1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45
46 /* How many pages do we try to swap or page in/out together? */
47 int page_cluster;
48
49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
50 struct lru_rotate {
51 local_lock_t lock;
52 struct pagevec pvec;
53 };
54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 .lock = INIT_LOCAL_LOCK(lock),
56 };
57
58 /*
59 * The following struct pagevec are grouped together because they are protected
60 * by disabling preemption (and interrupts remain enabled).
61 */
62 struct lru_pvecs {
63 local_lock_t lock;
64 struct pagevec lru_add;
65 struct pagevec lru_deactivate_file;
66 struct pagevec lru_deactivate;
67 struct pagevec lru_lazyfree;
68 #ifdef CONFIG_SMP
69 struct pagevec activate_page;
70 #endif
71 };
72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 .lock = INIT_LOCAL_LOCK(lock),
74 };
75
76 /*
77 * This path almost never happens for VM activity - pages are normally
78 * freed via pagevecs. But it gets used by networking.
79 */
__page_cache_release(struct page * page)80 static void __page_cache_release(struct page *page)
81 {
82 if (PageLRU(page)) {
83 struct lruvec *lruvec;
84 unsigned long flags;
85
86 lruvec = lock_page_lruvec_irqsave(page, &flags);
87 del_page_from_lru_list(page, lruvec);
88 __clear_page_lru_flags(page);
89 unlock_page_lruvec_irqrestore(lruvec, flags);
90 }
91 __ClearPageWaiters(page);
92 }
93
__put_single_page(struct page * page)94 static void __put_single_page(struct page *page)
95 {
96 __page_cache_release(page);
97 mem_cgroup_uncharge(page);
98 free_unref_page(page, 0);
99 }
100
__put_compound_page(struct page * page)101 static void __put_compound_page(struct page *page)
102 {
103 /*
104 * __page_cache_release() is supposed to be called for thp, not for
105 * hugetlb. This is because hugetlb page does never have PageLRU set
106 * (it's never listed to any LRU lists) and no memcg routines should
107 * be called for hugetlb (it has a separate hugetlb_cgroup.)
108 */
109 if (!PageHuge(page))
110 __page_cache_release(page);
111 destroy_compound_page(page);
112 }
113
__put_page(struct page * page)114 void __put_page(struct page *page)
115 {
116 if (is_zone_device_page(page)) {
117 put_dev_pagemap(page->pgmap);
118
119 /*
120 * The page belongs to the device that created pgmap. Do
121 * not return it to page allocator.
122 */
123 return;
124 }
125
126 if (unlikely(PageCompound(page)))
127 __put_compound_page(page);
128 else
129 __put_single_page(page);
130 }
131 EXPORT_SYMBOL(__put_page);
132
133 /**
134 * put_pages_list() - release a list of pages
135 * @pages: list of pages threaded on page->lru
136 *
137 * Release a list of pages which are strung together on page.lru. Currently
138 * used by read_cache_pages() and related error recovery code.
139 */
put_pages_list(struct list_head * pages)140 void put_pages_list(struct list_head *pages)
141 {
142 while (!list_empty(pages)) {
143 struct page *victim;
144
145 victim = lru_to_page(pages);
146 list_del(&victim->lru);
147 put_page(victim);
148 }
149 }
150 EXPORT_SYMBOL(put_pages_list);
151
152 /*
153 * get_kernel_pages() - pin kernel pages in memory
154 * @kiov: An array of struct kvec structures
155 * @nr_segs: number of segments to pin
156 * @write: pinning for read/write, currently ignored
157 * @pages: array that receives pointers to the pages pinned.
158 * Should be at least nr_segs long.
159 *
160 * Returns number of pages pinned. This may be fewer than the number
161 * requested. If nr_pages is 0 or negative, returns 0. If no pages
162 * were pinned, returns -errno. Each page returned must be released
163 * with a put_page() call when it is finished with.
164 */
get_kernel_pages(const struct kvec * kiov,int nr_segs,int write,struct page ** pages)165 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
166 struct page **pages)
167 {
168 int seg;
169
170 for (seg = 0; seg < nr_segs; seg++) {
171 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
172 return seg;
173
174 pages[seg] = kmap_to_page(kiov[seg].iov_base);
175 get_page(pages[seg]);
176 }
177
178 return seg;
179 }
180 EXPORT_SYMBOL_GPL(get_kernel_pages);
181
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,struct lruvec * lruvec))182 static void pagevec_lru_move_fn(struct pagevec *pvec,
183 void (*move_fn)(struct page *page, struct lruvec *lruvec))
184 {
185 int i;
186 struct lruvec *lruvec = NULL;
187 unsigned long flags = 0;
188
189 for (i = 0; i < pagevec_count(pvec); i++) {
190 struct page *page = pvec->pages[i];
191
192 /* block memcg migration during page moving between lru */
193 if (!TestClearPageLRU(page))
194 continue;
195
196 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
197 (*move_fn)(page, lruvec);
198
199 SetPageLRU(page);
200 }
201 if (lruvec)
202 unlock_page_lruvec_irqrestore(lruvec, flags);
203 release_pages(pvec->pages, pvec->nr);
204 pagevec_reinit(pvec);
205 }
206
pagevec_move_tail_fn(struct page * page,struct lruvec * lruvec)207 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
208 {
209 if (!PageUnevictable(page)) {
210 del_page_from_lru_list(page, lruvec);
211 ClearPageActive(page);
212 add_page_to_lru_list_tail(page, lruvec);
213 __count_vm_events(PGROTATED, thp_nr_pages(page));
214 }
215 }
216
217 /* return true if pagevec needs to drain */
pagevec_add_and_need_flush(struct pagevec * pvec,struct page * page)218 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
219 {
220 bool ret = false;
221
222 if (!pagevec_add(pvec, page) || PageCompound(page) ||
223 lru_cache_disabled())
224 ret = true;
225
226 return ret;
227 }
228
229 /*
230 * Writeback is about to end against a page which has been marked for immediate
231 * reclaim. If it still appears to be reclaimable, move it to the tail of the
232 * inactive list.
233 *
234 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
235 */
rotate_reclaimable_page(struct page * page)236 void rotate_reclaimable_page(struct page *page)
237 {
238 if (!PageLocked(page) && !PageDirty(page) &&
239 !PageUnevictable(page) && PageLRU(page)) {
240 struct pagevec *pvec;
241 unsigned long flags;
242
243 get_page(page);
244 local_lock_irqsave(&lru_rotate.lock, flags);
245 pvec = this_cpu_ptr(&lru_rotate.pvec);
246 if (pagevec_add_and_need_flush(pvec, page))
247 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
248 local_unlock_irqrestore(&lru_rotate.lock, flags);
249 }
250 }
251
lru_note_cost(struct lruvec * lruvec,bool file,unsigned int nr_pages)252 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
253 {
254 do {
255 unsigned long lrusize;
256
257 /*
258 * Hold lruvec->lru_lock is safe here, since
259 * 1) The pinned lruvec in reclaim, or
260 * 2) From a pre-LRU page during refault (which also holds the
261 * rcu lock, so would be safe even if the page was on the LRU
262 * and could move simultaneously to a new lruvec).
263 */
264 spin_lock_irq(&lruvec->lru_lock);
265 /* Record cost event */
266 if (file)
267 lruvec->file_cost += nr_pages;
268 else
269 lruvec->anon_cost += nr_pages;
270
271 /*
272 * Decay previous events
273 *
274 * Because workloads change over time (and to avoid
275 * overflow) we keep these statistics as a floating
276 * average, which ends up weighing recent refaults
277 * more than old ones.
278 */
279 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
280 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
281 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
282 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
283
284 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
285 lruvec->file_cost /= 2;
286 lruvec->anon_cost /= 2;
287 }
288 spin_unlock_irq(&lruvec->lru_lock);
289 } while ((lruvec = parent_lruvec(lruvec)));
290 }
291
lru_note_cost_page(struct page * page)292 void lru_note_cost_page(struct page *page)
293 {
294 lru_note_cost(mem_cgroup_page_lruvec(page),
295 page_is_file_lru(page), thp_nr_pages(page));
296 }
297
__activate_page(struct page * page,struct lruvec * lruvec)298 static void __activate_page(struct page *page, struct lruvec *lruvec)
299 {
300 if (!PageActive(page) && !PageUnevictable(page)) {
301 int nr_pages = thp_nr_pages(page);
302
303 del_page_from_lru_list(page, lruvec);
304 SetPageActive(page);
305 add_page_to_lru_list(page, lruvec);
306 trace_mm_lru_activate(page);
307
308 __count_vm_events(PGACTIVATE, nr_pages);
309 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
310 nr_pages);
311 }
312 }
313
314 #ifdef CONFIG_SMP
activate_page_drain(int cpu)315 static void activate_page_drain(int cpu)
316 {
317 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
318
319 if (pagevec_count(pvec))
320 pagevec_lru_move_fn(pvec, __activate_page);
321 }
322
need_activate_page_drain(int cpu)323 static bool need_activate_page_drain(int cpu)
324 {
325 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
326 }
327
activate_page(struct page * page)328 static void activate_page(struct page *page)
329 {
330 page = compound_head(page);
331 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
332 struct pagevec *pvec;
333
334 local_lock(&lru_pvecs.lock);
335 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
336 get_page(page);
337 if (pagevec_add_and_need_flush(pvec, page))
338 pagevec_lru_move_fn(pvec, __activate_page);
339 local_unlock(&lru_pvecs.lock);
340 }
341 }
342
343 #else
activate_page_drain(int cpu)344 static inline void activate_page_drain(int cpu)
345 {
346 }
347
activate_page(struct page * page)348 static void activate_page(struct page *page)
349 {
350 struct lruvec *lruvec;
351
352 page = compound_head(page);
353 if (TestClearPageLRU(page)) {
354 lruvec = lock_page_lruvec_irq(page);
355 __activate_page(page, lruvec);
356 unlock_page_lruvec_irq(lruvec);
357 SetPageLRU(page);
358 }
359 }
360 #endif
361
__lru_cache_activate_page(struct page * page)362 static void __lru_cache_activate_page(struct page *page)
363 {
364 struct pagevec *pvec;
365 int i;
366
367 local_lock(&lru_pvecs.lock);
368 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
369
370 /*
371 * Search backwards on the optimistic assumption that the page being
372 * activated has just been added to this pagevec. Note that only
373 * the local pagevec is examined as a !PageLRU page could be in the
374 * process of being released, reclaimed, migrated or on a remote
375 * pagevec that is currently being drained. Furthermore, marking
376 * a remote pagevec's page PageActive potentially hits a race where
377 * a page is marked PageActive just after it is added to the inactive
378 * list causing accounting errors and BUG_ON checks to trigger.
379 */
380 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
381 struct page *pagevec_page = pvec->pages[i];
382
383 if (pagevec_page == page) {
384 SetPageActive(page);
385 break;
386 }
387 }
388
389 local_unlock(&lru_pvecs.lock);
390 }
391
392 /*
393 * Mark a page as having seen activity.
394 *
395 * inactive,unreferenced -> inactive,referenced
396 * inactive,referenced -> active,unreferenced
397 * active,unreferenced -> active,referenced
398 *
399 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
400 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
401 */
mark_page_accessed(struct page * page)402 void mark_page_accessed(struct page *page)
403 {
404 page = compound_head(page);
405
406 if (!PageReferenced(page)) {
407 SetPageReferenced(page);
408 } else if (PageUnevictable(page)) {
409 /*
410 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
411 * this list is never rotated or maintained, so marking an
412 * evictable page accessed has no effect.
413 */
414 } else if (!PageActive(page)) {
415 /*
416 * If the page is on the LRU, queue it for activation via
417 * lru_pvecs.activate_page. Otherwise, assume the page is on a
418 * pagevec, mark it active and it'll be moved to the active
419 * LRU on the next drain.
420 */
421 if (PageLRU(page))
422 activate_page(page);
423 else
424 __lru_cache_activate_page(page);
425 ClearPageReferenced(page);
426 workingset_activation(page);
427 }
428 if (page_is_idle(page))
429 clear_page_idle(page);
430 }
431 EXPORT_SYMBOL(mark_page_accessed);
432
433 /**
434 * lru_cache_add - add a page to a page list
435 * @page: the page to be added to the LRU.
436 *
437 * Queue the page for addition to the LRU via pagevec. The decision on whether
438 * to add the page to the [in]active [file|anon] list is deferred until the
439 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
440 * have the page added to the active list using mark_page_accessed().
441 */
lru_cache_add(struct page * page)442 void lru_cache_add(struct page *page)
443 {
444 struct pagevec *pvec;
445
446 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
447 VM_BUG_ON_PAGE(PageLRU(page), page);
448
449 get_page(page);
450 local_lock(&lru_pvecs.lock);
451 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
452 if (pagevec_add_and_need_flush(pvec, page))
453 __pagevec_lru_add(pvec);
454 local_unlock(&lru_pvecs.lock);
455 }
456 EXPORT_SYMBOL(lru_cache_add);
457
458 /**
459 * lru_cache_add_inactive_or_unevictable
460 * @page: the page to be added to LRU
461 * @vma: vma in which page is mapped for determining reclaimability
462 *
463 * Place @page on the inactive or unevictable LRU list, depending on its
464 * evictability.
465 */
lru_cache_add_inactive_or_unevictable(struct page * page,struct vm_area_struct * vma)466 void lru_cache_add_inactive_or_unevictable(struct page *page,
467 struct vm_area_struct *vma)
468 {
469 bool unevictable;
470
471 VM_BUG_ON_PAGE(PageLRU(page), page);
472
473 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
474 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
475 int nr_pages = thp_nr_pages(page);
476 /*
477 * We use the irq-unsafe __mod_zone_page_state because this
478 * counter is not modified from interrupt context, and the pte
479 * lock is held(spinlock), which implies preemption disabled.
480 */
481 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
482 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
483 }
484 lru_cache_add(page);
485 }
486
487 /*
488 * If the page can not be invalidated, it is moved to the
489 * inactive list to speed up its reclaim. It is moved to the
490 * head of the list, rather than the tail, to give the flusher
491 * threads some time to write it out, as this is much more
492 * effective than the single-page writeout from reclaim.
493 *
494 * If the page isn't page_mapped and dirty/writeback, the page
495 * could reclaim asap using PG_reclaim.
496 *
497 * 1. active, mapped page -> none
498 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
499 * 3. inactive, mapped page -> none
500 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
501 * 5. inactive, clean -> inactive, tail
502 * 6. Others -> none
503 *
504 * In 4, why it moves inactive's head, the VM expects the page would
505 * be write it out by flusher threads as this is much more effective
506 * than the single-page writeout from reclaim.
507 */
lru_deactivate_file_fn(struct page * page,struct lruvec * lruvec)508 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
509 {
510 bool active = PageActive(page);
511 int nr_pages = thp_nr_pages(page);
512
513 if (PageUnevictable(page))
514 return;
515
516 /* Some processes are using the page */
517 if (page_mapped(page))
518 return;
519
520 del_page_from_lru_list(page, lruvec);
521 ClearPageActive(page);
522 ClearPageReferenced(page);
523
524 if (PageWriteback(page) || PageDirty(page)) {
525 /*
526 * PG_reclaim could be raced with end_page_writeback
527 * It can make readahead confusing. But race window
528 * is _really_ small and it's non-critical problem.
529 */
530 add_page_to_lru_list(page, lruvec);
531 SetPageReclaim(page);
532 } else {
533 /*
534 * The page's writeback ends up during pagevec
535 * We move that page into tail of inactive.
536 */
537 add_page_to_lru_list_tail(page, lruvec);
538 __count_vm_events(PGROTATED, nr_pages);
539 }
540
541 if (active) {
542 __count_vm_events(PGDEACTIVATE, nr_pages);
543 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
544 nr_pages);
545 }
546 }
547
lru_deactivate_fn(struct page * page,struct lruvec * lruvec)548 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
549 {
550 if (PageActive(page) && !PageUnevictable(page)) {
551 int nr_pages = thp_nr_pages(page);
552
553 del_page_from_lru_list(page, lruvec);
554 ClearPageActive(page);
555 ClearPageReferenced(page);
556 add_page_to_lru_list(page, lruvec);
557
558 __count_vm_events(PGDEACTIVATE, nr_pages);
559 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
560 nr_pages);
561 }
562 }
563
lru_lazyfree_fn(struct page * page,struct lruvec * lruvec)564 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
565 {
566 if (PageAnon(page) && PageSwapBacked(page) &&
567 !PageSwapCache(page) && !PageUnevictable(page)) {
568 int nr_pages = thp_nr_pages(page);
569
570 del_page_from_lru_list(page, lruvec);
571 ClearPageActive(page);
572 ClearPageReferenced(page);
573 /*
574 * Lazyfree pages are clean anonymous pages. They have
575 * PG_swapbacked flag cleared, to distinguish them from normal
576 * anonymous pages
577 */
578 ClearPageSwapBacked(page);
579 add_page_to_lru_list(page, lruvec);
580
581 __count_vm_events(PGLAZYFREE, nr_pages);
582 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
583 nr_pages);
584 }
585 }
586
587 /*
588 * Drain pages out of the cpu's pagevecs.
589 * Either "cpu" is the current CPU, and preemption has already been
590 * disabled; or "cpu" is being hot-unplugged, and is already dead.
591 */
lru_add_drain_cpu(int cpu)592 void lru_add_drain_cpu(int cpu)
593 {
594 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
595
596 if (pagevec_count(pvec))
597 __pagevec_lru_add(pvec);
598
599 pvec = &per_cpu(lru_rotate.pvec, cpu);
600 /* Disabling interrupts below acts as a compiler barrier. */
601 if (data_race(pagevec_count(pvec))) {
602 unsigned long flags;
603
604 /* No harm done if a racing interrupt already did this */
605 local_lock_irqsave(&lru_rotate.lock, flags);
606 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
607 local_unlock_irqrestore(&lru_rotate.lock, flags);
608 }
609
610 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
611 if (pagevec_count(pvec))
612 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
613
614 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
615 if (pagevec_count(pvec))
616 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
617
618 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
619 if (pagevec_count(pvec))
620 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
621
622 activate_page_drain(cpu);
623 }
624
625 /**
626 * deactivate_file_page - forcefully deactivate a file page
627 * @page: page to deactivate
628 *
629 * This function hints the VM that @page is a good reclaim candidate,
630 * for example if its invalidation fails due to the page being dirty
631 * or under writeback.
632 */
deactivate_file_page(struct page * page)633 void deactivate_file_page(struct page *page)
634 {
635 /*
636 * In a workload with many unevictable page such as mprotect,
637 * unevictable page deactivation for accelerating reclaim is pointless.
638 */
639 if (PageUnevictable(page))
640 return;
641
642 if (likely(get_page_unless_zero(page))) {
643 struct pagevec *pvec;
644
645 local_lock(&lru_pvecs.lock);
646 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
647
648 if (pagevec_add_and_need_flush(pvec, page))
649 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
650 local_unlock(&lru_pvecs.lock);
651 }
652 }
653
654 /*
655 * deactivate_page - deactivate a page
656 * @page: page to deactivate
657 *
658 * deactivate_page() moves @page to the inactive list if @page was on the active
659 * list and was not an unevictable page. This is done to accelerate the reclaim
660 * of @page.
661 */
deactivate_page(struct page * page)662 void deactivate_page(struct page *page)
663 {
664 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
665 struct pagevec *pvec;
666
667 local_lock(&lru_pvecs.lock);
668 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
669 get_page(page);
670 if (pagevec_add_and_need_flush(pvec, page))
671 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
672 local_unlock(&lru_pvecs.lock);
673 }
674 }
675
676 /**
677 * mark_page_lazyfree - make an anon page lazyfree
678 * @page: page to deactivate
679 *
680 * mark_page_lazyfree() moves @page to the inactive file list.
681 * This is done to accelerate the reclaim of @page.
682 */
mark_page_lazyfree(struct page * page)683 void mark_page_lazyfree(struct page *page)
684 {
685 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
686 !PageSwapCache(page) && !PageUnevictable(page)) {
687 struct pagevec *pvec;
688
689 local_lock(&lru_pvecs.lock);
690 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
691 get_page(page);
692 if (pagevec_add_and_need_flush(pvec, page))
693 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
694 local_unlock(&lru_pvecs.lock);
695 }
696 }
697
lru_add_drain(void)698 void lru_add_drain(void)
699 {
700 local_lock(&lru_pvecs.lock);
701 lru_add_drain_cpu(smp_processor_id());
702 local_unlock(&lru_pvecs.lock);
703 }
704
705 /*
706 * It's called from per-cpu workqueue context in SMP case so
707 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
708 * the same cpu. It shouldn't be a problem in !SMP case since
709 * the core is only one and the locks will disable preemption.
710 */
lru_add_and_bh_lrus_drain(void)711 static void lru_add_and_bh_lrus_drain(void)
712 {
713 local_lock(&lru_pvecs.lock);
714 lru_add_drain_cpu(smp_processor_id());
715 local_unlock(&lru_pvecs.lock);
716 invalidate_bh_lrus_cpu();
717 }
718
lru_add_drain_cpu_zone(struct zone * zone)719 void lru_add_drain_cpu_zone(struct zone *zone)
720 {
721 local_lock(&lru_pvecs.lock);
722 lru_add_drain_cpu(smp_processor_id());
723 drain_local_pages(zone);
724 local_unlock(&lru_pvecs.lock);
725 }
726
727 #ifdef CONFIG_SMP
728
729 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
730
lru_add_drain_per_cpu(struct work_struct * dummy)731 static void lru_add_drain_per_cpu(struct work_struct *dummy)
732 {
733 lru_add_and_bh_lrus_drain();
734 }
735
736 /*
737 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
738 * kworkers being shut down before our page_alloc_cpu_dead callback is
739 * executed on the offlined cpu.
740 * Calling this function with cpu hotplug locks held can actually lead
741 * to obscure indirect dependencies via WQ context.
742 */
__lru_add_drain_all(bool force_all_cpus)743 inline void __lru_add_drain_all(bool force_all_cpus)
744 {
745 /*
746 * lru_drain_gen - Global pages generation number
747 *
748 * (A) Definition: global lru_drain_gen = x implies that all generations
749 * 0 < n <= x are already *scheduled* for draining.
750 *
751 * This is an optimization for the highly-contended use case where a
752 * user space workload keeps constantly generating a flow of pages for
753 * each CPU.
754 */
755 static unsigned int lru_drain_gen;
756 static struct cpumask has_work;
757 static DEFINE_MUTEX(lock);
758 unsigned cpu, this_gen;
759
760 /*
761 * Make sure nobody triggers this path before mm_percpu_wq is fully
762 * initialized.
763 */
764 if (WARN_ON(!mm_percpu_wq))
765 return;
766
767 /*
768 * Guarantee pagevec counter stores visible by this CPU are visible to
769 * other CPUs before loading the current drain generation.
770 */
771 smp_mb();
772
773 /*
774 * (B) Locally cache global LRU draining generation number
775 *
776 * The read barrier ensures that the counter is loaded before the mutex
777 * is taken. It pairs with smp_mb() inside the mutex critical section
778 * at (D).
779 */
780 this_gen = smp_load_acquire(&lru_drain_gen);
781
782 mutex_lock(&lock);
783
784 /*
785 * (C) Exit the draining operation if a newer generation, from another
786 * lru_add_drain_all(), was already scheduled for draining. Check (A).
787 */
788 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
789 goto done;
790
791 /*
792 * (D) Increment global generation number
793 *
794 * Pairs with smp_load_acquire() at (B), outside of the critical
795 * section. Use a full memory barrier to guarantee that the new global
796 * drain generation number is stored before loading pagevec counters.
797 *
798 * This pairing must be done here, before the for_each_online_cpu loop
799 * below which drains the page vectors.
800 *
801 * Let x, y, and z represent some system CPU numbers, where x < y < z.
802 * Assume CPU #z is in the middle of the for_each_online_cpu loop
803 * below and has already reached CPU #y's per-cpu data. CPU #x comes
804 * along, adds some pages to its per-cpu vectors, then calls
805 * lru_add_drain_all().
806 *
807 * If the paired barrier is done at any later step, e.g. after the
808 * loop, CPU #x will just exit at (C) and miss flushing out all of its
809 * added pages.
810 */
811 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
812 smp_mb();
813
814 cpumask_clear(&has_work);
815 for_each_online_cpu(cpu) {
816 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
817
818 if (force_all_cpus ||
819 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
820 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
821 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
822 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
823 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
824 need_activate_page_drain(cpu) ||
825 has_bh_in_lru(cpu, NULL)) {
826 INIT_WORK(work, lru_add_drain_per_cpu);
827 queue_work_on(cpu, mm_percpu_wq, work);
828 __cpumask_set_cpu(cpu, &has_work);
829 }
830 }
831
832 for_each_cpu(cpu, &has_work)
833 flush_work(&per_cpu(lru_add_drain_work, cpu));
834
835 done:
836 mutex_unlock(&lock);
837 }
838
lru_add_drain_all(void)839 void lru_add_drain_all(void)
840 {
841 __lru_add_drain_all(false);
842 }
843 #else
lru_add_drain_all(void)844 void lru_add_drain_all(void)
845 {
846 lru_add_drain();
847 }
848 #endif /* CONFIG_SMP */
849
850 atomic_t lru_disable_count = ATOMIC_INIT(0);
851
852 /*
853 * lru_cache_disable() needs to be called before we start compiling
854 * a list of pages to be migrated using isolate_lru_page().
855 * It drains pages on LRU cache and then disable on all cpus until
856 * lru_cache_enable is called.
857 *
858 * Must be paired with a call to lru_cache_enable().
859 */
lru_cache_disable(void)860 void lru_cache_disable(void)
861 {
862 atomic_inc(&lru_disable_count);
863 #ifdef CONFIG_SMP
864 /*
865 * lru_add_drain_all in the force mode will schedule draining on
866 * all online CPUs so any calls of lru_cache_disabled wrapped by
867 * local_lock or preemption disabled would be ordered by that.
868 * The atomic operation doesn't need to have stronger ordering
869 * requirements because that is enforeced by the scheduling
870 * guarantees.
871 */
872 __lru_add_drain_all(true);
873 #else
874 lru_add_and_bh_lrus_drain();
875 #endif
876 }
877
878 /**
879 * release_pages - batched put_page()
880 * @pages: array of pages to release
881 * @nr: number of pages
882 *
883 * Decrement the reference count on all the pages in @pages. If it
884 * fell to zero, remove the page from the LRU and free it.
885 */
release_pages(struct page ** pages,int nr)886 void release_pages(struct page **pages, int nr)
887 {
888 int i;
889 LIST_HEAD(pages_to_free);
890 struct lruvec *lruvec = NULL;
891 unsigned long flags;
892 unsigned int lock_batch;
893
894 for (i = 0; i < nr; i++) {
895 struct page *page = pages[i];
896
897 /*
898 * Make sure the IRQ-safe lock-holding time does not get
899 * excessive with a continuous string of pages from the
900 * same lruvec. The lock is held only if lruvec != NULL.
901 */
902 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
903 unlock_page_lruvec_irqrestore(lruvec, flags);
904 lruvec = NULL;
905 }
906
907 page = compound_head(page);
908 if (is_huge_zero_page(page))
909 continue;
910
911 if (is_zone_device_page(page)) {
912 if (lruvec) {
913 unlock_page_lruvec_irqrestore(lruvec, flags);
914 lruvec = NULL;
915 }
916 /*
917 * ZONE_DEVICE pages that return 'false' from
918 * page_is_devmap_managed() do not require special
919 * processing, and instead, expect a call to
920 * put_page_testzero().
921 */
922 if (page_is_devmap_managed(page)) {
923 put_devmap_managed_page(page);
924 continue;
925 }
926 if (put_page_testzero(page))
927 put_dev_pagemap(page->pgmap);
928 continue;
929 }
930
931 if (!put_page_testzero(page))
932 continue;
933
934 if (PageCompound(page)) {
935 if (lruvec) {
936 unlock_page_lruvec_irqrestore(lruvec, flags);
937 lruvec = NULL;
938 }
939 __put_compound_page(page);
940 continue;
941 }
942
943 if (PageLRU(page)) {
944 struct lruvec *prev_lruvec = lruvec;
945
946 lruvec = relock_page_lruvec_irqsave(page, lruvec,
947 &flags);
948 if (prev_lruvec != lruvec)
949 lock_batch = 0;
950
951 del_page_from_lru_list(page, lruvec);
952 __clear_page_lru_flags(page);
953 }
954
955 __ClearPageWaiters(page);
956
957 list_add(&page->lru, &pages_to_free);
958 }
959 if (lruvec)
960 unlock_page_lruvec_irqrestore(lruvec, flags);
961
962 mem_cgroup_uncharge_list(&pages_to_free);
963 free_unref_page_list(&pages_to_free);
964 }
965 EXPORT_SYMBOL(release_pages);
966
967 /*
968 * The pages which we're about to release may be in the deferred lru-addition
969 * queues. That would prevent them from really being freed right now. That's
970 * OK from a correctness point of view but is inefficient - those pages may be
971 * cache-warm and we want to give them back to the page allocator ASAP.
972 *
973 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
974 * and __pagevec_lru_add_active() call release_pages() directly to avoid
975 * mutual recursion.
976 */
__pagevec_release(struct pagevec * pvec)977 void __pagevec_release(struct pagevec *pvec)
978 {
979 if (!pvec->percpu_pvec_drained) {
980 lru_add_drain();
981 pvec->percpu_pvec_drained = true;
982 }
983 release_pages(pvec->pages, pagevec_count(pvec));
984 pagevec_reinit(pvec);
985 }
986 EXPORT_SYMBOL(__pagevec_release);
987
__pagevec_lru_add_fn(struct page * page,struct lruvec * lruvec)988 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
989 {
990 int was_unevictable = TestClearPageUnevictable(page);
991 int nr_pages = thp_nr_pages(page);
992
993 VM_BUG_ON_PAGE(PageLRU(page), page);
994
995 /*
996 * Page becomes evictable in two ways:
997 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
998 * 2) Before acquiring LRU lock to put the page to correct LRU and then
999 * a) do PageLRU check with lock [check_move_unevictable_pages]
1000 * b) do PageLRU check before lock [clear_page_mlock]
1001 *
1002 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1003 * following strict ordering:
1004 *
1005 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1006 *
1007 * SetPageLRU() TestClearPageMlocked()
1008 * smp_mb() // explicit ordering // above provides strict
1009 * // ordering
1010 * PageMlocked() PageLRU()
1011 *
1012 *
1013 * if '#1' does not observe setting of PG_lru by '#0' and fails
1014 * isolation, the explicit barrier will make sure that page_evictable
1015 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1016 * can be reordered after PageMlocked check and can make '#1' to fail
1017 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1018 * looking at the same page) and the evictable page will be stranded
1019 * in an unevictable LRU.
1020 */
1021 SetPageLRU(page);
1022 smp_mb__after_atomic();
1023
1024 if (page_evictable(page)) {
1025 if (was_unevictable)
1026 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1027 } else {
1028 ClearPageActive(page);
1029 SetPageUnevictable(page);
1030 if (!was_unevictable)
1031 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1032 }
1033
1034 add_page_to_lru_list(page, lruvec);
1035 trace_mm_lru_insertion(page);
1036 }
1037
1038 /*
1039 * Add the passed pages to the LRU, then drop the caller's refcount
1040 * on them. Reinitialises the caller's pagevec.
1041 */
__pagevec_lru_add(struct pagevec * pvec)1042 void __pagevec_lru_add(struct pagevec *pvec)
1043 {
1044 int i;
1045 struct lruvec *lruvec = NULL;
1046 unsigned long flags = 0;
1047
1048 for (i = 0; i < pagevec_count(pvec); i++) {
1049 struct page *page = pvec->pages[i];
1050
1051 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1052 __pagevec_lru_add_fn(page, lruvec);
1053 }
1054 if (lruvec)
1055 unlock_page_lruvec_irqrestore(lruvec, flags);
1056 release_pages(pvec->pages, pvec->nr);
1057 pagevec_reinit(pvec);
1058 }
1059
1060 /**
1061 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1062 * @pvec: The pagevec to prune
1063 *
1064 * find_get_entries() fills both pages and XArray value entries (aka
1065 * exceptional entries) into the pagevec. This function prunes all
1066 * exceptionals from @pvec without leaving holes, so that it can be
1067 * passed on to page-only pagevec operations.
1068 */
pagevec_remove_exceptionals(struct pagevec * pvec)1069 void pagevec_remove_exceptionals(struct pagevec *pvec)
1070 {
1071 int i, j;
1072
1073 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1074 struct page *page = pvec->pages[i];
1075 if (!xa_is_value(page))
1076 pvec->pages[j++] = page;
1077 }
1078 pvec->nr = j;
1079 }
1080
1081 /**
1082 * pagevec_lookup_range - gang pagecache lookup
1083 * @pvec: Where the resulting pages are placed
1084 * @mapping: The address_space to search
1085 * @start: The starting page index
1086 * @end: The final page index
1087 *
1088 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1089 * pages in the mapping starting from index @start and upto index @end
1090 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1091 * reference against the pages in @pvec.
1092 *
1093 * The search returns a group of mapping-contiguous pages with ascending
1094 * indexes. There may be holes in the indices due to not-present pages. We
1095 * also update @start to index the next page for the traversal.
1096 *
1097 * pagevec_lookup_range() returns the number of pages which were found. If this
1098 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1099 * reached.
1100 */
pagevec_lookup_range(struct pagevec * pvec,struct address_space * mapping,pgoff_t * start,pgoff_t end)1101 unsigned pagevec_lookup_range(struct pagevec *pvec,
1102 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1103 {
1104 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1105 pvec->pages);
1106 return pagevec_count(pvec);
1107 }
1108 EXPORT_SYMBOL(pagevec_lookup_range);
1109
pagevec_lookup_range_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag)1110 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1111 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1112 xa_mark_t tag)
1113 {
1114 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1115 PAGEVEC_SIZE, pvec->pages);
1116 return pagevec_count(pvec);
1117 }
1118 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1119
1120 /*
1121 * Perform any setup for the swap system
1122 */
swap_setup(void)1123 void __init swap_setup(void)
1124 {
1125 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1126
1127 /* Use a smaller cluster for small-memory machines */
1128 if (megs < 16)
1129 page_cluster = 2;
1130 else
1131 page_cluster = 3;
1132 /*
1133 * Right now other parts of the system means that we
1134 * _really_ don't want to cluster much more
1135 */
1136 }
1137
1138 #ifdef CONFIG_DEV_PAGEMAP_OPS
put_devmap_managed_page(struct page * page)1139 void put_devmap_managed_page(struct page *page)
1140 {
1141 int count;
1142
1143 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1144 return;
1145
1146 count = page_ref_dec_return(page);
1147
1148 /*
1149 * devmap page refcounts are 1-based, rather than 0-based: if
1150 * refcount is 1, then the page is free and the refcount is
1151 * stable because nobody holds a reference on the page.
1152 */
1153 if (count == 1)
1154 free_devmap_managed_page(page);
1155 else if (!count)
1156 __put_page(page);
1157 }
1158 EXPORT_SYMBOL(put_devmap_managed_page);
1159 #endif
1160