freed += ret;
762
763 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
764 total_scan -= shrinkctl->nr_scanned;
765 scanned += shrinkctl->nr_scanned;
766
767 cond_resched();
768 }
769
770 /*
771 * The deferred work is increased by any new work (delta) that wasn't
772 * done, decreased by old deferred work that was done now.
773 *
774 * And it is capped to two times of the freeable items.
775 */
776 next_deferred = max_t(long, (nr + delta - scanned), 0);
777 next_deferred = min(next_deferred, (2 * freeable));
778
779 /*
780 * move the unused scan count back into the shrinker in a
781 * manner that handles concurrent updates.
782 */
783 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
784
785 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
786 return freed;
787 }
788
789 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)790 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
791 struct mem_cgroup *memcg, int priority)
792 {
793 struct shrinker_info *info;
794 unsigned long ret, freed = 0;
795 int i;
796
797 if (!mem_cgroup_online(memcg))
798 return 0;
799
800 if (!down_read_trylock(&shrinker_rwsem))
801 return 0;
802
803 info = shrinker_info_protected(memcg, nid);
804 if (unlikely(!info))
805 goto unlock;
806
807 for_each_set_bit(i, info->map, shrinker_nr_max) {
808 struct shrink_control sc = {
809 .gfp_mask = gfp_mask,
810 .nid = nid,
811 .memcg = memcg,
812 };
813 struct shrinker *shrinker;
814
815 shrinker = idr_find(&shrinker_idr, i);
816 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
817 if (!shrinker)
818 clear_bit(i, info->map);
819 continue;
820 }
821
822 /* Call non-slab shrinkers even though kmem is disabled */
823 if (!memcg_kmem_enabled() &&
824 !(shrinker->flags & SHRINKER_NONSLAB))
825 continue;
826
827 ret = do_shrink_slab(&sc, shrinker, priority);
828 if (ret == SHRINK_EMPTY) {
829 clear_bit(i, info->map);
830 /*
831 * After the shrinker reported that it had no objects to
832 * free, but before we cleared the corresponding bit in
833 * the memcg shrinker map, a new object might have been
834 * added. To make sure, we have the bit set in this
835 * case, we invoke the shrinker one more time and reset
836 * the bit if it reports that it is not empty anymore.
837 * The memory barrier here pairs with the barrier in
838 * set_shrinker_bit():
839 *
840 * list_lru_add() shrink_slab_memcg()
841 * list_add_tail() clear_bit()
842 * <MB> <MB>
843 * set_bit() do_shrink_slab()
844 */
845 smp_mb__after_atomic();
846 ret = do_shrink_slab(&sc, shrinker, priority);
847 if (ret == SHRINK_EMPTY)
848 ret = 0;
849 else
850 set_shrinker_bit(memcg, nid, i);
851 }
852 freed += ret;
853
854 if (rwsem_is_contended(&shrinker_rwsem)) {
855 freed = freed ? : 1;
856 break;
857 }
858 }
859 unlock:
860 up_read(&shrinker_rwsem);
861 return freed;
862 }
863 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)864 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
865 struct mem_cgroup *memcg, int priority)
866 {
867 return 0;
868 }
869 #endif /* CONFIG_MEMCG */
870
871 /**
872 * shrink_slab - shrink slab caches
873 * @gfp_mask: allocation context
874 * @nid: node whose slab caches to target
875 * @memcg: memory cgroup whose slab caches to target
876 * @priority: the reclaim priority
877 *
878 * Call the shrink functions to age shrinkable caches.
879 *
880 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
881 * unaware shrinkers will receive a node id of 0 instead.
882 *
883 * @memcg specifies the memory cgroup to target. Unaware shrinkers
884 * are called only if it is the root cgroup.
885 *
886 * @priority is sc->priority, we take the number of objects and >> by priority
887 * in order to get the scan target.
888 *
889 * Returns the number of reclaimed slab objects.
890 */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)891 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
892 struct mem_cgroup *memcg,
893 int priority)
894 {
895 unsigned long ret, freed = 0;
896 struct shrinker *shrinker;
897
898 /*
899 * The root memcg might be allocated even though memcg is disabled
900 * via "cgroup_disable=memory" boot parameter. This could make
901 * mem_cgroup_is_root() return false, then just run memcg slab
902 * shrink, but skip global shrink. This may result in premature
903 * oom.
904 */
905 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
906 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
907
908 if (!down_read_trylock(&shrinker_rwsem))
909 goto out;
910
911 list_for_each_entry(shrinker, &shrinker_list, list) {
912 struct shrink_control sc = {
913 .gfp_mask = gfp_mask,
914 .nid = nid,
915 .memcg = memcg,
916 };
917
918 ret = do_shrink_slab(&sc, shrinker, priority);
919 if (ret == SHRINK_EMPTY)
920 ret = 0;
921 freed += ret;
922 /*
923 * Bail out if someone want to register a new shrinker to
924 * prevent the registration from being stalled for long periods
925 * by parallel ongoing shrinking.
926 */
927 if (rwsem_is_contended(&shrinker_rwsem)) {
928 freed = freed ? : 1;
929 break;
930 }
931 }
932
933 up_read(&shrinker_rwsem);
934 out:
935 cond_resched();
936 return freed;
937 }
938
drop_slab_node(int nid)939 void drop_slab_node(int nid)
940 {
941 unsigned long freed;
942 int shift = 0;
943
944 do {
945 struct mem_cgroup *memcg = NULL;
946
947 if (fatal_signal_pending(current))
948 return;
949
950 freed = 0;
951 memcg = mem_cgroup_iter(NULL, NULL, NULL);
952 do {
953 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
954 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
955 } while ((freed >> shift++) > 1);
956 }
957
drop_slab(void)958 void drop_slab(void)
959 {
960 int nid;
961
962 for_each_online_node(nid)
963 drop_slab_node(nid);
964 }
965
is_page_cache_freeable(struct page * page)966 static inline int is_page_cache_freeable(struct page *page)
967 {
968 /*
969 * A freeable page cache page is referenced only by the caller
970 * that isolated the page, the page cache and optional buffer
971 * heads at page->private.
972 */
973 int page_cache_pins = thp_nr_pages(page);
974 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
975 }
976
may_write_to_inode(struct inode * inode)977 static int may_write_to_inode(struct inode *inode)
978 {
979 if (current->flags & PF_SWAPWRITE)
980 return 1;
981 if (!inode_write_congested(inode))
982 return 1;
983 if (inode_to_bdi(inode) == current->backing_dev_info)
984 return 1;
985 return 0;
986 }
987
988 /*
989 * We detected a synchronous write error writing a page out. Probably
990 * -ENOSPC. We need to propagate that into the address_space for a subsequent
991 * fsync(), msync() or close().
992 *
993 * The tricky part is that after writepage we cannot touch the mapping: nothing
994 * prevents it from being freed up. But we have a ref on the page and once
995 * that page is locked, the mapping is pinned.
996 *
997 * We're allowed to run sleeping lock_page() here because we know the caller has
998 * __GFP_FS.
999 */
handle_write_error(struct address_space * mapping,struct page * page,int error)1000 static void handle_write_error(struct address_space *mapping,
1001 struct page *page, int error)
1002 {
1003 lock_page(page);
1004 if (page_mapping(page) == mapping)
1005 mapping_set_error(mapping, error);
1006 unlock_page(page);
1007 }
1008
1009 /* possible outcome of pageout() */
1010 typedef enum {
1011 /* failed to write page out, page is locked */
1012 PAGE_KEEP,
1013 /* move page to the active list, page is locked */
1014 PAGE_ACTIVATE,
1015 /* page has been sent to the disk successfully, page is unlocked */
1016 PAGE_SUCCESS,
1017 /* page is clean and locked */
1018 PAGE_CLEAN,
1019 } pageout_t;
1020
1021 /*
1022 * pageout is called by shrink_page_list() for each dirty page.
1023 * Calls ->writepage().
1024 */
pageout(struct page * page,struct address_space * mapping)1025 static pageout_t pageout(struct page *page, struct address_space *mapping)
1026 {
1027 /*
1028 * If the page is dirty, only perform writeback if that write
1029 * will be non-blocking. To prevent this allocation from being
1030 * stalled by pagecache activity. But note that there may be
1031 * stalls if we need to run get_block(). We could test
1032 * PagePrivate for that.
1033 *
1034 * If this process is currently in __generic_file_write_iter() against
1035 * this page's queue, we can perform writeback even if that
1036 * will block.
1037 *
1038 * If the page is swapcache, write it back even if that would
1039 * block, for some throttling. This happens by accident, because
1040 * swap_backing_dev_info is bust: it doesn't reflect the
1041 * congestion state of the swapdevs. Easy to fix, if needed.
1042 */
1043 if (!is_page_cache_freeable(page))
1044 return PAGE_KEEP;
1045 if (!mapping) {
1046 /*
1047 * Some data journaling orphaned pages can have
1048 * page->mapping == NULL while being dirty with clean buffers.
1049 */
1050 if (page_has_private(page)) {
1051 if (try_to_free_buffers(page)) {
1052 ClearPageDirty(page);
1053 pr_info("%s: orphaned page\n", __func__);
1054 return PAGE_CLEAN;
1055 }
1056 }
1057 return PAGE_KEEP;
1058 }
1059 if (mapping->a_ops->writepage == NULL)
1060 return PAGE_ACTIVATE;
1061 if (!may_write_to_inode(mapping->host))
1062 return PAGE_KEEP;
1063
1064 if (clear_page_dirty_for_io(page)) {
1065 int res;
1066 struct writeback_control wbc = {
1067 .sync_mode = WB_SYNC_NONE,
1068 .nr_to_write = SWAP_CLUSTER_MAX,
1069 .range_start = 0,
1070 .range_end = LLONG_MAX,
1071 .for_reclaim = 1,
1072 };
1073
1074 SetPageReclaim(page);
1075 res = mapping->a_ops->writepage(page, &wbc);
1076 if (res < 0)
1077 handle_write_error(mapping, page, res);
1078 if (res == AOP_WRITEPAGE_ACTIVATE) {
1079 ClearPageReclaim(page);
1080 return PAGE_ACTIVATE;
1081 }
1082
1083 if (!PageWriteback(page)) {
1084 /* synchronous write or broken a_ops? */
1085 ClearPageReclaim(page);
1086 }
1087 trace_mm_vmscan_writepage(page);
1088 inc_node_page_state(page, NR_VMSCAN_WRITE);
1089 return PAGE_SUCCESS;
1090 }
1091
1092 return PAGE_CLEAN;
1093 }
1094
1095 /*
1096 * Same as remove_mapping, but if the page is removed from the mapping, it
1097 * gets returned with a refcount of 0.
1098 */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed,struct mem_cgroup * target_memcg)1099 static int __remove_mapping(struct address_space *mapping, struct page *page,
1100 bool reclaimed, struct mem_cgroup *target_memcg)
1101 {
1102 int refcount;
1103 void *shadow = NULL;
1104
1105 BUG_ON(!PageLocked(page));
1106 BUG_ON(mapping != page_mapping(page));
1107
1108 xa_lock_irq(&mapping->i_pages);
1109 /*
1110 * The non racy check for a busy page.
1111 *
1112 * Must be careful with the order of the tests. When someone has
1113 * a ref to the page, it may be possible that they dirty it then
1114 * drop the reference. So if PageDirty is tested before page_count
1115 * here, then the following race may occur:
1116 *
1117 * get_user_pages(&page);
1118 * [user mapping goes away]
1119 * write_to(page);
1120 * !PageDirty(page) [good]
1121 * SetPageDirty(page);
1122 * put_page(page);
1123 * !page_count(page) [good, discard it]
1124 *
1125 * [oops, our write_to data is lost]
1126 *
1127 * Reversing the order of the tests ensures such a situation cannot
1128 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1129 * load is not satisfied before that of page->_refcount.
1130 *
1131 * Note that if SetPageDirty is always performed via set_page_dirty,
1132 * and thus under the i_pages lock, then this ordering is not required.
1133 */
1134 refcount = 1 + compound_nr(page);
1135 if (!page_ref_freeze(page, refcount))
1136 goto cannot_free;
1137 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1138 if (unlikely(PageDirty(page))) {
1139 page_ref_unfreeze(page, refcount);
1140 goto cannot_free;
1141 }
1142
1143 if (PageSwapCache(page)) {
1144 swp_entry_t swap = { .val = page_private(page) };
1145 mem_cgroup_swapout(page, swap);
1146 if (reclaimed && !mapping_exiting(mapping))
1147 shadow = workingset_eviction(page, target_memcg);
1148 __delete_from_swap_cache(page, swap, shadow);
1149 xa_unlock_irq(&mapping->i_pages);
1150 put_swap_page(page, swap);
1151 } else {
1152 void (*freepage)(struct page *);
1153
1154 freepage = mapping->a_ops->freepage;
1155 /*
1156 * Remember a shadow entry for reclaimed file cache in
1157 * order to detect refaults, thus thrashing, later on.
1158 *
1159 * But don't store shadows in an address space that is
1160 * already exiting. This is not just an optimization,
1161 * inode reclaim needs to empty out the radix tree or
1162 * the nodes are lost. Don't plant shadows behind its
1163 * back.
1164 *
1165 * We also don't store shadows for DAX mappings because the
1166 * only page cache pages found in these are zero pages
1167 * covering holes, and because we don't want to mix DAX
1168 * exceptional entries and shadow exceptional entries in the
1169 * same address_space.
1170 */
1171 if (reclaimed && page_is_file_lru(page) &&
1172 !mapping_exiting(mapping) && !dax_mapping(mapping))
1173 shadow = workingset_eviction(page, target_memcg);
1174 __delete_from_page_cache(page, shadow);
1175 xa_unlock_irq(&mapping->i_pages);
1176
1177 if (freepage != NULL)
1178 freepage(page);
1179 }
1180
1181 return 1;
1182
1183 cannot_free:
1184 xa_unlock_irq(&mapping->i_pages);
1185 return 0;
1186 }
1187
1188 /*
1189 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1190 * someone else has a ref on the page, abort and return 0. If it was
1191 * successfully detached, return 1. Assumes the caller has a single ref on
1192 * this page.
1193 */
remove_mapping(struct address_space * mapping,struct page * page)1194 int remove_mapping(struct address_space *mapping, struct page *page)
1195 {
1196 if (__remove_mapping(mapping, page, false, NULL)) {
1197 /*
1198 * Unfreezing the refcount with 1 rather than 2 effectively
1199 * drops the pagecache ref for us without requiring another
1200 * atomic operation.
1201 */
1202 page_ref_unfreeze(page, 1);
1203 return 1;
1204 }
1205 return 0;
1206 }
1207
1208 /**
1209 * putback_lru_page - put previously isolated page onto appropriate LRU list
1210 * @page: page to be put back to appropriate lru list
1211 *
1212 * Add previously isolated @page to appropriate LRU list.
1213 * Page may still be unevictable for other reasons.
1214 *
1215 * lru_lock must not be held, interrupts must be enabled.
1216 */
putback_lru_page(struct page * page)1217 void putback_lru_page(struct page *page)
1218 {
1219 lru_cache_add(page);
1220 put_page(page); /* drop ref from isolate */
1221 }
1222
1223 enum page_references {
1224 PAGEREF_RECLAIM,
1225 PAGEREF_RECLAIM_CLEAN,
1226 PAGEREF_KEEP,
1227 PAGEREF_ACTIVATE,
1228 };
1229
page_check_references(struct page * page,struct scan_control * sc)1230 static enum page_references page_check_references(struct page *page,
1231 struct scan_control *sc)
1232 {
1233 int referenced_ptes, referenced_page;
1234 unsigned long vm_flags;
1235
1236 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1237 &vm_flags);
1238 referenced_page = TestClearPageReferenced(page);
1239
1240 /*
1241 * Mlock lost the isolation race with us. Let try_to_unmap()
1242 * move the page to the unevictable list.
1243 */
1244 if (vm_flags & VM_LOCKED)
1245 return PAGEREF_RECLAIM;
1246
1247 if (referenced_ptes) {
1248 /*
1249 * All mapped pages start out with page table
1250 * references from the instantiating fault, so we need
1251 * to look twice if a mapped file page is used more
1252 * than once.
1253 *
1254 * Mark it and spare it for another trip around the
1255 * inactive list. Another page table reference will
1256 * lead to its activation.
1257 *
1258 * Note: the mark is set for activated pages as well
1259 * so that recently deactivated but used pages are
1260 * quickly recovered.
1261 */
1262 SetPageReferenced(page);
1263
1264 if (referenced_page || referenced_ptes > 1)
1265 return PAGEREF_ACTIVATE;
1266
1267 /*
1268 * Activate file-backed executable pages after first usage.
1269 */
1270 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1271 return PAGEREF_ACTIVATE;
1272
1273 return PAGEREF_KEEP;
1274 }
1275
1276 /* Reclaim if clean, defer dirty pages to writeback */
1277 if (referenced_page && !PageSwapBacked(page))
1278 return PAGEREF_RECLAIM_CLEAN;
1279
1280 return PAGEREF_RECLAIM;
1281 }
1282
1283 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)1284 static void page_check_dirty_writeback(struct page *page,
1285 bool *dirty, bool *writeback)
1286 {
1287 struct address_space *mapping;
1288
1289 /*
1290 * Anonymous pages are not handled by flushers and must be written
1291 * from reclaim context. Do not stall reclaim based on them
1292 */
1293 if (!page_is_file_lru(page) ||
1294 (PageAnon(page) && !PageSwapBacked(page))) {
1295 *dirty = false;
1296 *writeback = false;
1297 return;
1298 }
1299
1300 /* By default assume that the page flags are accurate */
1301 *dirty = PageDirty(page);
1302 *writeback = PageWriteback(page);
1303
1304 /* Verify dirty/writeback state if the filesystem supports it */
1305 if (!page_has_private(page))
1306 return;
1307
1308 mapping = page_mapping(page);
1309 if (mapping && mapping->a_ops->is_dirty_writeback)
1310 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1311 }
1312
alloc_demote_page(struct page * page,unsigned long node)1313 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1314 {
1315 struct migration_target_control mtc = {
1316 /*
1317 * Allocate from 'node', or fail quickly and quietly.
1318 * When this happens, 'page' will likely just be discarded
1319 * instead of migrated.
1320 */
1321 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1322 __GFP_THISNODE | __GFP_NOWARN |
1323 __GFP_NOMEMALLOC | GFP_NOWAIT,
1324 .nid = node
1325 };
1326
1327 return alloc_migration_target(page, (unsigned long)&mtc);
1328 }
1329
1330 /*
1331 * Take pages on @demote_list and attempt to demote them to
1332 * another node. Pages which are not demoted are left on
1333 * @demote_pages.
1334 */
demote_page_list(struct list_head * demote_pages,struct pglist_data * pgdat)1335 static unsigned int demote_page_list(struct list_head *demote_pages,
1336 struct pglist_data *pgdat)
1337 {
1338 int target_nid = next_demotion_node(pgdat->node_id);
1339 unsigned int nr_succeeded;
1340 int err;
1341
1342 if (list_empty(demote_pages))
1343 return 0;
1344
1345 if (target_nid == NUMA_NO_NODE)
1346 return 0;
1347
1348 /* Demotion ignores all cpuset and mempolicy settings */
1349 err = migrate_pages(demote_pages, alloc_demote_page, NULL,
1350 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1351 &nr_succeeded);
1352
1353 if (current_is_kswapd())
1354 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1355 else
1356 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1357
1358 return nr_succeeded;
1359 }
1360
1361 /*
1362 * shrink_page_list() returns the number of reclaimed pages
1363 */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1364 static unsigned int shrink_page_list(struct list_head *page_list,
1365 struct pglist_data *pgdat,
1366 struct scan_control *sc,
1367 struct reclaim_stat *stat,
1368 bool ignore_references)
1369 {
1370 LIST_HEAD(ret_pages);
1371 LIST_HEAD(free_pages);
1372 LIST_HEAD(demote_pages);
1373 unsigned int nr_reclaimed = 0;
1374 unsigned int pgactivate = 0;
1375 bool do_demote_pass;
1376
1377 memset(stat, 0, sizeof(*stat));
1378 cond_resched();
1379 do_demote_pass = can_demote(pgdat->node_id, sc);
1380
1381 retry:
1382 while (!list_empty(page_list)) {
1383 struct address_space *mapping;
1384 struct page *page;
1385 enum page_references references = PAGEREF_RECLAIM;
1386 bool dirty, writeback, may_enter_fs;
1387 unsigned int nr_pages;
1388
1389 cond_resched();
1390
1391 page = lru_to_page(page_list);
1392 list_del(&page->lru);
1393
1394 if (!trylock_page(page))
1395 goto keep;
1396
1397 VM_BUG_ON_PAGE(PageActive(page), page);
1398
1399 nr_pages = compound_nr(page);
1400
1401 /* Account the number of base pages even though THP */
1402 sc->nr_scanned += nr_pages;
1403
1404 if (unlikely(!page_evictable(page)))
1405 goto activate_locked;
1406
1407 if (!sc->may_unmap && page_mapped(page))
1408 goto keep_locked;
1409
1410 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1411 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1412
1413 /*
1414 * The number of dirty pages determines if a node is marked
1415 * reclaim_congested which affects wait_iff_congested. kswapd
1416 * will stall and start writing pages if the tail of the LRU
1417 * is all dirty unqueued pages.
1418 */
1419 page_check_dirty_writeback(page, &dirty, &writeback);
1420 if (dirty || writeback)
1421 stat->nr_dirty++;
1422
1423 if (dirty && !writeback)
1424 stat->nr_unqueued_dirty++;
1425
1426 /*
1427 * Treat this page as congested if the underlying BDI is or if
1428 * pages are cycling through the LRU so quickly that the
1429 * pages marked for immediate reclaim are making it to the
1430 * end of the LRU a second time.
1431 */
1432 mapping = page_mapping(page);
1433 if (((dirty || writeback) && mapping &&
1434 inode_write_congested(mapping->host)) ||
1435 (writeback && PageReclaim(page)))
1436 stat->nr_congested++;
1437
1438 /*
1439 * If a page at the tail of the LRU is under writeback, there
1440 * are three cases to consider.
1441 *
1442 * 1) If reclaim is encountering an excessive number of pages
1443 * under writeback and this page is both under writeback and
1444 * PageReclaim then it indicates that pages are being queued
1445 * for IO but are being recycled through the LRU before the
1446 * IO can complete. Waiting on the page itself risks an
1447 * indefinite stall if it is impossible to writeback the
1448 * page due to IO error or disconnected storage so instead
1449 * note that the LRU is being scanned too quickly and the
1450 * caller can stall after page list has been processed.
1451 *
1452 * 2) Global or new memcg reclaim encounters a page that is
1453 * not marked for immediate reclaim, or the caller does not
1454 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1455 * not to fs). In this case mark the page for immediate
1456 * reclaim and continue scanning.
1457 *
1458 * Require may_enter_fs because we would wait on fs, which
1459 * may not have submitted IO yet. And the loop driver might
1460 * enter reclaim, and deadlock if it waits on a page for
1461 * which it is needed to do the write (loop masks off
1462 * __GFP_IO|__GFP_FS for this reason); but more thought
1463 * would probably show more reasons.
1464 *
1465 * 3) Legacy memcg encounters a page that is already marked
1466 * PageReclaim. memcg does not have any dirty pages
1467 * throttling so we could easily OOM just because too many
1468 * pages are in writeback and there is nothing else to
1469 * reclaim. Wait for the writeback to complete.
1470 *
1471 * In cases 1) and 2) we activate the pages to get them out of
1472 * the way while we continue scanning for clean pages on the
1473 * inactive list and refilling from the active list. The
1474 * observation here is that waiting for disk writes is more
1475 * expensive than potentially causing reloads down the line.
1476 * Since they're marked for immediate reclaim, they won't put
1477 * memory pressure on the cache working set any longer than it
1478 * takes to write them to disk.
1479 */
1480 if (PageWriteback(page)) {
1481 /* Case 1 above */
1482 if (current_is_kswapd() &&
1483 PageReclaim(page) &&
1484 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1485 stat->nr_immediate++;
1486 goto activate_locked;
1487
1488 /* Case 2 above */
1489 } else if (writeback_throttling_sane(sc) ||
1490 !PageReclaim(page) || !may_enter_fs) {
1491 /*
1492 * This is slightly racy - end_page_writeback()
1493 * might have just cleared PageReclaim, then
1494 * setting PageReclaim here end up interpreted
1495 * as PageReadahead - but that does not matter
1496 * enough to care. What we do want is for this
1497 * page to have PageReclaim set next time memcg
1498 * reclaim reaches the tests above, so it will
1499 * then wait_on_page_writeback() to avoid OOM;
1500 * and it's also appropriate in global reclaim.
1501 */
1502 SetPageReclaim(page);
1503 stat->nr_writeback++;
1504 goto activate_locked;
1505
1506 /* Case 3 above */
1507 } else {
1508 unlock_page(page);
1509 wait_on_page_writeback(page);
1510 /* then go back and try same page again */
1511 list_add_tail(&page->lru, page_list);
1512 continue;
1513 }
1514 }
1515
1516 if (!ignore_references)
1517 references = page_check_references(page, sc);
1518
1519 switch (references) {
1520 case PAGEREF_ACTIVATE:
1521 goto activate_locked;
1522 case PAGEREF_KEEP:
1523 stat->nr_ref_keep += nr_pages;
1524 goto keep_locked;
1525 case PAGEREF_RECLAIM:
1526 case PAGEREF_RECLAIM_CLEAN:
1527 ; /* try to reclaim the page below */
1528 }
1529
1530 /*
1531 * Before reclaiming the page, try to relocate
1532 * its contents to another node.
1533 */
1534 if (do_demote_pass &&
1535 (thp_migration_supported() || !PageTransHuge(page))) {
1536 list_add(&page->lru, &demote_pages);
1537 unlock_page(page);
1538 continue;
1539 }
1540
1541 /*
1542 * Anonymous process memory has backing store?
1543 * Try to allocate it some swap space here.
1544 * Lazyfree page could be freed directly
1545 */
1546 if (PageAnon(page) && PageSwapBacked(page)) {
1547 if (!PageSwapCache(page)) {
1548 if (!(sc->gfp_mask & __GFP_IO))
1549 goto keep_locked;
1550 if (page_maybe_dma_pinned(page))
1551 goto keep_locked;
1552 if (PageTransHuge(page)) {
1553 /* cannot split THP, skip it */
1554 if (!can_split_huge_page(page, NULL))
1555 goto activate_locked;
1556 /*
1557 * Split pages without a PMD map right
1558 * away. Chances are some or all of the
1559 * tail pages can be freed without IO.
1560 */
1561 if (!compound_mapcount(page) &&
1562 split_huge_page_to_list(page,
1563 page_list))
1564 goto activate_locked;
1565 }
1566 if (!add_to_swap(page)) {
1567 if (!PageTransHuge(page))
1568 goto activate_locked_split;
1569 /* Fallback to swap normal pages */
1570 if (split_huge_page_to_list(page,
1571 page_list))
1572 goto activate_locked;
1573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1574 count_vm_event(THP_SWPOUT_FALLBACK);
1575 #endif
1576 if (!add_to_swap(page))
1577 goto activate_locked_split;
1578 }
1579
1580 may_enter_fs = true;
1581
1582 /* Adding to swap updated mapping */
1583 mapping = page_mapping(page);
1584 }
1585 } else if (unlikely(PageTransHuge(page))) {
1586 /* Split file THP */
1587 if (split_huge_page_to_list(page, page_list))
1588 goto keep_locked;
1589 }
1590
1591 /*
1592 * THP may get split above, need minus tail pages and update
1593 * nr_pages to avoid accounting tail pages twice.
1594 *
1595 * The tail pages that are added into swap cache successfully
1596 * reach here.
1597 */
1598 if ((nr_pages > 1) && !PageTransHuge(page)) {
1599 sc->nr_scanned -= (nr_pages - 1);
1600 nr_pages = 1;
1601 }
1602
1603 /*
1604 * The page is mapped into the page tables of one or more
1605 * processes. Try to unmap it here.
1606 */
1607 if (page_mapped(page)) {
1608 enum ttu_flags flags = TTU_BATCH_FLUSH;
1609 bool was_swapbacked = PageSwapBacked(page);
1610
1611 if (unlikely(PageTransHuge(page)))
1612 flags |= TTU_SPLIT_HUGE_PMD;
1613
1614 try_to_unmap(page, flags);
1615 if (page_mapped(page)) {
1616 stat->nr_unmap_fail += nr_pages;
1617 if (!was_swapbacked && PageSwapBacked(page))
1618 stat->nr_lazyfree_fail += nr_pages;
1619 goto activate_locked;
1620 }
1621 }
1622
1623 if (PageDirty(page)) {
1624 /*
1625 * Only kswapd can writeback filesystem pages
1626 * to avoid risk of stack overflow. But avoid
1627 * injecting inefficient single-page IO into
1628 * flusher writeback as much as possible: only
1629 * write pages when we've encountered many
1630 * dirty pages, and when we've already scanned
1631 * the rest of the LRU for clean pages and see
1632 * the same dirty pages again (PageReclaim).
1633 */
1634 if (page_is_file_lru(page) &&
1635 (!current_is_kswapd() || !PageReclaim(page) ||
1636 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1637 /*
1638 * Immediately reclaim when written back.
1639 * Similar in principal to deactivate_page()
1640 * except we already have the page isolated
1641 * and know it's dirty
1642 */
1643 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1644 SetPageReclaim(page);
1645
1646 goto activate_locked;
1647 }
1648
1649 if (references == PAGEREF_RECLAIM_CLEAN)
1650 goto keep_locked;
1651 if (!may_enter_fs)
1652 goto keep_locked;
1653 if (!sc->may_writepage)
1654 goto keep_locked;
1655
1656 /*
1657 * Page is dirty. Flush the TLB if a writable entry
1658 * potentially exists to avoid CPU writes after IO
1659 * starts and then write it out here.
1660 */
1661 try_to_unmap_flush_dirty();
1662 switch (pageout(page, mapping)) {
1663 case PAGE_KEEP:
1664 goto keep_locked;
1665 case PAGE_ACTIVATE:
1666 goto activate_locked;
1667 case PAGE_SUCCESS:
1668 stat->nr_pageout += thp_nr_pages(page);
1669
1670 if (PageWriteback(page))
1671 goto keep;
1672 if (PageDirty(page))
1673 goto keep;
1674
1675 /*
1676 * A synchronous write - probably a ramdisk. Go
1677 * ahead and try to reclaim the page.
1678 */
1679 if (!trylock_page(page))
1680 goto keep;
1681 if (PageDirty(page) || PageWriteback(page))
1682 goto keep_locked;
1683 mapping = page_mapping(page);
1684 fallthrough;
1685 case PAGE_CLEAN:
1686 ; /* try to free the page below */
1687 }
1688 }
1689
1690 /*
1691 * If the page has buffers, try to free the buffer mappings
1692 * associated with this page. If we succeed we try to free
1693 * the page as well.
1694 *
1695 * We do this even if the page is PageDirty().
1696 * try_to_release_page() does not perform I/O, but it is
1697 * possible for a page to have PageDirty set, but it is actually
1698 * clean (all its buffers are clean). This happens if the
1699 * buffers were written out directly, with submit_bh(). ext3
1700 * will do this, as well as the blockdev mapping.
1701 * try_to_release_page() will discover that cleanness and will
1702 * drop the buffers and mark the page clean - it can be freed.
1703 *
1704 * Rarely, pages can have buffers and no ->mapping. These are
1705 * the pages which were not successfully invalidated in
1706 * truncate_cleanup_page(). We try to drop those buffers here
1707 * and if that worked, and the page is no longer mapped into
1708 * process address space (page_count == 1) it can be freed.
1709 * Otherwise, leave the page on the LRU so it is swappable.
1710 */
1711 if (page_has_private(page)) {
1712 if (!try_to_release_page(page, sc->gfp_mask))
1713 goto activate_locked;
1714 if (!mapping && page_count(page) == 1) {
1715 unlock_page(page);
1716 if (put_page_testzero(page))
1717 goto free_it;
1718 else {
1719 /*
1720 * rare race with speculative reference.
1721 * the speculative reference will free
1722 * this page shortly, so we may
1723 * increment nr_reclaimed here (and
1724 * leave it off the LRU).
1725 */
1726 nr_reclaimed++;
1727 continue;
1728 }
1729 }
1730 }
1731
1732 if (PageAnon(page) && !PageSwapBacked(page)) {
1733 /* follow __remove_mapping for reference */
1734 if (!page_ref_freeze(page, 1))
1735 goto keep_locked;
1736 /*
1737 * The page has only one reference left, which is
1738 * from the isolation. After the caller puts the
1739 * page back on lru and drops the reference, the
1740 * page will be freed anyway. It doesn't matter
1741 * which lru it goes. So we don't bother checking
1742 * PageDirty here.
1743 */
1744 count_vm_event(PGLAZYFREED);
1745 count_memcg_page_event(page, PGLAZYFREED);
1746 } else if (!mapping || !__remove_mapping(mapping, page, true,
1747 sc->target_mem_cgroup))
1748 goto keep_locked;
1749
1750 unlock_page(page);
1751 free_it:
1752 /*
1753 * THP may get swapped out in a whole, need account
1754 * all base pages.
1755 */
1756 nr_reclaimed += nr_pages;
1757
1758 /*
1759 * Is there need to periodically free_page_list? It would
1760 * appear not as the counts should be low
1761 */
1762 if (unlikely(PageTransHuge(page)))
1763 destroy_compound_page(page);
1764 else
1765 list_add(&page->lru, &free_pages);
1766 continue;
1767
1768 activate_locked_split:
1769 /*
1770 * The tail pages that are failed to add into swap cache
1771 * reach here. Fixup nr_scanned and nr_pages.
1772 */
1773 if (nr_pages > 1) {
1774 sc->nr_scanned -= (nr_pages - 1);
1775 nr_pages = 1;
1776 }
1777 activate_locked:
1778 /* Not a candidate for swapping, so reclaim swap space. */
1779 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1780 PageMlocked(page)))
1781 try_to_free_swap(page);
1782 VM_BUG_ON_PAGE(PageActive(page), page);
1783 if (!PageMlocked(page)) {
1784 int type = page_is_file_lru(page);
1785 SetPageActive(page);
1786 stat->nr_activate[type] += nr_pages;
1787 count_memcg_page_event(page, PGACTIVATE);
1788 }
1789 keep_locked:
1790 unlock_page(page);
1791 keep:
1792 list_add(&page->lru, &ret_pages);
1793 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1794 }
1795 /* 'page_list' is always empty here */
1796
1797 /* Migrate pages selected for demotion */
1798 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1799 /* Pages that could not be demoted are still in @demote_pages */
1800 if (!list_empty(&demote_pages)) {
1801 /* Pages which failed to demoted go back on @page_list for retry: */
1802 list_splice_init(&demote_pages, page_list);
1803 do_demote_pass = false;
1804 goto retry;
1805 }
1806
1807 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1808
1809 mem_cgroup_uncharge_list(&free_pages);
1810 try_to_unmap_flush();
1811 free_unref_page_list(&free_pages);
1812
1813 list_splice(&ret_pages, page_list);
1814 count_vm_events(PGACTIVATE, pgactivate);
1815
1816 return nr_reclaimed;
1817 }
1818
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1819 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1820 struct list_head *page_list)
1821 {
1822 struct scan_control sc = {
1823 .gfp_mask = GFP_KERNEL,
1824 .may_unmap = 1,
1825 };
1826 struct reclaim_stat stat;
1827 unsigned int nr_reclaimed;
1828 struct page *page, *next;
1829 LIST_HEAD(clean_pages);
1830 unsigned int noreclaim_flag;
1831
1832 list_for_each_entry_safe(page, next, page_list, lru) {
1833 if (!PageHuge(page) && page_is_file_lru(page) &&
1834 !PageDirty(page) && !__PageMovable(page) &&
1835 !PageUnevictable(page)) {
1836 ClearPageActive(page);
1837 list_move(&page->lru, &clean_pages);
1838 }
1839 }
1840
1841 /*
1842 * We should be safe here since we are only dealing with file pages and
1843 * we are not kswapd and therefore cannot write dirty file pages. But
1844 * call memalloc_noreclaim_save() anyway, just in case these conditions
1845 * change in the future.
1846 */
1847 noreclaim_flag = memalloc_noreclaim_save();
1848 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1849 &stat, true);
1850 memalloc_noreclaim_restore(noreclaim_flag);
1851
1852 list_splice(&clean_pages, page_list);
1853 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1854 -(long)nr_reclaimed);
1855 /*
1856 * Since lazyfree pages are isolated from file LRU from the beginning,
1857 * they will rotate back to anonymous LRU in the end if it failed to
1858 * discard so isolated count will be mismatched.
1859 * Compensate the isolated count for both LRU lists.
1860 */
1861 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1862 stat.nr_lazyfree_fail);
1863 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1864 -(long)stat.nr_lazyfree_fail);
1865 return nr_reclaimed;
1866 }
1867
1868 /*
1869 * Attempt to remove the specified page from its LRU. Only take this page
1870 * if it is of the appropriate PageActive status. Pages which are being
1871 * freed elsewhere are also ignored.
1872 *
1873 * page: page to consider
1874 * mode: one of the LRU isolation modes defined above
1875 *
1876 * returns true on success, false on failure.
1877 */
__isolate_lru_page_prepare(struct page * page,isolate_mode_t mode)1878 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1879 {
1880 /* Only take pages on the LRU. */
1881 if (!PageLRU(page))
1882 return false;
1883
1884 /* Compaction should not handle unevictable pages but CMA can do so */
1885 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1886 return false;
1887
1888 /*
1889 * To minimise LRU disruption, the caller can indicate that it only
1890 * wants to isolate pages it will be able to operate on without
1891 * blocking - clean pages for the most part.
1892 *
1893 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1894 * that it is possible to migrate without blocking
1895 */
1896 if (mode & ISOLATE_ASYNC_MIGRATE) {
1897 /* All the caller can do on PageWriteback is block */
1898 if (PageWriteback(page))
1899 return false;
1900
1901 if (PageDirty(page)) {
1902 struct address_space *mapping;
1903 bool migrate_dirty;
1904
1905 /*
1906 * Only pages without mappings or that have a
1907 * ->migratepage callback are possible to migrate
1908 * without blocking. However, we can be racing with
1909 * truncation so it's necessary to lock the page
1910 * to stabilise the mapping as truncation holds
1911 * the page lock until after the page is removed
1912 * from the page cache.
1913 */
1914 if (!trylock_page(page))
1915 return false;
1916
1917 mapping = page_mapping(page);
1918 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1919 unlock_page(page);
1920 if (!migrate_dirty)
1921 return false;
1922 }
1923 }
1924
1925 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1926 return false;
1927
1928 return true;
1929 }
1930
1931 /*
1932 * Update LRU sizes after isolating pages. The LRU size updates must
1933 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1934 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1935 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1936 enum lru_list lru, unsigned long *nr_zone_taken)
1937 {
1938 int zid;
1939
1940 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1941 if (!nr_zone_taken[zid])
1942 continue;
1943
1944 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1945 }
1946
1947 }
1948
1949 /*
1950 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1951 *
1952 * lruvec->lru_lock is heavily contended. Some of the functions that
1953 * shrink the lists perform better by taking out a batch of pages
1954 * and working on them outside the LRU lock.
1955 *
1956 * For pagecache intensive workloads, this function is the hottest
1957 * spot in the kernel (apart from copy_*_user functions).
1958 *
1959 * Lru_lock must be held before calling this function.
1960 *
1961 * @nr_to_scan: The number of eligible pages to look through on the list.
1962 * @lruvec: The LRU vector to pull pages from.
1963 * @dst: The temp list to put pages on to.
1964 * @nr_scanned: The number of pages that were scanned.
1965 * @sc: The scan_control struct for this reclaim session
1966 * @lru: LRU list id for isolating
1967 *
1968 * returns how many pages were moved onto *@dst.
1969 */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1970 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1971 struct lruvec *lruvec, struct list_head *dst,
1972 unsigned long *nr_scanned, struct scan_control *sc,
1973 enum lru_list lru)
1974 {
1975 struct list_head *src = &lruvec->lists[lru];
1976 unsigned long nr_taken = 0;
1977 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1978 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1979 unsigned long skipped = 0;
1980 unsigned long scan, total_scan, nr_pages;
1981 LIST_HEAD(pages_skipped);
1982 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1983
1984 total_scan = 0;
1985 scan = 0;
1986 while (scan < nr_to_scan && !list_empty(src)) {
1987 struct page *page;
1988
1989 page = lru_to_page(src);
1990 prefetchw_prev_lru_page(page, src, flags);
1991
1992 nr_pages = compound_nr(page);
1993 total_scan += nr_pages;
1994
1995 if (page_zonenum(page) > sc->reclaim_idx) {
1996 list_move(&page->lru, &pages_skipped);
1997 nr_skipped[page_zonenum(page)] += nr_pages;
1998 continue;
1999 }
2000
2001 /*
2002 * Do not count skipped pages because that makes the function
2003 * return with no isolated pages if the LRU mostly contains
2004 * ineligible pages. This causes the VM to not reclaim any
2005 * pages, triggering a premature OOM.
2006 *
2007 * Account all tail pages of THP. This would not cause
2008 * premature OOM since __isolate_lru_page() returns -EBUSY
2009 * only when the page is being freed somewhere else.
2010 */
2011 scan += nr_pages;
2012 if (!__isolate_lru_page_prepare(page, mode)) {
2013 /* It is being freed elsewhere */
2014 list_move(&page->lru, src);
2015 continue;
2016 }
2017 /*
2018 * Be careful not to clear PageLRU until after we're
2019 * sure the page is not being freed elsewhere -- the
2020 * page release code relies on it.
2021 */
2022 if (unlikely(!get_page_unless_zero(page))) {
2023 list_move(&page->lru, src);
2024 continue;
2025 }
2026
2027 if (!TestClearPageLRU(page)) {
2028 /* Another thread is already isolating this page */
2029 put_page(page);
2030 list_move(&page->lru, src);
2031 continue;
2032 }
2033
2034 nr_taken += nr_pages;
2035 nr_zone_taken[page_zonenum(page)] += nr_pages;
2036 list_move(&page->lru, dst);
2037 }
2038
2039 /*
2040 * Splice any skipped pages to the start of the LRU list. Note that
2041 * this disrupts the LRU order when reclaiming for lower zones but
2042 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2043 * scanning would soon rescan the same pages to skip and put the
2044 * system at risk of premature OOM.
2045 */
2046 if (!list_empty(&pages_skipped)) {
2047 int zid;
2048
2049 list_splice(&pages_skipped, src);
2050 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2051 if (!nr_skipped[zid])
2052 continue;
2053
2054 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2055 skipped += nr_skipped[zid];
2056 }
2057 }
2058 *nr_scanned = total_scan;
2059 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2060 total_scan, skipped, nr_taken, mode, lru);
2061 update_lru_sizes(lruvec, lru, nr_zone_taken);
2062 return nr_taken;
2063 }
2064
2065 /**
2066 * isolate_lru_page - tries to isolate a page from its LRU list
2067 * @page: page to isolate from its LRU list
2068 *
2069 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2070 * vmstat statistic corresponding to whatever LRU list the page was on.
2071 *
2072 * Returns 0 if the page was removed from an LRU list.
2073 * Returns -EBUSY if the page was not on an LRU list.
2074 *
2075 * The returned page will have PageLRU() cleared. If it was found on
2076 * the active list, it will have PageActive set. If it was found on
2077 * the unevictable list, it will have the PageUnevictable bit set. That flag
2078 * may need to be cleared by the caller before letting the page go.
2079 *
2080 * The vmstat statistic corresponding to the list on which the page was
2081 * found will be decremented.
2082 *
2083 * Restrictions:
2084 *
2085 * (1) Must be called with an elevated refcount on the page. This is a
2086 * fundamental difference from isolate_lru_pages (which is called
2087 * without a stable reference).
2088 * (2) the lru_lock must not be held.
2089 * (3) interrupts must be enabled.
2090 */
isolate_lru_page(struct page * page)2091 int isolate_lru_page(struct page *page)
2092 {
2093 int ret = -EBUSY;
2094
2095 VM_BUG_ON_PAGE(!page_count(page), page);
2096 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2097
2098 if (TestClearPageLRU(page)) {
2099 struct lruvec *lruvec;
2100
2101 get_page(page);
2102 lruvec = lock_page_lruvec_irq(page);
2103 del_page_from_lru_list(page, lruvec);
2104 unlock_page_lruvec_irq(lruvec);
2105 ret = 0;
2106 }
2107
2108 return ret;
2109 }
2110
2111 /*
2112 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2113 * then get rescheduled. When there are massive number of tasks doing page
2114 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2115 * the LRU list will go small and be scanned faster than necessary, leading to
2116 * unnecessary swapping, thrashing and OOM.
2117 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)2118 static int too_many_isolated(struct pglist_data *pgdat, int file,
2119 struct scan_control *sc)
2120 {
2121 unsigned long inactive, isolated;
2122
2123 if (current_is_kswapd())
2124 return 0;
2125
2126 if (!writeback_throttling_sane(sc))
2127 return 0;
2128
2129 if (file) {
2130 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2131 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2132 } else {
2133 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2134 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2135 }
2136
2137 /*
2138 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2139 * won't get blocked by normal direct-reclaimers, forming a circular
2140 * deadlock.
2141 */
2142 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2143 inactive >>= 3;
2144
2145 return isolated > inactive;
2146 }
2147
2148 /*
2149 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2150 * On return, @list is reused as a list of pages to be freed by the caller.
2151 *
2152 * Returns the number of pages moved to the given lruvec.
2153 */
move_pages_to_lru(struct lruvec * lruvec,struct list_head * list)2154 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2155 struct list_head *list)
2156 {
2157 int nr_pages, nr_moved = 0;
2158 LIST_HEAD(pages_to_free);
2159 struct page *page;
2160
2161 while (!list_empty(list)) {
2162 page = lru_to_page(list);
2163 VM_BUG_ON_PAGE(PageLRU(page), page);
2164 list_del(&page->lru);
2165 if (unlikely(!page_evictable(page))) {
2166 spin_unlock_irq(&lruvec->lru_lock);
2167 putback_lru_page(page);
2168 spin_lock_irq(&lruvec->lru_lock);
2169 continue;
2170 }
2171
2172 /*
2173 * The SetPageLRU needs to be kept here for list integrity.
2174 * Otherwise:
2175 * #0 move_pages_to_lru #1 release_pages
2176 * if !put_page_testzero
2177 * if (put_page_testzero())
2178 * !PageLRU //skip lru_lock
2179 * SetPageLRU()
2180 * list_add(&page->lru,)
2181 * list_add(&page->lru,)
2182 */
2183 SetPageLRU(page);
2184
2185 if (unlikely(put_page_testzero(page))) {
2186 __clear_page_lru_flags(page);
2187
2188 if (unlikely(PageCompound(page))) {
2189 spin_unlock_irq(&lruvec->lru_lock);
2190 destroy_compound_page(page);
2191 spin_lock_irq(&lruvec->lru_lock);
2192 } else
2193 list_add(&page->lru, &pages_to_free);
2194
2195 continue;
2196 }
2197
2198 /*
2199 * All pages were isolated from the same lruvec (and isolation
2200 * inhibits memcg migration).
2201 */
2202 VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
2203 add_page_to_lru_list(page, lruvec);
2204 nr_pages = thp_nr_pages(page);
2205 nr_moved += nr_pages;
2206 if (PageActive(page))
2207 workingset_age_nonresident(lruvec, nr_pages);
2208 }
2209
2210 /*
2211 * To save our caller's stack, now use input list for pages to free.
2212 */
2213 list_splice(&pages_to_free, list);
2214
2215 return nr_moved;
2216 }
2217
2218 /*
2219 * If a kernel thread (such as nfsd for loop-back mounts) services
2220 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2221 * In that case we should only throttle if the backing device it is
2222 * writing to is congested. In other cases it is safe to throttle.
2223 */
current_may_throttle(void)2224 static int current_may_throttle(void)
2225 {
2226 return !(current->flags & PF_LOCAL_THROTTLE) ||
2227 current->backing_dev_info == NULL ||
2228 bdi_write_congested(current->backing_dev_info);
2229 }
2230
2231 /*
2232 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2233 * of reclaimed pages
2234 */
2235 static unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2236 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2237 struct scan_control *sc, enum lru_list lru)
2238 {
2239 LIST_HEAD(page_list);
2240 unsigned long nr_scanned;
2241 unsigned int nr_reclaimed = 0;
2242 unsigned long nr_taken;
2243 struct reclaim_stat stat;
2244 bool file = is_file_lru(lru);
2245 enum vm_event_item item;
2246 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2247 bool stalled = false;
2248
2249 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2250 if (stalled)
2251 return 0;
2252
2253 /* wait a bit for the reclaimer. */
2254 msleep(100);
2255 stalled = true;
2256
2257 /* We are about to die and free our memory. Return now. */
2258 if (fatal_signal_pending(current))
2259 return SWAP_CLUSTER_MAX;
2260 }
2261
2262 lru_add_drain();
2263
2264 spin_lock_irq(&lruvec->lru_lock);
2265
2266 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2267 &nr_scanned, sc, lru);
2268
2269 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2270 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2271 if (!cgroup_reclaim(sc))
2272 __count_vm_events(item, nr_scanned);
2273 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2274 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2275
2276 spin_unlock_irq(&lruvec->lru_lock);
2277
2278 if (nr_taken == 0)
2279 return 0;
2280
2281 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2282
2283 spin_lock_irq(&lruvec->lru_lock);
2284 move_pages_to_lru(lruvec, &page_list);
2285
2286 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2287 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2288 if (!cgroup_reclaim(sc))
2289 __count_vm_events(item, nr_reclaimed);
2290 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2291 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2292 spin_unlock_irq(&lruvec->lru_lock);
2293
2294 lru_note_cost(lruvec, file, stat.nr_pageout);
2295 mem_cgroup_uncharge_list(&page_list);
2296 free_unref_page_list(&page_list);
2297
2298 /*
2299 * If dirty pages are scanned that are not queued for IO, it
2300 * implies that flushers are not doing their job. This can
2301 * happen when memory pressure pushes dirty pages to the end of
2302 * the LRU before the dirty limits are breached and the dirty
2303 * data has expired. It can also happen when the proportion of
2304 * dirty pages grows not through writes but through memory
2305 * pressure reclaiming all the clean cache. And in some cases,
2306 * the flushers simply cannot keep up with the allocation
2307 * rate. Nudge the flusher threads in case they are asleep.
2308 */
2309 if (stat.nr_unqueued_dirty == nr_taken)
2310 wakeup_flusher_threads(WB_REASON_VMSCAN);
2311
2312 sc->nr.dirty += stat.nr_dirty;
2313 sc->nr.congested += stat.nr_congested;
2314 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2315 sc->nr.writeback += stat.nr_writeback;
2316 sc->nr.immediate += stat.nr_immediate;
2317 sc->nr.taken += nr_taken;
2318 if (file)
2319 sc->nr.file_taken += nr_taken;
2320
2321 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2322 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2323 return nr_reclaimed;
2324 }
2325
2326 /*
2327 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2328 *
2329 * We move them the other way if the page is referenced by one or more
2330 * processes.
2331 *
2332 * If the pages are mostly unmapped, the processing is fast and it is
2333 * appropriate to hold lru_lock across the whole operation. But if
2334 * the pages are mapped, the processing is slow (page_referenced()), so
2335 * we should drop lru_lock around each page. It's impossible to balance
2336 * this, so instead we remove the pages from the LRU while processing them.
2337 * It is safe to rely on PG_active against the non-LRU pages in here because
2338 * nobody will play with that bit on a non-LRU page.
2339 *
2340 * The downside is that we have to touch page->_refcount against each page.
2341 * But we had to alter page->flags anyway.
2342 */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2343 static void shrink_active_list(unsigned long nr_to_scan,
2344 struct lruvec *lruvec,
2345 struct scan_control *sc,
2346 enum lru_list lru)
2347 {
2348 unsigned long nr_taken;
2349 unsigned long nr_scanned;
2350 unsigned long vm_flags;
2351 LIST_HEAD(l_hold); /* The pages which were snipped off */
2352 LIST_HEAD(l_active);
2353 LIST_HEAD(l_inactive);
2354 struct page *page;
2355 unsigned nr_deactivate, nr_activate;
2356 unsigned nr_rotated = 0;
2357 int file = is_file_lru(lru);
2358 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2359
2360 lru_add_drain();
2361
2362 spin_lock_irq(&lruvec->lru_lock);
2363
2364 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2365 &nr_scanned, sc, lru);
2366
2367 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2368
2369 if (!cgroup_reclaim(sc))
2370 __count_vm_events(PGREFILL, nr_scanned);
2371 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2372
2373 spin_unlock_irq(&lruvec->lru_lock);
2374
2375 while (!list_empty(&l_hold)) {
2376 cond_resched();
2377 page = lru_to_page(&l_hold);
2378 list_del(&page->lru);
2379
2380 if (unlikely(!page_evictable(page))) {
2381 putback_lru_page(page);
2382 continue;
2383 }
2384
2385 if (unlikely(buffer_heads_over_limit)) {
2386 if (page_has_private(page) && trylock_page(page)) {
2387 if (page_has_private(page))
2388 try_to_release_page(page, 0);
2389 unlock_page(page);
2390 }
2391 }
2392
2393 if (page_referenced(page, 0, sc->target_mem_cgroup,
2394 &vm_flags)) {
2395 /*
2396 * Identify referenced, file-backed active pages and
2397 * give them one more trip around the active list. So
2398 * that executable code get better chances to stay in
2399 * memory under moderate memory pressure. Anon pages
2400 * are not likely to be evicted by use-once streaming
2401 * IO, plus JVM can create lots of anon VM_EXEC pages,
2402 * so we ignore them here.
2403 */
2404 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2405 nr_rotated += thp_nr_pages(page);
2406 list_add(&page->lru, &l_active);
2407 continue;
2408 }
2409 }
2410
2411 ClearPageActive(page); /* we are de-activating */
2412 SetPageWorkingset(page);
2413 list_add(&page->lru, &l_inactive);
2414 }
2415
2416 /*
2417 * Move pages back to the lru list.
2418 */
2419 spin_lock_irq(&lruvec->lru_lock);
2420
2421 nr_activate = move_pages_to_lru(lruvec, &l_active);
2422 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2423 /* Keep all free pages in l_active list */
2424 list_splice(&l_inactive, &l_active);
2425
2426 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2427 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2428
2429 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2430 spin_unlock_irq(&lruvec->lru_lock);
2431
2432 mem_cgroup_uncharge_list(&l_active);
2433 free_unref_page_list(&l_active);
2434 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2435 nr_deactivate, nr_rotated, sc->priority, file);
2436 }
2437
reclaim_pages(struct list_head * page_list)2438 unsigned long reclaim_pages(struct list_head *page_list)
2439 {
2440 int nid = NUMA_NO_NODE;
2441 unsigned int nr_reclaimed = 0;
2442 LIST_HEAD(node_page_list);
2443 struct reclaim_stat dummy_stat;
2444 struct page *page;
2445 unsigned int noreclaim_flag;
2446 struct scan_control sc = {
2447 .gfp_mask = GFP_KERNEL,
2448 .may_writepage = 1,
2449 .may_unmap = 1,
2450 .may_swap = 1,
2451 .no_demotion = 1,
2452 };
2453
2454 noreclaim_flag = memalloc_noreclaim_save();
2455
2456 while (!list_empty(page_list)) {
2457 page = lru_to_page(page_list);
2458 if (nid == NUMA_NO_NODE) {
2459 nid = page_to_nid(page);
2460 INIT_LIST_HEAD(&node_page_list);
2461 }
2462
2463 if (nid == page_to_nid(page)) {
2464 ClearPageActive(page);
2465 list_move(&page->lru, &node_page_list);
2466 continue;
2467 }
2468
2469 nr_reclaimed += shrink_page_list(&node_page_list,
2470 NODE_DATA(nid),
2471 &sc, &dummy_stat, false);
2472 while (!list_empty(&node_page_list)) {
2473 page = lru_to_page(&node_page_list);
2474 list_del(&page->lru);
2475 putback_lru_page(page);
2476 }
2477
2478 nid = NUMA_NO_NODE;
2479 }
2480
2481 if (!list_empty(&node_page_list)) {
2482 nr_reclaimed += shrink_page_list(&node_page_list,
2483 NODE_DATA(nid),
2484 &sc, &dummy_stat, false);
2485 while (!list_empty(&node_page_list)) {
2486 page = lru_to_page(&node_page_list);
2487 list_del(&page->lru);
2488 putback_lru_page(page);
2489 }
2490 }
2491
2492 memalloc_noreclaim_restore(noreclaim_flag);
2493
2494 return nr_reclaimed;
2495 }
2496
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2497 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2498 struct lruvec *lruvec, struct scan_control *sc)
2499 {
2500 if (is_active_lru(lru)) {
2501 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2502 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2503 else
2504 sc->skipped_deactivate = 1;
2505 return 0;
2506 }
2507
2508 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2509 }
2510
2511 /*
2512 * The inactive anon list should be small enough that the VM never has
2513 * to do too much work.
2514 *
2515 * The inactive file list should be small enough to leave most memory
2516 * to the established workingset on the scan-resistant active list,
2517 * but large enough to avoid thrashing the aggregate readahead window.
2518 *
2519 * Both inactive lists should also be large enough that each inactive
2520 * page has a chance to be referenced again before it is reclaimed.
2521 *
2522 * If that fails and refaulting is observed, the inactive list grows.
2523 *
2524 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2525 * on this LRU, maintained by the pageout code. An inactive_ratio
2526 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2527 *
2528 * total target max
2529 * memory ratio inactive
2530 * -------------------------------------
2531 * 10MB 1 5MB
2532 * 100MB 1 50MB
2533 * 1GB 3 250MB
2534 * 10GB 10 0.9GB
2535 * 100GB 31 3GB
2536 * 1TB 101 10GB
2537 * 10TB 320 32GB
2538 */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2539 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2540 {
2541 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2542 unsigned long inactive, active;
2543 unsigned long inactive_ratio;
2544 unsigned long gb;
2545
2546 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2547 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2548
2549 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2550 if (gb)
2551 inactive_ratio = int_sqrt(10 * gb);
2552 else
2553 inactive_ratio = 1;
2554
2555 return inactive * inactive_ratio < active;
2556 }
2557
2558 enum scan_balance {
2559 SCAN_EQUAL,
2560 SCAN_FRACT,
2561 SCAN_ANON,
2562 SCAN_FILE,
2563 };
2564
2565 /*
2566 * Determine how aggressively the anon and file LRU lists should be
2567 * scanned. The relative value of each set of LRU lists is determined
2568 * by looking at the fraction of the pages scanned we did rotate back
2569 * onto the active list instead of evict.
2570 *
2571 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2572 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2573 */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2574 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2575 unsigned long *nr)
2576 {
2577 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2578 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2579 unsigned long anon_cost, file_cost, total_cost;
2580 int swappiness = mem_cgroup_swappiness(memcg);
2581 u64 fraction[ANON_AND_FILE];
2582 u64 denominator = 0; /* gcc */
2583 enum scan_balance scan_balance;
2584 unsigned long ap, fp;
2585 enum lru_list lru;
2586
2587 /* If we have no swap space, do not bother scanning anon pages. */
2588 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2589 scan_balance = SCAN_FILE;
2590 goto out;
2591 }
2592
2593 /*
2594 * Global reclaim will swap to prevent OOM even with no
2595 * swappiness, but memcg users want to use this knob to
2596 * disable swapping for individual groups completely when
2597 * using the memory controller's swap limit feature would be
2598 * too expensive.
2599 */
2600 if (cgroup_reclaim(sc) && !swappiness) {
2601 scan_balance = SCAN_FILE;
2602 goto out;
2603 }
2604
2605 /*
2606 * Do not apply any pressure balancing cleverness when the
2607 * system is close to OOM, scan both anon and file equally
2608 * (unless the swappiness setting disagrees with swapping).
2609 */
2610 if (!sc->priority && swappiness) {
2611 scan_balance = SCAN_EQUAL;
2612 goto out;
2613 }
2614
2615 /*
2616 * If the system is almost out of file pages, force-scan anon.
2617 */
2618 if (sc->file_is_tiny) {
2619 scan_balance = SCAN_ANON;
2620 goto out;
2621 }
2622
2623 /*
2624 * If there is enough inactive page cache, we do not reclaim
2625 * anything from the anonymous working right now.
2626 */
2627 if (sc->cache_trim_mode) {
2628 scan_balance = SCAN_FILE;
2629 goto out;
2630 }
2631
2632 scan_balance = SCAN_FRACT;
2633 /*
2634 * Calculate the pressure balance between anon and file pages.
2635 *
2636 * The amount of pressure we put on each LRU is inversely
2637 * proportional to the cost of reclaiming each list, as
2638 * determined by the share of pages that are refaulting, times
2639 * the relative IO cost of bringing back a swapped out
2640 * anonymous page vs reloading a filesystem page (swappiness).
2641 *
2642 * Although we limit that influence to ensure no list gets
2643 * left behind completely: at least a third of the pressure is
2644 * applied, before swappiness.
2645 *
2646 * With swappiness at 100, anon and file have equal IO cost.
2647 */
2648 total_cost = sc->anon_cost + sc->file_cost;
2649 anon_cost = total_cost + sc->anon_cost;
2650 file_cost = total_cost + sc->file_cost;
2651 total_cost = anon_cost + file_cost;
2652
2653 ap = swappiness * (total_cost + 1);
2654 ap /= anon_cost + 1;
2655
2656 fp = (200 - swappiness) * (total_cost + 1);
2657 fp /= file_cost + 1;
2658
2659 fraction[0] = ap;
2660 fraction[1] = fp;
2661 denominator = ap + fp;
2662 out:
2663 for_each_evictable_lru(lru) {
2664 int file = is_file_lru(lru);
2665 unsigned long lruvec_size;
2666 unsigned long low, min;
2667 unsigned long scan;
2668
2669 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2670 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2671 &min, &low);
2672
2673 if (min || low) {
2674 /*
2675 * Scale a cgroup's reclaim pressure by proportioning
2676 * its current usage to its memory.low or memory.min
2677 * setting.
2678 *
2679 * This is important, as otherwise scanning aggression
2680 * becomes extremely binary -- from nothing as we
2681 * approach the memory protection threshold, to totally
2682 * nominal as we exceed it. This results in requiring
2683 * setting extremely liberal protection thresholds. It
2684 * also means we simply get no protection at all if we
2685 * set it too low, which is not ideal.
2686 *
2687 * If there is any protection in place, we reduce scan
2688 * pressure by how much of the total memory used is
2689 * within protection thresholds.
2690 *
2691 * There is one special case: in the first reclaim pass,
2692 * we skip over all groups that are within their low
2693 * protection. If that fails to reclaim enough pages to
2694 * satisfy the reclaim goal, we come back and override
2695 * the best-effort low protection. However, we still
2696 * ideally want to honor how well-behaved groups are in
2697 * that case instead of simply punishing them all
2698 * equally. As such, we reclaim them based on how much
2699 * memory they are using, reducing the scan pressure
2700 * again by how much of the total memory used is under
2701 * hard protection.
2702 */
2703 unsigned long cgroup_size = mem_cgroup_size(memcg);
2704 unsigned long protection;
2705
2706 /* memory.low scaling, make sure we retry before OOM */
2707 if (!sc->memcg_low_reclaim && low > min) {
2708 protection = low;
2709 sc->memcg_low_skipped = 1;
2710 } else {
2711 protection = min;
2712 }
2713
2714 /* Avoid TOCTOU with earlier protection check */
2715 cgroup_size = max(cgroup_size, protection);
2716
2717 scan = lruvec_size - lruvec_size * protection /
2718 (cgroup_size + 1);
2719
2720 /*
2721 * Minimally target SWAP_CLUSTER_MAX pages to keep
2722 * reclaim moving forwards, avoiding decrementing
2723 * sc->priority further than desirable.
2724 */
2725 scan = max(scan, SWAP_CLUSTER_MAX);
2726 } else {
2727 scan = lruvec_size;
2728 }
2729
2730 scan >>= sc->priority;
2731
2732 /*
2733 * If the cgroup's already been deleted, make sure to
2734 * scrape out the remaining cache.
2735 */
2736 if (!scan && !mem_cgroup_online(memcg))
2737 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2738
2739 switch (scan_balance) {
2740 case SCAN_EQUAL:
2741 /* Scan lists relative to size */
2742 break;
2743 case SCAN_FRACT:
2744 /*
2745 * Scan types proportional to swappiness and
2746 * their relative recent reclaim efficiency.
2747 * Make sure we don't miss the last page on
2748 * the offlined memory cgroups because of a
2749 * round-off error.
2750 */
2751 scan = mem_cgroup_online(memcg) ?
2752 div64_u64(scan * fraction[file], denominator) :
2753 DIV64_U64_ROUND_UP(scan * fraction[file],
2754 denominator);
2755 break;
2756 case SCAN_FILE:
2757 case SCAN_ANON:
2758 /* Scan one type exclusively */
2759 if ((scan_balance == SCAN_FILE) != file)
2760 scan = 0;
2761 break;
2762 default:
2763 /* Look ma, no brain */
2764 BUG();
2765 }
2766
2767 nr[lru] = scan;
2768 }
2769 }
2770
2771 /*
2772 * Anonymous LRU management is a waste if there is
2773 * ultimately no way to reclaim the memory.
2774 */
can_age_anon_pages(struct pglist_data * pgdat,struct scan_control * sc)2775 static bool can_age_anon_pages(struct pglist_data *pgdat,
2776 struct scan_control *sc)
2777 {
2778 /* Aging the anon LRU is valuable if swap is present: */
2779 if (total_swap_pages > 0)
2780 return true;
2781
2782 /* Also valuable if anon pages can be demoted: */
2783 return can_demote(pgdat->node_id, sc);
2784 }
2785
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)2786 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2787 {
2788 unsigned long nr[NR_LRU_LISTS];
2789 unsigned long targets[NR_LRU_LISTS];
2790 unsigned long nr_to_scan;
2791 enum lru_list lru;
2792 unsigned long nr_reclaimed = 0;
2793 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2794 struct blk_plug plug;
2795 bool scan_adjusted;
2796
2797 get_scan_count(lruvec, sc, nr);
2798
2799 /* Record the original scan target for proportional adjustments later */
2800 memcpy(targets, nr, sizeof(nr));
2801
2802 /*
2803 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2804 * event that can occur when there is little memory pressure e.g.
2805 * multiple streaming readers/writers. Hence, we do not abort scanning
2806 * when the requested number of pages are reclaimed when scanning at
2807 * DEF_PRIORITY on the assumption that the fact we are direct
2808 * reclaiming implies that kswapd is not keeping up and it is best to
2809 * do a batch of work at once. For memcg reclaim one check is made to
2810 * abort proportional reclaim if either the file or anon lru has already
2811 * dropped to zero at the first pass.
2812 */
2813 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2814 sc->priority == DEF_PRIORITY);
2815
2816 blk_start_plug(&plug);
2817 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2818 nr[LRU_INACTIVE_FILE]) {
2819 unsigned long nr_anon, nr_file, percentage;
2820 unsigned long nr_scanned;
2821
2822 for_each_evictable_lru(lru) {
2823 if (nr[lru]) {
2824 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2825 nr[lru] -= nr_to_scan;
2826
2827 nr_reclaimed += shrink_list(lru, nr_to_scan,
2828 lruvec, sc);
2829 }
2830 }
2831
2832 cond_resched();
2833
2834 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2835 continue;
2836
2837 /*
2838 * For kswapd and memcg, reclaim at least the number of pages
2839 * requested. Ensure that the anon and file LRUs are scanned
2840 * proportionally what was requested by get_scan_count(). We
2841 * stop reclaiming one LRU and reduce the amount scanning
2842 * proportional to the original scan target.
2843 */
2844 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2845 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2846
2847 /*
2848 * It's just vindictive to attack the larger once the smaller
2849 * has gone to zero. And given the way we stop scanning the
2850 * smaller below, this makes sure that we only make one nudge
2851 * towards proportionality once we've got nr_to_reclaim.
2852 */
2853 if (!nr_file || !nr_anon)
2854 break;
2855
2856 if (nr_file > nr_anon) {
2857 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2858 targets[LRU_ACTIVE_ANON] + 1;
2859 lru = LRU_BASE;
2860 percentage = nr_anon * 100 / scan_target;
2861 } else {
2862 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2863 targets[LRU_ACTIVE_FILE] + 1;
2864 lru = LRU_FILE;
2865 percentage = nr_file * 100 / scan_target;
2866 }
2867
2868 /* Stop scanning the smaller of the LRU */
2869 nr[lru] = 0;
2870 nr[lru + LRU_ACTIVE] = 0;
2871
2872 /*
2873 * Recalculate the other LRU scan count based on its original
2874 * scan target and the percentage scanning already complete
2875 */
2876 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2877 nr_scanned = targets[lru] - nr[lru];
2878 nr[lru] = targets[lru] * (100 - percentage) / 100;
2879 nr[lru] -= min(nr[lru], nr_scanned);
2880
2881 lru += LRU_ACTIVE;
2882 nr_scanned = targets[lru] - nr[lru];
2883 nr[lru] = targets[lru] * (100 - percentage) / 100;
2884 nr[lru] -= min(nr[lru], nr_scanned);
2885
2886 scan_adjusted = true;
2887 }
2888 blk_finish_plug(&plug);
2889 sc->nr_reclaimed += nr_reclaimed;
2890
2891 /*
2892 * Even if we did not try to evict anon pages at all, we want to
2893 * rebalance the anon lru active/inactive ratio.
2894 */
2895 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2896 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2897 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2898 sc, LRU_ACTIVE_ANON);
2899 }
2900
2901 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2902 static bool in_reclaim_compaction(struct scan_control *sc)
2903 {
2904 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2905 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2906 sc->priority < DEF_PRIORITY - 2))
2907 return true;
2908
2909 return false;
2910 }
2911
2912 /*
2913 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2914 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2915 * true if more pages should be reclaimed such that when the page allocator
2916 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2917 * It will give up earlier than that if there is difficulty reclaiming pages.
2918 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)2919 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2920 unsigned long nr_reclaimed,
2921 struct scan_control *sc)
2922 {
2923 unsigned long pages_for_compaction;
2924 unsigned long inactive_lru_pages;
2925 int z;
2926
2927 /* If not in reclaim/compaction mode, stop */
2928 if (!in_reclaim_compaction(sc))
2929 return false;
2930
2931 /*
2932 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2933 * number of pages that were scanned. This will return to the caller
2934 * with the risk reclaim/compaction and the resulting allocation attempt
2935 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2936 * allocations through requiring that the full LRU list has been scanned
2937 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2938 * scan, but that approximation was wrong, and there were corner cases
2939 * where always a non-zero amount of pages were scanned.
2940 */
2941 if (!nr_reclaimed)
2942 return false;
2943
2944 /* If compaction would go ahead or the allocation would succeed, stop */
2945 for (z = 0; z <= sc->reclaim_idx; z++) {
2946 struct zone *zone = &pgdat->node_zones[z];
2947 if (!managed_zone(zone))
2948 continue;
2949
2950 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2951 case COMPACT_SUCCESS:
2952 case COMPACT_CONTINUE:
2953 return false;
2954 default:
2955 /* check next zone */
2956 ;
2957 }
2958 }
2959
2960 /*
2961 * If we have not reclaimed enough pages for compaction and the
2962 * inactive lists are large enough, continue reclaiming
2963 */
2964 pages_for_compaction = compact_gap(sc->order);
2965 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2966 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
2967 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2968
2969 return inactive_lru_pages > pages_for_compaction;
2970 }
2971
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)2972 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2973 {
2974 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2975 struct mem_cgroup *memcg;
2976
2977 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2978 do {
2979 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2980 unsigned long reclaimed;
2981 unsigned long scanned;
2982
2983 /*
2984 * This loop can become CPU-bound when target memcgs
2985 * aren't eligible for reclaim - either because they
2986 * don't have any reclaimable pages, or because their
2987 * memory is explicitly protected. Avoid soft lockups.
2988 */
2989 cond_resched();
2990
2991 mem_cgroup_calculate_protection(target_memcg, memcg);
2992
2993 if (mem_cgroup_below_min(memcg)) {
2994 /*
2995 * Hard protection.
2996 * If there is no reclaimable memory, OOM.
2997 */
2998 continue;
2999 } else if (mem_cgroup_below_low(memcg)) {
3000 /*
3001 * Soft protection.
3002 * Respect the protection only as long as
3003 * there is an unprotected supply
3004 * of reclaimable memory from other cgroups.
3005 */
3006 if (!sc->memcg_low_reclaim) {
3007 sc->memcg_low_skipped = 1;
3008 continue;
3009 }
3010 memcg_memory_event(memcg, MEMCG_LOW);
3011 }
3012
3013 reclaimed = sc->nr_reclaimed;
3014 scanned = sc->nr_scanned;
3015
3016 shrink_lruvec(lruvec, sc);
3017
3018 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3019 sc->priority);
3020
3021 /* Record the group's reclaim efficiency */
3022 vmpressure(sc->gfp_mask, memcg, false,
3023 sc->nr_scanned - scanned,
3024 sc->nr_reclaimed - reclaimed);
3025
3026 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3027 }
3028
shrink_node(pg_data_t * pgdat,struct scan_control * sc)3029 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3030 {
3031 struct reclaim_state *reclaim_state = current->reclaim_state;
3032 unsigned long nr_reclaimed, nr_scanned;
3033 struct lruvec *target_lruvec;
3034 bool reclaimable = false;
3035 unsigned long file;
3036
3037 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3038
3039 again:
3040 /*
3041 * Flush the memory cgroup stats, so that we read accurate per-memcg
3042 * lruvec stats for heuristics.
3043 */
3044 mem_cgroup_flush_stats();
3045
3046 memset(&sc->nr, 0, sizeof(sc->nr));
3047
3048 nr_reclaimed = sc->nr_reclaimed;
3049 nr_scanned = sc->nr_scanned;
3050
3051 /*
3052 * Determine the scan balance between anon and file LRUs.
3053 */
3054 spin_lock_irq(&target_lruvec->lru_lock);
3055 sc->anon_cost = target_lruvec->anon_cost;
3056 sc->file_cost = target_lruvec->file_cost;
3057 spin_unlock_irq(&target_lruvec->lru_lock);
3058
3059 /*
3060 * Target desirable inactive:active list ratios for the anon
3061 * and file LRU lists.
3062 */
3063 if (!sc->force_deactivate) {
3064 unsigned long refaults;
3065
3066 refaults = lruvec_page_state(target_lruvec,
3067 WORKINGSET_ACTIVATE_ANON);
3068 if (refaults != target_lruvec->refaults[0] ||
3069 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3070 sc->may_deactivate |= DEACTIVATE_ANON;
3071 else
3072 sc->may_deactivate &= ~DEACTIVATE_ANON;
3073
3074 /*
3075 * When refaults are being observed, it means a new
3076 * workingset is being established. Deactivate to get
3077 * rid of any stale active pages quickly.
3078 */
3079 refaults = lruvec_page_state(target_lruvec,
3080 WORKINGSET_ACTIVATE_FILE);
3081 if (refaults != target_lruvec->refaults[1] ||
3082 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3083 sc->may_deactivate |= DEACTIVATE_FILE;
3084 else
3085 sc->may_deactivate &= ~DEACTIVATE_FILE;
3086 } else
3087 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3088
3089 /*
3090 * If we have plenty of inactive file pages that aren't
3091 * thrashing, try to reclaim those first before touching
3092 * anonymous pages.
3093 */
3094 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3095 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3096 sc->cache_trim_mode = 1;
3097 else
3098 sc->cache_trim_mode = 0;
3099
3100 /*
3101 * Prevent the reclaimer from falling into the cache trap: as
3102 * cache pages start out inactive, every cache fault will tip
3103 * the scan balance towards the file LRU. And as the file LRU
3104 * shrinks, so does the window for rotation from references.
3105 * This means we have a runaway feedback loop where a tiny
3106 * thrashing file LRU becomes infinitely more attractive than
3107 * anon pages. Try to detect this based on file LRU size.
3108 */
3109 if (!cgroup_reclaim(sc)) {
3110 unsigned long total_high_wmark = 0;
3111 unsigned long free, anon;
3112 int z;
3113
3114 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3115 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3116 node_page_state(pgdat, NR_INACTIVE_FILE);
3117
3118 for (z = 0; z < MAX_NR_ZONES; z++) {
3119 struct zone *zone = &pgdat->node_zones[z];
3120 if (!managed_zone(zone))
3121 continue;
3122
3123 total_high_wmark += high_wmark_pages(zone);
3124 }
3125
3126 /*
3127 * Consider anon: if that's low too, this isn't a
3128 * runaway file reclaim problem, but rather just
3129 * extreme pressure. Reclaim as per usual then.
3130 */
3131 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3132
3133 sc->file_is_tiny =
3134 file + free <= total_high_wmark &&
3135 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3136 anon >> sc->priority;
3137 }
3138
3139 shrink_node_memcgs(pgdat, sc);
3140
3141 if (reclaim_state) {
3142 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3143 reclaim_state->reclaimed_slab = 0;
3144 }
3145
3146 /* Record the subtree's reclaim efficiency */
3147 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3148 sc->nr_scanned - nr_scanned,
3149 sc->nr_reclaimed - nr_reclaimed);
3150
3151 if (sc->nr_reclaimed - nr_reclaimed)
3152 reclaimable = true;
3153
3154 if (current_is_kswapd()) {
3155 /*
3156 * If reclaim is isolating dirty pages under writeback,
3157 * it implies that the long-lived page allocation rate
3158 * is exceeding the page laundering rate. Either the
3159 * global limits are not being effective at throttling
3160 * processes due to the page distribution throughout
3161 * zones or there is heavy usage of a slow backing
3162 * device. The only option is to throttle from reclaim
3163 * context which is not ideal as there is no guarantee
3164 * the dirtying process is throttled in the same way
3165 * balance_dirty_pages() manages.
3166 *
3167 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3168 * count the number of pages under pages flagged for
3169 * immediate reclaim and stall if any are encountered
3170 * in the nr_immediate check below.
3171 */
3172 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3173 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3174
3175 /* Allow kswapd to start writing pages during reclaim.*/
3176 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3177 set_bit(PGDAT_DIRTY, &pgdat->flags);
3178
3179 /*
3180 * If kswapd scans pages marked for immediate
3181 * reclaim and under writeback (nr_immediate), it
3182 * implies that pages are cycling through the LRU
3183 * faster than they are written so also forcibly stall.
3184 */
3185 if (sc->nr.immediate)
3186 congestion_wait(BLK_RW_ASYNC, HZ/10);
3187 }
3188
3189 /*
3190 * Tag a node/memcg as congested if all the dirty pages
3191 * scanned were backed by a congested BDI and
3192 * wait_iff_congested will stall.
3193 *
3194 * Legacy memcg will stall in page writeback so avoid forcibly
3195 * stalling in wait_iff_congested().
3196 */
3197 if ((current_is_kswapd() ||
3198 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3199 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3200 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3201
3202 /*
3203 * Stall direct reclaim for IO completions if underlying BDIs
3204 * and node is congested. Allow kswapd to continue until it
3205 * starts encountering unqueued dirty pages or cycling through
3206 * the LRU too quickly.
3207 */
3208 if (!current_is_kswapd() && current_may_throttle() &&
3209 !sc->hibernation_mode &&
3210 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3211 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
3212
3213 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3214 sc))
3215 goto again;
3216
3217 /*
3218 * Kswapd gives up on balancing particular nodes after too
3219 * many failures to reclaim anything from them and goes to
3220 * sleep. On reclaim progress, reset the failure counter. A
3221 * successful direct reclaim run will revive a dormant kswapd.
3222 */
3223 if (reclaimable)
3224 pgdat->kswapd_failures = 0;
3225 }
3226
3227 /*
3228 * Returns true if compaction should go ahead for a costly-order request, or
3229 * the allocation would already succeed without compaction. Return false if we
3230 * should reclaim first.
3231 */
compaction_ready(struct zone * zone,struct scan_control * sc)3232 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3233 {
3234 unsigned long watermark;
3235 enum compact_result suitable;
3236
3237 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3238 if (suitable == COMPACT_SUCCESS)
3239 /* Allocation should succeed already. Don't reclaim. */
3240 return true;
3241 if (suitable == COMPACT_SKIPPED)
3242 /* Compaction cannot yet proceed. Do reclaim. */
3243 return false;
3244
3245 /*
3246 * Compaction is already possible, but it takes time to run and there
3247 * are potentially other callers using the pages just freed. So proceed
3248 * with reclaim to make a buffer of free pages available to give
3249 * compaction a reasonable chance of completing and allocating the page.
3250 * Note that we won't actually reclaim the whole buffer in one attempt
3251 * as the target watermark in should_continue_reclaim() is lower. But if
3252 * we are already above the high+gap watermark, don't reclaim at all.
3253 */
3254 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3255
3256 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3257 }
3258
3259 /*
3260 * This is the direct reclaim path, for page-allocating processes. We only
3261 * try to reclaim pages from zones which will satisfy the caller's allocation
3262 * request.
3263 *
3264 * If a zone is deemed to be full of pinned pages then just give it a light
3265 * scan then give up on it.
3266 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)3267 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3268 {
3269 struct zoneref *z;
3270 struct zone *zone;
3271 unsigned long nr_soft_reclaimed;
3272 unsigned long nr_soft_scanned;
3273 gfp_t orig_mask;
3274 pg_data_t *last_pgdat = NULL;
3275
3276 /*
3277 * If the number of buffer_heads in the machine exceeds the maximum
3278 * allowed level, force direct reclaim to scan the highmem zone as
3279 * highmem pages could be pinning lowmem pages storing buffer_heads
3280 */
3281 orig_mask = sc->gfp_mask;
3282 if (buffer_heads_over_limit) {
3283 sc->gfp_mask |= __GFP_HIGHMEM;
3284 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3285 }
3286
3287 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3288 sc->reclaim_idx, sc->nodemask) {
3289 /*
3290 * Take care memory controller reclaiming has small influence
3291 * to global LRU.
3292 */
3293 if (!cgroup_reclaim(sc)) {
3294 if (!cpuset_zone_allowed(zone,
3295 GFP_KERNEL | __GFP_HARDWALL))
3296 continue;
3297
3298 /*
3299 * If we already have plenty of memory free for
3300 * compaction in this zone, don't free any more.
3301 * Even though compaction is invoked for any
3302 * non-zero order, only frequent costly order
3303 * reclamation is disruptive enough to become a
3304 * noticeable problem, like transparent huge
3305 * page allocations.
3306 */
3307 if (IS_ENABLED(CONFIG_COMPACTION) &&
3308 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3309 compaction_ready(zone, sc)) {
3310 sc->compaction_ready = true;
3311 continue;
3312 }
3313
3314 /*
3315 * Shrink each node in the zonelist once. If the
3316 * zonelist is ordered by zone (not the default) then a
3317 * node may be shrunk multiple times but in that case
3318 * the user prefers lower zones being preserved.
3319 */
3320 if (zone->zone_pgdat == last_pgdat)
3321 continue;
3322
3323 /*
3324 * This steals pages from memory cgroups over softlimit
3325 * and returns the number of reclaimed pages and
3326 * scanned pages. This works for global memory pressure
3327 * and balancing, not for a memcg's limit.
3328 */
3329 nr_soft_scanned = 0;
3330 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3331 sc->order, sc->gfp_mask,
3332 &nr_soft_scanned);
3333 sc->nr_reclaimed += nr_soft_reclaimed;
3334 sc->nr_scanned += nr_soft_scanned;
3335 /* need some check for avoid more shrink_zone() */
3336 }
3337
3338 /* See comment about same check for global reclaim above */
3339 if (zone->zone_pgdat == last_pgdat)
3340 continue;
3341 last_pgdat = zone->zone_pgdat;
3342 shrink_node(zone->zone_pgdat, sc);
3343 }
3344
3345 /*
3346 * Restore to original mask to avoid the impact on the caller if we
3347 * promoted it to __GFP_HIGHMEM.
3348 */
3349 sc->gfp_mask = orig_mask;
3350 }
3351
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)3352 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3353 {
3354 struct lruvec *target_lruvec;
3355 unsigned long refaults;
3356
3357 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3358 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3359 target_lruvec->refaults[0] = refaults;
3360 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3361 target_lruvec->refaults[1] = refaults;
3362 }
3363
3364 /*
3365 * This is the main entry point to direct page reclaim.
3366 *
3367 * If a full scan of the inactive list fails to free enough memory then we
3368 * are "out of memory" and something needs to be killed.
3369 *
3370 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3371 * high - the zone may be full of dirty or under-writeback pages, which this
3372 * caller can't do much about. We kick the writeback threads and take explicit
3373 * naps in the hope that some of these pages can be written. But if the
3374 * allocating task holds filesystem locks which prevent writeout this might not
3375 * work, and the allocation attempt will fail.
3376 *
3377 * returns: 0, if no pages reclaimed
3378 * else, the number of pages reclaimed
3379 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)3380 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3381 struct scan_control *sc)
3382 {
3383 int initial_priority = sc->priority;
3384 pg_data_t *last_pgdat;
3385 struct zoneref *z;
3386 struct zone *zone;
3387 retry:
3388 delayacct_freepages_start();
3389
3390 if (!cgroup_reclaim(sc))
3391 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3392
3393 do {
3394 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3395 sc->priority);
3396 sc->nr_scanned = 0;
3397 shrink_zones(zonelist, sc);
3398
3399 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3400 break;
3401
3402 if (sc->compaction_ready)
3403 break;
3404
3405 /*
3406 * If we're getting trouble reclaiming, start doing
3407 * writepage even in laptop mode.
3408 */
3409 if (sc->priority < DEF_PRIORITY - 2)
3410 sc->may_writepage = 1;
3411 } while (--sc->priority >= 0);
3412
3413 last_pgdat = NULL;
3414 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3415 sc->nodemask) {
3416 if (zone->zone_pgdat == last_pgdat)
3417 continue;
3418 last_pgdat = zone->zone_pgdat;
3419
3420 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3421
3422 if (cgroup_reclaim(sc)) {
3423 struct lruvec *lruvec;
3424
3425 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3426 zone->zone_pgdat);
3427 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3428 }
3429 }
3430
3431 delayacct_freepages_end();
3432
3433 if (sc->nr_reclaimed)
3434 return sc->nr_reclaimed;
3435
3436 /* Aborted reclaim to try compaction? don't OOM, then */
3437 if (sc->compaction_ready)
3438 return 1;
3439
3440 /*
3441 * We make inactive:active ratio decisions based on the node's
3442 * composition of memory, but a restrictive reclaim_idx or a
3443 * memory.low cgroup setting can exempt large amounts of
3444 * memory from reclaim. Neither of which are very common, so
3445 * instead of doing costly eligibility calculations of the
3446 * entire cgroup subtree up front, we assume the estimates are
3447 * good, and retry with forcible deactivation if that fails.
3448 */
3449 if (sc->skipped_deactivate) {
3450 sc->priority = initial_priority;
3451 sc->force_deactivate = 1;
3452 sc->skipped_deactivate = 0;
3453 goto retry;
3454 }
3455
3456 /* Untapped cgroup reserves? Don't OOM, retry. */
3457 if (sc->memcg_low_skipped) {
3458 sc->priority = initial_priority;
3459 sc->force_deactivate = 0;
3460 sc->memcg_low_reclaim = 1;
3461 sc->memcg_low_skipped = 0;
3462 goto retry;
3463 }
3464
3465 return 0;
3466 }
3467
allow_direct_reclaim(pg_data_t * pgdat)3468 static bool allow_direct_reclaim(pg_data_t *pgdat)
3469 {
3470 struct zone *zone;
3471 unsigned long pfmemalloc_reserve = 0;
3472 unsigned long free_pages = 0;
3473 int i;
3474 bool wmark_ok;
3475
3476 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3477 return true;
3478
3479 for (i = 0; i <= ZONE_NORMAL; i++) {
3480 zone = &pgdat->node_zones[i];
3481 if (!managed_zone(zone))
3482 continue;
3483
3484 if (!zone_reclaimable_pages(zone))
3485 continue;
3486
3487 pfmemalloc_reserve += min_wmark_pages(zone);
3488 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3489 }
3490
3491 /* If there are no reserves (unexpected config) then do not throttle */
3492 if (!pfmemalloc_reserve)
3493 return true;
3494
3495 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3496
3497 /* kswapd must be awake if processes are being throttled */
3498 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3499 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3500 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3501
3502 wake_up_interruptible(&pgdat->kswapd_wait);
3503 }
3504
3505 return wmark_ok;
3506 }
3507
3508 /*
3509 * Throttle direct reclaimers if backing storage is backed by the network
3510 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3511 * depleted. kswapd will continue to make progress and wake the processes
3512 * when the low watermark is reached.
3513 *
3514 * Returns true if a fatal signal was delivered during throttling. If this
3515 * happens, the page allocator should not consider triggering the OOM killer.
3516 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)3517 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3518 nodemask_t *nodemask)
3519 {
3520 struct zoneref *z;
3521 struct zone *zone;
3522 pg_data_t *pgdat = NULL;
3523
3524 /*
3525 * Kernel threads should not be throttled as they may be indirectly
3526 * responsible for cleaning pages necessary for reclaim to make forward
3527 * progress. kjournald for example may enter direct reclaim while
3528 * committing a transaction where throttling it could forcing other
3529 * processes to block on log_wait_commit().
3530 */
3531 if (current->flags & PF_KTHREAD)
3532 goto out;
3533
3534 /*
3535 * If a fatal signal is pending, this process should not throttle.
3536 * It should return quickly so it can exit and free its memory
3537 */
3538 if (fatal_signal_pending(current))
3539 goto out;
3540
3541 /*
3542 * Check if the pfmemalloc reserves are ok by finding the first node
3543 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3544 * GFP_KERNEL will be required for allocating network buffers when
3545 * swapping over the network so ZONE_HIGHMEM is unusable.
3546 *
3547 * Throttling is based on the first usable node and throttled processes
3548 * wait on a queue until kswapd makes progress and wakes them. There
3549 * is an affinity then between processes waking up and where reclaim
3550 * progress has been made assuming the process wakes on the same node.
3551 * More importantly, processes running on remote nodes will not compete
3552 * for remote pfmemalloc reserves and processes on different nodes
3553 * should make reasonable progress.
3554 */
3555 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3556 gfp_zone(gfp_mask), nodemask) {
3557 if (zone_idx(zone) > ZONE_NORMAL)
3558 continue;
3559
3560 /* Throttle based on the first usable node */
3561 pgdat = zone->zone_pgdat;
3562 if (allow_direct_reclaim(pgdat))
3563 goto out;
3564 break;
3565 }
3566
3567 /* If no zone was usable by the allocation flags then do not throttle */
3568 if (!pgdat)
3569 goto out;
3570
3571 /* Account for the throttling */
3572 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3573
3574 /*
3575 * If the caller cannot enter the filesystem, it's possible that it
3576 * is due to the caller holding an FS lock or performing a journal
3577 * transaction in the case of a filesystem like ext[3|4]. In this case,
3578 * it is not safe to block on pfmemalloc_wait as kswapd could be
3579 * blocked waiting on the same lock. Instead, throttle for up to a
3580 * second before continuing.
3581 */
3582 if (!(gfp_mask & __GFP_FS))
3583 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3584 allow_direct_reclaim(pgdat), HZ);
3585 else
3586 /* Throttle until kswapd wakes the process */
3587 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3588 allow_direct_reclaim(pgdat));
3589
3590 if (fatal_signal_pending(current))
3591 return true;
3592
3593 out:
3594 return false;
3595 }
3596
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3597 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3598 gfp_t gfp_mask, nodemask_t *nodemask)
3599 {
3600 unsigned long nr_reclaimed;
3601 struct scan_control sc = {
3602 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3603 .gfp_mask = current_gfp_context(gfp_mask),
3604 .reclaim_idx = gfp_zone(gfp_mask),
3605 .order = order,
3606 .nodemask = nodemask,
3607 .priority = DEF_PRIORITY,
3608 .may_writepage = !laptop_mode,
3609 .may_unmap = 1,
3610 .may_swap = 1,
3611 };
3612
3613 /*
3614 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3615 * Confirm they are large enough for max values.
3616 */
3617 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3618 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3619 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3620
3621 /*
3622 * Do not enter reclaim if fatal signal was delivered while throttled.
3623 * 1 is returned so that the page allocator does not OOM kill at this
3624 * point.
3625 */
3626 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3627 return 1;
3628
3629 set_task_reclaim_state(current, &sc.reclaim_state);
3630 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3631
3632 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3633
3634 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3635 set_task_reclaim_state(current, NULL);
3636
3637 return nr_reclaimed;
3638 }
3639
3640 #ifdef CONFIG_MEMCG
3641
3642 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3643 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3644 gfp_t gfp_mask, bool noswap,
3645 pg_data_t *pgdat,
3646 unsigned long *nr_scanned)
3647 {
3648 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3649 struct scan_control sc = {
3650 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3651 .target_mem_cgroup = memcg,
3652 .may_writepage = !laptop_mode,
3653 .may_unmap = 1,
3654 .reclaim_idx = MAX_NR_ZONES - 1,
3655 .may_swap = !noswap,
3656 };
3657
3658 WARN_ON_ONCE(!current->reclaim_state);
3659
3660 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3661 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3662
3663 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3664 sc.gfp_mask);
3665
3666 /*
3667 * NOTE: Although we can get the priority field, using it
3668 * here is not a good idea, since it limits the pages we can scan.
3669 * if we don't reclaim here, the shrink_node from balance_pgdat
3670 * will pick up pages from other mem cgroup's as well. We hack
3671 * the priority and make it zero.
3672 */
3673 shrink_lruvec(lruvec, &sc);
3674
3675 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3676
3677 *nr_scanned = sc.nr_scanned;
3678
3679 return sc.nr_reclaimed;
3680 }
3681
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3682 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3683 unsigned long nr_pages,
3684 gfp_t gfp_mask,
3685 bool may_swap)
3686 {
3687 unsigned long nr_reclaimed;
3688 unsigned int noreclaim_flag;
3689 struct scan_control sc = {
3690 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3691 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3692 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3693 .reclaim_idx = MAX_NR_ZONES - 1,
3694 .target_mem_cgroup = memcg,
3695 .priority = DEF_PRIORITY,
3696 .may_writepage = !laptop_mode,
3697 .may_unmap = 1,
3698 .may_swap = may_swap,
3699 };
3700 /*
3701 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3702 * equal pressure on all the nodes. This is based on the assumption that
3703 * the reclaim does not bail out early.
3704 */
3705 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3706
3707 set_task_reclaim_state(current, &sc.reclaim_state);
3708 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3709 noreclaim_flag = memalloc_noreclaim_save();
3710
3711 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3712
3713 memalloc_noreclaim_restore(noreclaim_flag);
3714 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3715 set_task_reclaim_state(current, NULL);
3716
3717 return nr_reclaimed;
3718 }
3719 #endif
3720
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3721 static void age_active_anon(struct pglist_data *pgdat,
3722 struct scan_control *sc)
3723 {
3724 struct mem_cgroup *memcg;
3725 struct lruvec *lruvec;
3726
3727 if (!can_age_anon_pages(pgdat, sc))
3728 return;
3729
3730 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3731 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3732 return;
3733
3734 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3735 do {
3736 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3737 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3738 sc, LRU_ACTIVE_ANON);
3739 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3740 } while (memcg);
3741 }
3742
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)3743 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3744 {
3745 int i;
3746 struct zone *zone;
3747
3748 /*
3749 * Check for watermark boosts top-down as the higher zones
3750 * are more likely to be boosted. Both watermarks and boosts
3751 * should not be checked at the same time as reclaim would
3752 * start prematurely when there is no boosting and a lower
3753 * zone is balanced.
3754 */
3755 for (i = highest_zoneidx; i >= 0; i--) {
3756 zone = pgdat->node_zones + i;
3757 if (!managed_zone(zone))
3758 continue;
3759
3760 if (zone->watermark_boost)
3761 return true;
3762 }
3763
3764 return false;
3765 }
3766
3767 /*
3768 * Returns true if there is an eligible zone balanced for the request order
3769 * and highest_zoneidx
3770 */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)3771 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3772 {
3773 int i;
3774 unsigned long mark = -1;
3775 struct zone *zone;
3776
3777 /*
3778 * Check watermarks bottom-up as lower zones are more likely to
3779 * meet watermarks.
3780 */
3781 for (i = 0; i <= highest_zoneidx; i++) {
3782 zone = pgdat->node_zones + i;
3783
3784 if (!managed_zone(zone))
3785 continue;
3786
3787 mark = high_wmark_pages(zone);
3788 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3789 return true;
3790 }
3791
3792 /*
3793 * If a node has no populated zone within highest_zoneidx, it does not
3794 * need balancing by definition. This can happen if a zone-restricted
3795 * allocation tries to wake a remote kswapd.
3796 */
3797 if (mark == -1)
3798 return true;
3799
3800 return false;
3801 }
3802
3803 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3804 static void clear_pgdat_congested(pg_data_t *pgdat)
3805 {
3806 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3807
3808 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3809 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3810 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3811 }
3812
3813 /*
3814 * Prepare kswapd for sleeping. This verifies that there are no processes
3815 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3816 *
3817 * Returns true if kswapd is ready to sleep
3818 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)3819 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3820 int highest_zoneidx)
3821 {
3822 /*
3823 * The throttled processes are normally woken up in balance_pgdat() as
3824 * soon as allow_direct_reclaim() is true. But there is a potential
3825 * race between when kswapd checks the watermarks and a process gets
3826 * throttled. There is also a potential race if processes get
3827 * throttled, kswapd wakes, a large process exits thereby balancing the
3828 * zones, which causes kswapd to exit balance_pgdat() before reaching
3829 * the wake up checks. If kswapd is going to sleep, no process should
3830 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3831 * the wake up is premature, processes will wake kswapd and get
3832 * throttled again. The difference from wake ups in balance_pgdat() is
3833 * that here we are under prepare_to_wait().
3834 */
3835 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3836 wake_up_all(&pgdat->pfmemalloc_wait);
3837
3838 /* Hopeless node, leave it to direct reclaim */
3839 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3840 return true;
3841
3842 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3843 clear_pgdat_congested(pgdat);
3844 return true;
3845 }
3846
3847 return false;
3848 }
3849
3850 /*
3851 * kswapd shrinks a node of pages that are at or below the highest usable
3852 * zone that is currently unbalanced.
3853 *
3854 * Returns true if kswapd scanned at least the requested number of pages to
3855 * reclaim or if the lack of progress was due to pages under writeback.
3856 * This is used to determine if the scanning priority needs to be raised.
3857 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3858 static bool kswapd_shrink_node(pg_data_t *pgdat,
3859 struct scan_control *sc)
3860 {
3861 struct zone *zone;
3862 int z;
3863
3864 /* Reclaim a number of pages proportional to the number of zones */
3865 sc->nr_to_reclaim = 0;
3866 for (z = 0; z <= sc->reclaim_idx; z++) {
3867 zone = pgdat->node_zones + z;
3868 if (!managed_zone(zone))
3869 continue;
3870
3871 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3872 }
3873
3874 /*
3875 * Historically care was taken to put equal pressure on all zones but
3876 * now pressure is applied based on node LRU order.
3877 */
3878 shrink_node(pgdat, sc);
3879
3880 /*
3881 * Fragmentation may mean that the system cannot be rebalanced for
3882 * high-order allocations. If twice the allocation size has been
3883 * reclaimed then recheck watermarks only at order-0 to prevent
3884 * excessive reclaim. Assume that a process requested a high-order
3885 * can direct reclaim/compact.
3886 */
3887 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3888 sc->order = 0;
3889
3890 return sc->nr_scanned >= sc->nr_to_reclaim;
3891 }
3892
3893 /* Page allocator PCP high watermark is lowered if reclaim is active. */
3894 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)3895 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
3896 {
3897 int i;
3898 struct zone *zone;
3899
3900 for (i = 0; i <= highest_zoneidx; i++) {
3901 zone = pgdat->node_zones + i;
3902
3903 if (!managed_zone(zone))
3904 continue;
3905
3906 if (active)
3907 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3908 else
3909 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3910 }
3911 }
3912
3913 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)3914 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3915 {
3916 update_reclaim_active(pgdat, highest_zoneidx, true);
3917 }
3918
3919 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)3920 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3921 {
3922 update_reclaim_active(pgdat, highest_zoneidx, false);
3923 }
3924
3925 /*
3926 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3927 * that are eligible for use by the caller until at least one zone is
3928 * balanced.
3929 *
3930 * Returns the order kswapd finished reclaiming at.
3931 *
3932 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3933 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3934 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3935 * or lower is eligible for reclaim until at least one usable zone is
3936 * balanced.
3937 */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)3938 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3939 {
3940 int i;
3941 unsigned long nr_soft_reclaimed;
3942 unsigned long nr_soft_scanned;
3943 unsigned long pflags;
3944 unsigned long nr_boost_reclaim;
3945 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3946 bool boosted;
3947 struct zone *zone;
3948 struct scan_control sc = {
3949 .gfp_mask = GFP_KERNEL,
3950 .order = order,
3951 .may_unmap = 1,
3952 };
3953
3954 set_task_reclaim_state(current, &sc.reclaim_state);
3955 psi_memstall_enter(&pflags);
3956 __fs_reclaim_acquire(_THIS_IP_);
3957
3958 count_vm_event(PAGEOUTRUN);
3959
3960 /*
3961 * Account for the reclaim boost. Note that the zone boost is left in
3962 * place so that parallel allocations that are near the watermark will
3963 * stall or direct reclaim until kswapd is finished.
3964 */
3965 nr_boost_reclaim = 0;
3966 for (i = 0; i <= highest_zoneidx; i++) {
3967 zone = pgdat->node_zones + i;
3968 if (!managed_zone(zone))
3969 continue;
3970
3971 nr_boost_reclaim += zone->watermark_boost;
3972 zone_boosts[i] = zone->watermark_boost;
3973 }
3974 boosted = nr_boost_reclaim;
3975
3976 restart:
3977 set_reclaim_active(pgdat, highest_zoneidx);
3978 sc.priority = DEF_PRIORITY;
3979 do {
3980 unsigned long nr_reclaimed = sc.nr_reclaimed;
3981 bool raise_priority = true;
3982 bool balanced;
3983 bool ret;
3984
3985 sc.reclaim_idx = highest_zoneidx;
3986
3987 /*
3988 * If the number of buffer_heads exceeds the maximum allowed
3989 * then consider reclaiming from all zones. This has a dual
3990 * purpose -- on 64-bit systems it is expected that
3991 * buffer_heads are stripped during active rotation. On 32-bit
3992 * systems, highmem pages can pin lowmem memory and shrinking
3993 * buffers can relieve lowmem pressure. Reclaim may still not
3994 * go ahead if all eligible zones for the original allocation
3995 * request are balanced to avoid excessive reclaim from kswapd.
3996 */
3997 if (buffer_heads_over_limit) {
3998 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3999 zone = pgdat->node_zones + i;
4000 if (!managed_zone(zone))
4001 continue;
4002
4003 sc.reclaim_idx = i;
4004 break;
4005 }
4006 }
4007
4008 /*
4009 * If the pgdat is imbalanced then ignore boosting and preserve
4010 * the watermarks for a later time and restart. Note that the
4011 * zone watermarks will be still reset at the end of balancing
4012 * on the grounds that the normal reclaim should be enough to
4013 * re-evaluate if boosting is required when kswapd next wakes.
4014 */
4015 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4016 if (!balanced && nr_boost_reclaim) {
4017 nr_boost_reclaim = 0;
4018 goto restart;
4019 }
4020
4021 /*
4022 * If boosting is not active then only reclaim if there are no
4023 * eligible zones. Note that sc.reclaim_idx is not used as
4024 * buffer_heads_over_limit may have adjusted it.
4025 */
4026 if (!nr_boost_reclaim && balanced)
4027 goto out;
4028
4029 /* Limit the priority of boosting to avoid reclaim writeback */
4030 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4031 raise_priority = false;
4032
4033 /*
4034 * Do not writeback or swap pages for boosted reclaim. The
4035 * intent is to relieve pressure not issue sub-optimal IO
4036 * from reclaim context. If no pages are reclaimed, the
4037 * reclaim will be aborted.
4038 */
4039 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4040 sc.may_swap = !nr_boost_reclaim;
4041
4042 /*
4043 * Do some background aging of the anon list, to give
4044 * pages a chance to be referenced before reclaiming. All
4045 * pages are rotated regardless of classzone as this is
4046 * about consistent aging.
4047 */
4048 age_active_anon(pgdat, &sc);
4049
4050 /*
4051 * If we're getting trouble reclaiming, start doing writepage
4052 * even in laptop mode.
4053 */
4054 if (sc.priority < DEF_PRIORITY - 2)
4055 sc.may_writepage = 1;
4056
4057 /* Call soft limit reclaim before calling shrink_node. */
4058 sc.nr_scanned = 0;
4059 nr_soft_scanned = 0;
4060 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4061 sc.gfp_mask, &nr_soft_scanned);
4062 sc.nr_reclaimed += nr_soft_reclaimed;
4063
4064 /*
4065 * There should be no need to raise the scanning priority if
4066 * enough pages are already being scanned that that high
4067 * watermark would be met at 100% efficiency.
4068 */
4069 if (kswapd_shrink_node(pgdat, &sc))
4070 raise_priority = false;
4071
4072 /*
4073 * If the low watermark is met there is no need for processes
4074 * to be throttled on pfmemalloc_wait as they should not be
4075 * able to safely make forward progress. Wake them
4076 */
4077 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4078 allow_direct_reclaim(pgdat))
4079 wake_up_all(&pgdat->pfmemalloc_wait);
4080
4081 /* Check if kswapd should be suspending */
4082 __fs_reclaim_release(_THIS_IP_);
4083 ret = try_to_freeze();
4084 __fs_reclaim_acquire(_THIS_IP_);
4085 if (ret || kthread_should_stop())
4086 break;
4087
4088 /*
4089 * Raise priority if scanning rate is too low or there was no
4090 * progress in reclaiming pages
4091 */
4092 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4093 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4094
4095 /*
4096 * If reclaim made no progress for a boost, stop reclaim as
4097 * IO cannot be queued and it could be an infinite loop in
4098 * extreme circumstances.
4099 */
4100 if (nr_boost_reclaim && !nr_reclaimed)
4101 break;
4102
4103 if (raise_priority || !nr_reclaimed)
4104 sc.priority--;
4105 } while (sc.priority >= 1);
4106
4107 if (!sc.nr_reclaimed)
4108 pgdat->kswapd_failures++;
4109
4110 out:
4111 clear_reclaim_active(pgdat, highest_zoneidx);
4112
4113 /* If reclaim was boosted, account for the reclaim done in this pass */
4114 if (boosted) {
4115 unsigned long flags;
4116
4117 for (i = 0; i <= highest_zoneidx; i++) {
4118 if (!zone_boosts[i])
4119 continue;
4120
4121 /* Increments are under the zone lock */
4122 zone = pgdat->node_zones + i;
4123 spin_lock_irqsave(&zone->lock, flags);
4124 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4125 spin_unlock_irqrestore(&zone->lock, flags);
4126 }
4127
4128 /*
4129 * As there is now likely space, wakeup kcompact to defragment
4130 * pageblocks.
4131 */
4132 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4133 }
4134
4135 snapshot_refaults(NULL, pgdat);
4136 __fs_reclaim_release(_THIS_IP_);
4137 psi_memstall_leave(&pflags);
4138 set_task_reclaim_state(current, NULL);
4139
4140 /*
4141 * Return the order kswapd stopped reclaiming at as
4142 * prepare_kswapd_sleep() takes it into account. If another caller
4143 * entered the allocator slow path while kswapd was awake, order will
4144 * remain at the higher level.
4145 */
4146 return sc.order;
4147 }
4148
4149 /*
4150 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4151 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4152 * not a valid index then either kswapd runs for first time or kswapd couldn't
4153 * sleep after previous reclaim attempt (node is still unbalanced). In that
4154 * case return the zone index of the previous kswapd reclaim cycle.
4155 */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)4156 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4157 enum zone_type prev_highest_zoneidx)
4158 {
4159 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4160
4161 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4162 }
4163
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)4164 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4165 unsigned int highest_zoneidx)
4166 {
4167 long remaining = 0;
4168 DEFINE_WAIT(wait);
4169
4170 if (freezing(current) || kthread_should_stop())
4171 return;
4172
4173 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4174
4175 /*
4176 * Try to sleep for a short interval. Note that kcompactd will only be
4177 * woken if it is possible to sleep for a short interval. This is
4178 * deliberate on the assumption that if reclaim cannot keep an
4179 * eligible zone balanced that it's also unlikely that compaction will
4180 * succeed.
4181 */
4182 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4183 /*
4184 * Compaction records what page blocks it recently failed to
4185 * isolate pages from and skips them in the future scanning.
4186 * When kswapd is going to sleep, it is reasonable to assume
4187 * that pages and compaction may succeed so reset the cache.
4188 */
4189 reset_isolation_suitable(pgdat);
4190
4191 /*
4192 * We have freed the memory, now we should compact it to make
4193 * allocation of the requested order possible.
4194 */
4195 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4196
4197 remaining = schedule_timeout(HZ/10);
4198
4199 /*
4200 * If woken prematurely then reset kswapd_highest_zoneidx and
4201 * order. The values will either be from a wakeup request or
4202 * the previous request that slept prematurely.
4203 */
4204 if (remaining) {
4205 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4206 kswapd_highest_zoneidx(pgdat,
4207 highest_zoneidx));
4208
4209 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4210 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4211 }
4212
4213 finish_wait(&pgdat->kswapd_wait, &wait);
4214 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4215 }
4216
4217 /*
4218 * After a short sleep, check if it was a premature sleep. If not, then
4219 * go fully to sleep until explicitly woken up.
4220 */
4221 if (!remaining &&
4222 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4223 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4224
4225 /*
4226 * vmstat counters are not perfectly accurate and the estimated
4227 * value for counters such as NR_FREE_PAGES can deviate from the
4228 * true value by nr_online_cpus * threshold. To avoid the zone
4229 * watermarks being breached while under pressure, we reduce the
4230 * per-cpu vmstat threshold while kswapd is awake and restore
4231 * them before going back to sleep.
4232 */
4233 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4234
4235 if (!kthread_should_stop())
4236 schedule();
4237
4238 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4239 } else {
4240 if (remaining)
4241 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4242 else
4243 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4244 }
4245 finish_wait(&pgdat->kswapd_wait, &wait);
4246 }
4247
4248 /*
4249 * The background pageout daemon, started as a kernel thread
4250 * from the init process.
4251 *
4252 * This basically trickles out pages so that we have _some_
4253 * free memory available even if there is no other activity
4254 * that frees anything up. This is needed for things like routing
4255 * etc, where we otherwise might have all activity going on in
4256 * asynchronous contexts that cannot page things out.
4257 *
4258 * If there are applications that are active memory-allocators
4259 * (most normal use), this basically shouldn't matter.
4260 */
kswapd(void * p)4261 static int kswapd(void *p)
4262 {
4263 unsigned int alloc_order, reclaim_order;
4264 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4265 pg_data_t *pgdat = (pg_data_t *)p;
4266 struct task_struct *tsk = current;
4267 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4268
4269 if (!cpumask_empty(cpumask))
4270 set_cpus_allowed_ptr(tsk, cpumask);
4271
4272 /*
4273 * Tell the memory management that we're a "memory allocator",
4274 * and that if we need more memory we should get access to it
4275 * regardless (see "__alloc_pages()"). "kswapd" should
4276 * never get caught in the normal page freeing logic.
4277 *
4278 * (Kswapd normally doesn't need memory anyway, but sometimes
4279 * you need a small amount of memory in order to be able to
4280 * page out something else, and this flag essentially protects
4281 * us from recursively trying to free more memory as we're
4282 * trying to free the first piece of memory in the first place).
4283 */
4284 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4285 set_freezable();
4286
4287 WRITE_ONCE(pgdat->kswapd_order, 0);
4288 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4289 for ( ; ; ) {
4290 bool ret;
4291
4292 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4293 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4294 highest_zoneidx);
4295
4296 kswapd_try_sleep:
4297 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4298 highest_zoneidx);
4299
4300 /* Read the new order and highest_zoneidx */
4301 alloc_order = READ_ONCE(pgdat->kswapd_order);
4302 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4303 highest_zoneidx);
4304 WRITE_ONCE(pgdat->kswapd_order, 0);
4305 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4306
4307 ret = try_to_freeze();
4308 if (kthread_should_stop())
4309 break;
4310
4311 /*
4312 * We can speed up thawing tasks if we don't call balance_pgdat
4313 * after returning from the refrigerator
4314 */
4315 if (ret)
4316 continue;
4317
4318 /*
4319 * Reclaim begins at the requested order but if a high-order
4320 * reclaim fails then kswapd falls back to reclaiming for
4321 * order-0. If that happens, kswapd will consider sleeping
4322 * for the order it finished reclaiming at (reclaim_order)
4323 * but kcompactd is woken to compact for the original
4324 * request (alloc_order).
4325 */
4326 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4327 alloc_order);
4328 reclaim_order = balance_pgdat(pgdat, alloc_order,
4329 highest_zoneidx);
4330 if (reclaim_order < alloc_order)
4331 goto kswapd_try_sleep;
4332 }
4333
4334 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4335
4336 return 0;
4337 }
4338
4339 /*
4340 * A zone is low on free memory or too fragmented for high-order memory. If
4341 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4342 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4343 * has failed or is not needed, still wake up kcompactd if only compaction is
4344 * needed.
4345 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)4346 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4347 enum zone_type highest_zoneidx)
4348 {
4349 pg_data_t *pgdat;
4350 enum zone_type curr_idx;
4351
4352 if (!managed_zone(zone))
4353 return;
4354
4355 if (!cpuset_zone_allowed(zone, gfp_flags))
4356 return;
4357
4358 pgdat = zone->zone_pgdat;
4359 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4360
4361 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4362 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4363
4364 if (READ_ONCE(pgdat->kswapd_order) < order)
4365 WRITE_ONCE(pgdat->kswapd_order, order);
4366
4367 if (!waitqueue_active(&pgdat->kswapd_wait))
4368 return;
4369
4370 /* Hopeless node, leave it to direct reclaim if possible */
4371 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4372 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4373 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4374 /*
4375 * There may be plenty of free memory available, but it's too
4376 * fragmented for high-order allocations. Wake up kcompactd
4377 * and rely on compaction_suitable() to determine if it's
4378 * needed. If it fails, it will defer subsequent attempts to
4379 * ratelimit its work.
4380 */
4381 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4382 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4383 return;
4384 }
4385
4386 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4387 gfp_flags);
4388 wake_up_interruptible(&pgdat->kswapd_wait);
4389 }
4390
4391 #ifdef CONFIG_HIBERNATION
4392 /*
4393 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4394 * freed pages.
4395 *
4396 * Rather than trying to age LRUs the aim is to preserve the overall
4397 * LRU order by reclaiming preferentially
4398 * inactive > active > active referenced > active mapped
4399 */
shrink_all_memory(unsigned long nr_to_reclaim)4400 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4401 {
4402 struct scan_control sc = {
4403 .nr_to_reclaim = nr_to_reclaim,
4404 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4405 .reclaim_idx = MAX_NR_ZONES - 1,
4406 .priority = DEF_PRIORITY,
4407 .may_writepage = 1,
4408 .may_unmap = 1,
4409 .may_swap = 1,
4410 .hibernation_mode = 1,
4411 };
4412 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4413 unsigned long nr_reclaimed;
4414 unsigned int noreclaim_flag;
4415
4416 fs_reclaim_acquire(sc.gfp_mask);
4417 noreclaim_flag = memalloc_noreclaim_save();
4418 set_task_reclaim_state(current, &sc.reclaim_state);
4419
4420 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4421
4422 set_task_reclaim_state(current, NULL);
4423 memalloc_noreclaim_restore(noreclaim_flag);
4424 fs_reclaim_release(sc.gfp_mask);
4425
4426 return nr_reclaimed;
4427 }
4428 #endif /* CONFIG_HIBERNATION */
4429
4430 /*
4431 * This kswapd start function will be called by init and node-hot-add.
4432 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4433 */
kswapd_run(int nid)4434 void kswapd_run(int nid)
4435 {
4436 pg_data_t *pgdat = NODE_DATA(nid);
4437
4438 if (pgdat->kswapd)
4439 return;
4440
4441 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4442 if (IS_ERR(pgdat->kswapd)) {
4443 /* failure at boot is fatal */
4444 BUG_ON(system_state < SYSTEM_RUNNING);
4445 pr_err("Failed to start kswapd on node %d\n", nid);
4446 pgdat->kswapd = NULL;
4447 }
4448 }
4449
4450 /*
4451 * Called by memory hotplug when all memory in a node is offlined. Caller must
4452 * hold mem_hotplug_begin/end().
4453 */
kswapd_stop(int nid)4454 void kswapd_stop(int nid)
4455 {
4456 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4457
4458 if (kswapd) {
4459 kthread_stop(kswapd);
4460 NODE_DATA(nid)->kswapd = NULL;
4461 }
4462 }
4463
kswapd_init(void)4464 static int __init kswapd_init(void)
4465 {
4466 int nid;
4467
4468 swap_setup();
4469 for_each_node_state(nid, N_MEMORY)
4470 kswapd_run(nid);
4471 return 0;
4472 }
4473
4474 module_init(kswapd_init)
4475
4476 #ifdef CONFIG_NUMA
4477 /*
4478 * Node reclaim mode
4479 *
4480 * If non-zero call node_reclaim when the number of free pages falls below
4481 * the watermarks.
4482 */
4483 int node_reclaim_mode __read_mostly;
4484
4485 /*
4486 * Priority for NODE_RECLAIM. This determines the fraction of pages
4487 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4488 * a zone.
4489 */
4490 #define NODE_RECLAIM_PRIORITY 4
4491
4492 /*
4493 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4494 * occur.
4495 */
4496 int sysctl_min_unmapped_ratio = 1;
4497
4498 /*
4499 * If the number of slab pages in a zone grows beyond this percentage then
4500 * slab reclaim needs to occur.
4501 */
4502 int sysctl_min_slab_ratio = 5;
4503
node_unmapped_file_pages(struct pglist_data * pgdat)4504 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4505 {
4506 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4507 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4508 node_page_state(pgdat, NR_ACTIVE_FILE);
4509
4510 /*
4511 * It's possible for there to be more file mapped pages than
4512 * accounted for by the pages on the file LRU lists because
4513 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4514 */
4515 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4516 }
4517
4518 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)4519 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4520 {
4521 unsigned long nr_pagecache_reclaimable;
4522 unsigned long delta = 0;
4523
4524 /*
4525 * If RECLAIM_UNMAP is set, then all file pages are considered
4526 * potentially reclaimable. Otherwise, we have to worry about
4527 * pages like swapcache and node_unmapped_file_pages() provides
4528 * a better estimate
4529 */
4530 if (node_reclaim_mode & RECLAIM_UNMAP)
4531 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4532 else
4533 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4534
4535 /* If we can't clean pages, remove dirty pages from consideration */
4536 if (!(node_reclaim_mode & RECLAIM_WRITE))
4537 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4538
4539 /* Watch for any possible underflows due to delta */
4540 if (unlikely(delta > nr_pagecache_reclaimable))
4541 delta = nr_pagecache_reclaimable;
4542
4543 return nr_pagecache_reclaimable - delta;
4544 }
4545
4546 /*
4547 * Try to free up some pages from this node through reclaim.
4548 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4549 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4550 {
4551 /* Minimum pages needed in order to stay on node */
4552 const unsigned long nr_pages = 1 << order;
4553 struct task_struct *p = current;
4554 unsigned int noreclaim_flag;
4555 struct scan_control sc = {
4556 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4557 .gfp_mask = current_gfp_context(gfp_mask),
4558 .order = order,
4559 .priority = NODE_RECLAIM_PRIORITY,
4560 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4561 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4562 .may_swap = 1,
4563 .reclaim_idx = gfp_zone(gfp_mask),
4564 };
4565 unsigned long pflags;
4566
4567 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4568 sc.gfp_mask);
4569
4570 cond_resched();
4571 psi_memstall_enter(&pflags);
4572 fs_reclaim_acquire(sc.gfp_mask);
4573 /*
4574 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4575 * and we also need to be able to write out pages for RECLAIM_WRITE
4576 * and RECLAIM_UNMAP.
4577 */
4578 noreclaim_flag = memalloc_noreclaim_save();
4579 p->flags |= PF_SWAPWRITE;
4580 set_task_reclaim_state(p, &sc.reclaim_state);
4581
4582 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4583 /*
4584 * Free memory by calling shrink node with increasing
4585 * priorities until we have enough memory freed.
4586 */
4587 do {
4588 shrink_node(pgdat, &sc);
4589 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4590 }
4591
4592 set_task_reclaim_state(p, NULL);
4593 current->flags &= ~PF_SWAPWRITE;
4594 memalloc_noreclaim_restore(noreclaim_flag);
4595 fs_reclaim_release(sc.gfp_mask);
4596 psi_memstall_leave(&pflags);
4597
4598 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4599
4600 return sc.nr_reclaimed >= nr_pages;
4601 }
4602
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4603 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4604 {
4605 int ret;
4606
4607 /*
4608 * Node reclaim reclaims unmapped file backed pages and
4609 * slab pages if we are over the defined limits.
4610 *
4611 * A small portion of unmapped file backed pages is needed for
4612 * file I/O otherwise pages read by file I/O will be immediately
4613 * thrown out if the node is overallocated. So we do not reclaim
4614 * if less than a specified percentage of the node is used by
4615 * unmapped file backed pages.
4616 */
4617 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4618 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4619 pgdat->min_slab_pages)
4620 return NODE_RECLAIM_FULL;
4621
4622 /*
4623 * Do not scan if the allocation should not be delayed.
4624 */
4625 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4626 return NODE_RECLAIM_NOSCAN;
4627
4628 /*
4629 * Only run node reclaim on the local node or on nodes that do not
4630 * have associated processors. This will favor the local processor
4631 * over remote processors and spread off node memory allocations
4632 * as wide as possible.
4633 */
4634 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4635 return NODE_RECLAIM_NOSCAN;
4636
4637 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4638 return NODE_RECLAIM_NOSCAN;
4639
4640 ret = __node_reclaim(pgdat, gfp_mask, order);
4641 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4642
4643 if (!ret)
4644 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4645
4646 return ret;
4647 }
4648 #endif
4649
4650 /**
4651 * check_move_unevictable_pages - check pages for evictability and move to
4652 * appropriate zone lru list
4653 * @pvec: pagevec with lru pages to check
4654 *
4655 * Checks pages for evictability, if an evictable page is in the unevictable
4656 * lru list, moves it to the appropriate evictable lru list. This function
4657 * should be only used for lru pages.
4658 */
check_move_unevictable_pages(struct pagevec * pvec)4659 void check_move_unevictable_pages(struct pagevec *pvec)
4660 {
4661 struct lruvec *lruvec = NULL;
4662 int pgscanned = 0;
4663 int pgrescued = 0;
4664 int i;
4665
4666 for (i = 0; i < pvec->nr; i++) {
4667 struct page *page = pvec->pages[i];
4668 int nr_pages;
4669
4670 if (PageTransTail(page))
4671 continue;
4672
4673 nr_pages = thp_nr_pages(page);
4674 pgscanned += nr_pages;
4675
4676 /* block memcg migration during page moving between lru */
4677 if (!TestClearPageLRU(page))
4678 continue;
4679
4680 lruvec = relock_page_lruvec_irq(page, lruvec);
4681 if (page_evictable(page) && PageUnevictable(page)) {
4682 del_page_from_lru_list(page, lruvec);
4683 ClearPageUnevictable(page);
4684 add_page_to_lru_list(page, lruvec);
4685 pgrescued += nr_pages;
4686 }
4687 SetPageLRU(page);
4688 }
4689
4690 if (lruvec) {
4691 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4692 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4693 unlock_page_lruvec_irq(lruvec);
4694 } else if (pgscanned) {
4695 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4696 }
4697 }
4698 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4699